aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2013-05-17 09:37:33 +0000
committerdos-reis <gdr@axiomatics.org>2013-05-17 09:37:33 +0000
commit1e6db8d4424e63a8992d7fc04917ddfd6ce94378 (patch)
tree17c39a95de3b5e19945aada5dded01b26757c129 /src
parent1a4d9fc1eef3c6ac261907a42a1d6e0cf0490dfc (diff)
downloadopen-axiom-1e6db8d4424e63a8992d7fc04917ddfd6ce94378.tar.gz
* algebra/aggcat.spad.pamphlet (FiniteAggregate): Add default
implementation for empty?.
Diffstat (limited to 'src')
-rw-r--r--src/ChangeLog5
-rw-r--r--src/algebra/Makefile.am2
-rw-r--r--src/algebra/Makefile.in2
-rw-r--r--src/algebra/aggcat.spad.pamphlet8
-rw-r--r--src/algebra/exposed.lsp.pamphlet1
-rw-r--r--src/share/algebra/browse.daase2968
-rw-r--r--src/share/algebra/category.daase6074
-rw-r--r--src/share/algebra/compress.daase8
-rw-r--r--src/share/algebra/interp.daase7937
-rw-r--r--src/share/algebra/operation.daase20446
10 files changed, 18733 insertions, 18718 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index 3e373bee..45f8edf2 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,5 +1,10 @@
2013-05-17 Gabriel Dos Reis <gdr@integrable-solutions.net>
+ * algebra/aggcat.spad.pamphlet (FiniteAggregate): Add default
+ implementation for empty?.
+
+2013-05-17 Gabriel Dos Reis <gdr@integrable-solutions.net>
+
* algebra/aggcat.spad.pamphlet (TableAggregate): Now extend
FiniteAggregate Record(key:Key,entry:Entry).
* algebra/files.spad.pamphlet (KeyedAccessFile): Remove
diff --git a/src/algebra/Makefile.am b/src/algebra/Makefile.am
index 9a44eddb..0b2a6854 100644
--- a/src/algebra/Makefile.am
+++ b/src/algebra/Makefile.am
@@ -1485,7 +1485,7 @@ oa_algebra_layer_0 = \
FSAGG FSAGG- STAGG STAGG- CLAGG CLAGG- \
RCAGG RCAGG- SETAGG SETAGG- HOAGG HOAGG- \
TBAGG TBAGG- KDAGG KDAGG- DIAGG DIAGG- \
- DIOPS DIOPS- STRING FINAGG \
+ DIOPS DIOPS- STRING FINAGG FINAGG- \
LIST DIFFDOM DIFFDOM- DIFFSPC DIFFSPC- DIFFMOD \
LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \
RTVALUE SYSPTR PDDOM PDDOM- PDSPC PDSPC- \
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index 388c2ef9..94f58422 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -740,7 +740,7 @@ oa_algebra_layer_0 = \
FSAGG FSAGG- STAGG STAGG- CLAGG CLAGG- \
RCAGG RCAGG- SETAGG SETAGG- HOAGG HOAGG- \
TBAGG TBAGG- KDAGG KDAGG- DIAGG DIAGG- \
- DIOPS DIOPS- STRING FINAGG \
+ DIOPS DIOPS- STRING FINAGG FINAGG- \
LIST DIFFDOM DIFFDOM- DIFFSPC DIFFSPC- DIFFMOD \
LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \
RTVALUE SYSPTR PDDOM PDDOM- PDSPC PDSPC- \
diff --git a/src/algebra/aggcat.spad.pamphlet b/src/algebra/aggcat.spad.pamphlet
index f95287ad..ebbf2f97 100644
--- a/src/algebra/aggcat.spad.pamphlet
+++ b/src/algebra/aggcat.spad.pamphlet
@@ -122,7 +122,7 @@ HomogeneousAggregate(S:Type): Category == Aggregate with
members: % -> List S
++ members(u) returns a list of the consecutive elements of u.
++ For collections, \axiom{parts([x,y,...,z]) = (x,y,...,z)}.
- if S has SetCategory then
+ if S has BasicType then
count: (S,%) -> NonNegativeInteger
++ count(x,u) returns the number of occurrences of x in u.
++ For collections, \axiom{count(x,u) = reduce(+,[x=y for y in u],0)}.
@@ -145,7 +145,7 @@ HomogeneousAggregate(S:Type): Category == Aggregate with
x = y ==
#x = #y and (and/[a = b for a in parts x for b in parts y])
- if S has SetCategory then
+ if S has BasicType then
count(s:S, x:%) == count(s = #1, x)
member?(e, c) == any?(e = #1,c)
@@ -188,7 +188,7 @@ FiniteAggregate(S: Type): Category == Exports where
members: % -> List S
++ \spad{members(u)} returns a list of the consecutive elements of u.
++ For collections, \axiom{parts([x,y,...,z]) = (x,y,...,z)}.
- if S has SetCategory then
+ if S has BasicType then
count: (S,%) -> NonNegativeInteger
++ \spad{count(x,u)} returns the number of occurrences
++ of \spad{x} in \spad{u}.
@@ -197,6 +197,8 @@ FiniteAggregate(S: Type): Category == Exports where
++ \spad{member?(x,u)} tests if \spad{x} is a member of \spad{u}.
++ For collections,
++ \axiom{member?(x,u) = reduce(or,[x=y for y in u],false)}.
+ add
+ empty? x == #x = 0
@
diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet
index 33084c13..221e7b9f 100644
--- a/src/algebra/exposed.lsp.pamphlet
+++ b/src/algebra/exposed.lsp.pamphlet
@@ -1120,6 +1120,7 @@
(|Field&| . FIELD-)
(|FieldOfPrimeCharacteristic&| . FPC-)
(|FiniteAbelianMonoidRing&| . FAMR-)
+ (|FiniteAggregate&| . FINAGG-)
(|FiniteAlgebraicExtensionField&| . FAXF-)
(|FiniteDivisorCategory&| . FDIVCAT-)
(|FiniteFieldCategory&| . FFIELDC-)
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 8cf0e445..2b615b8a 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(1960928 . 3577755911)
+(1962788 . 3577772102)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3991 . T) (-3989 . T) (-3988 . T) ((-3996 "*") . T) (-3987 . T) (-3992 . T) (-3986 . T))
+((-3992 . T) (-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3988 . T) (-3993 . T) (-3987 . T))
NIL
(-30)
((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3092)
+(-32 R -3093)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-950 (-484)))))
+((|HasCategory| |#1| (QUOTE (-951 (-485)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3994)))
+((|HasAttribute| |#1| (QUOTE -3995)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Maybe| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \\spad{nothing} if \\spad{u} has no key \\spad{k}.")))
-((-3994 . T) (-3995 . T))
+((-3995 . T) (-3996 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-3988 . T) (-3989 . T) (-3991 . T))
+((-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an.")))
NIL
NIL
-(-40 -3092 UP UPUP -2614)
+(-40 -3093 UP UPUP -2615)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-3987 |has| (-349 |#2|) (-312)) (-3992 |has| (-349 |#2|) (-312)) (-3986 |has| (-349 |#2|) (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-349 |#2|) (QUOTE (-118))) (|HasCategory| (-349 |#2|) (QUOTE (-120))) (|HasCategory| (-349 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-319))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-299))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089)))))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-811 (-1089)))))) (|HasCategory| (-349 |#2|) (QUOTE (-580 (-484)))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-349 (-484)))))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))))
-(-41 R -3092)
+((-3988 |has| (-350 |#2|) (-312)) (-3993 |has| (-350 |#2|) (-312)) (-3987 |has| (-350 |#2|) (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1090)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))))
+(-41 R -3093)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -364) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,31 +106,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-258))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-3991 |has| |#1| (-495)) (-3989 . T) (-3988 . T))
-((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495))))
+((-3992 |has| |#1| (-496)) (-3990 . T) (-3989 . T))
+((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-3994 . T) (-3995 . T))
-((OR (-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-756)))) (-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))))
+((-3995 . T) (-3996 . T))
+((OR (-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))))
+((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484)))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-3991 . T))
+((-3992 . T))
NIL
(-51)
((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3092)
+(-54 |Base| R -3093)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression.")))
NIL
NIL
@@ -158,28 +158,28 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
(-58 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-59 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-61 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
((|HasCategory| |#1| (QUOTE (-312))))
(-62 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-63 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -202,11 +202,11 @@ NIL
NIL
(-68)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-3994 . T) ((-3996 "*") . T) (-3995 . T) (-3991 . T) (-3989 . T) (-3988 . T) (-3987 . T) (-3992 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3983 . T) (-3982 . T) (-3990 . T) (-3993 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3981 . T))
+((-3995 . T) ((-3997 "*") . T) (-3996 . T) (-3992 . T) (-3990 . T) (-3989 . T) (-3988 . T) (-3993 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3983 . T) (-3991 . T) (-3994 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3982 . T))
NIL
(-69 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-3991 . T))
+((-3992 . T))
NIL
(-70 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -222,24 +222,24 @@ NIL
NIL
(-73 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-74 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3996 "*"))))
+((|HasAttribute| |#1| (QUOTE (-3997 "*"))))
(-75 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
NIL
NIL
(-76 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-3995 . T))
+((-3996 . T))
NIL
(-77)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-796 (-329)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1089)))) (|HasCategory| (-484) (QUOTE (-455 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118)))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1090)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1066))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1090)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1090)))) (|HasCategory| (-485) (QUOTE (-456 (-1090) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
(-78)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -254,11 +254,11 @@ NIL
NIL
(-81)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-553 (-473)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-1013))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-72))))
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1014))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72))))
(-82 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
(-83 S)
((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}.")))
@@ -280,22 +280,22 @@ NIL
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
NIL
NIL
-(-88 -3092 UP)
+(-88 -3093 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-89 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-90 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-89 |#1|) (QUOTE (-821))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-1089)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-473)))) (|HasCategory| (-89 |#1|) (QUOTE (-933))) (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756)))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-1065))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-329)))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-89 |#1|) (QUOTE (-580 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-811 (-1089)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-809 (-1089)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (|HasCategory| (-89 |#1|) (QUOTE (-118)))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-89 |#1|) (QUOTE (-822))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-1090)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-89 |#1|) (QUOTE (-934))) (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757)))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-1066))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-89 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-812 (-1090)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-810 (-1090)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (|HasCategory| (-89 |#1|) (QUOTE (-118)))))
(-91 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)))
+((|HasAttribute| |#1| (QUOTE -3996)))
(-92 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -306,15 +306,15 @@ NIL
NIL
(-94 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-95 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-96)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
(-97 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -322,24 +322,24 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
(-99 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-100 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-101)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256.")))
NIL
NIL
(-102)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-756)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1013))))) (|HasCategory| (-101) (QUOTE (-552 (-772)))) (|HasCategory| (-101) (QUOTE (-553 (-473)))) (OR (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-101) (QUOTE (-756))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1013)))))
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-757)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014))))) (|HasCategory| (-101) (QUOTE (-553 (-773)))) (|HasCategory| (-101) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-101) (QUOTE (-757))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014)))))
(-103)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
NIL
@@ -358,13 +358,13 @@ NIL
NIL
(-107)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-3996 "*") . T))
+(((-3997 "*") . T))
NIL
-(-108 |minix| -2621 R)
+(-108 |minix| -2622 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")))
NIL
NIL
-(-109 |minix| -2621 S T$)
+(-109 |minix| -2622 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
@@ -386,8 +386,8 @@ NIL
NIL
(-114)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-3994 . T) (-3984 . T) (-3995 . T))
-((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-319)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-553 (-473)))) (|HasCategory| (-117) (QUOTE (-319))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013)))))
+((-3995 . T) (-3985 . T) (-3996 . T))
+((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))))
(-115 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
@@ -402,7 +402,7 @@ NIL
NIL
(-118)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-3991 . T))
+((-3992 . T))
NIL
(-119 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x.")))
@@ -410,9 +410,9 @@ NIL
NIL
(-120)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-121 -3092 UP UPUP)
+(-121 -3093 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -423,14 +423,14 @@ NIL
(-123 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasAttribute| |#1| (QUOTE -3994)))
+((|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasAttribute| |#1| (QUOTE -3995)))
(-124 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-125 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-3989 . T) (-3988 . T) (-3991 . T))
+((-3990 . T) (-3989 . T) (-3992 . T))
NIL
(-126)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -452,7 +452,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-131 R -3092)
+(-131 R -3093)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -483,10 +483,10 @@ NIL
(-138 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3990)) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-495))))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3991)) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))))
(-139 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-3987 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3990 |has| |#1| (-6 -3990)) (-3993 |has| |#1| (-6 -3993)) (-1375 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3994 |has| |#1| (-6 -3994)) (-1376 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-140 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -498,8 +498,8 @@ NIL
NIL
(-142 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-3987 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3990 |has| |#1| (-6 -3990)) (-3993 |has| |#1| (-6 -3993)) (-1375 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089))))) (|HasCategory| |#1| (QUOTE (-811 (-1089))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-821))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasAttribute| |#1| (QUOTE -3993)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+((-3988 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3994 |has| |#1| (-6 -3994)) (-1376 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))) (|HasCategory| |#1| (QUOTE (-812 (-1090))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-974))) (-12 (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasAttribute| |#1| (QUOTE -3994)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-143 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
@@ -514,7 +514,7 @@ NIL
NIL
(-146)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-147)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -522,7 +522,7 @@ NIL
NIL
(-148 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-3996 "*") . T) (-3987 . T) (-3992 . T) (-3986 . T) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") . T) (-3988 . T) (-3993 . T) (-3987 . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-149)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -539,7 +539,7 @@ NIL
(-152 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-857 |#2|) (|%list| (QUOTE -796) (|devaluate| |#1|))))
+((|HasCategory| (-858 |#2|) (|%list| (QUOTE -797) (|devaluate| |#1|))))
(-153 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -576,7 +576,7 @@ NIL
((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-162 R -3092)
+(-162 R -3093)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -604,23 +604,23 @@ NIL
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis.")))
NIL
NIL
-(-169 -3092 UP UPUP R)
+(-169 -3093 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-170 -3092 FP)
+(-170 -3093 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-171)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-796 (-329)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1089)))) (|HasCategory| (-484) (QUOTE (-455 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118)))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1090)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1066))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1090)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1090)))) (|HasCategory| (-485) (QUOTE (-456 (-1090) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
(-172)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-173 R -3092)
+(-173 R -3093)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -634,19 +634,19 @@ NIL
NIL
(-176 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-177 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-178 R -3092)
+(-178 R -3093)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-179)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3769 . T) (-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3770 . T) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-180)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -654,19 +654,19 @@ NIL
NIL
(-181 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3996 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3997 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))))
(-182 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-183 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-3995 . T))
+((-3996 . T))
NIL
(-184 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")))
-((-3991 . T))
+((-3992 . T))
NIL
(-185 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -678,7 +678,7 @@ NIL
NIL
(-187 R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
(-188 S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
@@ -690,7 +690,7 @@ NIL
NIL
(-190)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-3991 . T))
+((-3992 . T))
NIL
(-191)
((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation.")))
@@ -699,28 +699,28 @@ NIL
(-192 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3994)))
+((|HasAttribute| |#1| (QUOTE -3995)))
(-193 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-3995 . T))
+((-3996 . T))
NIL
(-194)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-195 S -2621 R)
+(-195 S -2622 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")))
NIL
-((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasAttribute| |#3| (QUOTE -3991)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013))))
-(-196 -2621 R)
+((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3992)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014))))
+(-196 -2622 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")))
-((-3988 |has| |#2| (-961)) (-3989 |has| |#2| (-961)) (-3991 |has| |#2| (-6 -3991)) (-3994 . T))
+((-3989 |has| |#2| (-962)) (-3990 |has| |#2| (-962)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T))
NIL
-(-197 -2621 R)
+(-197 -2622 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-3988 |has| |#2| (-961)) (-3989 |has| |#2| (-961)) (-3991 |has| |#2| (-6 -3991)) (-3994 . T))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3991)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
-(-198 -2621 A B)
+((-3989 |has| |#2| (-962)) (-3990 |has| |#2| (-962)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3992)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
+(-198 -2622 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
@@ -734,7 +734,7 @@ NIL
NIL
(-201)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-3987 . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-202 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -742,20 +742,20 @@ NIL
NIL
(-203 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-204 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-205 R)
((|constructor| (NIL "Category of modules that extend differential rings. \\blankline")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
(-206 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-207)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'.")))
NIL
@@ -770,23 +770,23 @@ NIL
NIL
(-210 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-3991 OR (-2562 (|has| |#4| (-961)) (|has| |#4| (-190))) (|has| |#4| (-6 -3991)) (-2562 (|has| |#4| (-961)) (|has| |#4| (-809 (-1089))))) (-3988 |has| |#4| (-961)) (-3989 |has| |#4| (-961)) (-3994 . T))
-((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-717))) (OR (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-756)))) (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-319))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-809 (-1089))))) (|HasCategory| |#4| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#4| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1089)))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasAttribute| |#4| (QUOTE -3991)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))))
+((-3992 OR (-2563 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3992)) (-2563 (|has| |#4| (-962)) (|has| |#4| (-810 (-1090))))) (-3989 |has| |#4| (-962)) (-3990 |has| |#4| (-962)) (-3995 . T))
+((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-812 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1090))))) (|HasCategory| |#4| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1090)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3992)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))))
(-211 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-3991 OR (-2562 (|has| |#3| (-961)) (|has| |#3| (-190))) (|has| |#3| (-6 -3991)) (-2562 (|has| |#3| (-961)) (|has| |#3| (-809 (-1089))))) (-3988 |has| |#3| (-961)) (-3989 |has| |#3| (-961)) (-3994 . T))
-((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-319))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1089))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasAttribute| |#3| (QUOTE -3991)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))))
+((-3992 OR (-2563 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3992)) (-2563 (|has| |#3| (-962)) (|has| |#3| (-810 (-1090))))) (-3989 |has| |#3| (-962)) (-3990 |has| |#3| (-962)) (-3995 . T))
+((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1090))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3992)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))))
(-212 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-190))))
(-213 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
NIL
(-214 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-3994 . T) (-3995 . T))
+((-3995 . T) (-3996 . T))
NIL
(-215 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -827,15 +827,15 @@ NIL
(-224 S R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-189))))
+((|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-189))))
(-225 R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
NIL
(-226 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#3| (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#3| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#3| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#3| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#3| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#3| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-227 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -848,11 +848,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-230 R -3092)
+(-230 R -3093)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-231 R -3092)
+(-231 R -3093)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -875,10 +875,10 @@ NIL
(-236 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))))
+((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))))
(-237 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-3995 . T))
+((-3996 . T))
NIL
(-238 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -899,14 +899,14 @@ NIL
(-242 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)))
+((|HasAttribute| |#1| (QUOTE -3996)))
(-243 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-244 S R |Mod| -2037 -3517 |exactQuo|)
+(-244 S R |Mod| -2038 -3518 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-245 S)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
@@ -914,7 +914,7 @@ NIL
NIL
(-246)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-3987 . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-247)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -926,16 +926,16 @@ NIL
NIL
(-249 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-3991 OR (|has| |#1| (-961)) (|has| |#1| (-412))) (-3988 |has| |#1| (-961)) (-3989 |has| |#1| (-961)))
-((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-412))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-412)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-663))))
+((-3992 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3989 |has| |#1| (-962)) (-3990 |has| |#1| (-962)))
+((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-413))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-664))))
(-250 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
(-251 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
(-252)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
@@ -943,16 +943,16 @@ NIL
(-253 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-961))))
+((|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962))))
(-254)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-255 -3092 S)
+(-255 -3093 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-256 E -3092)
+(-256 E -3093)
((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -962,7 +962,7 @@ NIL
NIL
(-258)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-259 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -972,7 +972,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-261 -3092)
+(-261 -3093)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -986,12 +986,12 @@ NIL
NIL
(-264 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-473)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-933))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (OR (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-756)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-1065))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-329)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-580 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-811 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-809 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-118)))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-474)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-934))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (OR (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-757)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-1066))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-330)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-485)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-581 (-485)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-812 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-118)))))
(-265 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-3991 OR (-12 (|has| |#1| (-495)) (OR (|has| |#1| (-961)) (|has| |#1| (-412)))) (|has| |#1| (-961)) (|has| |#1| (-412))) (-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) ((-3996 "*") |has| |#1| (-495)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-495)) (-3986 |has| |#1| (-495)))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961))))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484)))))
+((-3992 OR (-12 (|has| |#1| (-496)) (OR (|has| |#1| (-962)) (|has| |#1| (-413)))) (|has| |#1| (-962)) (|has| |#1| (-413))) (-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) ((-3997 "*") |has| |#1| (-496)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-496)) (-3987 |has| |#1| (-496)))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962))))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
(-266 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1000,7 +1000,7 @@ NIL
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-268 R -3092)
+(-268 R -3093)
((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1010,8 +1010,8 @@ NIL
NIL
(-270 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
(-271 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1022,8 +1022,8 @@ NIL
NIL
(-273 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative.")))
-((-3989 . T) (-3988 . T))
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-716))))
+((-3990 . T) (-3989 . T))
+((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-717))))
(-274 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1031,26 +1031,26 @@ NIL
(-275 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-694) (QUOTE (-716))))
+((|HasCategory| (-695) (QUOTE (-717))))
(-276 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))))
+((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))))
(-277 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-278 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-279 S -3092)
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-279 S -3093)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-319))))
-(-280 -3092)
+((|HasCategory| |#2| (QUOTE (-320))))
+(-280 -3093)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-281 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
@@ -1060,7 +1060,7 @@ NIL
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-283 -3092 UP UPUP R)
+(-283 -3093 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1068,33 +1068,33 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-285 S -3092 UP UPUP R)
+(-285 S -3093 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-286 -3092 UP UPUP R)
+(-286 -3093 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
(-287 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))))
(-288 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-289 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-319)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-319))) (|HasCategory| (-817 |#1|) (QUOTE (-118))))
-(-290 S -3092 UP UPUP)
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
+(-290 S -3093 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-312))))
-(-291 -3092 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-312))))
+(-291 -3093 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-3987 |has| (-349 |#2|) (-312)) (-3992 |has| (-349 |#2|) (-312)) (-3986 |has| (-349 |#2|) (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 |has| (-350 |#2|) (-312)) (-3993 |has| (-350 |#2|) (-312)) (-3987 |has| (-350 |#2|) (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-292 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
@@ -1102,16 +1102,16 @@ NIL
NIL
(-293 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-319)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-319))) (|HasCategory| (-817 |#1|) (QUOTE (-118))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
(-294 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-295 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-296 GF)
((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1126,51 +1126,51 @@ NIL
NIL
(-299)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-300 R UP -3092)
+(-300 R UP -3093)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-301 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-319)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-319))) (|HasCategory| (-817 |#1|) (QUOTE (-118))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
(-302 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-303 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-304 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-305 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-306 -3092 GF)
+(-306 -3093 GF)
((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-307 -3092 FP FPP)
+(-307 -3093 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
(-308 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118))))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-309 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}.")))
NIL
NIL
(-310 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-3991 . T))
+((-3992 . T))
NIL
(-311 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1178,7 +1178,7 @@ NIL
NIL
(-312)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
(-313 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
@@ -1191,3578 +1191,3582 @@ NIL
(-315 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-495))))
+((|HasCategory| |#2| (QUOTE (-496))))
(-316 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-3991 |has| |#1| (-495)) (-3989 . T) (-3988 . T))
+((-3992 |has| |#1| (-496)) (-3990 . T) (-3989 . T))
NIL
-(-317 S)
-((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}.")))
-((-3994 . T))
+(-317 A S)
+((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}.")))
NIL
+((|HasCategory| |#2| (QUOTE (-72))))
(-318 S)
+((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}.")))
+((-3995 . T))
+NIL
+(-319 S)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-319)
+(-320)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-320 S R UP)
+(-321 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-312))))
-(-321 R UP)
+(-322 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-3988 . T) (-3989 . T) (-3991 . T))
+((-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-322 A S)
+(-323 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))))
-(-323 S)
+((|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))))
+(-324 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-3994 . T))
+((-3995 . T))
NIL
-(-324 S A R B)
+(-325 S A R B)
((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-325 |VarSet| R)
+(-326 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3989 . T) (-3988 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3990 . T) (-3989 . T))
NIL
-(-326 S V)
+(-327 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-327 S R)
+(-328 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (QUOTE (-580 (-484)))))
-(-328 R)
+((|HasCategory| |#2| (QUOTE (-581 (-485)))))
+(-329 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
NIL
-(-329)
+(-330)
((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3977 . T) (-3985 . T) (-3769 . T) (-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3978 . T) (-3986 . T) (-3770 . T) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-330 |Par|)
+(-331 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-331 |Par|)
+(-332 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-332 R S)
-((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-3989 . T) (-3988 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
(-333 R S)
+((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
+((-3990 . T) (-3989 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
+(-334 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
((|HasCategory| |#1| (QUOTE (-146))))
-(-334 R |Basis|)
+(-335 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
-(-335 S)
+(-336 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-336 S)
+(-337 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-337)
+((|HasCategory| |#1| (QUOTE (-757))))
+(-338)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-338)
+(-339)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")))
NIL
NIL
-(-339 |n| |class| R)
+(-340 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
-(-340 -3092 UP UPUP R)
+(-341 -3093 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-341 -3092 UP)
+(-342 -3093 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-342 R)
+(-343 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
NIL
NIL
-(-343 S)
+(-344 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-344)
+(-345)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-345 S)
+(-346 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -3977)) (|HasAttribute| |#1| (QUOTE -3985)))
-(-346)
+((|HasAttribute| |#1| (QUOTE -3978)) (|HasAttribute| |#1| (QUOTE -3986)))
+(-347)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3769 . T) (-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3770 . T) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-347 R)
+(-348 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-455 (-1089) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-1133))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-391))))
-(-348 R S)
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-456 (-1090) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1134))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-1134)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-392))))
+(-349 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-349 S)
+(-350 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-3981 -12 (|has| |#1| (-6 -3992)) (|has| |#1| (-391)) (|has| |#1| (-6 -3981))) (-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-950 (-1089)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-483))) (-12 (|HasAttribute| |#1| (QUOTE -3981)) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-350 A B)
+((-3982 -12 (|has| |#1| (-6 -3993)) (|has| |#1| (-392)) (|has| |#1| (-6 -3982))) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-951 (-1090)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-484))) (-12 (|HasAttribute| |#1| (QUOTE -3982)) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392)))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-351 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-351 S R UP)
+(-352 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-352 R UP)
+(-353 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3988 . T) (-3989 . T) (-3991 . T))
+((-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-353 A S)
+(-354 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))))
-(-354 S)
+((|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))
+(-355 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-355 R -3092 UP A)
+(-356 R -3093 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-356 R1 F1 U1 A1 R2 F2 U2 A2)
+(-357 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-357 R -3092 UP A |ibasis|)
+(-358 R -3093 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (|%list| (QUOTE -950) (|devaluate| |#2|))))
-(-358 AR R AS S)
+((|HasCategory| |#4| (|%list| (QUOTE -951) (|devaluate| |#2|))))
+(-359 AR R AS S)
((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-359 S R)
+(-360 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
((|HasCategory| |#2| (QUOTE (-312))))
-(-360 R)
+(-361 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3991 |has| |#1| (-495)) (-3989 . T) (-3988 . T))
+((-3992 |has| |#1| (-496)) (-3990 . T) (-3989 . T))
NIL
-(-361 R)
+(-362 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
NIL
-(-362 S R)
+(-363 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-412))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-553 (-473)))))
-(-363 R)
+((|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-554 (-474)))))
+(-364 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-3991 OR (|has| |#1| (-961)) (|has| |#1| (-412))) (-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) ((-3996 "*") |has| |#1| (-495)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-495)) (-3986 |has| |#1| (-495)))
+((-3992 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) ((-3997 "*") |has| |#1| (-496)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-496)) (-3987 |has| |#1| (-496)))
NIL
-(-364 R A S B)
+(-365 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-365 R FE |x| |cen|)
+(-366 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-366 R FE |Expon| UPS TRAN |x|)
+(-367 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-367 A S)
+(-368 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319))))
-(-368 S)
+((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))))
+(-369 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-3994 . T) (-3984 . T) (-3995 . T))
+((-3995 . T) (-3985 . T) (-3996 . T))
NIL
-(-369 S A R B)
+(-370 S A R B)
((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-370 R -3092)
+(-371 R -3093)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-371 R E)
+(-372 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-3981 -12 (|has| |#1| (-6 -3981)) (|has| |#2| (-6 -3981))) (-3988 . T) (-3989 . T) (-3991 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -3981)) (|HasAttribute| |#2| (QUOTE -3981))))
-(-372 R -3092)
+((-3982 -12 (|has| |#1| (-6 -3982)) (|has| |#2| (-6 -3982))) (-3989 . T) (-3990 . T) (-3992 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -3982)) (|HasAttribute| |#2| (QUOTE -3982))))
+(-373 R -3093)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-373 R -3092)
+(-374 R -3093)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-374 R -3092)
+(-375 R -3093)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-375 R -3092)
+(-376 R -3093)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-376)
+(-377)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-377 R -3092 UP)
+(-378 R -3093 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (QUOTE (-950 (-48)))))
-(-378)
+((|HasCategory| |#2| (QUOTE (-951 (-48)))))
+(-379)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
-(-379 |f|)
+(-380 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-380)
+(-381)
((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}.")))
NIL
NIL
-(-381 UP)
+(-382 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-382 R UP -3092)
+(-383 R UP -3093)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-383 R UP)
+(-384 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-384 R)
+(-385 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-346))))
-(-385)
+((|HasCategory| |#1| (QUOTE (-347))))
+(-386)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-386 |Dom| |Expon| |VarSet| |Dpol|)
+(-387 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
((|HasCategory| |#1| (QUOTE (-312))))
-(-387 |Dom| |Expon| |VarSet| |Dpol|)
+(-388 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-388 |Dom| |Expon| |VarSet| |Dpol|)
+(-389 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-389 |Dom| |Expon| |VarSet| |Dpol|)
+(-390 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-390 S)
+(-391 S)
((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-391)
+(-392)
((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-392 R |n| |ls| |gamma|)
+(-393 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-3991 |has| (-349 (-857 |#1|)) (-495)) (-3989 . T) (-3988 . T))
-((|HasCategory| (-349 (-857 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-349 (-857 |#1|)) (QUOTE (-495))))
-(-393 |vl| R E)
+((-3992 |has| (-350 (-858 |#1|)) (-496)) (-3990 . T) (-3989 . T))
+((|HasCategory| (-350 (-858 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-350 (-858 |#1|)) (QUOTE (-496))))
+(-394 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-394 R BP)
+(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-395 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional.")))
NIL
NIL
-(-395 OV E S R P)
+(-396 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-396 E OV R P)
+(-397 E OV R P)
((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-397 R)
+(-398 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-398 R FE)
+(-399 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")))
NIL
NIL
-(-399 RP TP)
+(-400 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-400 |vl| R IS E |ff| P)
+(-401 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
-(-401 E V R P Q)
+(-402 E V R P Q)
((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-402 R E |VarSet| P)
+(-403 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-403 S R E)
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
+(-404 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-404 R E)
+(-405 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-405)
+(-406)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-406)
+(-407)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-407)
+(-408)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-408 S R E)
+(-409 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-409 R E)
+(-410 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-410 |lv| -3092 R)
+(-411 |lv| -3093 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-411 S)
+(-412 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-412)
+(-413)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-413 |Coef| |var| |cen|)
+(-414 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))))
-(-414 |Key| |Entry| |Tbl| |dent|)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(-415 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
-(-415 R E V P)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+(-416 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-416)
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
+(-417)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-417)
+(-418)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
NIL
NIL
-(-418 |Key| |Entry| |hashfn|)
+(-419 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
-(-419)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+(-420)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-420 |vl| R)
+(-421 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-421 -2621 S)
+(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-422 -2622 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3988 |has| |#2| (-961)) (-3989 |has| |#2| (-961)) (-3991 |has| |#2| (-6 -3991)) (-3994 . T))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3991)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
-(-422)
+((-3989 |has| |#2| (-962)) (-3990 |has| |#2| (-962)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3992)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
+(-423)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
-(-423 S)
+(-424 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-424 -3092 UP UPUP R)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-425 -3093 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-425 BP)
+(-426 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}.")))
NIL
NIL
-(-426)
+(-427)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-796 (-329)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1089)))) (|HasCategory| (-484) (QUOTE (-455 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118)))))
-(-427 A S)
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1090)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1066))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1090)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1090)))) (|HasCategory| (-485) (QUOTE (-456 (-1090) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
+(-428 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))))
-(-428 S)
+((|HasAttribute| |#1| (QUOTE -3995)) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))))
+(-429 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
NIL
-(-429 S)
+(-430 S)
((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A.")))
NIL
NIL
-(-430)
+(-431)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'.")))
NIL
NIL
-(-431 S)
+(-432 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-432)
+(-433)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-433 -3092 UP |AlExt| |AlPol|)
+(-434 -3093 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-434)
+(-435)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484)))))
-(-435 S |mn|)
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
+(-436 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type.")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-436 R |Row| |Col|)
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-437 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-437 K R UP)
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-438 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-438 R UP -3092)
+(-439 R UP -3093)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-439 |mn|)
+(-440 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-553 (-473)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-1013))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-72))))
-(-440 K R UP L)
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1014))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72))))
+(-441 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-441)
+(-442)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-442 R Q A B)
+(-443 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
NIL
-(-443 -3092 |Expon| |VarSet| |DPoly|)
+(-444 -3093 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (QUOTE (-553 (-1089)))))
-(-444 |vl| |nv|)
+((|HasCategory| |#3| (QUOTE (-554 (-1090)))))
+(-445 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-445 T$)
+(-446 T$)
((|constructor| (NIL "This is the category of all domains that implement idempotent operations.")))
-(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3056 (|f| |x| |x|) |x|))) . T))
+(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3057 (|f| |x| |x|) |x|))) . T))
NIL
-(-446)
+(-447)
((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
NIL
NIL
-(-447 A S)
+(-448 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
-(-448 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
+(-449 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
-(-449 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
+(-450 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|IndexedProductTerm| |#1| |#2|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-450 A S)
+(-451 A S)
((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")) (|combineWithIf| (($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{combineWithIf(u,v,f,p)} returns the result of combining index-wise,{} coefficients of \\spad{u} and \\spad{u} if when satisfy the predicate \\spad{p}. Those pairs of coefficients which fail\\spad{p} are implicitly ignored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
-(-451 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
+(-452 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
-(-452 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
+(-453 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
-(-453 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
+(-454 A S)
((|constructor| (NIL "An indexed product term is a utility domain used in the representation of indexed direct product objects.")) (|coefficient| ((|#1| $) "\\spad{coefficient t} returns the coefficient of the tern \\spad{t}.")) (|index| ((|#2| $) "\\spad{index t} returns the index of the term \\spad{t}.")) (|term| (($ |#2| |#1|) "\\spad{term(s,a)} constructs a term with index \\spad{s} and coefficient \\spad{a}.")))
NIL
NIL
-(-454 S A B)
+(-455 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-455 A B)
+(-456 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-456 S E |un|)
+(-457 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-716))))
-(-457 S |mn|)
+((|HasCategory| |#2| (QUOTE (-717))))
+(-458 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-458)
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-459)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-459 |p| |n|)
+(-460 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((OR (|HasCategory| (-517 |#1|) (QUOTE (-118))) (|HasCategory| (-517 |#1|) (QUOTE (-319)))) (|HasCategory| (-517 |#1|) (QUOTE (-120))) (|HasCategory| (-517 |#1|) (QUOTE (-319))) (|HasCategory| (-517 |#1|) (QUOTE (-118))))
-(-460 R |Row| |Col| M)
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((OR (|HasCategory| (-518 |#1|) (QUOTE (-118))) (|HasCategory| (-518 |#1|) (QUOTE (-320)))) (|HasCategory| (-518 |#1|) (QUOTE (-120))) (|HasCategory| (-518 |#1|) (QUOTE (-320))) (|HasCategory| (-518 |#1|) (QUOTE (-118))))
+(-461 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -3995)))
-(-461 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -3996)))
+(-462 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -3995)))
-(-462)
+((|HasAttribute| |#7| (QUOTE -3996)))
+(-463)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-463)
+(-464)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-464 S)
+(-465 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-465)
+(-466)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-466 GF)
+(-467 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF.")))
NIL
NIL
-(-467)
+(-468)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
-(-468 R)
+(-469 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-469 |Varset|)
+(-470 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-694) (QUOTE (-1013)))))
-(-470 K -3092 |Par|)
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-695) (QUOTE (-1014)))))
+(-471 K -3093 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-471)
+(-472)
NIL
NIL
NIL
-(-472)
+(-473)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-473)
+(-474)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-474 R)
+(-475 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-475 |Coef| UTS)
+(-476 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-476 K -3092 |Par|)
+(-477 K -3093 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-477 R BP |pMod| |nextMod|)
+(-478 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-478 OV E R P)
+(-479 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-479 K UP |Coef| UTS)
+(-480 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-480 |Coef| UTS)
+(-481 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-481 R UP)
+(-482 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
-(-482 S)
+(-483 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-483)
+(-484)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-3992 . T) (-3993 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-484)
+(-485)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3982 . T) (-3986 . T) (-3981 . T) (-3992 . T) (-3993 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3983 . T) (-3987 . T) (-3982 . T) (-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-485)
+(-486)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-486)
+(-487)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-487)
+(-488)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-488)
+(-489)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-489 |Key| |Entry| |addDom|)
+(-490 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
-(-490 R -3092)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+(-491 R -3093)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-491 R0 -3092 UP UPUP R)
+(-492 R0 -3093 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-492)
+(-493)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-493 R)
+(-494 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3769 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3770 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-494 S)
+(-495 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-495)
+(-496)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-496 R -3092)
+(-497 R -3093)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-497 I)
+(-498 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-498 R -3092 L)
+(-499 R -3093 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|))))
-(-499)
+((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|))))
+(-500)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-500 -3092 UP UPUP R)
+(-501 -3093 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-501 -3092 UP)
+(-502 -3093 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-502 R -3092 L)
+(-503 R -3093 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|))))
-(-503 R -3092)
+((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|))))
+(-504 R -3093)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-569)))))
-(-504 -3092 UP)
+((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-570)))))
+(-505 -3093 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-505 S)
+(-506 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-506 -3092)
+(-507 -3093)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-507 R)
+(-508 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3769 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3770 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-508)
+(-509)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
-(-509 R -3092)
+(-510 R -3093)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-950 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-495))))
-(-510 -3092 UP)
+((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-951 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-496))))
+(-511 -3093 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-511 R -3092)
+(-512 R -3093)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-512)
+(-513)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-513)
+(-514)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file.")))
NIL
NIL
-(-514)
+(-515)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input.")))
NIL
NIL
-(-515)
+(-516)
((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-516 |p| |unBalanced?|)
+(-517 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-517 |p|)
+(-518 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-319))))
-(-518)
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320))))
+(-519)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-519 -3092)
+(-520 -3093)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-3989 . T) (-3988 . T))
-((|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-950 (-1089)))))
-(-520 E -3092)
+((-3990 . T) (-3989 . T))
+((|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-951 (-1090)))))
+(-521 E -3093)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-521 R -3092)
+(-522 R -3093)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
NIL
-(-522)
+(-523)
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-523 I)
+(-524 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-524 GF)
+(-525 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-525 R)
+(-526 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-120))))
-(-526)
+(-527)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-527 R E V P TS)
+(-528 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-528)
+(-529)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-529 E V R P)
+(-530 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-530 |Coef|)
-((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (|HasCategory| (-484) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))))
(-531 |Coef|)
+((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (|HasCategory| (-485) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))))
+(-532 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-3996 "*") |has| |#1| (-495)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-495))))
-(-532)
+(((-3997 "*") |has| |#1| (-496)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-496))))
+(-533)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
NIL
-(-533 A B)
+(-534 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-534 A B C)
+(-535 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-535 R -3092 FG)
+(-536 R -3093 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-536 S)
+(-537 S)
((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-537 S |Index| |Entry|)
+(-538 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-756))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#3| (QUOTE (-1013))))
-(-538 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-757))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#3| (QUOTE (-1014))))
+(-539 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-539)
+(-540)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-540 R A)
+(-541 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-3991 OR (-2562 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) (-3989 . T) (-3988 . T))
-((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
-(-541)
+((-3992 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3990 . T) (-3989 . T))
+((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
+(-542)
((|constructor| (NIL "This is the datatype for the JVM bytecodes.")))
NIL
NIL
-(-542)
+(-543)
((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package")))
NIL
NIL
-(-543)
+(-544)
((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant.")))
NIL
NIL
-(-544)
+(-545)
((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
-(-545)
+(-546)
((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
-(-546)
+(-547)
((|constructor| (NIL "This is the datatype for the JVM opcodes.")))
NIL
NIL
-(-547 |Entry|)
+(-548 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3859 (-1072))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-1072) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72))))
-(-548 S |Key| |Entry|)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3860 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-1073) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))))
+(-549 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-549 |Key| |Entry|)
+(-550 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-3995 . T))
+((-3996 . T))
NIL
-(-550 S)
+(-551 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))))
-(-551 R S)
+((|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))))
+(-552 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-552 S)
+(-553 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-553 S)
+(-554 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-554 -3092 UP)
+(-555 -3093 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-555 S)
+(-556 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
-(-556)
+(-557)
((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
-(-557 S)
+(-558 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
-(-558 A R S)
+(-559 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-755))))
-(-559 S R)
+((-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-756))))
+(-560 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-560 R)
+(-561 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-561 R -3092)
+(-562 R -3093)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
-(-562 R UP)
+(-563 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-3989 . T) (-3988 . T) ((-3996 "*") . T) (-3987 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))))
-(-563 R E V P TS ST)
+((-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3988 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
+(-564 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional.")))
NIL
NIL
-(-564 OV E Z P)
+(-565 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-565)
+(-566)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-566 |VarSet| R |Order|)
+(-567 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-567 R |ls|)
+(-568 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}.")))
NIL
NIL
-(-568 R -3092)
+(-569 R -3093)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-569)
+(-570)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-570 |lv| -3092)
+(-571 |lv| -3093)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-571)
+(-572)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-51) (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-553 (-473)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013))) (|HasCategory| (-1072) (QUOTE (-756))) (|HasCategory| (-51) (QUOTE (-1013))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-72))))
-(-572 R A)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-51) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-554 (-474)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1014))) (|HasCategory| (-1073) (QUOTE (-757))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))))
+(-573 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-3991 OR (-2562 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) (-3989 . T) (-3988 . T))
-((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
-(-573 S R)
+((-3992 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3990 . T) (-3989 . T))
+((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
+(-574 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-312))))
-(-574 R)
+(-575 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3989 . T) (-3988 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3990 . T) (-3989 . T))
NIL
-(-575 R FE)
+(-576 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
-(-576 R)
+(-577 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-577 |vars|)
+(-578 |vars|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis.")))
NIL
NIL
-(-578 S R)
+(-579 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2560 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312))))
-(-579 K B)
+((-2561 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312))))
+(-580 K B)
((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}.")))
-((-3989 . T) (-3988 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-577 |#2|) (QUOTE (-1013)))))
-(-580 R)
+((-3990 . T) (-3989 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-578 |#2|) (QUOTE (-1014)))))
+(-581 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
NIL
-(-581 K B)
+(-582 K B)
((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}.")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
-(-582 S)
+(-583 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-583 S)
+(-584 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-584 A B)
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-585 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-585 A B)
+(-586 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-586 A B C)
+(-587 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-587 T$)
+(-588 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-588 S)
+(-589 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}.")))
NIL
NIL
-(-589 S)
+(-590 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-590 R)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-591 R)
((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline")))
NIL
NIL
-(-591 S E |un|)
+(-592 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-592 A S)
+(-593 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)))
-(-593 S)
+((|HasAttribute| |#1| (QUOTE -3996)))
+(-594 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-594 M R S)
+(-595 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3989 . T) (-3988 . T))
-((|HasCategory| |#1| (QUOTE (-714))))
-(-595 R -3092 L)
+((-3990 . T) (-3989 . T))
+((|HasCategory| |#1| (QUOTE (-715))))
+(-596 R -3093 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-596 A -2492)
+(-597 A -2493)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-312))))
-(-597 A)
+((-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
+(-598 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-312))))
-(-598 A M)
+((-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
+(-599 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-312))))
-(-599 S A)
+((-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
+(-600 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-312))))
-(-600 A)
+(-601 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-3988 . T) (-3989 . T) (-3991 . T))
+((-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-601 -3092 UP)
+(-602 -3093 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-602 A L)
+(-603 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-603 S)
+(-604 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-604)
+(-605)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-605 R)
+(-606 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-606 |VarSet| R)
+(-607 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3989 . T) (-3988 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3990 . T) (-3989 . T))
((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-146))))
-(-607 A S)
+(-608 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-608 S)
+(-609 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-609 -3092 |Row| |Col| M)
+(-610 -3093 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-610 -3092)
+(-611 -3093)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-611 R E OV P)
+(-612 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-612 |n| R)
+(-613 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-3991 . T) (-3994 . T) (-3988 . T) (-3989 . T))
-((|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3996 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-495))) (OR (|HasAttribute| |#2| (QUOTE (-3996 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
-(-613)
+((-3992 . T) (-3995 . T) (-3989 . T) (-3990 . T))
+((|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3997 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))) (OR (|HasAttribute| |#2| (QUOTE (-3997 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
+(-614)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-614 |VarSet|)
+(-615 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-615 A S)
+(-616 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-616 S)
+(-617 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-617)
+(-618)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-618 |VarSet|)
+(-619 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-619 A)
+(-620 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-620 A C)
+(-621 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument.")))
NIL
NIL
-(-621 A B C)
+(-622 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-622)
+(-623)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-623 A)
+(-624 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-624 A C)
+(-625 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-625 A B C)
+(-626 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-626 S R |Row| |Col|)
+(-627 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")))
NIL
-((|HasAttribute| |#2| (QUOTE (-3996 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-495))))
-(-627 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-3997 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))))
+(-628 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-628 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-629 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-629 R |Row| |Col| M)
+(-630 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))))
-(-630 R)
-((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3996 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))))
(-631 R)
+((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3997 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-632 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-632 T$)
+(-633 T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%.")))
NIL
NIL
-(-633 R Q)
+(-634 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-634 S)
+(-635 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-3995 . T))
+((-3996 . T))
NIL
-(-635 U)
+(-636 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-636)
+(-637)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-637 OV E -3092 PG)
+(-638 OV E -3093 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-638 R)
+(-639 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-639 S D1 D2 I)
+(-640 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-640 S)
+(-641 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-641 S)
+(-642 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-642 S T$)
+(-643 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}.")))
NIL
NIL
-(-643 S -2669 I)
+(-644 S -2670 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-644 E OV R P)
+(-645 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented")))
NIL
NIL
-(-645 R)
+(-646 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3988 . T) (-3989 . T) (-3991 . T))
+((-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-646 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-647 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-647)
+(-648)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-648 R |Mod| -2037 -3517 |exactQuo|)
+(-649 R |Mod| -2038 -3518 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-649 R P)
+(-650 R P)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3990 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-994) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-650 IS E |ff|)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-651 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-651 R M)
+(-652 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T))
+((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))))
-(-652 R |Mod| -2037 -3517 |exactQuo|)
+(-653 R |Mod| -2038 -3518 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-653 S R)
+(-654 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-654 R)
+(-655 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
-(-655 -3092)
+(-656 -3093)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-656 S)
+(-657 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-657)
+(-658)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-658 S)
+(-659 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-659)
+(-660)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-660 S R UP)
+(-661 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))))
-(-661 R UP)
+((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))))
+(-662 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-3987 |has| |#1| (-312)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 |has| |#1| (-312)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-662 S)
+(-663 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-663)
+(-664)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-664 T$)
+(-665 T$)
((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}.")))
-(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3056 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3056 (|f| (-2412 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3057 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3057 (|f| (-2413 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-665 T$)
+(-666 T$)
((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}.")))
-(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3056 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3056 (|f| (-2412 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3057 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3057 (|f| (-2413 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-666 -3092 UP)
+(-667 -3093 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-667 |VarSet| E1 E2 R S PR PS)
+(-668 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-668 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-669 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-669 E OV R PPR)
+(-670 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-670 |vl| R)
+(-671 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-671 E OV R PRF)
+(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-672 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-672 E OV R P)
+(-673 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-673 R S M)
+(-674 R S M)
((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-674 R M)
+(-675 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-756))))
-(-675 S)
-((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-3994 . T) (-3984 . T) (-3995 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-757))))
(-676 S)
+((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
+((-3995 . T) (-3985 . T) (-3996 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-677 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-3984 . T) (-3995 . T))
+((-3985 . T) (-3996 . T))
NIL
-(-677)
+(-678)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-678 S)
+(-679 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-679 |Coef| |Var|)
+(-680 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3989 . T) (-3988 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3990 . T) (-3989 . T) (-3992 . T))
NIL
-(-680 OV E R P)
+(-681 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-681 E OV R P)
+(-682 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-682 S R)
+(-683 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-683 R)
+(-684 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
-(-684 S)
+(-685 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-685)
+(-686)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-686 S)
+(-687 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-687)
+(-688)
((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-688 |Par|)
+(-689 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-689 -3092)
+(-690 -3093)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-690 P -3092)
+(-691 P -3093)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")))
NIL
NIL
-(-691 T$)
+(-692 T$)
NIL
NIL
NIL
-(-692 UP -3092)
+(-693 UP -3093)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-693 R)
+(-694 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-694)
+(-695)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-3996 "*") . T))
+(((-3997 "*") . T))
NIL
-(-695 R -3092)
+(-696 R -3093)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-696)
+(-697)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-697 S)
+(-698 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-698 R |PolR| E |PolE|)
+(-699 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-699 R E V P TS)
+(-700 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-700 -3092 |ExtF| |SUEx| |ExtP| |n|)
+(-701 -3093 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-701 BP E OV R P)
+(-702 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-702 |Par|)
+(-703 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable.")))
NIL
NIL
-(-703 R |VarSet|)
+(-704 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#2| (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1089))))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1089))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) (-2560 (|HasCategory| |#1| (QUOTE (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (-2560 (|HasCategory| |#1| (QUOTE (-904 (-484))))))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-704 R)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1090))))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1090))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2561 (|HasCategory| |#1| (QUOTE (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-905 (-485))))))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-705 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3990 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-994) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-705 R S)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-706 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-706 R)
+(-707 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))))
-(-707 R E V P)
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
+(-708 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-708 S)
+(-709 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-146))))
-(-709)
+((-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-146))))
+(-710)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-710)
+(-711)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-711)
+(-712)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-712 |Curve|)
+(-713 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-713 S)
+(-714 S)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}.")))
NIL
NIL
-(-714)
+(-715)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}.")))
NIL
NIL
-(-715 S)
+(-716 S)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}.")))
NIL
NIL
-(-716)
+(-717)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}.")))
NIL
NIL
-(-717)
+(-718)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-718)
+(-719)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-719 S R)
+(-720 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319))))
-(-720 R)
+((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))))
+(-721 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-3988 . T) (-3989 . T) (-3991 . T))
+((-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-721)
+(-722)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-722 R)
+(-723 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-349 (-484)))))) (OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))))
-(-723 OR R OS S)
+((-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485)))))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
+(-724 OR R OS S)
((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-724 R -3092 L)
+(-725 R -3093 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-725 R -3092)
+(-726 R -3093)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-726 R -3092)
+(-727 R -3093)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-727 -3092 UP UPUP R)
+(-728 -3093 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-728 -3092 UP L LQ)
+(-729 -3093 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-729 -3092 UP L LQ)
+(-730 -3093 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-730 -3092 UP)
+(-731 -3093 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-731 -3092 L UP A LO)
+(-732 -3093 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-732 -3092 UP)
+(-733 -3093 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-733 -3092 LO)
+(-734 -3093 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-734 -3092 LODO)
+(-735 -3093 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-735 -2621 S |f|)
+(-736 -2622 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3988 |has| |#2| (-961)) (-3989 |has| |#2| (-961)) (-3991 |has| |#2| (-6 -3991)) (-3994 . T))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3991)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
-(-736 R)
+((-3989 |has| |#2| (-962)) (-3990 |has| |#2| (-962)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3992)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
+(-737 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-738 (-1089)) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-738 (-1089)) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-738 (-1089)) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-738 (-1089)) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-738 (-1089)) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-737 |Kernels| R |var|)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-739 (-1090)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-739 (-1090)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-739 (-1090)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-739 (-1090)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-739 (-1090)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-738 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-3996 "*") |has| |#2| (-312)) (-3987 |has| |#2| (-312)) (-3992 |has| |#2| (-312)) (-3986 |has| |#2| (-312)) (-3991 . T) (-3989 . T) (-3988 . T))
+(((-3997 "*") |has| |#2| (-312)) (-3988 |has| |#2| (-312)) (-3993 |has| |#2| (-312)) (-3987 |has| |#2| (-312)) (-3992 . T) (-3990 . T) (-3989 . T))
((|HasCategory| |#2| (QUOTE (-312))))
-(-738 S)
+(-739 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-739 S)
+(-740 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-740)
+((|HasCategory| |#1| (QUOTE (-757))))
+(-741)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-741 P R)
+(-742 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-3988 . T) (-3989 . T) (-3991 . T))
+((-3989 . T) (-3990 . T) (-3992 . T))
((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190))))
-(-742 S)
+(-743 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-3994 . T) (-3984 . T) (-3995 . T))
+((-3995 . T) (-3985 . T) (-3996 . T))
NIL
-(-743 R)
+(-744 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-3991 |has| |#1| (-755)))
-((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-483))))
-(-744 R S)
+((-3992 |has| |#1| (-756)))
+((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484))))
+(-745 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-745 R)
+(-746 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T))
+((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))))
-(-746 A S)
+(-747 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-747 S)
+(-748 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-748)
+(-749)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages).")))
NIL
NIL
-(-749)
+(-750)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'.")))
NIL
NIL
-(-750 R)
+(-751 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-3991 |has| |#1| (-755)))
-((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-483))))
-(-751 R S)
+((-3992 |has| |#1| (-756)))
+((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484))))
+(-752 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-752)
+(-753)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-753 -2621 S)
+(-754 -2622 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-754)
+(-755)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-755)
+(-756)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-756)
+(-757)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")))
NIL
NIL
-(-757 T$ |f|)
+(-758 T$ |f|)
((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-552 (-772)))))
-(-758 S)
+((|HasCategory| |#1| (QUOTE (-553 (-773)))))
+(-759 S)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-759)
+(-760)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-760 S R)
+(-761 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))))
-(-761 R)
+((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))))
+(-762 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3988 . T) (-3989 . T) (-3991 . T))
+((-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-762 R C)
+(-763 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495))))
-(-763 R |sigma| -3244)
+((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))))
+(-764 R |sigma| -3245)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-312))))
-(-764 |x| R |sigma| -3244)
+((-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
+(-765 |x| R |sigma| -3245)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-312))))
-(-765 R)
+((-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-312))))
+(-766 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))))
-(-766)
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
+(-767)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-767)
+(-768)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-768)
+(-769)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-769 S)
+(-770 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-770)
+(-771)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-771)
+(-772)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
-(-772)
+(-773)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-773 |VariableList|)
+(-774 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-774)
+(-775)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-775 R |vl| |wl| |wtlevel|)
+(-776 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T))
+((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))))
-(-776 R PS UP)
+(-777 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-777 R |x| |pt|)
+(-778 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-778 |p|)
+(-779 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-779 |p|)
+(-780 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-780 |p|)
+(-781 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-778 |#1|) (QUOTE (-821))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-1089)))) (|HasCategory| (-778 |#1|) (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-120))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-473)))) (|HasCategory| (-778 |#1|) (QUOTE (-933))) (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756)))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-1065))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-329)))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-778 |#1|) (QUOTE (-580 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-189))) (|HasCategory| (-778 |#1|) (QUOTE (-811 (-1089)))) (|HasCategory| (-778 |#1|) (QUOTE (-190))) (|HasCategory| (-778 |#1|) (QUOTE (-809 (-1089)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -778) (|devaluate| |#1|)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (QUOTE (-258))) (|HasCategory| (-778 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (|HasCategory| (-778 |#1|) (QUOTE (-118)))))
-(-781 |p| PADIC)
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-779 |#1|) (QUOTE (-822))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-1090)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-120))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-779 |#1|) (QUOTE (-934))) (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757)))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-1066))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-779 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-189))) (|HasCategory| (-779 |#1|) (QUOTE (-812 (-1090)))) (|HasCategory| (-779 |#1|) (QUOTE (-190))) (|HasCategory| (-779 |#1|) (QUOTE (-810 (-1090)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -779) (|devaluate| |#1|)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (QUOTE (-258))) (|HasCategory| (-779 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (|HasCategory| (-779 |#1|) (QUOTE (-118)))))
+(-782 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-950 (-1089)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-483))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-782 S T$)
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-951 (-1090)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-484))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-783 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))))
-(-783)
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))))
+(-784)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value.")))
NIL
NIL
-(-784)
+(-785)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-785)
+(-786)
((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}.")))
NIL
NIL
-(-786 CF1 CF2)
+(-787 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-787 |ComponentFunction|)
+(-788 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-788 CF1 CF2)
+(-789 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-789 |ComponentFunction|)
+(-790 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-790)
+(-791)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-791 CF1 CF2)
+(-792 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-792 |ComponentFunction|)
+(-793 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-793)
+(-794)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
-(-794 R)
+(-795 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-795 R S L)
+(-796 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-796 S)
+(-797 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-797 |Base| |Subject| |Pat|)
+(-798 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2560 (|HasCategory| |#2| (QUOTE (-950 (-1089))))) (-2560 (|HasCategory| |#2| (QUOTE (-961))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2560 (|HasCategory| |#2| (QUOTE (-950 (-1089)))))) (|HasCategory| |#2| (QUOTE (-950 (-1089)))))
-(-798 R S)
+((-12 (-2561 (|HasCategory| |#2| (QUOTE (-951 (-1090))))) (-2561 (|HasCategory| |#2| (QUOTE (-962))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (-2561 (|HasCategory| |#2| (QUOTE (-951 (-1090)))))) (|HasCategory| |#2| (QUOTE (-951 (-1090)))))
+(-799 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-799 R A B)
+(-800 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))].")))
NIL
NIL
-(-800 R)
+(-801 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0")))
NIL
NIL
-(-801 R -2669)
+(-802 R -2670)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-802 R S)
+(-803 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-803 |VarSet|)
+(-804 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-804 UP R)
+(-805 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-805 A T$ S)
+(-806 A T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-806 T$ S)
+(-807 T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-807 UP -3092)
+(-808 UP -3093)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-808 R S)
+(-809 R S)
((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
-(-809 S)
+(-810 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-810 A S)
+(-811 A S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-811 S)
+(-812 S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-812 S)
+(-813 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-813 S)
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-814 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-3991 . T))
-((OR (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-756))))
-(-814 |n| R)
+((-3992 . T))
+((OR (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757))))
+(-815 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-815 S)
+(-816 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-816 S)
+(-817 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-817 |p|)
+(-818 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-319))))
-(-818 R E |VarSet| S)
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320))))
+(-819 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-819 R S)
+(-820 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-820 S)
+(-821 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-118))))
-(-821)
+(-822)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-822 R0 -3092 UP UPUP R)
+(-823 R0 -3093 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-823 UP UPUP R)
+(-824 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-824 UP UPUP)
+(-825 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-825 R)
+(-826 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-826 R)
+(-827 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-827 E OV R P)
+(-828 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-828)
+(-829)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-829 -3092)
+(-830 -3093)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-830)
+(-831)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-3996 "*") . T))
+(((-3997 "*") . T))
NIL
-(-831 R)
+(-832 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-832)
+(-833)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-833 |xx| -3092)
+(-834 |xx| -3093)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-834 -3092 P)
+(-835 -3093 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-835 R |Var| |Expon| GR)
+(-836 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-836)
+(-837)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-837 S)
+(-838 S)
((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-838)
+(-839)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-839)
+(-840)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-840)
+(-841)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-841 R -3092)
+(-842 R -3093)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-842 S A B)
+(-843 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-843 S R -3092)
+(-844 S R -3093)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-844 I)
+(-845 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-845 S E)
+(-846 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-846 S R L)
+(-847 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-847 S E V R P)
+(-848 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -796) (|devaluate| |#1|))))
-(-848 -2669)
+((|HasCategory| |#3| (|%list| (QUOTE -797) (|devaluate| |#1|))))
+(-849 -2670)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-849 R -3092 -2669)
+(-850 R -3093 -2670)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-850 S R Q)
+(-851 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-851 S)
+(-852 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-852 S R P)
+(-853 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-853)
+(-854)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-854 R)
+(-855 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-855 |lv| R)
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-856 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-856 |TheField| |ThePols|)
+(-857 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))))
-(-857 R)
+((|HasCategory| |#1| (QUOTE (-756))))
+(-858 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-1089) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-1089) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-1089) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1089) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-1089) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-858 R S)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1090) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1090) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1090) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1090) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1090) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-859 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-859 |x| R)
+(-860 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-860 S R E |VarSet|)
+(-861 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-796 (-329)))) (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| |#4| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473)))))
-(-861 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-822))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#4| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474)))))
+(-862 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
NIL
-(-862 E V R P -3092)
+(-863 E V R P -3093)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-863 E |Vars| R P S)
+(-864 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-864 E V R P -3092)
+(-865 E V R P -3093)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-391))))
-(-865)
+((|HasCategory| |#3| (QUOTE (-392))))
+(-866)
((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'.")))
NIL
NIL
-(-866)
+(-867)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-867 R E)
+(-868 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3992)))
-(-868 R L)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3993)))
+(-869 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-869 S)
+(-870 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-870 A B)
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-871 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-871)
+(-872)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx.")))
NIL
NIL
-(-872 -3092)
+(-873 -3093)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-873 I)
+(-874 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-874)
+(-875)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-875 A B)
+(-876 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-3991 -12 (|has| |#2| (-412)) (|has| |#1| (-412))))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#2| (QUOTE (-412)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#2| (QUOTE (-412)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-319)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#2| (QUOTE (-412)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756)))))
-(-876)
+((-3992 -12 (|has| |#2| (-413)) (|has| |#1| (-413))))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))))
+(-877)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-877 T$)
+(-878 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-878 T$)
+(-879 T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-879 S T$)
+(-880 S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-880)
+(-881)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-881 S)
+(-882 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-3994 . T) (-3995 . T))
+((-3995 . T) (-3996 . T))
NIL
-(-882 R |polR|)
+(-883 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-391))))
-(-883)
+((|HasCategory| |#1| (QUOTE (-392))))
+(-884)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-884)
+(-885)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-885 S |Coef| |Expon| |Var|)
+(-886 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-886 |Coef| |Expon| |Var|)
+(-887 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-887)
+(-888)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-888 S R E |VarSet| P)
+(-889 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-495))))
-(-889 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-496))))
+(-890 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-3994 . T))
+((-3995 . T))
NIL
-(-890 R E V P)
+(-891 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-391))))
-(-891 K)
+((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-392))))
+(-892 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-892 |VarSet| E RC P)
+(-893 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-893 R)
+(-894 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-894 R1 R2)
+(-895 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-895 R)
+(-896 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-896 K)
+(-897 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-897 R E OV PPR)
+(-898 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-898 K R UP -3092)
+(-899 K R UP -3093)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-899 R |Var| |Expon| |Dpoly|)
+(-900 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))))
-(-900 |vl| |nv|)
+(-901 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-901 R E V P TS)
+(-902 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-902)
+(-903)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-903 A S)
+(-904 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-950 (-1089)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1065))))
-(-904 S)
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-951 (-1090)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1066))))
+(-905 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-905 A B R S)
+(-906 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-906 |n| K)
+(-907 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-907)
+(-908)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-908 S)
+(-909 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-3994 . T) (-3995 . T))
+((-3995 . T) (-3996 . T))
NIL
-(-909 R)
+(-910 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-3987 |has| |#1| (-246)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483))))
-(-910 S R)
+((-3988 |has| |#1| (-246)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))))
+(-911 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-246))))
-(-911 R)
+((|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-246))))
+(-912 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-3987 |has| |#1| (-246)) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 |has| |#1| (-246)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-912 QR R QS S)
+(-913 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-913 S)
-((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
(-914 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-915 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-915)
+(-916)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-916 -3092 UP UPUP |radicnd| |n|)
+(-917 -3093 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-3987 |has| (-349 |#2|) (-312)) (-3992 |has| (-349 |#2|) (-312)) (-3986 |has| (-349 |#2|) (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-349 |#2|) (QUOTE (-118))) (|HasCategory| (-349 |#2|) (QUOTE (-120))) (|HasCategory| (-349 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-319))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-299))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089)))))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-811 (-1089)))))) (|HasCategory| (-349 |#2|) (QUOTE (-580 (-484)))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-349 (-484)))))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))))
-(-917 |bb|)
+((-3988 |has| (-350 |#2|) (-312)) (-3993 |has| (-350 |#2|) (-312)) (-3987 |has| (-350 |#2|) (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1090)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))))
+(-918 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-796 (-329)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1089)))) (|HasCategory| (-484) (QUOTE (-455 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118)))))
-(-918)
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1090)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1066))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1090)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1090)))) (|HasCategory| (-485) (QUOTE (-456 (-1090) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
+(-919)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-919)
+(-920)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-920 RP)
+(-921 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-921 S)
+(-922 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-922 A S)
+(-923 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-1013))))
-(-923 S)
+((|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-1014))))
+(-924 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-924 S)
+(-925 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-925)
+(-926)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-3987 . T) (-3992 . T) (-3986 . T) (-3989 . T) (-3988 . T) ((-3996 "*") . T) (-3991 . T))
+((-3988 . T) (-3993 . T) (-3987 . T) (-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3992 . T))
NIL
-(-926 R -3092)
+(-927 R -3093)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-927 R -3092)
+(-928 R -3093)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-928 -3092 UP)
+(-929 -3093 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-929 -3092 UP)
+(-930 -3093 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-930 S)
+(-931 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-931 F1 UP UPUP R F2)
+(-932 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-932)
+(-933)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-933)
+(-934)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-934 |Pol|)
+(-935 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-935 |Pol|)
+(-936 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-936)
+(-937)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-937 |TheField|)
+(-938 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-3987 . T) (-3992 . T) (-3986 . T) (-3989 . T) (-3988 . T) ((-3996 "*") . T) (-3991 . T))
-((OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-349 (-484)) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-349 (-484)) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-349 (-484)) (QUOTE (-950 (-484)))))
-(-938 -3092 L)
+((-3988 . T) (-3993 . T) (-3987 . T) (-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3992 . T))
+((OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485)))))
+(-939 -3093 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-939 S)
+(-940 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}.")))
NIL
NIL
-(-940 R E V P)
+(-941 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-941)
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
+(-942)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-942 R)
+(-943 R)
((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3996 "*"))))
-(-943 R)
+((|HasAttribute| |#1| (QUOTE (-3997 "*"))))
+(-944 R)
((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))))
-(-944 S)
+((-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))))
+(-945 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-945 S)
+(-946 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-946 S)
+(-947 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-947 -3092 |Expon| |VarSet| |FPol| |LFPol|)
+(-948 -3093 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-948)
+(-949)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-949 A S)
+(-950 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-950 S)
+(-951 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-951 Q R)
+(-952 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-952 R)
+(-953 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-953)
+(-954)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-954 UP)
+(-955 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-955 R)
+(-956 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-956 T$)
+(-957 T$)
((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'.")))
NIL
NIL
-(-957 T$)
+(-958 T$)
((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-958 R |ls|)
+(-959 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1013))) (|HasCategory| (-703 |#1| (-773 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -703) (|devaluate| |#1|) (|%list| (QUOTE -773) (|devaluate| |#2|)))))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-553 (-473)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-773 |#2|) (QUOTE (-319))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-72))))
-(-959)
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| (-704 |#1| (-774 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-554 (-474)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-774 |#2|) (QUOTE (-320))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72))))
+(-960)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-960 S)
+(-961 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-961)
+(-962)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-3991 . T))
+((-3992 . T))
NIL
-(-962 |xx| -3092)
+(-963 |xx| -3093)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-963 S)
+(-964 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")))
NIL
NIL
-(-964 S |m| |n| R |Row| |Col|)
+(-965 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")))
NIL
-((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-146))))
-(-965 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-146))))
+(-966 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")))
-((-3994 . T) (-3989 . T) (-3988 . T))
+((-3995 . T) (-3990 . T) (-3989 . T))
NIL
-(-966 |m| |n| R)
+(-967 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-3994 . T) (-3989 . T) (-3988 . T))
-((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-495))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-552 (-772)))))
-(-967 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-3995 . T) (-3990 . T) (-3989 . T))
+((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-496))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-553 (-773)))))
+(-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-968 R)
+(-969 R)
((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline")))
NIL
NIL
-(-969 S)
+(-970 S)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}.")))
NIL
NIL
-(-970)
+(-971)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}.")))
NIL
NIL
-(-971 S T$)
+(-972 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1013))))
-(-972 S)
+((|HasCategory| |#1| (QUOTE (-1014))))
+(-973 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-973)
+(-974)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-974 |TheField| |ThePolDom|)
+(-975 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-975)
+(-976)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3982 . T) (-3986 . T) (-3981 . T) (-3992 . T) (-3993 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3983 . T) (-3987 . T) (-3982 . T) (-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-976 S R E V)
+(-977 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-904 (-484)))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#4| (QUOTE (-553 (-1089)))))
-(-977 R E V)
+((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-905 (-485)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-1090)))))
+(-978 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
NIL
-(-978)
+(-979)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-979 S |TheField| |ThePols|)
+(-980 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-980 |TheField| |ThePols|)
+(-981 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-981 R E V P TS)
+(-982 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-982 S R E V P)
+(-983 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-983 R E V P)
+(-984 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-984 R E V P TS)
+(-985 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-985)
+(-986)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-986)
+(-987)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-987 |Base| R -3092)
+(-988 |Base| R -3093)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-988 |f|)
+(-989 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-989 |Base| R -3092)
+(-990 |Base| R -3093)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-990 R |ls|)
+(-991 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-991 R UP M)
+(-992 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-3987 |has| |#1| (-312)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089))))))
-(-992 UP SAE UPA)
+((-3988 |has| |#1| (-312)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))))
+(-993 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-993 UP SAE UPA)
+(-994 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-994)
+(-995)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-995)
+(-996)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-996 S)
+(-997 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-997)
+(-998)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-998 R)
+(-999 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-999 R)
+(-1000 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-1000 (-1089)) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1000 (-1089)) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1000 S)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1001 (-1090)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1001 (-1090)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1001 (-1090)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1001 (-1090)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1001 (-1090)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1001 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1001 S)
+(-1002 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1013))))
-(-1002 R S)
+((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014))))
+(-1003 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))))
-(-1003)
+((|HasCategory| |#1| (QUOTE (-756))))
+(-1004)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1004 S)
+(-1005 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1001 |#1|) (QUOTE (-1013))))
-(-1005 R S)
+((|HasCategory| (-1002 |#1|) (QUOTE (-1014))))
+(-1006 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1006 S)
+(-1007 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1007 S L)
+(-1008 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1008)
+(-1009)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1009 S)
+(-1010 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-3994 . T) (-3984 . T) (-3995 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-1010 A S)
+((-3995 . T) (-3985 . T) (-3996 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-1011 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1011 S)
+(-1012 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-3984 . T))
+((-3985 . T))
NIL
-(-1012 S)
+(-1013 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1013)
+(-1014)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1014 |m| |n|)
+(-1015 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1015)
+(-1016)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1016 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1017 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers.")))
NIL
NIL
-(-1017 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1018 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1018 R E V P TS)
+(-1019 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1019 R E V P TS)
+(-1020 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1020 R E V P)
+(-1021 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-1021)
+(-1022)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1022 T$)
+(-1023 T$)
((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative.")))
-(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-1023 T$)
+(-1024 T$)
((|constructor| (NIL "This is the category of all domains that implement semigroup operations")))
-(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-1024 S)
+(-1025 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1025)
+(-1026)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1026 |dimtot| |dim1| S)
+(-1027 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3988 |has| |#3| (-961)) (-3989 |has| |#3| (-961)) (-3991 |has| |#3| (-6 -3991)) (-3994 . T))
-((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-319))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1089))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasAttribute| |#3| (QUOTE -3991)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))))
-(-1027 R |x|)
+((-3989 |has| |#3| (-962)) (-3990 |has| |#3| (-962)) (-3992 |has| |#3| (-6 -3992)) (-3995 . T))
+((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1090))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -3992)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))))
+(-1028 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-391))))
-(-1028)
+((|HasCategory| |#1| (QUOTE (-392))))
+(-1029)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'.")))
NIL
NIL
-(-1029)
+(-1030)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}")))
NIL
NIL
-(-1030 R -3092)
+(-1031 R -3093)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1031 R)
+(-1032 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1032)
+(-1033)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1033)
+(-1034)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-3982 . T) (-3986 . T) (-3981 . T) (-3992 . T) (-3993 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3983 . T) (-3987 . T) (-3982 . T) (-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1034 S)
+(-1035 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-3994 . T) (-3995 . T))
+((-3995 . T) (-3996 . T))
NIL
-(-1035 S |ndim| R |Row| |Col|)
+(-1036 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3996 "*"))) (|HasCategory| |#3| (QUOTE (-146))))
-(-1036 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3997 "*"))) (|HasCategory| |#3| (QUOTE (-146))))
+(-1037 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
-((-3994 . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3995 . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1037 R |Row| |Col| M)
+(-1038 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1038 R |VarSet|)
+(-1039 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#2| (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1039 |Coef| |Var| SMP)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1040 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312))))
-(-1040 R E V P)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))))
+(-1041 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-1041 UP -3092)
+(-1042 UP -3093)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1042 R)
+(-1043 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1043 R)
+(-1044 R)
((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1044 R)
+(-1045 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1045 S A)
+(-1046 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-1046 R)
+((|HasCategory| |#1| (QUOTE (-757))))
+(-1047 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1047 R)
+(-1048 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1048)
+(-1049)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1049)
+(-1050)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1050)
+(-1051)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement.")))
NIL
NIL
-(-1051)
+(-1052)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1052)
+(-1053)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1053 V C)
+(-1054 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1054 V C)
+(-1055 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| (-1053 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1053) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013))) (OR (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-552 (-772)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-72))))
-(-1055 |ndim| R)
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| (-1054 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1054) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1014))) (OR (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-72))))
+(-1056 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-3991 . T) (-3983 |has| |#2| (-6 (-3996 "*"))) (-3994 . T) (-3988 . T) (-3989 . T))
-((|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3996 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3996 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
-(-1056 S)
+((-3992 . T) (-3984 |has| |#2| (-6 (-3997 "*"))) (-3995 . T) (-3989 . T) (-3990 . T))
+((|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3997 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3997 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
+(-1057 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1057)
+(-1058)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-1058 R E V P TS)
+(-1059 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1059 R E V P)
+(-1060 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-1060)
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
+(-1061)
((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:")))
NIL
NIL
-(-1061 S)
+(-1062 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-1062 A S)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-1063 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1063 S)
+(-1064 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1064 |Key| |Ent| |dent|)
+(-1065 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
-(-1065)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+(-1066)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1066)
+(-1067)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1067 |Coef|)
+(-1068 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1068 S)
-((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-3995 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))))
(-1069 S)
+((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
+((-3996 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))))
+(-1070 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1070 A B)
+(-1071 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1071 A B C)
+(-1072 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1072)
+(-1073)
((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-756)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-553 (-473)))) (OR (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-117) (QUOTE (-756))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013)))))
-(-1073 |Entry|)
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-757)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-117) (QUOTE (-757))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))))
+(-1074 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3859 (-1072))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| (-1072) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72))))
-(-1074 A)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3860 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014))) (|HasCategory| (-1073) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))))
+(-1075 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))))
-(-1075 |Coef|)
+((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
+(-1076 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1076 |Coef|)
+(-1077 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1077 R UP)
+(-1078 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-258))))
-(-1078 |n| R)
+(-1079 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1079 S1 S2)
+(-1080 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t")))
NIL
NIL
-(-1080)
+(-1081)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1081 |Coef| |var| |cen|)
+(-1082 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3996 "*") OR (-2562 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2562 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-821)))) (-3987 OR (-2562 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-740))) (|has| |#1| (-495)) (-2562 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-821)))) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-950 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-796 (-329))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-756)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1082 R -3092)
+(((-3997 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-822)))) (-3988 OR (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-822)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-951 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1083 R -3093)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1083 R)
+(-1084 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1084 R)
+(-1085 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3990 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-994) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1085 R S)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1086 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1086 E OV R P)
+(-1087 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1087 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))))
(-1088 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(-1089 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))))
-(-1089)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(-1090)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1090 R)
+(-1091 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1091 R)
+(-1092 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-884) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3992)))
-(-1092)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-885) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3993)))
+(-1093)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1093)
+(-1094)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1094)
+(-1095)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1095 N)
+(-1096 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1096 N)
+(-1097 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")))
NIL
NIL
-(-1097)
+(-1098)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1098 R)
+(-1099 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1099)
+(-1100)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1100 S)
+(-1101 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1101 |Key| |Entry|)
+(-1102 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-3994 . T) (-3995 . T))
-((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
-(-1102 S)
+((-3995 . T) (-3996 . T))
+((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+(-1103 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1103 S)
+(-1104 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1104 R)
+(-1105 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1105 S |Key| |Entry|)
+(-1106 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")))
NIL
NIL
-(-1106 |Key| |Entry|)
+(-1107 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")))
-((-3994 . T) (-3995 . T))
+((-3995 . T) (-3996 . T))
NIL
-(-1107 |Key| |Entry|)
+(-1108 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1108)
+(-1109)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1109 S)
+(-1110 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1110)
+(-1111)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1111 R)
+(-1112 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1112)
+(-1113)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1113 S)
+(-1114 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1114)
+(-1115)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1115 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
(-1116 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-1117 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1117)
+(-1118)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1118 R -3092)
+(-1119 R -3093)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1119 R |Row| |Col| M)
+(-1120 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1120 R -3092)
+(-1121 R -3093)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -796) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -796) (|devaluate| |#1|)))))
-(-1121 |Coef|)
+((-12 (|HasCategory| |#1| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -797) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -797) (|devaluate| |#1|)))))
+(-1122 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312))))
-(-1122 S R E V P)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))))
+(-1123 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-319))))
-(-1123 R E V P)
+((|HasCategory| |#4| (QUOTE (-320))))
+(-1124 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-1124 |Curve|)
+(-1125 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1125)
+(-1126)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1126 S)
+(-1127 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772)))))
-(-1127 -3092)
+((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))))
+(-1128 -3093)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1128)
+(-1129)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1129)
+(-1130)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1130 S)
+(-1131 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-1131)
+((|HasCategory| |#1| (QUOTE (-757))))
+(-1132)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1132 S)
+(-1133 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1133)
+(-1134)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1134)
+(-1135)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1135)
+(-1136)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1136)
+(-1137)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1137)
+(-1138)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1138 |Coef| |var| |cen|)
+(-1139 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3996 "*") OR (-2562 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2562 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-821)))) (-3987 OR (-2562 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-740))) (|has| |#1| (-495)) (-2562 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-821)))) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-950 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-796 (-329))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-756)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1139 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-3997 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-822)))) (-3988 OR (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-822)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-951 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1140 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1140 |Coef|)
+(-1141 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1141 S |Coef| UTS)
+(-1142 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-312))))
-(-1142 |Coef| UTS)
+(-1143 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1143 |Coef| UTS)
+(-1144 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-796 (-329))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))))
-(-1144 ZP)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-822))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))))
+(-1145 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1145 S)
+(-1146 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1013))))
-(-1146 R S)
+((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014))))
+(-1147 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))))
-(-1147 |x| R)
+((|HasCategory| |#1| (QUOTE (-756))))
+(-1148 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3990 |has| |#2| (-312)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-994) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-1148 |x| R |y| S)
+(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3991 |has| |#2| (-312)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-1149 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1149 R Q UP)
+(-1150 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1150 R UP)
+(-1151 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1151 R UP)
+(-1152 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1152 R U)
+(-1153 R U)
((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all.")))
NIL
NIL
-(-1153 S R)
+(-1154 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1065))))
-(-1154 R)
+((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1066))))
+(-1155 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3990 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
NIL
-(-1155 R PR S PS)
+(-1156 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1156 S |Coef| |Expon|)
+(-1157 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#2|) (QUOTE (-1089))))))
-(-1157 |Coef| |Expon|)
+((|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1026))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#2|) (QUOTE (-1090))))))
+(-1158 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1158 RC P)
+(-1159 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1159 |Coef| |var| |cen|)
+(-1160 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))))
-(-1160 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(-1161 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1161 |Coef|)
+(-1162 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1162 S |Coef| ULS)
+(-1163 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1163 |Coef| ULS)
+(-1164 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1164 |Coef| ULS)
+(-1165 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))))
-(-1165 R FE |var| |cen|)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
+(-1166 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-3996 "*") |has| (-1159 |#2| |#3| |#4|) (-146)) (-3987 |has| (-1159 |#2| |#3| |#4|) (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-38 (-349 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-38 (-349 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-950 (-349 (-484)))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-950 (-484)))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-391))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-495))))
-(-1166 A S)
+(((-3997 "*") |has| (-1160 |#2| |#3| |#4|) (-146)) (-3988 |has| (-1160 |#2| |#3| |#4|) (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-392))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-496))))
+(-1167 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)))
-(-1167 S)
+((|HasAttribute| |#1| (QUOTE -3996)))
+(-1168 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1168 |Coef| |var| |cen|)
+(-1169 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))))
-(-1169 |Coef1| |Coef2| UTS1 UTS2)
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(-1170 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1170 S |Coef|)
+(-1171 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-29 (-484)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasSignature| |#2| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1089))))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))))
-(-1171 |Coef|)
+((|HasCategory| |#2| (QUOTE (-29 (-485)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasSignature| |#2| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))))
+(-1172 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1172 |Coef| UTS)
+(-1173 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1173 -3092 UP L UTS)
+(-1174 -3093 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-495))))
-(-1174)
+((|HasCategory| |#1| (QUOTE (-496))))
+(-1175)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1175 |sym|)
+(-1176 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1176 S R)
+(-1177 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1177 R)
+((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1178 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-3995 . T) (-3994 . T))
+((-3996 . T) (-3995 . T))
NIL
-(-1178 R)
+(-1179 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-3995 . T) (-3994 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-1179 A B)
+((-3996 . T) (-3995 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-1180 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1180)
+(-1181)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1181)
+(-1182)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1182)
+(-1183)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1183)
+(-1184)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1184)
+(-1185)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1185 A S)
+(-1186 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1186 S)
+(-1187 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-3989 . T) (-3988 . T))
+((-3990 . T) (-3989 . T))
NIL
-(-1187 R)
+(-1188 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1188 K R UP -3092)
+(-1189 K R UP -3093)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1189)
+(-1190)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1190)
+(-1191)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1191 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1192 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T))
+((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))))
-(-1192 R E V P)
+(-1193 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}.")))
-((-3995 . T) (-3994 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-1193 R)
+((-3996 . T) (-3995 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
+(-1194 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)")))
-((-3988 . T) (-3989 . T) (-3991 . T))
+((-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1194 |vl| R)
+(-1195 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-3991 . T) (-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3987)))
-(-1195 R |VarSet| XPOLY)
+((-3992 . T) (-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3988)))
+(-1196 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1196 S -3092)
+(-1197 S -3093)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))))
-(-1197 -3092)
+((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))))
+(-1198 -3093)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
-(-1198 |vl| R)
+(-1199 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T))
+((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
NIL
-(-1199 |VarSet| R)
+(-1200 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-654 (-349 (-484))))) (|HasAttribute| |#2| (QUOTE -3987)))
-(-1200 R)
+((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-655 (-350 (-485))))) (|HasAttribute| |#2| (QUOTE -3988)))
+(-1201 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-3987 |has| |#1| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3987)))
-(-1201 |vl| R)
+((-3988 |has| |#1| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3988)))
+(-1202 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T))
+((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
NIL
-(-1202 R E)
+(-1203 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-3991 . T) (-3992 |has| |#1| (-6 -3992)) (-3987 |has| |#1| (-6 -3987)) (-3989 . T) (-3988 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3987)))
-(-1203 |VarSet| R)
+((-3992 . T) (-3993 |has| |#1| (-6 -3993)) (-3988 |has| |#1| (-6 -3988)) (-3990 . T) (-3989 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3988)))
+(-1204 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3987)))
-(-1204)
+((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3988)))
+(-1205)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1205 A)
+(-1206 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1206 R |ls| |ls2|)
+(-1207 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1207 R)
+(-1208 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1208 |p|)
+(-1209 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T))
+(((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
NIL
NIL
NIL
@@ -4780,4 +4784,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 1960908 1960913 1960918 1960923) (-2 NIL 1960888 1960893 1960898 1960903) (-1 NIL 1960868 1960873 1960878 1960883) (0 NIL 1960848 1960853 1960858 1960863) (-1208 "ZMOD.spad" 1960657 1960670 1960786 1960843) (-1207 "ZLINDEP.spad" 1959755 1959766 1960647 1960652) (-1206 "ZDSOLVE.spad" 1949716 1949738 1959745 1959750) (-1205 "YSTREAM.spad" 1949211 1949222 1949706 1949711) (-1204 "YDIAGRAM.spad" 1948845 1948854 1949201 1949206) (-1203 "XRPOLY.spad" 1948065 1948085 1948701 1948770) (-1202 "XPR.spad" 1945860 1945873 1947783 1947882) (-1201 "XPOLYC.spad" 1945179 1945195 1945786 1945855) (-1200 "XPOLY.spad" 1944734 1944745 1945035 1945104) (-1199 "XPBWPOLY.spad" 1943205 1943225 1944540 1944609) (-1198 "XFALG.spad" 1940253 1940269 1943131 1943200) (-1197 "XF.spad" 1938716 1938731 1940155 1940248) (-1196 "XF.spad" 1937159 1937176 1938600 1938605) (-1195 "XEXPPKG.spad" 1936418 1936444 1937149 1937154) (-1194 "XDPOLY.spad" 1936032 1936048 1936274 1936343) (-1193 "XALG.spad" 1935700 1935711 1935988 1936027) (-1192 "WUTSET.spad" 1931703 1931720 1935334 1935361) (-1191 "WP.spad" 1930910 1930954 1931561 1931628) (-1190 "WHILEAST.spad" 1930708 1930717 1930900 1930905) (-1189 "WHEREAST.spad" 1930379 1930388 1930698 1930703) (-1188 "WFFINTBS.spad" 1928042 1928064 1930369 1930374) (-1187 "WEIER.spad" 1926264 1926275 1928032 1928037) (-1186 "VSPACE.spad" 1925937 1925948 1926232 1926259) (-1185 "VSPACE.spad" 1925630 1925643 1925927 1925932) (-1184 "VOID.spad" 1925307 1925316 1925620 1925625) (-1183 "VIEWDEF.spad" 1920508 1920517 1925297 1925302) (-1182 "VIEW3D.spad" 1904469 1904478 1920498 1920503) (-1181 "VIEW2D.spad" 1892368 1892377 1904459 1904464) (-1180 "VIEW.spad" 1890088 1890097 1892358 1892363) (-1179 "VECTOR2.spad" 1888727 1888740 1890078 1890083) (-1178 "VECTOR.spad" 1887446 1887457 1887697 1887724) (-1177 "VECTCAT.spad" 1885358 1885369 1887414 1887441) (-1176 "VECTCAT.spad" 1883079 1883092 1885137 1885142) (-1175 "VARIABLE.spad" 1882859 1882874 1883069 1883074) (-1174 "UTYPE.spad" 1882503 1882512 1882849 1882854) (-1173 "UTSODETL.spad" 1881798 1881822 1882459 1882464) (-1172 "UTSODE.spad" 1880014 1880034 1881788 1881793) (-1171 "UTSCAT.spad" 1877493 1877509 1879912 1880009) (-1170 "UTSCAT.spad" 1874640 1874658 1877061 1877066) (-1169 "UTS2.spad" 1874235 1874270 1874630 1874635) (-1168 "UTS.spad" 1869247 1869275 1872767 1872864) (-1167 "URAGG.spad" 1863968 1863979 1869237 1869242) (-1166 "URAGG.spad" 1858653 1858666 1863924 1863929) (-1165 "UPXSSING.spad" 1856421 1856447 1857857 1857990) (-1164 "UPXSCONS.spad" 1854239 1854259 1854612 1854761) (-1163 "UPXSCCA.spad" 1852810 1852830 1854085 1854234) (-1162 "UPXSCCA.spad" 1851523 1851545 1852800 1852805) (-1161 "UPXSCAT.spad" 1850112 1850128 1851369 1851518) (-1160 "UPXS2.spad" 1849655 1849708 1850102 1850107) (-1159 "UPXS.spad" 1847010 1847038 1847846 1847995) (-1158 "UPSQFREE.spad" 1845425 1845439 1847000 1847005) (-1157 "UPSCAT.spad" 1843220 1843244 1845323 1845420) (-1156 "UPSCAT.spad" 1840716 1840742 1842821 1842826) (-1155 "UPOLYC2.spad" 1840187 1840206 1840706 1840711) (-1154 "UPOLYC.spad" 1835267 1835278 1840029 1840182) (-1153 "UPOLYC.spad" 1830265 1830278 1835029 1835034) (-1152 "UPMP.spad" 1829197 1829210 1830255 1830260) (-1151 "UPDIVP.spad" 1828762 1828776 1829187 1829192) (-1150 "UPDECOMP.spad" 1827023 1827037 1828752 1828757) (-1149 "UPCDEN.spad" 1826240 1826256 1827013 1827018) (-1148 "UP2.spad" 1825604 1825625 1826230 1826235) (-1147 "UP.spad" 1823074 1823089 1823461 1823614) (-1146 "UNISEG2.spad" 1822571 1822584 1823030 1823035) (-1145 "UNISEG.spad" 1821924 1821935 1822490 1822495) (-1144 "UNIFACT.spad" 1821027 1821039 1821914 1821919) (-1143 "ULSCONS.spad" 1814873 1814893 1815243 1815392) (-1142 "ULSCCAT.spad" 1812610 1812630 1814719 1814868) (-1141 "ULSCCAT.spad" 1810455 1810477 1812566 1812571) (-1140 "ULSCAT.spad" 1808695 1808711 1810301 1810450) (-1139 "ULS2.spad" 1808209 1808262 1808685 1808690) (-1138 "ULS.spad" 1800242 1800270 1801187 1801610) (-1137 "UINT8.spad" 1800119 1800128 1800232 1800237) (-1136 "UINT64.spad" 1799995 1800004 1800109 1800114) (-1135 "UINT32.spad" 1799871 1799880 1799985 1799990) (-1134 "UINT16.spad" 1799747 1799756 1799861 1799866) (-1133 "UFD.spad" 1798812 1798821 1799673 1799742) (-1132 "UFD.spad" 1797939 1797950 1798802 1798807) (-1131 "UDVO.spad" 1796820 1796829 1797929 1797934) (-1130 "UDPO.spad" 1794401 1794412 1796776 1796781) (-1129 "TYPEAST.spad" 1794320 1794329 1794391 1794396) (-1128 "TYPE.spad" 1794252 1794261 1794310 1794315) (-1127 "TWOFACT.spad" 1792904 1792919 1794242 1794247) (-1126 "TUPLE.spad" 1792411 1792422 1792816 1792821) (-1125 "TUBETOOL.spad" 1789278 1789287 1792401 1792406) (-1124 "TUBE.spad" 1787925 1787942 1789268 1789273) (-1123 "TSETCAT.spad" 1775996 1776013 1787893 1787920) (-1122 "TSETCAT.spad" 1764053 1764072 1775952 1775957) (-1121 "TS.spad" 1762681 1762697 1763647 1763744) (-1120 "TRMANIP.spad" 1757045 1757062 1762369 1762374) (-1119 "TRIMAT.spad" 1756008 1756033 1757035 1757040) (-1118 "TRIGMNIP.spad" 1754535 1754552 1755998 1756003) (-1117 "TRIGCAT.spad" 1754047 1754056 1754525 1754530) (-1116 "TRIGCAT.spad" 1753557 1753568 1754037 1754042) (-1115 "TREE.spad" 1752197 1752208 1753229 1753256) (-1114 "TRANFUN.spad" 1752036 1752045 1752187 1752192) (-1113 "TRANFUN.spad" 1751873 1751884 1752026 1752031) (-1112 "TOPSP.spad" 1751547 1751556 1751863 1751868) (-1111 "TOOLSIGN.spad" 1751210 1751221 1751537 1751542) (-1110 "TEXTFILE.spad" 1749771 1749780 1751200 1751205) (-1109 "TEX1.spad" 1749327 1749338 1749761 1749766) (-1108 "TEX.spad" 1746521 1746530 1749317 1749322) (-1107 "TBCMPPK.spad" 1744622 1744645 1746511 1746516) (-1106 "TBAGG.spad" 1743865 1743888 1744590 1744617) (-1105 "TBAGG.spad" 1743128 1743153 1743855 1743860) (-1104 "TANEXP.spad" 1742536 1742547 1743118 1743123) (-1103 "TALGOP.spad" 1742260 1742271 1742526 1742531) (-1102 "TABLEAU.spad" 1741741 1741752 1742250 1742255) (-1101 "TABLE.spad" 1740016 1740039 1740286 1740313) (-1100 "TABLBUMP.spad" 1736795 1736806 1740006 1740011) (-1099 "SYSTEM.spad" 1736023 1736032 1736785 1736790) (-1098 "SYSSOLP.spad" 1733506 1733517 1736013 1736018) (-1097 "SYSPTR.spad" 1733405 1733414 1733496 1733501) (-1096 "SYSNNI.spad" 1732628 1732639 1733395 1733400) (-1095 "SYSINT.spad" 1732032 1732043 1732618 1732623) (-1094 "SYNTAX.spad" 1728366 1728375 1732022 1732027) (-1093 "SYMTAB.spad" 1726434 1726443 1728356 1728361) (-1092 "SYMS.spad" 1722463 1722472 1726424 1726429) (-1091 "SYMPOLY.spad" 1721596 1721607 1721678 1721805) (-1090 "SYMFUNC.spad" 1721097 1721108 1721586 1721591) (-1089 "SYMBOL.spad" 1718592 1718601 1721087 1721092) (-1088 "SUTS.spad" 1715705 1715733 1717124 1717221) (-1087 "SUPXS.spad" 1713047 1713075 1713896 1714045) (-1086 "SUPFRACF.spad" 1712152 1712170 1713037 1713042) (-1085 "SUP2.spad" 1711544 1711557 1712142 1712147) (-1084 "SUP.spad" 1708628 1708639 1709401 1709554) (-1083 "SUMRF.spad" 1707602 1707613 1708618 1708623) (-1082 "SUMFS.spad" 1707231 1707248 1707592 1707597) (-1081 "SULS.spad" 1699251 1699279 1700209 1700632) (-1080 "syntax.spad" 1699020 1699029 1699241 1699246) (-1079 "SUCH.spad" 1698710 1698725 1699010 1699015) (-1078 "SUBSPACE.spad" 1690841 1690856 1698700 1698705) (-1077 "SUBRESP.spad" 1690011 1690025 1690797 1690802) (-1076 "STTFNC.spad" 1686479 1686495 1690001 1690006) (-1075 "STTF.spad" 1682578 1682594 1686469 1686474) (-1074 "STTAYLOR.spad" 1675255 1675266 1682485 1682490) (-1073 "STRTBL.spad" 1673642 1673659 1673791 1673818) (-1072 "STRING.spad" 1672510 1672519 1672895 1672922) (-1071 "STREAM3.spad" 1672083 1672098 1672500 1672505) (-1070 "STREAM2.spad" 1671211 1671224 1672073 1672078) (-1069 "STREAM1.spad" 1670917 1670928 1671201 1671206) (-1068 "STREAM.spad" 1667913 1667924 1670520 1670535) (-1067 "STINPROD.spad" 1666849 1666865 1667903 1667908) (-1066 "STEPAST.spad" 1666083 1666092 1666839 1666844) (-1065 "STEP.spad" 1665400 1665409 1666073 1666078) (-1064 "STBL.spad" 1663778 1663806 1663945 1663972) (-1063 "STAGG.spad" 1662477 1662488 1663768 1663773) (-1062 "STAGG.spad" 1661174 1661187 1662467 1662472) (-1061 "STACK.spad" 1660596 1660607 1660846 1660873) (-1060 "SRING.spad" 1660356 1660365 1660586 1660591) (-1059 "SREGSET.spad" 1658088 1658105 1659990 1660017) (-1058 "SRDCMPK.spad" 1656665 1656685 1658078 1658083) (-1057 "SRAGG.spad" 1651848 1651857 1656633 1656660) (-1056 "SRAGG.spad" 1647051 1647062 1651838 1651843) (-1055 "SQMATRIX.spad" 1644728 1644746 1645644 1645731) (-1054 "SPLTREE.spad" 1639470 1639483 1644266 1644293) (-1053 "SPLNODE.spad" 1636090 1636103 1639460 1639465) (-1052 "SPFCAT.spad" 1634899 1634908 1636080 1636085) (-1051 "SPECOUT.spad" 1633451 1633460 1634889 1634894) (-1050 "SPADXPT.spad" 1625542 1625551 1633441 1633446) (-1049 "spad-parser.spad" 1625007 1625016 1625532 1625537) (-1048 "SPADAST.spad" 1624708 1624717 1624997 1625002) (-1047 "SPACEC.spad" 1608923 1608934 1624698 1624703) (-1046 "SPACE3.spad" 1608699 1608710 1608913 1608918) (-1045 "SORTPAK.spad" 1608248 1608261 1608655 1608660) (-1044 "SOLVETRA.spad" 1606011 1606022 1608238 1608243) (-1043 "SOLVESER.spad" 1604467 1604478 1606001 1606006) (-1042 "SOLVERAD.spad" 1600493 1600504 1604457 1604462) (-1041 "SOLVEFOR.spad" 1598955 1598973 1600483 1600488) (-1040 "SNTSCAT.spad" 1598555 1598572 1598923 1598950) (-1039 "SMTS.spad" 1596872 1596898 1598149 1598246) (-1038 "SMP.spad" 1594680 1594700 1595070 1595197) (-1037 "SMITH.spad" 1593525 1593550 1594670 1594675) (-1036 "SMATCAT.spad" 1591643 1591673 1593469 1593520) (-1035 "SMATCAT.spad" 1589693 1589725 1591521 1591526) (-1034 "SKAGG.spad" 1588662 1588673 1589661 1589688) (-1033 "SINT.spad" 1587961 1587970 1588528 1588657) (-1032 "SIMPAN.spad" 1587689 1587698 1587951 1587956) (-1031 "SIGNRF.spad" 1586814 1586825 1587679 1587684) (-1030 "SIGNEF.spad" 1586100 1586117 1586804 1586809) (-1029 "syntax.spad" 1585517 1585526 1586090 1586095) (-1028 "SIG.spad" 1584879 1584888 1585507 1585512) (-1027 "SHP.spad" 1582823 1582838 1584835 1584840) (-1026 "SHDP.spad" 1572316 1572343 1572833 1572930) (-1025 "SGROUP.spad" 1571924 1571933 1572306 1572311) (-1024 "SGROUP.spad" 1571530 1571541 1571914 1571919) (-1023 "catdef.spad" 1571240 1571252 1571351 1571525) (-1022 "catdef.spad" 1570796 1570808 1571061 1571235) (-1021 "SGCF.spad" 1563935 1563944 1570786 1570791) (-1020 "SFRTCAT.spad" 1562881 1562898 1563903 1563930) (-1019 "SFRGCD.spad" 1561944 1561964 1562871 1562876) (-1018 "SFQCMPK.spad" 1556757 1556777 1561934 1561939) (-1017 "SEXOF.spad" 1556600 1556640 1556747 1556752) (-1016 "SEXCAT.spad" 1554428 1554468 1556590 1556595) (-1015 "SEX.spad" 1554320 1554329 1554418 1554423) (-1014 "SETMN.spad" 1552780 1552797 1554310 1554315) (-1013 "SETCAT.spad" 1552265 1552274 1552770 1552775) (-1012 "SETCAT.spad" 1551748 1551759 1552255 1552260) (-1011 "SETAGG.spad" 1548297 1548308 1551728 1551743) (-1010 "SETAGG.spad" 1544854 1544867 1548287 1548292) (-1009 "SET.spad" 1543163 1543174 1544260 1544299) (-1008 "syntax.spad" 1542866 1542875 1543153 1543158) (-1007 "SEGXCAT.spad" 1542022 1542035 1542856 1542861) (-1006 "SEGCAT.spad" 1540947 1540958 1542012 1542017) (-1005 "SEGBIND2.spad" 1540645 1540658 1540937 1540942) (-1004 "SEGBIND.spad" 1540403 1540414 1540592 1540597) (-1003 "SEGAST.spad" 1540133 1540142 1540393 1540398) (-1002 "SEG2.spad" 1539568 1539581 1540089 1540094) (-1001 "SEG.spad" 1539381 1539392 1539487 1539492) (-1000 "SDVAR.spad" 1538657 1538668 1539371 1539376) (-999 "SDPOL.spad" 1536350 1536360 1536640 1536767) (-998 "SCPKG.spad" 1534440 1534450 1536340 1536345) (-997 "SCOPE.spad" 1533618 1533626 1534430 1534435) (-996 "SCACHE.spad" 1532315 1532325 1533608 1533613) (-995 "SASTCAT.spad" 1532225 1532233 1532305 1532310) (-994 "SAOS.spad" 1532098 1532106 1532215 1532220) (-993 "SAERFFC.spad" 1531812 1531831 1532088 1532093) (-992 "SAEFACT.spad" 1531514 1531533 1531802 1531807) (-991 "SAE.spad" 1529165 1529180 1529775 1529910) (-990 "RURPK.spad" 1526825 1526840 1529155 1529160) (-989 "RULESET.spad" 1526279 1526302 1526815 1526820) (-988 "RULECOLD.spad" 1526132 1526144 1526269 1526274) (-987 "RULE.spad" 1524381 1524404 1526122 1526127) (-986 "RTVALUE.spad" 1524117 1524125 1524371 1524376) (-985 "syntax.spad" 1523835 1523843 1524107 1524112) (-984 "RSETGCD.spad" 1520278 1520297 1523825 1523830) (-983 "RSETCAT.spad" 1510247 1510263 1520246 1520273) (-982 "RSETCAT.spad" 1500236 1500254 1510237 1510242) (-981 "RSDCMPK.spad" 1498737 1498756 1500226 1500231) (-980 "RRCC.spad" 1497122 1497151 1498727 1498732) (-979 "RRCC.spad" 1495505 1495536 1497112 1497117) (-978 "RPTAST.spad" 1495208 1495216 1495495 1495500) (-977 "RPOLCAT.spad" 1474713 1474727 1495076 1495203) (-976 "RPOLCAT.spad" 1454011 1454027 1474376 1474381) (-975 "ROMAN.spad" 1453340 1453348 1453877 1454006) (-974 "ROIRC.spad" 1452421 1452452 1453330 1453335) (-973 "RNS.spad" 1451398 1451406 1452323 1452416) (-972 "RNS.spad" 1450461 1450471 1451388 1451393) (-971 "RNGBIND.spad" 1449622 1449635 1450416 1450421) (-970 "RNG.spad" 1449231 1449239 1449612 1449617) (-969 "RNG.spad" 1448838 1448848 1449221 1449226) (-968 "RMODULE.spad" 1448620 1448630 1448828 1448833) (-967 "RMCAT2.spad" 1448041 1448097 1448610 1448615) (-966 "RMATRIX.spad" 1446851 1446869 1447193 1447232) (-965 "RMATCAT.spad" 1442489 1442519 1446807 1446846) (-964 "RMATCAT.spad" 1438017 1438049 1442337 1442342) (-963 "RLINSET.spad" 1437722 1437732 1438007 1438012) (-962 "RINTERP.spad" 1437611 1437630 1437712 1437717) (-961 "RING.spad" 1437082 1437090 1437591 1437606) (-960 "RING.spad" 1436561 1436571 1437072 1437077) (-959 "RIDIST.spad" 1435954 1435962 1436551 1436556) (-958 "RGCHAIN.spad" 1434509 1434524 1435402 1435429) (-957 "RGBCSPC.spad" 1434299 1434310 1434499 1434504) (-956 "RGBCMDL.spad" 1433862 1433873 1434289 1434294) (-955 "RFFACTOR.spad" 1433325 1433335 1433852 1433857) (-954 "RFFACT.spad" 1433061 1433072 1433315 1433320) (-953 "RFDIST.spad" 1432058 1432066 1433051 1433056) (-952 "RF.spad" 1429733 1429743 1432048 1432053) (-951 "RETSOL.spad" 1429153 1429165 1429723 1429728) (-950 "RETRACT.spad" 1428582 1428592 1429143 1429148) (-949 "RETRACT.spad" 1428009 1428021 1428572 1428577) (-948 "RETAST.spad" 1427822 1427830 1427999 1428004) (-947 "RESRING.spad" 1427170 1427216 1427760 1427817) (-946 "RESLATC.spad" 1426495 1426505 1427160 1427165) (-945 "REPSQ.spad" 1426227 1426237 1426485 1426490) (-944 "REPDB.spad" 1425935 1425945 1426217 1426222) (-943 "REP2.spad" 1415650 1415660 1425777 1425782) (-942 "REP1.spad" 1409871 1409881 1415600 1415605) (-941 "REP.spad" 1407426 1407434 1409861 1409866) (-940 "REGSET.spad" 1405252 1405268 1407060 1407087) (-939 "REF.spad" 1404771 1404781 1405242 1405247) (-938 "REDORDER.spad" 1403978 1403994 1404761 1404766) (-937 "RECLOS.spad" 1402875 1402894 1403578 1403671) (-936 "REALSOLV.spad" 1402016 1402024 1402865 1402870) (-935 "REAL0Q.spad" 1399315 1399329 1402006 1402011) (-934 "REAL0.spad" 1396160 1396174 1399305 1399310) (-933 "REAL.spad" 1396033 1396041 1396150 1396155) (-932 "RDUCEAST.spad" 1395755 1395763 1396023 1396028) (-931 "RDIV.spad" 1395411 1395435 1395745 1395750) (-930 "RDIST.spad" 1394979 1394989 1395401 1395406) (-929 "RDETRS.spad" 1393844 1393861 1394969 1394974) (-928 "RDETR.spad" 1391984 1392001 1393834 1393839) (-927 "RDEEFS.spad" 1391084 1391100 1391974 1391979) (-926 "RDEEF.spad" 1390095 1390111 1391074 1391079) (-925 "RCFIELD.spad" 1387314 1387322 1389997 1390090) (-924 "RCFIELD.spad" 1384619 1384629 1387304 1387309) (-923 "RCAGG.spad" 1382556 1382566 1384609 1384614) (-922 "RCAGG.spad" 1380420 1380432 1382475 1382480) (-921 "RATRET.spad" 1379781 1379791 1380410 1380415) (-920 "RATFACT.spad" 1379474 1379485 1379771 1379776) (-919 "RANDSRC.spad" 1378794 1378802 1379464 1379469) (-918 "RADUTIL.spad" 1378551 1378559 1378784 1378789) (-917 "RADIX.spad" 1375596 1375609 1377141 1377234) (-916 "RADFF.spad" 1373513 1373549 1373631 1373787) (-915 "RADCAT.spad" 1373109 1373117 1373503 1373508) (-914 "RADCAT.spad" 1372703 1372713 1373099 1373104) (-913 "QUEUE.spad" 1372117 1372127 1372375 1372402) (-912 "QUATCT2.spad" 1371738 1371756 1372107 1372112) (-911 "QUATCAT.spad" 1369909 1369919 1371668 1371733) (-910 "QUATCAT.spad" 1367845 1367857 1369606 1369611) (-909 "QUAT.spad" 1366452 1366462 1366794 1366859) (-908 "QUAGG.spad" 1365286 1365296 1366420 1366447) (-907 "QQUTAST.spad" 1365055 1365063 1365276 1365281) (-906 "QFORM.spad" 1364674 1364688 1365045 1365050) (-905 "QFCAT2.spad" 1364367 1364383 1364664 1364669) (-904 "QFCAT.spad" 1363070 1363080 1364269 1364362) (-903 "QFCAT.spad" 1361406 1361418 1362607 1362612) (-902 "QEQUAT.spad" 1360965 1360973 1361396 1361401) (-901 "QCMPACK.spad" 1355880 1355899 1360955 1360960) (-900 "QALGSET2.spad" 1353876 1353894 1355870 1355875) (-899 "QALGSET.spad" 1349981 1350013 1353790 1353795) (-898 "PWFFINTB.spad" 1347397 1347418 1349971 1349976) (-897 "PUSHVAR.spad" 1346736 1346755 1347387 1347392) (-896 "PTRANFN.spad" 1342872 1342882 1346726 1346731) (-895 "PTPACK.spad" 1339960 1339970 1342862 1342867) (-894 "PTFUNC2.spad" 1339783 1339797 1339950 1339955) (-893 "PTCAT.spad" 1339038 1339048 1339751 1339778) (-892 "PSQFR.spad" 1338353 1338377 1339028 1339033) (-891 "PSEUDLIN.spad" 1337239 1337249 1338343 1338348) (-890 "PSETPK.spad" 1323944 1323960 1337117 1337122) (-889 "PSETCAT.spad" 1318344 1318367 1323924 1323939) (-888 "PSETCAT.spad" 1312718 1312743 1318300 1318305) (-887 "PSCURVE.spad" 1311717 1311725 1312708 1312713) (-886 "PSCAT.spad" 1310500 1310529 1311615 1311712) (-885 "PSCAT.spad" 1309373 1309404 1310490 1310495) (-884 "PRTITION.spad" 1308071 1308079 1309363 1309368) (-883 "PRTDAST.spad" 1307790 1307798 1308061 1308066) (-882 "PRS.spad" 1297408 1297425 1307746 1307751) (-881 "PRQAGG.spad" 1296843 1296853 1297376 1297403) (-880 "PROPLOG.spad" 1296447 1296455 1296833 1296838) (-879 "PROPFUN2.spad" 1296070 1296083 1296437 1296442) (-878 "PROPFUN1.spad" 1295476 1295487 1296060 1296065) (-877 "PROPFRML.spad" 1294044 1294055 1295466 1295471) (-876 "PROPERTY.spad" 1293540 1293548 1294034 1294039) (-875 "PRODUCT.spad" 1291237 1291249 1291521 1291576) (-874 "PRINT.spad" 1290989 1290997 1291227 1291232) (-873 "PRIMES.spad" 1289250 1289260 1290979 1290984) (-872 "PRIMELT.spad" 1287371 1287385 1289240 1289245) (-871 "PRIMCAT.spad" 1287014 1287022 1287361 1287366) (-870 "PRIMARR2.spad" 1285781 1285793 1287004 1287009) (-869 "PRIMARR.spad" 1284836 1284846 1285006 1285033) (-868 "PREASSOC.spad" 1284218 1284230 1284826 1284831) (-867 "PR.spad" 1282736 1282748 1283435 1283562) (-866 "PPCURVE.spad" 1281873 1281881 1282726 1282731) (-865 "PORTNUM.spad" 1281664 1281672 1281863 1281868) (-864 "POLYROOT.spad" 1280513 1280535 1281620 1281625) (-863 "POLYLIFT.spad" 1279778 1279801 1280503 1280508) (-862 "POLYCATQ.spad" 1277904 1277926 1279768 1279773) (-861 "POLYCAT.spad" 1271406 1271427 1277772 1277899) (-860 "POLYCAT.spad" 1264428 1264451 1270796 1270801) (-859 "POLY2UP.spad" 1263880 1263894 1264418 1264423) (-858 "POLY2.spad" 1263477 1263489 1263870 1263875) (-857 "POLY.spad" 1261145 1261155 1261660 1261787) (-856 "POLUTIL.spad" 1260110 1260139 1261101 1261106) (-855 "POLTOPOL.spad" 1258858 1258873 1260100 1260105) (-854 "POINT.spad" 1257741 1257751 1257828 1257855) (-853 "PNTHEORY.spad" 1254443 1254451 1257731 1257736) (-852 "PMTOOLS.spad" 1253218 1253232 1254433 1254438) (-851 "PMSYM.spad" 1252767 1252777 1253208 1253213) (-850 "PMQFCAT.spad" 1252358 1252372 1252757 1252762) (-849 "PMPREDFS.spad" 1251820 1251842 1252348 1252353) (-848 "PMPRED.spad" 1251307 1251321 1251810 1251815) (-847 "PMPLCAT.spad" 1250384 1250402 1251236 1251241) (-846 "PMLSAGG.spad" 1249969 1249983 1250374 1250379) (-845 "PMKERNEL.spad" 1249548 1249560 1249959 1249964) (-844 "PMINS.spad" 1249128 1249138 1249538 1249543) (-843 "PMFS.spad" 1248705 1248723 1249118 1249123) (-842 "PMDOWN.spad" 1247995 1248009 1248695 1248700) (-841 "PMASSFS.spad" 1246970 1246986 1247985 1247990) (-840 "PMASS.spad" 1245988 1245996 1246960 1246965) (-839 "PLOTTOOL.spad" 1245768 1245776 1245978 1245983) (-838 "PLOT3D.spad" 1242232 1242240 1245758 1245763) (-837 "PLOT1.spad" 1241405 1241415 1242222 1242227) (-836 "PLOT.spad" 1236328 1236336 1241395 1241400) (-835 "PLEQN.spad" 1223730 1223757 1236318 1236323) (-834 "PINTERPA.spad" 1223514 1223530 1223720 1223725) (-833 "PINTERP.spad" 1223136 1223155 1223504 1223509) (-832 "PID.spad" 1222110 1222118 1223062 1223131) (-831 "PICOERCE.spad" 1221767 1221777 1222100 1222105) (-830 "PI.spad" 1221384 1221392 1221741 1221762) (-829 "PGROEB.spad" 1219993 1220007 1221374 1221379) (-828 "PGE.spad" 1211666 1211674 1219983 1219988) (-827 "PGCD.spad" 1210620 1210637 1211656 1211661) (-826 "PFRPAC.spad" 1209769 1209779 1210610 1210615) (-825 "PFR.spad" 1206472 1206482 1209671 1209764) (-824 "PFOTOOLS.spad" 1205730 1205746 1206462 1206467) (-823 "PFOQ.spad" 1205100 1205118 1205720 1205725) (-822 "PFO.spad" 1204519 1204546 1205090 1205095) (-821 "PFECAT.spad" 1202229 1202237 1204445 1204514) (-820 "PFECAT.spad" 1199967 1199977 1202185 1202190) (-819 "PFBRU.spad" 1197855 1197867 1199957 1199962) (-818 "PFBR.spad" 1195415 1195438 1197845 1197850) (-817 "PF.spad" 1194989 1195001 1195220 1195313) (-816 "PERMGRP.spad" 1189759 1189769 1194979 1194984) (-815 "PERMCAT.spad" 1188420 1188430 1189739 1189754) (-814 "PERMAN.spad" 1186976 1186990 1188410 1188415) (-813 "PERM.spad" 1182786 1182796 1186809 1186824) (-812 "PENDTREE.spad" 1182200 1182210 1182480 1182485) (-811 "PDSPC.spad" 1181013 1181023 1182190 1182195) (-810 "PDSPC.spad" 1179824 1179836 1181003 1181008) (-809 "PDRING.spad" 1179666 1179676 1179804 1179819) (-808 "PDMOD.spad" 1179482 1179494 1179634 1179661) (-807 "PDECOMP.spad" 1178952 1178969 1179472 1179477) (-806 "PDDOM.spad" 1178390 1178403 1178942 1178947) (-805 "PDDOM.spad" 1177826 1177841 1178380 1178385) (-804 "PCOMP.spad" 1177679 1177692 1177816 1177821) (-803 "PBWLB.spad" 1176277 1176294 1177669 1177674) (-802 "PATTERN2.spad" 1176015 1176027 1176267 1176272) (-801 "PATTERN1.spad" 1174359 1174375 1176005 1176010) (-800 "PATTERN.spad" 1168934 1168944 1174349 1174354) (-799 "PATRES2.spad" 1168606 1168620 1168924 1168929) (-798 "PATRES.spad" 1166189 1166201 1168596 1168601) (-797 "PATMATCH.spad" 1164430 1164461 1165941 1165946) (-796 "PATMAB.spad" 1163859 1163869 1164420 1164425) (-795 "PATLRES.spad" 1162945 1162959 1163849 1163854) (-794 "PATAB.spad" 1162709 1162719 1162935 1162940) (-793 "PARTPERM.spad" 1160765 1160773 1162699 1162704) (-792 "PARSURF.spad" 1160199 1160227 1160755 1160760) (-791 "PARSU2.spad" 1159996 1160012 1160189 1160194) (-790 "script-parser.spad" 1159516 1159524 1159986 1159991) (-789 "PARSCURV.spad" 1158950 1158978 1159506 1159511) (-788 "PARSC2.spad" 1158741 1158757 1158940 1158945) (-787 "PARPCURV.spad" 1158203 1158231 1158731 1158736) (-786 "PARPC2.spad" 1157994 1158010 1158193 1158198) (-785 "PARAMAST.spad" 1157122 1157130 1157984 1157989) (-784 "PAN2EXPR.spad" 1156534 1156542 1157112 1157117) (-783 "PALETTE.spad" 1155648 1155656 1156524 1156529) (-782 "PAIR.spad" 1154722 1154735 1155291 1155296) (-781 "PADICRC.spad" 1152127 1152145 1153290 1153383) (-780 "PADICRAT.spad" 1150187 1150199 1150400 1150493) (-779 "PADICCT.spad" 1148736 1148748 1150113 1150182) (-778 "PADIC.spad" 1148439 1148451 1148662 1148731) (-777 "PADEPAC.spad" 1147128 1147147 1148429 1148434) (-776 "PADE.spad" 1145880 1145896 1147118 1147123) (-775 "OWP.spad" 1145128 1145158 1145738 1145805) (-774 "OVERSET.spad" 1144701 1144709 1145118 1145123) (-773 "OVAR.spad" 1144482 1144505 1144691 1144696) (-772 "OUTFORM.spad" 1133890 1133898 1144472 1144477) (-771 "OUTBFILE.spad" 1133324 1133332 1133880 1133885) (-770 "OUTBCON.spad" 1132394 1132402 1133314 1133319) (-769 "OUTBCON.spad" 1131462 1131472 1132384 1132389) (-768 "OUT.spad" 1130580 1130588 1131452 1131457) (-767 "OSI.spad" 1130055 1130063 1130570 1130575) (-766 "OSGROUP.spad" 1129973 1129981 1130045 1130050) (-765 "ORTHPOL.spad" 1128484 1128494 1129916 1129921) (-764 "OREUP.spad" 1127978 1128006 1128205 1128244) (-763 "ORESUP.spad" 1127320 1127344 1127699 1127738) (-762 "OREPCTO.spad" 1125209 1125221 1127240 1127245) (-761 "OREPCAT.spad" 1119396 1119406 1125165 1125204) (-760 "OREPCAT.spad" 1113473 1113485 1119244 1119249) (-759 "ORDTYPE.spad" 1112710 1112718 1113463 1113468) (-758 "ORDTYPE.spad" 1111945 1111955 1112700 1112705) (-757 "ORDSTRCT.spad" 1111731 1111746 1111894 1111899) (-756 "ORDSET.spad" 1111431 1111439 1111721 1111726) (-755 "ORDRING.spad" 1111248 1111256 1111411 1111426) (-754 "ORDMON.spad" 1111103 1111111 1111238 1111243) (-753 "ORDFUNS.spad" 1110235 1110251 1111093 1111098) (-752 "ORDFIN.spad" 1110055 1110063 1110225 1110230) (-751 "ORDCOMP2.spad" 1109348 1109360 1110045 1110050) (-750 "ORDCOMP.spad" 1107874 1107884 1108956 1108985) (-749 "OPSIG.spad" 1107536 1107544 1107864 1107869) (-748 "OPQUERY.spad" 1107117 1107125 1107526 1107531) (-747 "OPERCAT.spad" 1106583 1106593 1107107 1107112) (-746 "OPERCAT.spad" 1106047 1106059 1106573 1106578) (-745 "OP.spad" 1105789 1105799 1105869 1105936) (-744 "ONECOMP2.spad" 1105213 1105225 1105779 1105784) (-743 "ONECOMP.spad" 1104019 1104029 1104821 1104850) (-742 "OMSAGG.spad" 1103807 1103817 1103975 1104014) (-741 "OMLO.spad" 1103240 1103252 1103693 1103732) (-740 "OINTDOM.spad" 1103003 1103011 1103166 1103235) (-739 "OFMONOID.spad" 1101142 1101152 1102959 1102964) (-738 "ODVAR.spad" 1100403 1100413 1101132 1101137) (-737 "ODR.spad" 1100047 1100073 1100215 1100364) (-736 "ODPOL.spad" 1097695 1097705 1098035 1098162) (-735 "ODP.spad" 1087332 1087352 1087705 1087802) (-734 "ODETOOLS.spad" 1085981 1086000 1087322 1087327) (-733 "ODESYS.spad" 1083675 1083692 1085971 1085976) (-732 "ODERTRIC.spad" 1079708 1079725 1083632 1083637) (-731 "ODERED.spad" 1079107 1079131 1079698 1079703) (-730 "ODERAT.spad" 1076740 1076757 1079097 1079102) (-729 "ODEPRRIC.spad" 1073833 1073855 1076730 1076735) (-728 "ODEPRIM.spad" 1071231 1071253 1073823 1073828) (-727 "ODEPAL.spad" 1070617 1070641 1071221 1071226) (-726 "ODEINT.spad" 1070052 1070068 1070607 1070612) (-725 "ODEEF.spad" 1065547 1065563 1070042 1070047) (-724 "ODECONST.spad" 1065092 1065110 1065537 1065542) (-723 "OCTCT2.spad" 1064733 1064751 1065082 1065087) (-722 "OCT.spad" 1063048 1063058 1063762 1063801) (-721 "OCAMON.spad" 1062896 1062904 1063038 1063043) (-720 "OC.spad" 1060692 1060702 1062852 1062891) (-719 "OC.spad" 1058227 1058239 1060389 1060394) (-718 "OASGP.spad" 1058042 1058050 1058217 1058222) (-717 "OAMONS.spad" 1057564 1057572 1058032 1058037) (-716 "OAMON.spad" 1057322 1057330 1057554 1057559) (-715 "OAMON.spad" 1057078 1057088 1057312 1057317) (-714 "OAGROUP.spad" 1056616 1056624 1057068 1057073) (-713 "OAGROUP.spad" 1056152 1056162 1056606 1056611) (-712 "NUMTUBE.spad" 1055743 1055759 1056142 1056147) (-711 "NUMQUAD.spad" 1043719 1043727 1055733 1055738) (-710 "NUMODE.spad" 1035071 1035079 1043709 1043714) (-709 "NUMFMT.spad" 1033911 1033919 1035061 1035066) (-708 "NUMERIC.spad" 1026026 1026036 1033717 1033722) (-707 "NTSCAT.spad" 1024534 1024550 1025994 1026021) (-706 "NTPOLFN.spad" 1024111 1024121 1024477 1024482) (-705 "NSUP2.spad" 1023503 1023515 1024101 1024106) (-704 "NSUP.spad" 1016940 1016950 1021360 1021513) (-703 "NSMP.spad" 1013852 1013871 1014144 1014271) (-702 "NREP.spad" 1012254 1012268 1013842 1013847) (-701 "NPCOEF.spad" 1011500 1011520 1012244 1012249) (-700 "NORMRETR.spad" 1011098 1011137 1011490 1011495) (-699 "NORMPK.spad" 1009040 1009059 1011088 1011093) (-698 "NORMMA.spad" 1008728 1008754 1009030 1009035) (-697 "NONE1.spad" 1008404 1008414 1008718 1008723) (-696 "NONE.spad" 1008145 1008153 1008394 1008399) (-695 "NODE1.spad" 1007632 1007648 1008135 1008140) (-694 "NNI.spad" 1006527 1006535 1007606 1007627) (-693 "NLINSOL.spad" 1005153 1005163 1006517 1006522) (-692 "NFINTBAS.spad" 1002713 1002730 1005143 1005148) (-691 "NETCLT.spad" 1002687 1002698 1002703 1002708) (-690 "NCODIV.spad" 1000911 1000927 1002677 1002682) (-689 "NCNTFRAC.spad" 1000553 1000567 1000901 1000906) (-688 "NCEP.spad" 998719 998733 1000543 1000548) (-687 "NASRING.spad" 998323 998331 998709 998714) (-686 "NASRING.spad" 997925 997935 998313 998318) (-685 "NARNG.spad" 997325 997333 997915 997920) (-684 "NARNG.spad" 996723 996733 997315 997320) (-683 "NAALG.spad" 996288 996298 996691 996718) (-682 "NAALG.spad" 995873 995885 996278 996283) (-681 "MULTSQFR.spad" 992831 992848 995863 995868) (-680 "MULTFACT.spad" 992214 992231 992821 992826) (-679 "MTSCAT.spad" 990308 990329 992112 992209) (-678 "MTHING.spad" 989967 989977 990298 990303) (-677 "MSYSCMD.spad" 989401 989409 989957 989962) (-676 "MSETAGG.spad" 989246 989256 989369 989396) (-675 "MSET.spad" 987192 987202 988940 988979) (-674 "MRING.spad" 984169 984181 986900 986967) (-673 "MRF2.spad" 983731 983745 984159 984164) (-672 "MRATFAC.spad" 983277 983294 983721 983726) (-671 "MPRFF.spad" 981317 981336 983267 983272) (-670 "MPOLY.spad" 979121 979136 979480 979607) (-669 "MPCPF.spad" 978385 978404 979111 979116) (-668 "MPC3.spad" 978202 978242 978375 978380) (-667 "MPC2.spad" 977856 977889 978192 978197) (-666 "MONOTOOL.spad" 976207 976224 977846 977851) (-665 "catdef.spad" 975640 975651 975861 976202) (-664 "catdef.spad" 975038 975049 975294 975635) (-663 "MONOID.spad" 974359 974367 975028 975033) (-662 "MONOID.spad" 973678 973688 974349 974354) (-661 "MONOGEN.spad" 972426 972439 973538 973673) (-660 "MONOGEN.spad" 971196 971211 972310 972315) (-659 "MONADWU.spad" 969276 969284 971186 971191) (-658 "MONADWU.spad" 967354 967364 969266 969271) (-657 "MONAD.spad" 966514 966522 967344 967349) (-656 "MONAD.spad" 965672 965682 966504 966509) (-655 "MOEBIUS.spad" 964408 964422 965652 965667) (-654 "MODULE.spad" 964278 964288 964376 964403) (-653 "MODULE.spad" 964168 964180 964268 964273) (-652 "MODRING.spad" 963503 963542 964148 964163) (-651 "MODOP.spad" 962160 962172 963325 963392) (-650 "MODMONOM.spad" 961891 961909 962150 962155) (-649 "MODMON.spad" 958961 958973 959676 959829) (-648 "MODFIELD.spad" 958323 958362 958863 958956) (-647 "MMLFORM.spad" 957183 957191 958313 958318) (-646 "MMAP.spad" 956925 956959 957173 957178) (-645 "MLO.spad" 955384 955394 956881 956920) (-644 "MLIFT.spad" 953996 954013 955374 955379) (-643 "MKUCFUNC.spad" 953531 953549 953986 953991) (-642 "MKRECORD.spad" 953119 953132 953521 953526) (-641 "MKFUNC.spad" 952526 952536 953109 953114) (-640 "MKFLCFN.spad" 951494 951504 952516 952521) (-639 "MKBCFUNC.spad" 950989 951007 951484 951489) (-638 "MHROWRED.spad" 949500 949510 950979 950984) (-637 "MFINFACT.spad" 948900 948922 949490 949495) (-636 "MESH.spad" 946695 946703 948890 948895) (-635 "MDDFACT.spad" 944914 944924 946685 946690) (-634 "MDAGG.spad" 944205 944215 944894 944909) (-633 "MCDEN.spad" 943415 943427 944195 944200) (-632 "MAYBE.spad" 942715 942726 943405 943410) (-631 "MATSTOR.spad" 940031 940041 942705 942710) (-630 "MATRIX.spad" 938810 938820 939294 939321) (-629 "MATLIN.spad" 936178 936202 938694 938699) (-628 "MATCAT2.spad" 935460 935508 936168 936173) (-627 "MATCAT.spad" 927156 927178 935428 935455) (-626 "MATCAT.spad" 918724 918748 926998 927003) (-625 "MAPPKG3.spad" 917639 917653 918714 918719) (-624 "MAPPKG2.spad" 916977 916989 917629 917634) (-623 "MAPPKG1.spad" 915805 915815 916967 916972) (-622 "MAPPAST.spad" 915144 915152 915795 915800) (-621 "MAPHACK3.spad" 914956 914970 915134 915139) (-620 "MAPHACK2.spad" 914725 914737 914946 914951) (-619 "MAPHACK1.spad" 914369 914379 914715 914720) (-618 "MAGMA.spad" 912175 912192 914359 914364) (-617 "MACROAST.spad" 911770 911778 912165 912170) (-616 "LZSTAGG.spad" 909024 909034 911760 911765) (-615 "LZSTAGG.spad" 906276 906288 909014 909019) (-614 "LWORD.spad" 903021 903038 906266 906271) (-613 "LSTAST.spad" 902805 902813 903011 903016) (-612 "LSQM.spad" 901083 901097 901477 901528) (-611 "LSPP.spad" 900618 900635 901073 901078) (-610 "LSMP1.spad" 898461 898475 900608 900613) (-609 "LSMP.spad" 897318 897346 898451 898456) (-608 "LSAGG.spad" 896987 896997 897286 897313) (-607 "LSAGG.spad" 896676 896688 896977 896982) (-606 "LPOLY.spad" 895638 895657 896532 896601) (-605 "LPEFRAC.spad" 894909 894919 895628 895633) (-604 "LOGIC.spad" 894511 894519 894899 894904) (-603 "LOGIC.spad" 894111 894121 894501 894506) (-602 "LODOOPS.spad" 893041 893053 894101 894106) (-601 "LODOF.spad" 892087 892104 892998 893003) (-600 "LODOCAT.spad" 890753 890763 892043 892082) (-599 "LODOCAT.spad" 889417 889429 890709 890714) (-598 "LODO2.spad" 888731 888743 889138 889177) (-597 "LODO1.spad" 888172 888182 888452 888491) (-596 "LODO.spad" 887597 887613 887893 887932) (-595 "LODEEF.spad" 886399 886417 887587 887592) (-594 "LO.spad" 885800 885814 886333 886360) (-593 "LNAGG.spad" 881987 881997 885790 885795) (-592 "LNAGG.spad" 878138 878150 881943 881948) (-591 "LMOPS.spad" 874906 874923 878128 878133) (-590 "LMODULE.spad" 874690 874700 874896 874901) (-589 "LMDICT.spad" 874071 874081 874319 874346) (-588 "LLINSET.spad" 873778 873788 874061 874066) (-587 "LITERAL.spad" 873684 873695 873768 873773) (-586 "LIST3.spad" 872995 873009 873674 873679) (-585 "LIST2MAP.spad" 869922 869934 872985 872990) (-584 "LIST2.spad" 868624 868636 869912 869917) (-583 "LIST.spad" 866506 866516 867849 867876) (-582 "LINSET.spad" 866285 866295 866496 866501) (-581 "LINFORM.spad" 865748 865760 866253 866280) (-580 "LINEXP.spad" 864491 864501 865738 865743) (-579 "LINELT.spad" 863862 863874 864374 864401) (-578 "LINDEP.spad" 862711 862723 863774 863779) (-577 "LINBASIS.spad" 862347 862362 862701 862706) (-576 "LIMITRF.spad" 860294 860304 862337 862342) (-575 "LIMITPS.spad" 859204 859217 860284 860289) (-574 "LIECAT.spad" 858688 858698 859130 859199) (-573 "LIECAT.spad" 858200 858212 858644 858649) (-572 "LIE.spad" 856204 856216 857478 857620) (-571 "LIB.spad" 854363 854371 854809 854836) (-570 "LGROBP.spad" 851716 851735 854353 854358) (-569 "LFCAT.spad" 850775 850783 851706 851711) (-568 "LF.spad" 849730 849746 850765 850770) (-567 "LEXTRIPK.spad" 845353 845368 849720 849725) (-566 "LEXP.spad" 843372 843399 845333 845348) (-565 "LETAST.spad" 843071 843079 843362 843367) (-564 "LEADCDET.spad" 841477 841494 843061 843066) (-563 "LAZM3PK.spad" 840221 840243 841467 841472) (-562 "LAUPOL.spad" 838888 838901 839788 839857) (-561 "LAPLACE.spad" 838471 838487 838878 838883) (-560 "LALG.spad" 838247 838257 838451 838466) (-559 "LALG.spad" 838031 838043 838237 838242) (-558 "LA.spad" 837471 837485 837953 837992) (-557 "KVTFROM.spad" 837214 837224 837461 837466) (-556 "KTVLOGIC.spad" 836758 836766 837204 837209) (-555 "KRCFROM.spad" 836504 836514 836748 836753) (-554 "KOVACIC.spad" 835235 835252 836494 836499) (-553 "KONVERT.spad" 834957 834967 835225 835230) (-552 "KOERCE.spad" 834694 834704 834947 834952) (-551 "KERNEL2.spad" 834397 834409 834684 834689) (-550 "KERNEL.spad" 833117 833127 834246 834251) (-549 "KDAGG.spad" 832226 832248 833097 833112) (-548 "KDAGG.spad" 831343 831367 832216 832221) (-547 "KAFILE.spad" 830233 830249 830468 830495) (-546 "JVMOP.spad" 830146 830154 830223 830228) (-545 "JVMMDACC.spad" 829200 829208 830136 830141) (-544 "JVMFDACC.spad" 828516 828524 829190 829195) (-543 "JVMCSTTG.spad" 827245 827253 828506 828511) (-542 "JVMCFACC.spad" 826691 826699 827235 827240) (-541 "JVMBCODE.spad" 826602 826610 826681 826686) (-540 "JORDAN.spad" 824419 824431 825880 826022) (-539 "JOINAST.spad" 824121 824129 824409 824414) (-538 "IXAGG.spad" 822254 822278 824111 824116) (-537 "IXAGG.spad" 820242 820268 822101 822106) (-536 "ITUPLE.spad" 819418 819428 820232 820237) (-535 "ITRIGMNP.spad" 818265 818284 819408 819413) (-534 "ITFUN3.spad" 817771 817785 818255 818260) (-533 "ITFUN2.spad" 817515 817527 817761 817766) (-532 "ITFORM.spad" 816870 816878 817505 817510) (-531 "ITAYLOR.spad" 814864 814879 816734 816831) (-530 "ISUPS.spad" 807313 807328 813850 813947) (-529 "ISUMP.spad" 806814 806830 807303 807308) (-528 "ISAST.spad" 806533 806541 806804 806809) (-527 "IRURPK.spad" 805250 805269 806523 806528) (-526 "IRSN.spad" 803254 803262 805240 805245) (-525 "IRRF2F.spad" 801747 801757 803210 803215) (-524 "IRREDFFX.spad" 801348 801359 801737 801742) (-523 "IROOT.spad" 799687 799697 801338 801343) (-522 "IRFORM.spad" 799011 799019 799677 799682) (-521 "IR2F.spad" 798225 798241 799001 799006) (-520 "IR2.spad" 797253 797269 798215 798220) (-519 "IR.spad" 795089 795103 797135 797162) (-518 "IPRNTPK.spad" 794849 794857 795079 795084) (-517 "IPF.spad" 794414 794426 794654 794747) (-516 "IPADIC.spad" 794183 794209 794340 794409) (-515 "IP4ADDR.spad" 793740 793748 794173 794178) (-514 "IOMODE.spad" 793262 793270 793730 793735) (-513 "IOBFILE.spad" 792647 792655 793252 793257) (-512 "IOBCON.spad" 792512 792520 792637 792642) (-511 "INVLAPLA.spad" 792161 792177 792502 792507) (-510 "INTTR.spad" 785555 785572 792151 792156) (-509 "INTTOOLS.spad" 783363 783379 785182 785187) (-508 "INTSLPE.spad" 782691 782699 783353 783358) (-507 "INTRVL.spad" 782257 782267 782605 782686) (-506 "INTRF.spad" 780689 780703 782247 782252) (-505 "INTRET.spad" 780121 780131 780679 780684) (-504 "INTRAT.spad" 778856 778873 780111 780116) (-503 "INTPM.spad" 777319 777335 778577 778582) (-502 "INTPAF.spad" 775195 775213 777248 777253) (-501 "INTHERTR.spad" 774469 774486 775185 775190) (-500 "INTHERAL.spad" 774139 774163 774459 774464) (-499 "INTHEORY.spad" 770578 770586 774129 774134) (-498 "INTG0.spad" 764342 764360 770507 770512) (-497 "INTFACT.spad" 763409 763419 764332 764337) (-496 "INTEF.spad" 761820 761836 763399 763404) (-495 "INTDOM.spad" 760443 760451 761746 761815) (-494 "INTDOM.spad" 759128 759138 760433 760438) (-493 "INTCAT.spad" 757395 757405 759042 759123) (-492 "INTBIT.spad" 756902 756910 757385 757390) (-491 "INTALG.spad" 756090 756117 756892 756897) (-490 "INTAF.spad" 755590 755606 756080 756085) (-489 "INTABL.spad" 753972 754003 754135 754162) (-488 "INT8.spad" 753852 753860 753962 753967) (-487 "INT64.spad" 753731 753739 753842 753847) (-486 "INT32.spad" 753610 753618 753721 753726) (-485 "INT16.spad" 753489 753497 753600 753605) (-484 "INT.spad" 753015 753023 753355 753484) (-483 "INS.spad" 750518 750526 752917 753010) (-482 "INS.spad" 748107 748117 750508 750513) (-481 "INPSIGN.spad" 747577 747590 748097 748102) (-480 "INPRODPF.spad" 746673 746692 747567 747572) (-479 "INPRODFF.spad" 745761 745785 746663 746668) (-478 "INNMFACT.spad" 744736 744753 745751 745756) (-477 "INMODGCD.spad" 744240 744270 744726 744731) (-476 "INFSP.spad" 742537 742559 744230 744235) (-475 "INFPROD0.spad" 741617 741636 742527 742532) (-474 "INFORM1.spad" 741242 741252 741607 741612) (-473 "INFORM.spad" 738453 738461 741232 741237) (-472 "INFINITY.spad" 738005 738013 738443 738448) (-471 "INETCLTS.spad" 737982 737990 737995 738000) (-470 "INEP.spad" 736528 736550 737972 737977) (-469 "INDE.spad" 736177 736194 736438 736443) (-468 "INCRMAPS.spad" 735614 735624 736167 736172) (-467 "INBFILE.spad" 734710 734718 735604 735609) (-466 "INBFF.spad" 730560 730571 734700 734705) (-465 "INBCON.spad" 728826 728834 730550 730555) (-464 "INBCON.spad" 727090 727100 728816 728821) (-463 "INAST.spad" 726751 726759 727080 727085) (-462 "IMPTAST.spad" 726459 726467 726741 726746) (-461 "IMATQF.spad" 725553 725597 726415 726420) (-460 "IMATLIN.spad" 724174 724198 725509 725514) (-459 "IFF.spad" 723587 723603 723858 723951) (-458 "IFAST.spad" 723201 723209 723577 723582) (-457 "IFARRAY.spad" 720728 720743 722426 722453) (-456 "IFAMON.spad" 720590 720607 720684 720689) (-455 "IEVALAB.spad" 720003 720015 720580 720585) (-454 "IEVALAB.spad" 719414 719428 719993 719998) (-453 "indexedp.spad" 718970 718982 719404 719409) (-452 "IDPOAMS.spad" 718648 718660 718882 718887) (-451 "IDPOAM.spad" 718290 718302 718560 718565) (-450 "IDPO.spad" 717704 717716 718202 718207) (-449 "IDPC.spad" 716419 716431 717694 717699) (-448 "IDPAM.spad" 716086 716098 716331 716336) (-447 "IDPAG.spad" 715755 715767 715998 716003) (-446 "IDENT.spad" 715407 715415 715745 715750) (-445 "catdef.spad" 715178 715189 715290 715402) (-444 "IDECOMP.spad" 712417 712435 715168 715173) (-443 "IDEAL.spad" 707379 707418 712365 712370) (-442 "ICDEN.spad" 706592 706608 707369 707374) (-441 "ICARD.spad" 705985 705993 706582 706587) (-440 "IBPTOOLS.spad" 704592 704609 705975 705980) (-439 "IBITS.spad" 704105 704118 704238 704265) (-438 "IBATOOL.spad" 701090 701109 704095 704100) (-437 "IBACHIN.spad" 699597 699612 701080 701085) (-436 "array2.spad" 699082 699104 699269 699296) (-435 "IARRAY1.spad" 698161 698176 698307 698334) (-434 "IAN.spad" 696543 696551 697992 698085) (-433 "IALGFACT.spad" 696154 696187 696533 696538) (-432 "HYPCAT.spad" 695578 695586 696144 696149) (-431 "HYPCAT.spad" 695000 695010 695568 695573) (-430 "HOSTNAME.spad" 694816 694824 694990 694995) (-429 "HOMOTOP.spad" 694559 694569 694806 694811) (-428 "HOAGG.spad" 691841 691851 694549 694554) (-427 "HOAGG.spad" 688873 688885 691583 691588) (-426 "HEXADEC.spad" 687098 687106 687463 687556) (-425 "HEUGCD.spad" 686189 686200 687088 687093) (-424 "HELLFDIV.spad" 685795 685819 686179 686184) (-423 "HEAP.spad" 685252 685262 685467 685494) (-422 "HEADAST.spad" 684793 684801 685242 685247) (-421 "HDP.spad" 674426 674442 674803 674900) (-420 "HDMP.spad" 671973 671988 672589 672716) (-419 "HB.spad" 670248 670256 671963 671968) (-418 "HASHTBL.spad" 668582 668613 668793 668820) (-417 "HASAST.spad" 668298 668306 668572 668577) (-416 "HACKPI.spad" 667789 667797 668200 668293) (-415 "GTSET.spad" 666716 666732 667423 667450) (-414 "GSTBL.spad" 665087 665122 665261 665288) (-413 "GSERIES.spad" 662459 662486 663278 663427) (-412 "GROUP.spad" 661732 661740 662439 662454) (-411 "GROUP.spad" 661013 661023 661722 661727) (-410 "GROEBSOL.spad" 659507 659528 661003 661008) (-409 "GRMOD.spad" 658088 658100 659497 659502) (-408 "GRMOD.spad" 656667 656681 658078 658083) (-407 "GRIMAGE.spad" 649580 649588 656657 656662) (-406 "GRDEF.spad" 647959 647967 649570 649575) (-405 "GRAY.spad" 646430 646438 647949 647954) (-404 "GRALG.spad" 645525 645537 646420 646425) (-403 "GRALG.spad" 644618 644632 645515 645520) (-402 "GPOLSET.spad" 644076 644099 644288 644315) (-401 "GOSPER.spad" 643353 643371 644066 644071) (-400 "GMODPOL.spad" 642501 642528 643321 643348) (-399 "GHENSEL.spad" 641584 641598 642491 642496) (-398 "GENUPS.spad" 637877 637890 641574 641579) (-397 "GENUFACT.spad" 637454 637464 637867 637872) (-396 "GENPGCD.spad" 637056 637073 637444 637449) (-395 "GENMFACT.spad" 636508 636527 637046 637051) (-394 "GENEEZ.spad" 634467 634480 636498 636503) (-393 "GDMP.spad" 631856 631873 632630 632757) (-392 "GCNAALG.spad" 625779 625806 631650 631717) (-391 "GCDDOM.spad" 624971 624979 625705 625774) (-390 "GCDDOM.spad" 624225 624235 624961 624966) (-389 "GBINTERN.spad" 620245 620283 624215 624220) (-388 "GBF.spad" 616028 616066 620235 620240) (-387 "GBEUCLID.spad" 613910 613948 616018 616023) (-386 "GB.spad" 611436 611474 613866 613871) (-385 "GAUSSFAC.spad" 610749 610757 611426 611431) (-384 "GALUTIL.spad" 609075 609085 610705 610710) (-383 "GALPOLYU.spad" 607529 607542 609065 609070) (-382 "GALFACTU.spad" 605742 605761 607519 607524) (-381 "GALFACT.spad" 595955 595966 605732 605737) (-380 "FUNDESC.spad" 595633 595641 595945 595950) (-379 "FUNCTION.spad" 595482 595494 595623 595628) (-378 "FT.spad" 593782 593790 595472 595477) (-377 "FSUPFACT.spad" 592696 592715 593732 593737) (-376 "FST.spad" 590782 590790 592686 592691) (-375 "FSRED.spad" 590262 590278 590772 590777) (-374 "FSPRMELT.spad" 589128 589144 590219 590224) (-373 "FSPECF.spad" 587219 587235 589118 589123) (-372 "FSINT.spad" 586879 586895 587209 587214) (-371 "FSERIES.spad" 586070 586082 586699 586798) (-370 "FSCINT.spad" 585387 585403 586060 586065) (-369 "FSAGG2.spad" 584122 584138 585377 585382) (-368 "FSAGG.spad" 583239 583249 584078 584117) (-367 "FSAGG.spad" 582318 582330 583159 583164) (-366 "FS2UPS.spad" 576833 576867 582308 582313) (-365 "FS2EXPXP.spad" 575974 575997 576823 576828) (-364 "FS2.spad" 575629 575645 575964 575969) (-363 "FS.spad" 569901 569911 575408 575624) (-362 "FS.spad" 563975 563987 569484 569489) (-361 "FRUTIL.spad" 562929 562939 563965 563970) (-360 "FRNAALG.spad" 558206 558216 562871 562924) (-359 "FRNAALG.spad" 553495 553507 558162 558167) (-358 "FRNAAF2.spad" 552943 552961 553485 553490) (-357 "FRMOD.spad" 552351 552381 552872 552877) (-356 "FRIDEAL2.spad" 551955 551987 552341 552346) (-355 "FRIDEAL.spad" 551180 551201 551935 551950) (-354 "FRETRCT.spad" 550699 550709 551170 551175) (-353 "FRETRCT.spad" 550125 550137 550598 550603) (-352 "FRAMALG.spad" 548505 548518 550081 550120) (-351 "FRAMALG.spad" 546917 546932 548495 548500) (-350 "FRAC2.spad" 546522 546534 546907 546912) (-349 "FRAC.spad" 544509 544519 544896 545069) (-348 "FR2.spad" 543845 543857 544499 544504) (-347 "FR.spad" 537633 537643 542906 542975) (-346 "FPS.spad" 534472 534480 537523 537628) (-345 "FPS.spad" 531339 531349 534392 534397) (-344 "FPC.spad" 530385 530393 531241 531334) (-343 "FPC.spad" 529517 529527 530375 530380) (-342 "FPATMAB.spad" 529279 529289 529507 529512) (-341 "FPARFRAC.spad" 528121 528138 529269 529274) (-340 "FORDER.spad" 527812 527836 528111 528116) (-339 "FNLA.spad" 527236 527258 527780 527807) (-338 "FNCAT.spad" 525831 525839 527226 527231) (-337 "FNAME.spad" 525723 525731 525821 525826) (-336 "FMONOID.spad" 525404 525414 525679 525684) (-335 "FMONCAT.spad" 522573 522583 525394 525399) (-334 "FMCAT.spad" 520249 520267 522541 522568) (-333 "FM1.spad" 519614 519626 520183 520210) (-332 "FM.spad" 519229 519241 519468 519495) (-331 "FLOATRP.spad" 516972 516986 519219 519224) (-330 "FLOATCP.spad" 514411 514425 516962 516967) (-329 "FLOAT.spad" 511502 511510 514277 514406) (-328 "FLINEXP.spad" 511224 511234 511492 511497) (-327 "FLINEXP.spad" 510903 510915 511173 511178) (-326 "FLASORT.spad" 510229 510241 510893 510898) (-325 "FLALG.spad" 507899 507918 510155 510224) (-324 "FLAGG2.spad" 506616 506632 507889 507894) (-323 "FLAGG.spad" 503682 503692 506596 506611) (-322 "FLAGG.spad" 500649 500661 503565 503570) (-321 "FINRALG.spad" 498734 498747 500605 500644) (-320 "FINRALG.spad" 496745 496760 498618 498623) (-319 "FINITE.spad" 495897 495905 496735 496740) (-318 "FINITE.spad" 495047 495057 495887 495892) (-317 "aggcat.spad" 493213 493223 495027 495042) (-316 "FINAALG.spad" 482398 482408 493155 493208) (-315 "FINAALG.spad" 471595 471607 482354 482359) (-314 "FILECAT.spad" 470129 470146 471585 471590) (-313 "FILE.spad" 469712 469722 470119 470124) (-312 "FIELD.spad" 469118 469126 469614 469707) (-311 "FIELD.spad" 468610 468620 469108 469113) (-310 "FGROUP.spad" 467273 467283 468590 468605) (-309 "FGLMICPK.spad" 466068 466083 467263 467268) (-308 "FFX.spad" 465454 465469 465787 465880) (-307 "FFSLPE.spad" 464965 464986 465444 465449) (-306 "FFPOLY2.spad" 464025 464042 464955 464960) (-305 "FFPOLY.spad" 455367 455378 464015 464020) (-304 "FFP.spad" 454775 454795 455086 455179) (-303 "FFNBX.spad" 453298 453318 454494 454587) (-302 "FFNBP.spad" 451822 451839 453017 453110) (-301 "FFNB.spad" 450290 450311 451506 451599) (-300 "FFINTBAS.spad" 447804 447823 450280 450285) (-299 "FFIELDC.spad" 445389 445397 447706 447799) (-298 "FFIELDC.spad" 443060 443070 445379 445384) (-297 "FFHOM.spad" 441832 441849 443050 443055) (-296 "FFF.spad" 439275 439286 441822 441827) (-295 "FFCGX.spad" 438133 438153 438994 439087) (-294 "FFCGP.spad" 437033 437053 437852 437945) (-293 "FFCG.spad" 435828 435849 436717 436810) (-292 "FFCAT2.spad" 435575 435615 435818 435823) (-291 "FFCAT.spad" 428740 428762 435414 435570) (-290 "FFCAT.spad" 421984 422008 428660 428665) (-289 "FF.spad" 421435 421451 421668 421761) (-288 "FEVALAB.spad" 421143 421153 421425 421430) (-287 "FEVALAB.spad" 420627 420639 420911 420916) (-286 "FDIVCAT.spad" 418723 418747 420617 420622) (-285 "FDIVCAT.spad" 416817 416843 418713 418718) (-284 "FDIV2.spad" 416473 416513 416807 416812) (-283 "FDIV.spad" 415931 415955 416463 416468) (-282 "FCTRDATA.spad" 414939 414947 415921 415926) (-281 "FCOMP.spad" 414318 414328 414929 414934) (-280 "FAXF.spad" 407353 407367 414220 414313) (-279 "FAXF.spad" 400440 400456 407309 407314) (-278 "FARRAY.spad" 398632 398642 399665 399692) (-277 "FAMR.spad" 396776 396788 398530 398627) (-276 "FAMR.spad" 394904 394918 396660 396665) (-275 "FAMONOID.spad" 394588 394598 394858 394863) (-274 "FAMONC.spad" 392908 392920 394578 394583) (-273 "FAGROUP.spad" 392548 392558 392804 392831) (-272 "FACUTIL.spad" 390760 390777 392538 392543) (-271 "FACTFUNC.spad" 389962 389972 390750 390755) (-270 "EXPUPXS.spad" 386854 386877 388153 388302) (-269 "EXPRTUBE.spad" 384142 384150 386844 386849) (-268 "EXPRODE.spad" 381310 381326 384132 384137) (-267 "EXPR2UPS.spad" 377432 377445 381300 381305) (-266 "EXPR2.spad" 377137 377149 377422 377427) (-265 "EXPR.spad" 372782 372792 373496 373783) (-264 "EXPEXPAN.spad" 369727 369752 370359 370452) (-263 "EXITAST.spad" 369463 369471 369717 369722) (-262 "EXIT.spad" 369134 369142 369453 369458) (-261 "EVALCYC.spad" 368594 368608 369124 369129) (-260 "EVALAB.spad" 368174 368184 368584 368589) (-259 "EVALAB.spad" 367752 367764 368164 368169) (-258 "EUCDOM.spad" 365342 365350 367678 367747) (-257 "EUCDOM.spad" 362994 363004 365332 365337) (-256 "ES2.spad" 362507 362523 362984 362989) (-255 "ES1.spad" 362077 362093 362497 362502) (-254 "ES.spad" 354948 354956 362067 362072) (-253 "ES.spad" 347740 347750 354861 354866) (-252 "ERROR.spad" 345067 345075 347730 347735) (-251 "EQTBL.spad" 343403 343425 343612 343639) (-250 "EQ2.spad" 343121 343133 343393 343398) (-249 "EQ.spad" 338027 338037 340822 340928) (-248 "EP.spad" 334353 334363 338017 338022) (-247 "ENV.spad" 333031 333039 334343 334348) (-246 "ENTIRER.spad" 332699 332707 332975 333026) (-245 "ENTIRER.spad" 332411 332421 332689 332694) (-244 "EMR.spad" 331699 331740 332337 332406) (-243 "ELTAGG.spad" 329953 329972 331689 331694) (-242 "ELTAGG.spad" 328171 328192 329909 329914) (-241 "ELTAB.spad" 327646 327659 328161 328166) (-240 "ELFUTS.spad" 327081 327100 327636 327641) (-239 "ELEMFUN.spad" 326770 326778 327071 327076) (-238 "ELEMFUN.spad" 326457 326467 326760 326765) (-237 "ELAGG.spad" 324428 324438 326437 326452) (-236 "ELAGG.spad" 322336 322348 324347 324352) (-235 "ELABOR.spad" 321682 321690 322326 322331) (-234 "ELABEXPR.spad" 320614 320622 321672 321677) (-233 "EFUPXS.spad" 317390 317420 320570 320575) (-232 "EFULS.spad" 314226 314249 317346 317351) (-231 "EFSTRUC.spad" 312241 312257 314216 314221) (-230 "EF.spad" 307017 307033 312231 312236) (-229 "EAB.spad" 305317 305325 307007 307012) (-228 "DVARCAT.spad" 302323 302333 305307 305312) (-227 "DVARCAT.spad" 299327 299339 302313 302318) (-226 "DSMP.spad" 297060 297074 297365 297492) (-225 "DSEXT.spad" 296362 296372 297050 297055) (-224 "DSEXT.spad" 295584 295596 296274 296279) (-223 "DROPT1.spad" 295249 295259 295574 295579) (-222 "DROPT0.spad" 290114 290122 295239 295244) (-221 "DROPT.spad" 284073 284081 290104 290109) (-220 "DRAWPT.spad" 282246 282254 284063 284068) (-219 "DRAWHACK.spad" 281554 281564 282236 282241) (-218 "DRAWCX.spad" 279032 279040 281544 281549) (-217 "DRAWCURV.spad" 278579 278594 279022 279027) (-216 "DRAWCFUN.spad" 268111 268119 278569 278574) (-215 "DRAW.spad" 260987 261000 268101 268106) (-214 "DQAGG.spad" 259165 259175 260955 260982) (-213 "DPOLCAT.spad" 254522 254538 259033 259160) (-212 "DPOLCAT.spad" 249965 249983 254478 254483) (-211 "DPMO.spad" 242668 242684 242806 243012) (-210 "DPMM.spad" 235384 235402 235509 235715) (-209 "DOMTMPLT.spad" 235155 235163 235374 235379) (-208 "DOMCTOR.spad" 234910 234918 235145 235150) (-207 "DOMAIN.spad" 234021 234029 234900 234905) (-206 "DMP.spad" 231614 231629 232184 232311) (-205 "DMEXT.spad" 231481 231491 231582 231609) (-204 "DLP.spad" 230841 230851 231471 231476) (-203 "DLIST.spad" 229462 229472 230066 230093) (-202 "DLAGG.spad" 227879 227889 229452 229457) (-201 "DIVRING.spad" 227421 227429 227823 227874) (-200 "DIVRING.spad" 227007 227017 227411 227416) (-199 "DISPLAY.spad" 225197 225205 226997 227002) (-198 "DIRPROD2.spad" 224015 224033 225187 225192) (-197 "DIRPROD.spad" 213385 213401 214025 214122) (-196 "DIRPCAT.spad" 212668 212684 213283 213380) (-195 "DIRPCAT.spad" 211577 211595 212194 212199) (-194 "DIOSP.spad" 210402 210410 211567 211572) (-193 "DIOPS.spad" 209398 209408 210382 210397) (-192 "DIOPS.spad" 208368 208380 209354 209359) (-191 "catdef.spad" 208226 208234 208358 208363) (-190 "DIFRING.spad" 208064 208072 208206 208221) (-189 "DIFFSPC.spad" 207643 207651 208054 208059) (-188 "DIFFSPC.spad" 207220 207230 207633 207638) (-187 "DIFFMOD.spad" 206709 206719 207188 207215) (-186 "DIFFDOM.spad" 205874 205885 206699 206704) (-185 "DIFFDOM.spad" 205037 205050 205864 205869) (-184 "DIFEXT.spad" 204856 204866 205017 205032) (-183 "DIAGG.spad" 204486 204496 204836 204851) (-182 "DIAGG.spad" 204124 204136 204476 204481) (-181 "DHMATRIX.spad" 202501 202511 203646 203673) (-180 "DFSFUN.spad" 196141 196149 202491 202496) (-179 "DFLOAT.spad" 192748 192756 196031 196136) (-178 "DFINTTLS.spad" 190979 190995 192738 192743) (-177 "DERHAM.spad" 188893 188925 190959 190974) (-176 "DEQUEUE.spad" 188282 188292 188565 188592) (-175 "DEGRED.spad" 187899 187913 188272 188277) (-174 "DEFINTRF.spad" 185481 185491 187889 187894) (-173 "DEFINTEF.spad" 184019 184035 185471 185476) (-172 "DEFAST.spad" 183403 183411 184009 184014) (-171 "DECIMAL.spad" 181632 181640 181993 182086) (-170 "DDFACT.spad" 179453 179470 181622 181627) (-169 "DBLRESP.spad" 179053 179077 179443 179448) (-168 "DBASIS.spad" 178679 178694 179043 179048) (-167 "DBASE.spad" 177343 177353 178669 178674) (-166 "DATAARY.spad" 176829 176842 177333 177338) (-165 "CYCLOTOM.spad" 176335 176343 176819 176824) (-164 "CYCLES.spad" 173127 173135 176325 176330) (-163 "CVMP.spad" 172544 172554 173117 173122) (-162 "CTRIGMNP.spad" 171044 171060 172534 172539) (-161 "CTORKIND.spad" 170647 170655 171034 171039) (-160 "CTORCAT.spad" 169888 169896 170637 170642) (-159 "CTORCAT.spad" 169127 169137 169878 169883) (-158 "CTORCALL.spad" 168716 168726 169117 169122) (-157 "CTOR.spad" 168407 168415 168706 168711) (-156 "CSTTOOLS.spad" 167652 167665 168397 168402) (-155 "CRFP.spad" 161424 161437 167642 167647) (-154 "CRCEAST.spad" 161144 161152 161414 161419) (-153 "CRAPACK.spad" 160211 160221 161134 161139) (-152 "CPMATCH.spad" 159712 159727 160133 160138) (-151 "CPIMA.spad" 159417 159436 159702 159707) (-150 "COORDSYS.spad" 154426 154436 159407 159412) (-149 "CONTOUR.spad" 153853 153861 154416 154421) (-148 "CONTFRAC.spad" 149603 149613 153755 153848) (-147 "CONDUIT.spad" 149361 149369 149593 149598) (-146 "COMRING.spad" 149035 149043 149299 149356) (-145 "COMPPROP.spad" 148553 148561 149025 149030) (-144 "COMPLPAT.spad" 148320 148335 148543 148548) (-143 "COMPLEX2.spad" 148035 148047 148310 148315) (-142 "COMPLEX.spad" 143741 143751 143985 144243) (-141 "COMPILER.spad" 143290 143298 143731 143736) (-140 "COMPFACT.spad" 142892 142906 143280 143285) (-139 "COMPCAT.spad" 140967 140977 142629 142887) (-138 "COMPCAT.spad" 138783 138795 140447 140452) (-137 "COMMUPC.spad" 138531 138549 138773 138778) (-136 "COMMONOP.spad" 138064 138072 138521 138526) (-135 "COMMAAST.spad" 137827 137835 138054 138059) (-134 "COMM.spad" 137638 137646 137817 137822) (-133 "COMBOPC.spad" 136561 136569 137628 137633) (-132 "COMBINAT.spad" 135328 135338 136551 136556) (-131 "COMBF.spad" 132750 132766 135318 135323) (-130 "COLOR.spad" 131587 131595 132740 132745) (-129 "COLONAST.spad" 131253 131261 131577 131582) (-128 "CMPLXRT.spad" 130964 130981 131243 131248) (-127 "CLLCTAST.spad" 130626 130634 130954 130959) (-126 "CLIP.spad" 126734 126742 130616 130621) (-125 "CLIF.spad" 125389 125405 126690 126729) (-124 "CLAGG.spad" 121926 121936 125379 125384) (-123 "CLAGG.spad" 118347 118359 121802 121807) (-122 "CINTSLPE.spad" 117702 117715 118337 118342) (-121 "CHVAR.spad" 115840 115862 117692 117697) (-120 "CHARZ.spad" 115755 115763 115820 115835) (-119 "CHARPOL.spad" 115281 115291 115745 115750) (-118 "CHARNZ.spad" 115043 115051 115261 115276) (-117 "CHAR.spad" 112411 112419 115033 115038) (-116 "CFCAT.spad" 111739 111747 112401 112406) (-115 "CDEN.spad" 110959 110973 111729 111734) (-114 "CCLASS.spad" 109139 109147 110401 110440) (-113 "CATEGORY.spad" 108213 108221 109129 109134) (-112 "CATCTOR.spad" 108104 108112 108203 108208) (-111 "CATAST.spad" 107730 107738 108094 108099) (-110 "CASEAST.spad" 107444 107452 107720 107725) (-109 "CARTEN2.spad" 106834 106861 107434 107439) (-108 "CARTEN.spad" 102586 102610 106824 106829) (-107 "CARD.spad" 99881 99889 102560 102581) (-106 "CAPSLAST.spad" 99663 99671 99871 99876) (-105 "CACHSET.spad" 99287 99295 99653 99658) (-104 "CABMON.spad" 98842 98850 99277 99282) (-103 "BYTEORD.spad" 98517 98525 98832 98837) (-102 "BYTEBUF.spad" 96564 96572 97770 97797) (-101 "BYTE.spad" 96039 96047 96554 96559) (-100 "BTREE.spad" 95177 95187 95711 95738) (-99 "BTOURN.spad" 94248 94257 94849 94876) (-98 "BTCAT.spad" 93727 93736 94216 94243) (-97 "BTCAT.spad" 93226 93237 93717 93722) (-96 "BTAGG.spad" 92693 92700 93194 93221) (-95 "BTAGG.spad" 92180 92189 92683 92688) (-94 "BSTREE.spad" 90987 90996 91852 91879) (-93 "BRILL.spad" 89193 89203 90977 90982) (-92 "BRAGG.spad" 88150 88159 89183 89188) (-91 "BRAGG.spad" 87071 87082 88106 88111) (-90 "BPADICRT.spad" 85131 85142 85377 85470) (-89 "BPADIC.spad" 84804 84815 85057 85126) (-88 "BOUNDZRO.spad" 84461 84477 84794 84799) (-87 "BOP1.spad" 81920 81929 84451 84456) (-86 "BOP.spad" 77063 77070 81910 81915) (-85 "BOOLEAN.spad" 76612 76619 77053 77058) (-84 "BOOLE.spad" 76263 76270 76602 76607) (-83 "BOOLE.spad" 75912 75921 76253 76258) (-82 "BMODULE.spad" 75625 75636 75880 75907) (-81 "BITS.spad" 75057 75064 75271 75298) (-80 "catdef.spad" 74940 74950 75047 75052) (-79 "catdef.spad" 74691 74701 74930 74935) (-78 "BINDING.spad" 74113 74120 74681 74686) (-77 "BINARY.spad" 72348 72355 72703 72796) (-76 "BGAGG.spad" 71554 71563 72328 72343) (-75 "BGAGG.spad" 70768 70779 71544 71549) (-74 "BEZOUT.spad" 69909 69935 70718 70723) (-73 "BBTREE.spad" 66852 66861 69581 69608) (-72 "BASTYPE.spad" 66352 66359 66842 66847) (-71 "BASTYPE.spad" 65850 65859 66342 66347) (-70 "BALFACT.spad" 65310 65322 65840 65845) (-69 "AUTOMOR.spad" 64761 64770 65290 65305) (-68 "ATTREG.spad" 61484 61491 64513 64756) (-67 "ATTRAST.spad" 61201 61208 61474 61479) (-66 "ATRIG.spad" 60671 60678 61191 61196) (-65 "ATRIG.spad" 60139 60148 60661 60666) (-64 "ASTCAT.spad" 60043 60050 60129 60134) (-63 "ASTCAT.spad" 59945 59954 60033 60038) (-62 "ASTACK.spad" 59349 59358 59617 59644) (-61 "ASSOCEQ.spad" 58183 58194 59305 59310) (-60 "ARRAY2.spad" 57706 57715 57855 57882) (-59 "ARRAY12.spad" 56419 56430 57696 57701) (-58 "ARRAY1.spad" 55298 55307 55644 55671) (-57 "ARR2CAT.spad" 51264 51285 55266 55293) (-56 "ARR2CAT.spad" 47250 47273 51254 51259) (-55 "ARITY.spad" 46622 46629 47240 47245) (-54 "APPRULE.spad" 45906 45928 46612 46617) (-53 "APPLYORE.spad" 45525 45538 45896 45901) (-52 "ANY1.spad" 44596 44605 45515 45520) (-51 "ANY.spad" 43447 43454 44586 44591) (-50 "ANTISYM.spad" 41892 41908 43427 43442) (-49 "ANON.spad" 41601 41608 41882 41887) (-48 "AN.spad" 40069 40076 41432 41525) (-47 "AMR.spad" 38254 38265 39967 40064) (-46 "AMR.spad" 36302 36315 38017 38022) (-45 "ALIST.spad" 33540 33561 33890 33917) (-44 "ALGSC.spad" 32675 32701 33412 33465) (-43 "ALGPKG.spad" 28458 28469 32631 32636) (-42 "ALGMFACT.spad" 27651 27665 28448 28453) (-41 "ALGMANIP.spad" 25152 25167 27495 27500) (-40 "ALGFF.spad" 22970 22997 23187 23343) (-39 "ALGFACT.spad" 22089 22099 22960 22965) (-38 "ALGEBRA.spad" 21922 21931 22045 22084) (-37 "ALGEBRA.spad" 21787 21798 21912 21917) (-36 "ALAGG.spad" 21303 21324 21755 21782) (-35 "AHYP.spad" 20684 20691 21293 21298) (-34 "AGG.spad" 19393 19400 20674 20679) (-33 "AGG.spad" 18066 18075 19349 19354) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 1962768 1962773 1962778 1962783) (-2 NIL 1962748 1962753 1962758 1962763) (-1 NIL 1962728 1962733 1962738 1962743) (0 NIL 1962708 1962713 1962718 1962723) (-1209 "ZMOD.spad" 1962517 1962530 1962646 1962703) (-1208 "ZLINDEP.spad" 1961615 1961626 1962507 1962512) (-1207 "ZDSOLVE.spad" 1951576 1951598 1961605 1961610) (-1206 "YSTREAM.spad" 1951071 1951082 1951566 1951571) (-1205 "YDIAGRAM.spad" 1950705 1950714 1951061 1951066) (-1204 "XRPOLY.spad" 1949925 1949945 1950561 1950630) (-1203 "XPR.spad" 1947720 1947733 1949643 1949742) (-1202 "XPOLYC.spad" 1947039 1947055 1947646 1947715) (-1201 "XPOLY.spad" 1946594 1946605 1946895 1946964) (-1200 "XPBWPOLY.spad" 1945065 1945085 1946400 1946469) (-1199 "XFALG.spad" 1942113 1942129 1944991 1945060) (-1198 "XF.spad" 1940576 1940591 1942015 1942108) (-1197 "XF.spad" 1939019 1939036 1940460 1940465) (-1196 "XEXPPKG.spad" 1938278 1938304 1939009 1939014) (-1195 "XDPOLY.spad" 1937892 1937908 1938134 1938203) (-1194 "XALG.spad" 1937560 1937571 1937848 1937887) (-1193 "WUTSET.spad" 1933563 1933580 1937194 1937221) (-1192 "WP.spad" 1932770 1932814 1933421 1933488) (-1191 "WHILEAST.spad" 1932568 1932577 1932760 1932765) (-1190 "WHEREAST.spad" 1932239 1932248 1932558 1932563) (-1189 "WFFINTBS.spad" 1929902 1929924 1932229 1932234) (-1188 "WEIER.spad" 1928124 1928135 1929892 1929897) (-1187 "VSPACE.spad" 1927797 1927808 1928092 1928119) (-1186 "VSPACE.spad" 1927490 1927503 1927787 1927792) (-1185 "VOID.spad" 1927167 1927176 1927480 1927485) (-1184 "VIEWDEF.spad" 1922368 1922377 1927157 1927162) (-1183 "VIEW3D.spad" 1906329 1906338 1922358 1922363) (-1182 "VIEW2D.spad" 1894228 1894237 1906319 1906324) (-1181 "VIEW.spad" 1891948 1891957 1894218 1894223) (-1180 "VECTOR2.spad" 1890587 1890600 1891938 1891943) (-1179 "VECTOR.spad" 1889306 1889317 1889557 1889584) (-1178 "VECTCAT.spad" 1887218 1887229 1889274 1889301) (-1177 "VECTCAT.spad" 1884939 1884952 1886997 1887002) (-1176 "VARIABLE.spad" 1884719 1884734 1884929 1884934) (-1175 "UTYPE.spad" 1884363 1884372 1884709 1884714) (-1174 "UTSODETL.spad" 1883658 1883682 1884319 1884324) (-1173 "UTSODE.spad" 1881874 1881894 1883648 1883653) (-1172 "UTSCAT.spad" 1879353 1879369 1881772 1881869) (-1171 "UTSCAT.spad" 1876500 1876518 1878921 1878926) (-1170 "UTS2.spad" 1876095 1876130 1876490 1876495) (-1169 "UTS.spad" 1871107 1871135 1874627 1874724) (-1168 "URAGG.spad" 1865828 1865839 1871097 1871102) (-1167 "URAGG.spad" 1860513 1860526 1865784 1865789) (-1166 "UPXSSING.spad" 1858281 1858307 1859717 1859850) (-1165 "UPXSCONS.spad" 1856099 1856119 1856472 1856621) (-1164 "UPXSCCA.spad" 1854670 1854690 1855945 1856094) (-1163 "UPXSCCA.spad" 1853383 1853405 1854660 1854665) (-1162 "UPXSCAT.spad" 1851972 1851988 1853229 1853378) (-1161 "UPXS2.spad" 1851515 1851568 1851962 1851967) (-1160 "UPXS.spad" 1848870 1848898 1849706 1849855) (-1159 "UPSQFREE.spad" 1847285 1847299 1848860 1848865) (-1158 "UPSCAT.spad" 1845080 1845104 1847183 1847280) (-1157 "UPSCAT.spad" 1842576 1842602 1844681 1844686) (-1156 "UPOLYC2.spad" 1842047 1842066 1842566 1842571) (-1155 "UPOLYC.spad" 1837127 1837138 1841889 1842042) (-1154 "UPOLYC.spad" 1832125 1832138 1836889 1836894) (-1153 "UPMP.spad" 1831057 1831070 1832115 1832120) (-1152 "UPDIVP.spad" 1830622 1830636 1831047 1831052) (-1151 "UPDECOMP.spad" 1828883 1828897 1830612 1830617) (-1150 "UPCDEN.spad" 1828100 1828116 1828873 1828878) (-1149 "UP2.spad" 1827464 1827485 1828090 1828095) (-1148 "UP.spad" 1824934 1824949 1825321 1825474) (-1147 "UNISEG2.spad" 1824431 1824444 1824890 1824895) (-1146 "UNISEG.spad" 1823784 1823795 1824350 1824355) (-1145 "UNIFACT.spad" 1822887 1822899 1823774 1823779) (-1144 "ULSCONS.spad" 1816733 1816753 1817103 1817252) (-1143 "ULSCCAT.spad" 1814470 1814490 1816579 1816728) (-1142 "ULSCCAT.spad" 1812315 1812337 1814426 1814431) (-1141 "ULSCAT.spad" 1810555 1810571 1812161 1812310) (-1140 "ULS2.spad" 1810069 1810122 1810545 1810550) (-1139 "ULS.spad" 1802102 1802130 1803047 1803470) (-1138 "UINT8.spad" 1801979 1801988 1802092 1802097) (-1137 "UINT64.spad" 1801855 1801864 1801969 1801974) (-1136 "UINT32.spad" 1801731 1801740 1801845 1801850) (-1135 "UINT16.spad" 1801607 1801616 1801721 1801726) (-1134 "UFD.spad" 1800672 1800681 1801533 1801602) (-1133 "UFD.spad" 1799799 1799810 1800662 1800667) (-1132 "UDVO.spad" 1798680 1798689 1799789 1799794) (-1131 "UDPO.spad" 1796261 1796272 1798636 1798641) (-1130 "TYPEAST.spad" 1796180 1796189 1796251 1796256) (-1129 "TYPE.spad" 1796112 1796121 1796170 1796175) (-1128 "TWOFACT.spad" 1794764 1794779 1796102 1796107) (-1127 "TUPLE.spad" 1794271 1794282 1794676 1794681) (-1126 "TUBETOOL.spad" 1791138 1791147 1794261 1794266) (-1125 "TUBE.spad" 1789785 1789802 1791128 1791133) (-1124 "TSETCAT.spad" 1777856 1777873 1789753 1789780) (-1123 "TSETCAT.spad" 1765913 1765932 1777812 1777817) (-1122 "TS.spad" 1764541 1764557 1765507 1765604) (-1121 "TRMANIP.spad" 1758905 1758922 1764229 1764234) (-1120 "TRIMAT.spad" 1757868 1757893 1758895 1758900) (-1119 "TRIGMNIP.spad" 1756395 1756412 1757858 1757863) (-1118 "TRIGCAT.spad" 1755907 1755916 1756385 1756390) (-1117 "TRIGCAT.spad" 1755417 1755428 1755897 1755902) (-1116 "TREE.spad" 1754057 1754068 1755089 1755116) (-1115 "TRANFUN.spad" 1753896 1753905 1754047 1754052) (-1114 "TRANFUN.spad" 1753733 1753744 1753886 1753891) (-1113 "TOPSP.spad" 1753407 1753416 1753723 1753728) (-1112 "TOOLSIGN.spad" 1753070 1753081 1753397 1753402) (-1111 "TEXTFILE.spad" 1751631 1751640 1753060 1753065) (-1110 "TEX1.spad" 1751187 1751198 1751621 1751626) (-1109 "TEX.spad" 1748381 1748390 1751177 1751182) (-1108 "TBCMPPK.spad" 1746482 1746505 1748371 1748376) (-1107 "TBAGG.spad" 1745725 1745748 1746450 1746477) (-1106 "TBAGG.spad" 1744988 1745013 1745715 1745720) (-1105 "TANEXP.spad" 1744396 1744407 1744978 1744983) (-1104 "TALGOP.spad" 1744120 1744131 1744386 1744391) (-1103 "TABLEAU.spad" 1743601 1743612 1744110 1744115) (-1102 "TABLE.spad" 1741876 1741899 1742146 1742173) (-1101 "TABLBUMP.spad" 1738655 1738666 1741866 1741871) (-1100 "SYSTEM.spad" 1737883 1737892 1738645 1738650) (-1099 "SYSSOLP.spad" 1735366 1735377 1737873 1737878) (-1098 "SYSPTR.spad" 1735265 1735274 1735356 1735361) (-1097 "SYSNNI.spad" 1734488 1734499 1735255 1735260) (-1096 "SYSINT.spad" 1733892 1733903 1734478 1734483) (-1095 "SYNTAX.spad" 1730226 1730235 1733882 1733887) (-1094 "SYMTAB.spad" 1728294 1728303 1730216 1730221) (-1093 "SYMS.spad" 1724323 1724332 1728284 1728289) (-1092 "SYMPOLY.spad" 1723456 1723467 1723538 1723665) (-1091 "SYMFUNC.spad" 1722957 1722968 1723446 1723451) (-1090 "SYMBOL.spad" 1720452 1720461 1722947 1722952) (-1089 "SUTS.spad" 1717565 1717593 1718984 1719081) (-1088 "SUPXS.spad" 1714907 1714935 1715756 1715905) (-1087 "SUPFRACF.spad" 1714012 1714030 1714897 1714902) (-1086 "SUP2.spad" 1713404 1713417 1714002 1714007) (-1085 "SUP.spad" 1710488 1710499 1711261 1711414) (-1084 "SUMRF.spad" 1709462 1709473 1710478 1710483) (-1083 "SUMFS.spad" 1709091 1709108 1709452 1709457) (-1082 "SULS.spad" 1701111 1701139 1702069 1702492) (-1081 "syntax.spad" 1700880 1700889 1701101 1701106) (-1080 "SUCH.spad" 1700570 1700585 1700870 1700875) (-1079 "SUBSPACE.spad" 1692701 1692716 1700560 1700565) (-1078 "SUBRESP.spad" 1691871 1691885 1692657 1692662) (-1077 "STTFNC.spad" 1688339 1688355 1691861 1691866) (-1076 "STTF.spad" 1684438 1684454 1688329 1688334) (-1075 "STTAYLOR.spad" 1677115 1677126 1684345 1684350) (-1074 "STRTBL.spad" 1675502 1675519 1675651 1675678) (-1073 "STRING.spad" 1674370 1674379 1674755 1674782) (-1072 "STREAM3.spad" 1673943 1673958 1674360 1674365) (-1071 "STREAM2.spad" 1673071 1673084 1673933 1673938) (-1070 "STREAM1.spad" 1672777 1672788 1673061 1673066) (-1069 "STREAM.spad" 1669773 1669784 1672380 1672395) (-1068 "STINPROD.spad" 1668709 1668725 1669763 1669768) (-1067 "STEPAST.spad" 1667943 1667952 1668699 1668704) (-1066 "STEP.spad" 1667260 1667269 1667933 1667938) (-1065 "STBL.spad" 1665638 1665666 1665805 1665832) (-1064 "STAGG.spad" 1664337 1664348 1665628 1665633) (-1063 "STAGG.spad" 1663034 1663047 1664327 1664332) (-1062 "STACK.spad" 1662456 1662467 1662706 1662733) (-1061 "SRING.spad" 1662216 1662225 1662446 1662451) (-1060 "SREGSET.spad" 1659948 1659965 1661850 1661877) (-1059 "SRDCMPK.spad" 1658525 1658545 1659938 1659943) (-1058 "SRAGG.spad" 1653708 1653717 1658493 1658520) (-1057 "SRAGG.spad" 1648911 1648922 1653698 1653703) (-1056 "SQMATRIX.spad" 1646588 1646606 1647504 1647591) (-1055 "SPLTREE.spad" 1641330 1641343 1646126 1646153) (-1054 "SPLNODE.spad" 1637950 1637963 1641320 1641325) (-1053 "SPFCAT.spad" 1636759 1636768 1637940 1637945) (-1052 "SPECOUT.spad" 1635311 1635320 1636749 1636754) (-1051 "SPADXPT.spad" 1627402 1627411 1635301 1635306) (-1050 "spad-parser.spad" 1626867 1626876 1627392 1627397) (-1049 "SPADAST.spad" 1626568 1626577 1626857 1626862) (-1048 "SPACEC.spad" 1610783 1610794 1626558 1626563) (-1047 "SPACE3.spad" 1610559 1610570 1610773 1610778) (-1046 "SORTPAK.spad" 1610108 1610121 1610515 1610520) (-1045 "SOLVETRA.spad" 1607871 1607882 1610098 1610103) (-1044 "SOLVESER.spad" 1606327 1606338 1607861 1607866) (-1043 "SOLVERAD.spad" 1602353 1602364 1606317 1606322) (-1042 "SOLVEFOR.spad" 1600815 1600833 1602343 1602348) (-1041 "SNTSCAT.spad" 1600415 1600432 1600783 1600810) (-1040 "SMTS.spad" 1598732 1598758 1600009 1600106) (-1039 "SMP.spad" 1596540 1596560 1596930 1597057) (-1038 "SMITH.spad" 1595385 1595410 1596530 1596535) (-1037 "SMATCAT.spad" 1593503 1593533 1595329 1595380) (-1036 "SMATCAT.spad" 1591553 1591585 1593381 1593386) (-1035 "SKAGG.spad" 1590522 1590533 1591521 1591548) (-1034 "SINT.spad" 1589821 1589830 1590388 1590517) (-1033 "SIMPAN.spad" 1589549 1589558 1589811 1589816) (-1032 "SIGNRF.spad" 1588674 1588685 1589539 1589544) (-1031 "SIGNEF.spad" 1587960 1587977 1588664 1588669) (-1030 "syntax.spad" 1587377 1587386 1587950 1587955) (-1029 "SIG.spad" 1586739 1586748 1587367 1587372) (-1028 "SHP.spad" 1584683 1584698 1586695 1586700) (-1027 "SHDP.spad" 1574176 1574203 1574693 1574790) (-1026 "SGROUP.spad" 1573784 1573793 1574166 1574171) (-1025 "SGROUP.spad" 1573390 1573401 1573774 1573779) (-1024 "catdef.spad" 1573100 1573112 1573211 1573385) (-1023 "catdef.spad" 1572656 1572668 1572921 1573095) (-1022 "SGCF.spad" 1565795 1565804 1572646 1572651) (-1021 "SFRTCAT.spad" 1564741 1564758 1565763 1565790) (-1020 "SFRGCD.spad" 1563804 1563824 1564731 1564736) (-1019 "SFQCMPK.spad" 1558617 1558637 1563794 1563799) (-1018 "SEXOF.spad" 1558460 1558500 1558607 1558612) (-1017 "SEXCAT.spad" 1556288 1556328 1558450 1558455) (-1016 "SEX.spad" 1556180 1556189 1556278 1556283) (-1015 "SETMN.spad" 1554640 1554657 1556170 1556175) (-1014 "SETCAT.spad" 1554125 1554134 1554630 1554635) (-1013 "SETCAT.spad" 1553608 1553619 1554115 1554120) (-1012 "SETAGG.spad" 1550157 1550168 1553588 1553603) (-1011 "SETAGG.spad" 1546714 1546727 1550147 1550152) (-1010 "SET.spad" 1545023 1545034 1546120 1546159) (-1009 "syntax.spad" 1544726 1544735 1545013 1545018) (-1008 "SEGXCAT.spad" 1543882 1543895 1544716 1544721) (-1007 "SEGCAT.spad" 1542807 1542818 1543872 1543877) (-1006 "SEGBIND2.spad" 1542505 1542518 1542797 1542802) (-1005 "SEGBIND.spad" 1542263 1542274 1542452 1542457) (-1004 "SEGAST.spad" 1541993 1542002 1542253 1542258) (-1003 "SEG2.spad" 1541428 1541441 1541949 1541954) (-1002 "SEG.spad" 1541241 1541252 1541347 1541352) (-1001 "SDVAR.spad" 1540517 1540528 1541231 1541236) (-1000 "SDPOL.spad" 1538209 1538220 1538500 1538627) (-999 "SCPKG.spad" 1536299 1536309 1538199 1538204) (-998 "SCOPE.spad" 1535477 1535485 1536289 1536294) (-997 "SCACHE.spad" 1534174 1534184 1535467 1535472) (-996 "SASTCAT.spad" 1534084 1534092 1534164 1534169) (-995 "SAOS.spad" 1533957 1533965 1534074 1534079) (-994 "SAERFFC.spad" 1533671 1533690 1533947 1533952) (-993 "SAEFACT.spad" 1533373 1533392 1533661 1533666) (-992 "SAE.spad" 1531024 1531039 1531634 1531769) (-991 "RURPK.spad" 1528684 1528699 1531014 1531019) (-990 "RULESET.spad" 1528138 1528161 1528674 1528679) (-989 "RULECOLD.spad" 1527991 1528003 1528128 1528133) (-988 "RULE.spad" 1526240 1526263 1527981 1527986) (-987 "RTVALUE.spad" 1525976 1525984 1526230 1526235) (-986 "syntax.spad" 1525694 1525702 1525966 1525971) (-985 "RSETGCD.spad" 1522137 1522156 1525684 1525689) (-984 "RSETCAT.spad" 1512106 1512122 1522105 1522132) (-983 "RSETCAT.spad" 1502095 1502113 1512096 1512101) (-982 "RSDCMPK.spad" 1500596 1500615 1502085 1502090) (-981 "RRCC.spad" 1498981 1499010 1500586 1500591) (-980 "RRCC.spad" 1497364 1497395 1498971 1498976) (-979 "RPTAST.spad" 1497067 1497075 1497354 1497359) (-978 "RPOLCAT.spad" 1476572 1476586 1496935 1497062) (-977 "RPOLCAT.spad" 1455870 1455886 1476235 1476240) (-976 "ROMAN.spad" 1455199 1455207 1455736 1455865) (-975 "ROIRC.spad" 1454280 1454311 1455189 1455194) (-974 "RNS.spad" 1453257 1453265 1454182 1454275) (-973 "RNS.spad" 1452320 1452330 1453247 1453252) (-972 "RNGBIND.spad" 1451481 1451494 1452275 1452280) (-971 "RNG.spad" 1451090 1451098 1451471 1451476) (-970 "RNG.spad" 1450697 1450707 1451080 1451085) (-969 "RMODULE.spad" 1450479 1450489 1450687 1450692) (-968 "RMCAT2.spad" 1449900 1449956 1450469 1450474) (-967 "RMATRIX.spad" 1448710 1448728 1449052 1449091) (-966 "RMATCAT.spad" 1444348 1444378 1448666 1448705) (-965 "RMATCAT.spad" 1439876 1439908 1444196 1444201) (-964 "RLINSET.spad" 1439581 1439591 1439866 1439871) (-963 "RINTERP.spad" 1439470 1439489 1439571 1439576) (-962 "RING.spad" 1438941 1438949 1439450 1439465) (-961 "RING.spad" 1438420 1438430 1438931 1438936) (-960 "RIDIST.spad" 1437813 1437821 1438410 1438415) (-959 "RGCHAIN.spad" 1436368 1436383 1437261 1437288) (-958 "RGBCSPC.spad" 1436158 1436169 1436358 1436363) (-957 "RGBCMDL.spad" 1435721 1435732 1436148 1436153) (-956 "RFFACTOR.spad" 1435184 1435194 1435711 1435716) (-955 "RFFACT.spad" 1434920 1434931 1435174 1435179) (-954 "RFDIST.spad" 1433917 1433925 1434910 1434915) (-953 "RF.spad" 1431592 1431602 1433907 1433912) (-952 "RETSOL.spad" 1431012 1431024 1431582 1431587) (-951 "RETRACT.spad" 1430441 1430451 1431002 1431007) (-950 "RETRACT.spad" 1429868 1429880 1430431 1430436) (-949 "RETAST.spad" 1429681 1429689 1429858 1429863) (-948 "RESRING.spad" 1429029 1429075 1429619 1429676) (-947 "RESLATC.spad" 1428354 1428364 1429019 1429024) (-946 "REPSQ.spad" 1428086 1428096 1428344 1428349) (-945 "REPDB.spad" 1427794 1427804 1428076 1428081) (-944 "REP2.spad" 1417509 1417519 1427636 1427641) (-943 "REP1.spad" 1411730 1411740 1417459 1417464) (-942 "REP.spad" 1409285 1409293 1411720 1411725) (-941 "REGSET.spad" 1407111 1407127 1408919 1408946) (-940 "REF.spad" 1406630 1406640 1407101 1407106) (-939 "REDORDER.spad" 1405837 1405853 1406620 1406625) (-938 "RECLOS.spad" 1404734 1404753 1405437 1405530) (-937 "REALSOLV.spad" 1403875 1403883 1404724 1404729) (-936 "REAL0Q.spad" 1401174 1401188 1403865 1403870) (-935 "REAL0.spad" 1398019 1398033 1401164 1401169) (-934 "REAL.spad" 1397892 1397900 1398009 1398014) (-933 "RDUCEAST.spad" 1397614 1397622 1397882 1397887) (-932 "RDIV.spad" 1397270 1397294 1397604 1397609) (-931 "RDIST.spad" 1396838 1396848 1397260 1397265) (-930 "RDETRS.spad" 1395703 1395720 1396828 1396833) (-929 "RDETR.spad" 1393843 1393860 1395693 1395698) (-928 "RDEEFS.spad" 1392943 1392959 1393833 1393838) (-927 "RDEEF.spad" 1391954 1391970 1392933 1392938) (-926 "RCFIELD.spad" 1389173 1389181 1391856 1391949) (-925 "RCFIELD.spad" 1386478 1386488 1389163 1389168) (-924 "RCAGG.spad" 1384415 1384425 1386468 1386473) (-923 "RCAGG.spad" 1382279 1382291 1384334 1384339) (-922 "RATRET.spad" 1381640 1381650 1382269 1382274) (-921 "RATFACT.spad" 1381333 1381344 1381630 1381635) (-920 "RANDSRC.spad" 1380653 1380661 1381323 1381328) (-919 "RADUTIL.spad" 1380410 1380418 1380643 1380648) (-918 "RADIX.spad" 1377455 1377468 1379000 1379093) (-917 "RADFF.spad" 1375372 1375408 1375490 1375646) (-916 "RADCAT.spad" 1374968 1374976 1375362 1375367) (-915 "RADCAT.spad" 1374562 1374572 1374958 1374963) (-914 "QUEUE.spad" 1373976 1373986 1374234 1374261) (-913 "QUATCT2.spad" 1373597 1373615 1373966 1373971) (-912 "QUATCAT.spad" 1371768 1371778 1373527 1373592) (-911 "QUATCAT.spad" 1369704 1369716 1371465 1371470) (-910 "QUAT.spad" 1368311 1368321 1368653 1368718) (-909 "QUAGG.spad" 1367145 1367155 1368279 1368306) (-908 "QQUTAST.spad" 1366914 1366922 1367135 1367140) (-907 "QFORM.spad" 1366533 1366547 1366904 1366909) (-906 "QFCAT2.spad" 1366226 1366242 1366523 1366528) (-905 "QFCAT.spad" 1364929 1364939 1366128 1366221) (-904 "QFCAT.spad" 1363265 1363277 1364466 1364471) (-903 "QEQUAT.spad" 1362824 1362832 1363255 1363260) (-902 "QCMPACK.spad" 1357739 1357758 1362814 1362819) (-901 "QALGSET2.spad" 1355735 1355753 1357729 1357734) (-900 "QALGSET.spad" 1351840 1351872 1355649 1355654) (-899 "PWFFINTB.spad" 1349256 1349277 1351830 1351835) (-898 "PUSHVAR.spad" 1348595 1348614 1349246 1349251) (-897 "PTRANFN.spad" 1344731 1344741 1348585 1348590) (-896 "PTPACK.spad" 1341819 1341829 1344721 1344726) (-895 "PTFUNC2.spad" 1341642 1341656 1341809 1341814) (-894 "PTCAT.spad" 1340897 1340907 1341610 1341637) (-893 "PSQFR.spad" 1340212 1340236 1340887 1340892) (-892 "PSEUDLIN.spad" 1339098 1339108 1340202 1340207) (-891 "PSETPK.spad" 1325803 1325819 1338976 1338981) (-890 "PSETCAT.spad" 1320203 1320226 1325783 1325798) (-889 "PSETCAT.spad" 1314577 1314602 1320159 1320164) (-888 "PSCURVE.spad" 1313576 1313584 1314567 1314572) (-887 "PSCAT.spad" 1312359 1312388 1313474 1313571) (-886 "PSCAT.spad" 1311232 1311263 1312349 1312354) (-885 "PRTITION.spad" 1309930 1309938 1311222 1311227) (-884 "PRTDAST.spad" 1309649 1309657 1309920 1309925) (-883 "PRS.spad" 1299267 1299284 1309605 1309610) (-882 "PRQAGG.spad" 1298702 1298712 1299235 1299262) (-881 "PROPLOG.spad" 1298306 1298314 1298692 1298697) (-880 "PROPFUN2.spad" 1297929 1297942 1298296 1298301) (-879 "PROPFUN1.spad" 1297335 1297346 1297919 1297924) (-878 "PROPFRML.spad" 1295903 1295914 1297325 1297330) (-877 "PROPERTY.spad" 1295399 1295407 1295893 1295898) (-876 "PRODUCT.spad" 1293096 1293108 1293380 1293435) (-875 "PRINT.spad" 1292848 1292856 1293086 1293091) (-874 "PRIMES.spad" 1291109 1291119 1292838 1292843) (-873 "PRIMELT.spad" 1289230 1289244 1291099 1291104) (-872 "PRIMCAT.spad" 1288873 1288881 1289220 1289225) (-871 "PRIMARR2.spad" 1287640 1287652 1288863 1288868) (-870 "PRIMARR.spad" 1286695 1286705 1286865 1286892) (-869 "PREASSOC.spad" 1286077 1286089 1286685 1286690) (-868 "PR.spad" 1284595 1284607 1285294 1285421) (-867 "PPCURVE.spad" 1283732 1283740 1284585 1284590) (-866 "PORTNUM.spad" 1283523 1283531 1283722 1283727) (-865 "POLYROOT.spad" 1282372 1282394 1283479 1283484) (-864 "POLYLIFT.spad" 1281637 1281660 1282362 1282367) (-863 "POLYCATQ.spad" 1279763 1279785 1281627 1281632) (-862 "POLYCAT.spad" 1273265 1273286 1279631 1279758) (-861 "POLYCAT.spad" 1266287 1266310 1272655 1272660) (-860 "POLY2UP.spad" 1265739 1265753 1266277 1266282) (-859 "POLY2.spad" 1265336 1265348 1265729 1265734) (-858 "POLY.spad" 1263004 1263014 1263519 1263646) (-857 "POLUTIL.spad" 1261969 1261998 1262960 1262965) (-856 "POLTOPOL.spad" 1260717 1260732 1261959 1261964) (-855 "POINT.spad" 1259600 1259610 1259687 1259714) (-854 "PNTHEORY.spad" 1256302 1256310 1259590 1259595) (-853 "PMTOOLS.spad" 1255077 1255091 1256292 1256297) (-852 "PMSYM.spad" 1254626 1254636 1255067 1255072) (-851 "PMQFCAT.spad" 1254217 1254231 1254616 1254621) (-850 "PMPREDFS.spad" 1253679 1253701 1254207 1254212) (-849 "PMPRED.spad" 1253166 1253180 1253669 1253674) (-848 "PMPLCAT.spad" 1252243 1252261 1253095 1253100) (-847 "PMLSAGG.spad" 1251828 1251842 1252233 1252238) (-846 "PMKERNEL.spad" 1251407 1251419 1251818 1251823) (-845 "PMINS.spad" 1250987 1250997 1251397 1251402) (-844 "PMFS.spad" 1250564 1250582 1250977 1250982) (-843 "PMDOWN.spad" 1249854 1249868 1250554 1250559) (-842 "PMASSFS.spad" 1248829 1248845 1249844 1249849) (-841 "PMASS.spad" 1247847 1247855 1248819 1248824) (-840 "PLOTTOOL.spad" 1247627 1247635 1247837 1247842) (-839 "PLOT3D.spad" 1244091 1244099 1247617 1247622) (-838 "PLOT1.spad" 1243264 1243274 1244081 1244086) (-837 "PLOT.spad" 1238187 1238195 1243254 1243259) (-836 "PLEQN.spad" 1225589 1225616 1238177 1238182) (-835 "PINTERPA.spad" 1225373 1225389 1225579 1225584) (-834 "PINTERP.spad" 1224995 1225014 1225363 1225368) (-833 "PID.spad" 1223969 1223977 1224921 1224990) (-832 "PICOERCE.spad" 1223626 1223636 1223959 1223964) (-831 "PI.spad" 1223243 1223251 1223600 1223621) (-830 "PGROEB.spad" 1221852 1221866 1223233 1223238) (-829 "PGE.spad" 1213525 1213533 1221842 1221847) (-828 "PGCD.spad" 1212479 1212496 1213515 1213520) (-827 "PFRPAC.spad" 1211628 1211638 1212469 1212474) (-826 "PFR.spad" 1208331 1208341 1211530 1211623) (-825 "PFOTOOLS.spad" 1207589 1207605 1208321 1208326) (-824 "PFOQ.spad" 1206959 1206977 1207579 1207584) (-823 "PFO.spad" 1206378 1206405 1206949 1206954) (-822 "PFECAT.spad" 1204088 1204096 1206304 1206373) (-821 "PFECAT.spad" 1201826 1201836 1204044 1204049) (-820 "PFBRU.spad" 1199714 1199726 1201816 1201821) (-819 "PFBR.spad" 1197274 1197297 1199704 1199709) (-818 "PF.spad" 1196848 1196860 1197079 1197172) (-817 "PERMGRP.spad" 1191618 1191628 1196838 1196843) (-816 "PERMCAT.spad" 1190279 1190289 1191598 1191613) (-815 "PERMAN.spad" 1188835 1188849 1190269 1190274) (-814 "PERM.spad" 1184645 1184655 1188668 1188683) (-813 "PENDTREE.spad" 1184059 1184069 1184339 1184344) (-812 "PDSPC.spad" 1182872 1182882 1184049 1184054) (-811 "PDSPC.spad" 1181683 1181695 1182862 1182867) (-810 "PDRING.spad" 1181525 1181535 1181663 1181678) (-809 "PDMOD.spad" 1181341 1181353 1181493 1181520) (-808 "PDECOMP.spad" 1180811 1180828 1181331 1181336) (-807 "PDDOM.spad" 1180249 1180262 1180801 1180806) (-806 "PDDOM.spad" 1179685 1179700 1180239 1180244) (-805 "PCOMP.spad" 1179538 1179551 1179675 1179680) (-804 "PBWLB.spad" 1178136 1178153 1179528 1179533) (-803 "PATTERN2.spad" 1177874 1177886 1178126 1178131) (-802 "PATTERN1.spad" 1176218 1176234 1177864 1177869) (-801 "PATTERN.spad" 1170793 1170803 1176208 1176213) (-800 "PATRES2.spad" 1170465 1170479 1170783 1170788) (-799 "PATRES.spad" 1168048 1168060 1170455 1170460) (-798 "PATMATCH.spad" 1166289 1166320 1167800 1167805) (-797 "PATMAB.spad" 1165718 1165728 1166279 1166284) (-796 "PATLRES.spad" 1164804 1164818 1165708 1165713) (-795 "PATAB.spad" 1164568 1164578 1164794 1164799) (-794 "PARTPERM.spad" 1162624 1162632 1164558 1164563) (-793 "PARSURF.spad" 1162058 1162086 1162614 1162619) (-792 "PARSU2.spad" 1161855 1161871 1162048 1162053) (-791 "script-parser.spad" 1161375 1161383 1161845 1161850) (-790 "PARSCURV.spad" 1160809 1160837 1161365 1161370) (-789 "PARSC2.spad" 1160600 1160616 1160799 1160804) (-788 "PARPCURV.spad" 1160062 1160090 1160590 1160595) (-787 "PARPC2.spad" 1159853 1159869 1160052 1160057) (-786 "PARAMAST.spad" 1158981 1158989 1159843 1159848) (-785 "PAN2EXPR.spad" 1158393 1158401 1158971 1158976) (-784 "PALETTE.spad" 1157507 1157515 1158383 1158388) (-783 "PAIR.spad" 1156581 1156594 1157150 1157155) (-782 "PADICRC.spad" 1153986 1154004 1155149 1155242) (-781 "PADICRAT.spad" 1152046 1152058 1152259 1152352) (-780 "PADICCT.spad" 1150595 1150607 1151972 1152041) (-779 "PADIC.spad" 1150298 1150310 1150521 1150590) (-778 "PADEPAC.spad" 1148987 1149006 1150288 1150293) (-777 "PADE.spad" 1147739 1147755 1148977 1148982) (-776 "OWP.spad" 1146987 1147017 1147597 1147664) (-775 "OVERSET.spad" 1146560 1146568 1146977 1146982) (-774 "OVAR.spad" 1146341 1146364 1146550 1146555) (-773 "OUTFORM.spad" 1135749 1135757 1146331 1146336) (-772 "OUTBFILE.spad" 1135183 1135191 1135739 1135744) (-771 "OUTBCON.spad" 1134253 1134261 1135173 1135178) (-770 "OUTBCON.spad" 1133321 1133331 1134243 1134248) (-769 "OUT.spad" 1132439 1132447 1133311 1133316) (-768 "OSI.spad" 1131914 1131922 1132429 1132434) (-767 "OSGROUP.spad" 1131832 1131840 1131904 1131909) (-766 "ORTHPOL.spad" 1130343 1130353 1131775 1131780) (-765 "OREUP.spad" 1129837 1129865 1130064 1130103) (-764 "ORESUP.spad" 1129179 1129203 1129558 1129597) (-763 "OREPCTO.spad" 1127068 1127080 1129099 1129104) (-762 "OREPCAT.spad" 1121255 1121265 1127024 1127063) (-761 "OREPCAT.spad" 1115332 1115344 1121103 1121108) (-760 "ORDTYPE.spad" 1114569 1114577 1115322 1115327) (-759 "ORDTYPE.spad" 1113804 1113814 1114559 1114564) (-758 "ORDSTRCT.spad" 1113590 1113605 1113753 1113758) (-757 "ORDSET.spad" 1113290 1113298 1113580 1113585) (-756 "ORDRING.spad" 1113107 1113115 1113270 1113285) (-755 "ORDMON.spad" 1112962 1112970 1113097 1113102) (-754 "ORDFUNS.spad" 1112094 1112110 1112952 1112957) (-753 "ORDFIN.spad" 1111914 1111922 1112084 1112089) (-752 "ORDCOMP2.spad" 1111207 1111219 1111904 1111909) (-751 "ORDCOMP.spad" 1109733 1109743 1110815 1110844) (-750 "OPSIG.spad" 1109395 1109403 1109723 1109728) (-749 "OPQUERY.spad" 1108976 1108984 1109385 1109390) (-748 "OPERCAT.spad" 1108442 1108452 1108966 1108971) (-747 "OPERCAT.spad" 1107906 1107918 1108432 1108437) (-746 "OP.spad" 1107648 1107658 1107728 1107795) (-745 "ONECOMP2.spad" 1107072 1107084 1107638 1107643) (-744 "ONECOMP.spad" 1105878 1105888 1106680 1106709) (-743 "OMSAGG.spad" 1105666 1105676 1105834 1105873) (-742 "OMLO.spad" 1105099 1105111 1105552 1105591) (-741 "OINTDOM.spad" 1104862 1104870 1105025 1105094) (-740 "OFMONOID.spad" 1103001 1103011 1104818 1104823) (-739 "ODVAR.spad" 1102262 1102272 1102991 1102996) (-738 "ODR.spad" 1101906 1101932 1102074 1102223) (-737 "ODPOL.spad" 1099554 1099564 1099894 1100021) (-736 "ODP.spad" 1089191 1089211 1089564 1089661) (-735 "ODETOOLS.spad" 1087840 1087859 1089181 1089186) (-734 "ODESYS.spad" 1085534 1085551 1087830 1087835) (-733 "ODERTRIC.spad" 1081567 1081584 1085491 1085496) (-732 "ODERED.spad" 1080966 1080990 1081557 1081562) (-731 "ODERAT.spad" 1078599 1078616 1080956 1080961) (-730 "ODEPRRIC.spad" 1075692 1075714 1078589 1078594) (-729 "ODEPRIM.spad" 1073090 1073112 1075682 1075687) (-728 "ODEPAL.spad" 1072476 1072500 1073080 1073085) (-727 "ODEINT.spad" 1071911 1071927 1072466 1072471) (-726 "ODEEF.spad" 1067406 1067422 1071901 1071906) (-725 "ODECONST.spad" 1066951 1066969 1067396 1067401) (-724 "OCTCT2.spad" 1066592 1066610 1066941 1066946) (-723 "OCT.spad" 1064907 1064917 1065621 1065660) (-722 "OCAMON.spad" 1064755 1064763 1064897 1064902) (-721 "OC.spad" 1062551 1062561 1064711 1064750) (-720 "OC.spad" 1060086 1060098 1062248 1062253) (-719 "OASGP.spad" 1059901 1059909 1060076 1060081) (-718 "OAMONS.spad" 1059423 1059431 1059891 1059896) (-717 "OAMON.spad" 1059181 1059189 1059413 1059418) (-716 "OAMON.spad" 1058937 1058947 1059171 1059176) (-715 "OAGROUP.spad" 1058475 1058483 1058927 1058932) (-714 "OAGROUP.spad" 1058011 1058021 1058465 1058470) (-713 "NUMTUBE.spad" 1057602 1057618 1058001 1058006) (-712 "NUMQUAD.spad" 1045578 1045586 1057592 1057597) (-711 "NUMODE.spad" 1036930 1036938 1045568 1045573) (-710 "NUMFMT.spad" 1035770 1035778 1036920 1036925) (-709 "NUMERIC.spad" 1027885 1027895 1035576 1035581) (-708 "NTSCAT.spad" 1026393 1026409 1027853 1027880) (-707 "NTPOLFN.spad" 1025970 1025980 1026336 1026341) (-706 "NSUP2.spad" 1025362 1025374 1025960 1025965) (-705 "NSUP.spad" 1018799 1018809 1023219 1023372) (-704 "NSMP.spad" 1015711 1015730 1016003 1016130) (-703 "NREP.spad" 1014113 1014127 1015701 1015706) (-702 "NPCOEF.spad" 1013359 1013379 1014103 1014108) (-701 "NORMRETR.spad" 1012957 1012996 1013349 1013354) (-700 "NORMPK.spad" 1010899 1010918 1012947 1012952) (-699 "NORMMA.spad" 1010587 1010613 1010889 1010894) (-698 "NONE1.spad" 1010263 1010273 1010577 1010582) (-697 "NONE.spad" 1010004 1010012 1010253 1010258) (-696 "NODE1.spad" 1009491 1009507 1009994 1009999) (-695 "NNI.spad" 1008386 1008394 1009465 1009486) (-694 "NLINSOL.spad" 1007012 1007022 1008376 1008381) (-693 "NFINTBAS.spad" 1004572 1004589 1007002 1007007) (-692 "NETCLT.spad" 1004546 1004557 1004562 1004567) (-691 "NCODIV.spad" 1002770 1002786 1004536 1004541) (-690 "NCNTFRAC.spad" 1002412 1002426 1002760 1002765) (-689 "NCEP.spad" 1000578 1000592 1002402 1002407) (-688 "NASRING.spad" 1000182 1000190 1000568 1000573) (-687 "NASRING.spad" 999784 999794 1000172 1000177) (-686 "NARNG.spad" 999184 999192 999774 999779) (-685 "NARNG.spad" 998582 998592 999174 999179) (-684 "NAALG.spad" 998147 998157 998550 998577) (-683 "NAALG.spad" 997732 997744 998137 998142) (-682 "MULTSQFR.spad" 994690 994707 997722 997727) (-681 "MULTFACT.spad" 994073 994090 994680 994685) (-680 "MTSCAT.spad" 992167 992188 993971 994068) (-679 "MTHING.spad" 991826 991836 992157 992162) (-678 "MSYSCMD.spad" 991260 991268 991816 991821) (-677 "MSETAGG.spad" 991105 991115 991228 991255) (-676 "MSET.spad" 989051 989061 990799 990838) (-675 "MRING.spad" 986028 986040 988759 988826) (-674 "MRF2.spad" 985590 985604 986018 986023) (-673 "MRATFAC.spad" 985136 985153 985580 985585) (-672 "MPRFF.spad" 983176 983195 985126 985131) (-671 "MPOLY.spad" 980980 980995 981339 981466) (-670 "MPCPF.spad" 980244 980263 980970 980975) (-669 "MPC3.spad" 980061 980101 980234 980239) (-668 "MPC2.spad" 979715 979748 980051 980056) (-667 "MONOTOOL.spad" 978066 978083 979705 979710) (-666 "catdef.spad" 977499 977510 977720 978061) (-665 "catdef.spad" 976897 976908 977153 977494) (-664 "MONOID.spad" 976218 976226 976887 976892) (-663 "MONOID.spad" 975537 975547 976208 976213) (-662 "MONOGEN.spad" 974285 974298 975397 975532) (-661 "MONOGEN.spad" 973055 973070 974169 974174) (-660 "MONADWU.spad" 971135 971143 973045 973050) (-659 "MONADWU.spad" 969213 969223 971125 971130) (-658 "MONAD.spad" 968373 968381 969203 969208) (-657 "MONAD.spad" 967531 967541 968363 968368) (-656 "MOEBIUS.spad" 966267 966281 967511 967526) (-655 "MODULE.spad" 966137 966147 966235 966262) (-654 "MODULE.spad" 966027 966039 966127 966132) (-653 "MODRING.spad" 965362 965401 966007 966022) (-652 "MODOP.spad" 964019 964031 965184 965251) (-651 "MODMONOM.spad" 963750 963768 964009 964014) (-650 "MODMON.spad" 960820 960832 961535 961688) (-649 "MODFIELD.spad" 960182 960221 960722 960815) (-648 "MMLFORM.spad" 959042 959050 960172 960177) (-647 "MMAP.spad" 958784 958818 959032 959037) (-646 "MLO.spad" 957243 957253 958740 958779) (-645 "MLIFT.spad" 955855 955872 957233 957238) (-644 "MKUCFUNC.spad" 955390 955408 955845 955850) (-643 "MKRECORD.spad" 954978 954991 955380 955385) (-642 "MKFUNC.spad" 954385 954395 954968 954973) (-641 "MKFLCFN.spad" 953353 953363 954375 954380) (-640 "MKBCFUNC.spad" 952848 952866 953343 953348) (-639 "MHROWRED.spad" 951359 951369 952838 952843) (-638 "MFINFACT.spad" 950759 950781 951349 951354) (-637 "MESH.spad" 948554 948562 950749 950754) (-636 "MDDFACT.spad" 946773 946783 948544 948549) (-635 "MDAGG.spad" 946064 946074 946753 946768) (-634 "MCDEN.spad" 945274 945286 946054 946059) (-633 "MAYBE.spad" 944574 944585 945264 945269) (-632 "MATSTOR.spad" 941890 941900 944564 944569) (-631 "MATRIX.spad" 940669 940679 941153 941180) (-630 "MATLIN.spad" 938037 938061 940553 940558) (-629 "MATCAT2.spad" 937319 937367 938027 938032) (-628 "MATCAT.spad" 929015 929037 937287 937314) (-627 "MATCAT.spad" 920583 920607 928857 928862) (-626 "MAPPKG3.spad" 919498 919512 920573 920578) (-625 "MAPPKG2.spad" 918836 918848 919488 919493) (-624 "MAPPKG1.spad" 917664 917674 918826 918831) (-623 "MAPPAST.spad" 917003 917011 917654 917659) (-622 "MAPHACK3.spad" 916815 916829 916993 916998) (-621 "MAPHACK2.spad" 916584 916596 916805 916810) (-620 "MAPHACK1.spad" 916228 916238 916574 916579) (-619 "MAGMA.spad" 914034 914051 916218 916223) (-618 "MACROAST.spad" 913629 913637 914024 914029) (-617 "LZSTAGG.spad" 910883 910893 913619 913624) (-616 "LZSTAGG.spad" 908135 908147 910873 910878) (-615 "LWORD.spad" 904880 904897 908125 908130) (-614 "LSTAST.spad" 904664 904672 904870 904875) (-613 "LSQM.spad" 902942 902956 903336 903387) (-612 "LSPP.spad" 902477 902494 902932 902937) (-611 "LSMP1.spad" 900320 900334 902467 902472) (-610 "LSMP.spad" 899177 899205 900310 900315) (-609 "LSAGG.spad" 898846 898856 899145 899172) (-608 "LSAGG.spad" 898535 898547 898836 898841) (-607 "LPOLY.spad" 897497 897516 898391 898460) (-606 "LPEFRAC.spad" 896768 896778 897487 897492) (-605 "LOGIC.spad" 896370 896378 896758 896763) (-604 "LOGIC.spad" 895970 895980 896360 896365) (-603 "LODOOPS.spad" 894900 894912 895960 895965) (-602 "LODOF.spad" 893946 893963 894857 894862) (-601 "LODOCAT.spad" 892612 892622 893902 893941) (-600 "LODOCAT.spad" 891276 891288 892568 892573) (-599 "LODO2.spad" 890590 890602 890997 891036) (-598 "LODO1.spad" 890031 890041 890311 890350) (-597 "LODO.spad" 889456 889472 889752 889791) (-596 "LODEEF.spad" 888258 888276 889446 889451) (-595 "LO.spad" 887659 887673 888192 888219) (-594 "LNAGG.spad" 883846 883856 887649 887654) (-593 "LNAGG.spad" 879997 880009 883802 883807) (-592 "LMOPS.spad" 876765 876782 879987 879992) (-591 "LMODULE.spad" 876549 876559 876755 876760) (-590 "LMDICT.spad" 875930 875940 876178 876205) (-589 "LLINSET.spad" 875637 875647 875920 875925) (-588 "LITERAL.spad" 875543 875554 875627 875632) (-587 "LIST3.spad" 874854 874868 875533 875538) (-586 "LIST2MAP.spad" 871781 871793 874844 874849) (-585 "LIST2.spad" 870483 870495 871771 871776) (-584 "LIST.spad" 868365 868375 869708 869735) (-583 "LINSET.spad" 868144 868154 868355 868360) (-582 "LINFORM.spad" 867607 867619 868112 868139) (-581 "LINEXP.spad" 866350 866360 867597 867602) (-580 "LINELT.spad" 865721 865733 866233 866260) (-579 "LINDEP.spad" 864570 864582 865633 865638) (-578 "LINBASIS.spad" 864206 864221 864560 864565) (-577 "LIMITRF.spad" 862153 862163 864196 864201) (-576 "LIMITPS.spad" 861063 861076 862143 862148) (-575 "LIECAT.spad" 860547 860557 860989 861058) (-574 "LIECAT.spad" 860059 860071 860503 860508) (-573 "LIE.spad" 858063 858075 859337 859479) (-572 "LIB.spad" 856222 856230 856668 856695) (-571 "LGROBP.spad" 853575 853594 856212 856217) (-570 "LFCAT.spad" 852634 852642 853565 853570) (-569 "LF.spad" 851589 851605 852624 852629) (-568 "LEXTRIPK.spad" 847212 847227 851579 851584) (-567 "LEXP.spad" 845231 845258 847192 847207) (-566 "LETAST.spad" 844930 844938 845221 845226) (-565 "LEADCDET.spad" 843336 843353 844920 844925) (-564 "LAZM3PK.spad" 842080 842102 843326 843331) (-563 "LAUPOL.spad" 840747 840760 841647 841716) (-562 "LAPLACE.spad" 840330 840346 840737 840742) (-561 "LALG.spad" 840106 840116 840310 840325) (-560 "LALG.spad" 839890 839902 840096 840101) (-559 "LA.spad" 839330 839344 839812 839851) (-558 "KVTFROM.spad" 839073 839083 839320 839325) (-557 "KTVLOGIC.spad" 838617 838625 839063 839068) (-556 "KRCFROM.spad" 838363 838373 838607 838612) (-555 "KOVACIC.spad" 837094 837111 838353 838358) (-554 "KONVERT.spad" 836816 836826 837084 837089) (-553 "KOERCE.spad" 836553 836563 836806 836811) (-552 "KERNEL2.spad" 836256 836268 836543 836548) (-551 "KERNEL.spad" 834976 834986 836105 836110) (-550 "KDAGG.spad" 834085 834107 834956 834971) (-549 "KDAGG.spad" 833202 833226 834075 834080) (-548 "KAFILE.spad" 832092 832108 832327 832354) (-547 "JVMOP.spad" 832005 832013 832082 832087) (-546 "JVMMDACC.spad" 831059 831067 831995 832000) (-545 "JVMFDACC.spad" 830375 830383 831049 831054) (-544 "JVMCSTTG.spad" 829104 829112 830365 830370) (-543 "JVMCFACC.spad" 828550 828558 829094 829099) (-542 "JVMBCODE.spad" 828461 828469 828540 828545) (-541 "JORDAN.spad" 826278 826290 827739 827881) (-540 "JOINAST.spad" 825980 825988 826268 826273) (-539 "IXAGG.spad" 824113 824137 825970 825975) (-538 "IXAGG.spad" 822101 822127 823960 823965) (-537 "ITUPLE.spad" 821277 821287 822091 822096) (-536 "ITRIGMNP.spad" 820124 820143 821267 821272) (-535 "ITFUN3.spad" 819630 819644 820114 820119) (-534 "ITFUN2.spad" 819374 819386 819620 819625) (-533 "ITFORM.spad" 818729 818737 819364 819369) (-532 "ITAYLOR.spad" 816723 816738 818593 818690) (-531 "ISUPS.spad" 809172 809187 815709 815806) (-530 "ISUMP.spad" 808673 808689 809162 809167) (-529 "ISAST.spad" 808392 808400 808663 808668) (-528 "IRURPK.spad" 807109 807128 808382 808387) (-527 "IRSN.spad" 805113 805121 807099 807104) (-526 "IRRF2F.spad" 803606 803616 805069 805074) (-525 "IRREDFFX.spad" 803207 803218 803596 803601) (-524 "IROOT.spad" 801546 801556 803197 803202) (-523 "IRFORM.spad" 800870 800878 801536 801541) (-522 "IR2F.spad" 800084 800100 800860 800865) (-521 "IR2.spad" 799112 799128 800074 800079) (-520 "IR.spad" 796948 796962 798994 799021) (-519 "IPRNTPK.spad" 796708 796716 796938 796943) (-518 "IPF.spad" 796273 796285 796513 796606) (-517 "IPADIC.spad" 796042 796068 796199 796268) (-516 "IP4ADDR.spad" 795599 795607 796032 796037) (-515 "IOMODE.spad" 795121 795129 795589 795594) (-514 "IOBFILE.spad" 794506 794514 795111 795116) (-513 "IOBCON.spad" 794371 794379 794496 794501) (-512 "INVLAPLA.spad" 794020 794036 794361 794366) (-511 "INTTR.spad" 787414 787431 794010 794015) (-510 "INTTOOLS.spad" 785222 785238 787041 787046) (-509 "INTSLPE.spad" 784550 784558 785212 785217) (-508 "INTRVL.spad" 784116 784126 784464 784545) (-507 "INTRF.spad" 782548 782562 784106 784111) (-506 "INTRET.spad" 781980 781990 782538 782543) (-505 "INTRAT.spad" 780715 780732 781970 781975) (-504 "INTPM.spad" 779178 779194 780436 780441) (-503 "INTPAF.spad" 777054 777072 779107 779112) (-502 "INTHERTR.spad" 776328 776345 777044 777049) (-501 "INTHERAL.spad" 775998 776022 776318 776323) (-500 "INTHEORY.spad" 772437 772445 775988 775993) (-499 "INTG0.spad" 766201 766219 772366 772371) (-498 "INTFACT.spad" 765268 765278 766191 766196) (-497 "INTEF.spad" 763679 763695 765258 765263) (-496 "INTDOM.spad" 762302 762310 763605 763674) (-495 "INTDOM.spad" 760987 760997 762292 762297) (-494 "INTCAT.spad" 759254 759264 760901 760982) (-493 "INTBIT.spad" 758761 758769 759244 759249) (-492 "INTALG.spad" 757949 757976 758751 758756) (-491 "INTAF.spad" 757449 757465 757939 757944) (-490 "INTABL.spad" 755831 755862 755994 756021) (-489 "INT8.spad" 755711 755719 755821 755826) (-488 "INT64.spad" 755590 755598 755701 755706) (-487 "INT32.spad" 755469 755477 755580 755585) (-486 "INT16.spad" 755348 755356 755459 755464) (-485 "INT.spad" 754874 754882 755214 755343) (-484 "INS.spad" 752377 752385 754776 754869) (-483 "INS.spad" 749966 749976 752367 752372) (-482 "INPSIGN.spad" 749436 749449 749956 749961) (-481 "INPRODPF.spad" 748532 748551 749426 749431) (-480 "INPRODFF.spad" 747620 747644 748522 748527) (-479 "INNMFACT.spad" 746595 746612 747610 747615) (-478 "INMODGCD.spad" 746099 746129 746585 746590) (-477 "INFSP.spad" 744396 744418 746089 746094) (-476 "INFPROD0.spad" 743476 743495 744386 744391) (-475 "INFORM1.spad" 743101 743111 743466 743471) (-474 "INFORM.spad" 740312 740320 743091 743096) (-473 "INFINITY.spad" 739864 739872 740302 740307) (-472 "INETCLTS.spad" 739841 739849 739854 739859) (-471 "INEP.spad" 738387 738409 739831 739836) (-470 "INDE.spad" 738036 738053 738297 738302) (-469 "INCRMAPS.spad" 737473 737483 738026 738031) (-468 "INBFILE.spad" 736569 736577 737463 737468) (-467 "INBFF.spad" 732419 732430 736559 736564) (-466 "INBCON.spad" 730685 730693 732409 732414) (-465 "INBCON.spad" 728949 728959 730675 730680) (-464 "INAST.spad" 728610 728618 728939 728944) (-463 "IMPTAST.spad" 728318 728326 728600 728605) (-462 "IMATQF.spad" 727412 727456 728274 728279) (-461 "IMATLIN.spad" 726033 726057 727368 727373) (-460 "IFF.spad" 725446 725462 725717 725810) (-459 "IFAST.spad" 725060 725068 725436 725441) (-458 "IFARRAY.spad" 722587 722602 724285 724312) (-457 "IFAMON.spad" 722449 722466 722543 722548) (-456 "IEVALAB.spad" 721862 721874 722439 722444) (-455 "IEVALAB.spad" 721273 721287 721852 721857) (-454 "indexedp.spad" 720829 720841 721263 721268) (-453 "IDPOAMS.spad" 720507 720519 720741 720746) (-452 "IDPOAM.spad" 720149 720161 720419 720424) (-451 "IDPO.spad" 719563 719575 720061 720066) (-450 "IDPC.spad" 718278 718290 719553 719558) (-449 "IDPAM.spad" 717945 717957 718190 718195) (-448 "IDPAG.spad" 717614 717626 717857 717862) (-447 "IDENT.spad" 717266 717274 717604 717609) (-446 "catdef.spad" 717037 717048 717149 717261) (-445 "IDECOMP.spad" 714276 714294 717027 717032) (-444 "IDEAL.spad" 709238 709277 714224 714229) (-443 "ICDEN.spad" 708451 708467 709228 709233) (-442 "ICARD.spad" 707844 707852 708441 708446) (-441 "IBPTOOLS.spad" 706451 706468 707834 707839) (-440 "IBITS.spad" 705964 705977 706097 706124) (-439 "IBATOOL.spad" 702949 702968 705954 705959) (-438 "IBACHIN.spad" 701456 701471 702939 702944) (-437 "array2.spad" 700941 700963 701128 701155) (-436 "IARRAY1.spad" 700020 700035 700166 700193) (-435 "IAN.spad" 698402 698410 699851 699944) (-434 "IALGFACT.spad" 698013 698046 698392 698397) (-433 "HYPCAT.spad" 697437 697445 698003 698008) (-432 "HYPCAT.spad" 696859 696869 697427 697432) (-431 "HOSTNAME.spad" 696675 696683 696849 696854) (-430 "HOMOTOP.spad" 696418 696428 696665 696670) (-429 "HOAGG.spad" 693700 693710 696408 696413) (-428 "HOAGG.spad" 690732 690744 693442 693447) (-427 "HEXADEC.spad" 688957 688965 689322 689415) (-426 "HEUGCD.spad" 688048 688059 688947 688952) (-425 "HELLFDIV.spad" 687654 687678 688038 688043) (-424 "HEAP.spad" 687111 687121 687326 687353) (-423 "HEADAST.spad" 686652 686660 687101 687106) (-422 "HDP.spad" 676285 676301 676662 676759) (-421 "HDMP.spad" 673832 673847 674448 674575) (-420 "HB.spad" 672107 672115 673822 673827) (-419 "HASHTBL.spad" 670441 670472 670652 670679) (-418 "HASAST.spad" 670157 670165 670431 670436) (-417 "HACKPI.spad" 669648 669656 670059 670152) (-416 "GTSET.spad" 668575 668591 669282 669309) (-415 "GSTBL.spad" 666946 666981 667120 667147) (-414 "GSERIES.spad" 664318 664345 665137 665286) (-413 "GROUP.spad" 663591 663599 664298 664313) (-412 "GROUP.spad" 662872 662882 663581 663586) (-411 "GROEBSOL.spad" 661366 661387 662862 662867) (-410 "GRMOD.spad" 659947 659959 661356 661361) (-409 "GRMOD.spad" 658526 658540 659937 659942) (-408 "GRIMAGE.spad" 651439 651447 658516 658521) (-407 "GRDEF.spad" 649818 649826 651429 651434) (-406 "GRAY.spad" 648289 648297 649808 649813) (-405 "GRALG.spad" 647384 647396 648279 648284) (-404 "GRALG.spad" 646477 646491 647374 647379) (-403 "GPOLSET.spad" 645935 645958 646147 646174) (-402 "GOSPER.spad" 645212 645230 645925 645930) (-401 "GMODPOL.spad" 644360 644387 645180 645207) (-400 "GHENSEL.spad" 643443 643457 644350 644355) (-399 "GENUPS.spad" 639736 639749 643433 643438) (-398 "GENUFACT.spad" 639313 639323 639726 639731) (-397 "GENPGCD.spad" 638915 638932 639303 639308) (-396 "GENMFACT.spad" 638367 638386 638905 638910) (-395 "GENEEZ.spad" 636326 636339 638357 638362) (-394 "GDMP.spad" 633715 633732 634489 634616) (-393 "GCNAALG.spad" 627638 627665 633509 633576) (-392 "GCDDOM.spad" 626830 626838 627564 627633) (-391 "GCDDOM.spad" 626084 626094 626820 626825) (-390 "GBINTERN.spad" 622104 622142 626074 626079) (-389 "GBF.spad" 617887 617925 622094 622099) (-388 "GBEUCLID.spad" 615769 615807 617877 617882) (-387 "GB.spad" 613295 613333 615725 615730) (-386 "GAUSSFAC.spad" 612608 612616 613285 613290) (-385 "GALUTIL.spad" 610934 610944 612564 612569) (-384 "GALPOLYU.spad" 609388 609401 610924 610929) (-383 "GALFACTU.spad" 607601 607620 609378 609383) (-382 "GALFACT.spad" 597814 597825 607591 607596) (-381 "FUNDESC.spad" 597492 597500 597804 597809) (-380 "FUNCTION.spad" 597341 597353 597482 597487) (-379 "FT.spad" 595641 595649 597331 597336) (-378 "FSUPFACT.spad" 594555 594574 595591 595596) (-377 "FST.spad" 592641 592649 594545 594550) (-376 "FSRED.spad" 592121 592137 592631 592636) (-375 "FSPRMELT.spad" 590987 591003 592078 592083) (-374 "FSPECF.spad" 589078 589094 590977 590982) (-373 "FSINT.spad" 588738 588754 589068 589073) (-372 "FSERIES.spad" 587929 587941 588558 588657) (-371 "FSCINT.spad" 587246 587262 587919 587924) (-370 "FSAGG2.spad" 585981 585997 587236 587241) (-369 "FSAGG.spad" 585098 585108 585937 585976) (-368 "FSAGG.spad" 584177 584189 585018 585023) (-367 "FS2UPS.spad" 578692 578726 584167 584172) (-366 "FS2EXPXP.spad" 577833 577856 578682 578687) (-365 "FS2.spad" 577488 577504 577823 577828) (-364 "FS.spad" 571760 571770 577267 577483) (-363 "FS.spad" 565834 565846 571343 571348) (-362 "FRUTIL.spad" 564788 564798 565824 565829) (-361 "FRNAALG.spad" 560065 560075 564730 564783) (-360 "FRNAALG.spad" 555354 555366 560021 560026) (-359 "FRNAAF2.spad" 554802 554820 555344 555349) (-358 "FRMOD.spad" 554210 554240 554731 554736) (-357 "FRIDEAL2.spad" 553814 553846 554200 554205) (-356 "FRIDEAL.spad" 553039 553060 553794 553809) (-355 "FRETRCT.spad" 552558 552568 553029 553034) (-354 "FRETRCT.spad" 551984 551996 552457 552462) (-353 "FRAMALG.spad" 550364 550377 551940 551979) (-352 "FRAMALG.spad" 548776 548791 550354 550359) (-351 "FRAC2.spad" 548381 548393 548766 548771) (-350 "FRAC.spad" 546368 546378 546755 546928) (-349 "FR2.spad" 545704 545716 546358 546363) (-348 "FR.spad" 539492 539502 544765 544834) (-347 "FPS.spad" 536331 536339 539382 539487) (-346 "FPS.spad" 533198 533208 536251 536256) (-345 "FPC.spad" 532244 532252 533100 533193) (-344 "FPC.spad" 531376 531386 532234 532239) (-343 "FPATMAB.spad" 531138 531148 531366 531371) (-342 "FPARFRAC.spad" 529980 529997 531128 531133) (-341 "FORDER.spad" 529671 529695 529970 529975) (-340 "FNLA.spad" 529095 529117 529639 529666) (-339 "FNCAT.spad" 527690 527698 529085 529090) (-338 "FNAME.spad" 527582 527590 527680 527685) (-337 "FMONOID.spad" 527263 527273 527538 527543) (-336 "FMONCAT.spad" 524432 524442 527253 527258) (-335 "FMCAT.spad" 522108 522126 524400 524427) (-334 "FM1.spad" 521473 521485 522042 522069) (-333 "FM.spad" 521088 521100 521327 521354) (-332 "FLOATRP.spad" 518831 518845 521078 521083) (-331 "FLOATCP.spad" 516270 516284 518821 518826) (-330 "FLOAT.spad" 513361 513369 516136 516265) (-329 "FLINEXP.spad" 513083 513093 513351 513356) (-328 "FLINEXP.spad" 512762 512774 513032 513037) (-327 "FLASORT.spad" 512088 512100 512752 512757) (-326 "FLALG.spad" 509758 509777 512014 512083) (-325 "FLAGG2.spad" 508475 508491 509748 509753) (-324 "FLAGG.spad" 505541 505551 508455 508470) (-323 "FLAGG.spad" 502508 502520 505424 505429) (-322 "FINRALG.spad" 500593 500606 502464 502503) (-321 "FINRALG.spad" 498604 498619 500477 500482) (-320 "FINITE.spad" 497756 497764 498594 498599) (-319 "FINITE.spad" 496906 496916 497746 497751) (-318 "aggcat.spad" 495072 495082 496886 496901) (-317 "FINAGG.spad" 493213 493225 495029 495034) (-316 "FINAALG.spad" 482398 482408 493155 493208) (-315 "FINAALG.spad" 471595 471607 482354 482359) (-314 "FILECAT.spad" 470129 470146 471585 471590) (-313 "FILE.spad" 469712 469722 470119 470124) (-312 "FIELD.spad" 469118 469126 469614 469707) (-311 "FIELD.spad" 468610 468620 469108 469113) (-310 "FGROUP.spad" 467273 467283 468590 468605) (-309 "FGLMICPK.spad" 466068 466083 467263 467268) (-308 "FFX.spad" 465454 465469 465787 465880) (-307 "FFSLPE.spad" 464965 464986 465444 465449) (-306 "FFPOLY2.spad" 464025 464042 464955 464960) (-305 "FFPOLY.spad" 455367 455378 464015 464020) (-304 "FFP.spad" 454775 454795 455086 455179) (-303 "FFNBX.spad" 453298 453318 454494 454587) (-302 "FFNBP.spad" 451822 451839 453017 453110) (-301 "FFNB.spad" 450290 450311 451506 451599) (-300 "FFINTBAS.spad" 447804 447823 450280 450285) (-299 "FFIELDC.spad" 445389 445397 447706 447799) (-298 "FFIELDC.spad" 443060 443070 445379 445384) (-297 "FFHOM.spad" 441832 441849 443050 443055) (-296 "FFF.spad" 439275 439286 441822 441827) (-295 "FFCGX.spad" 438133 438153 438994 439087) (-294 "FFCGP.spad" 437033 437053 437852 437945) (-293 "FFCG.spad" 435828 435849 436717 436810) (-292 "FFCAT2.spad" 435575 435615 435818 435823) (-291 "FFCAT.spad" 428740 428762 435414 435570) (-290 "FFCAT.spad" 421984 422008 428660 428665) (-289 "FF.spad" 421435 421451 421668 421761) (-288 "FEVALAB.spad" 421143 421153 421425 421430) (-287 "FEVALAB.spad" 420627 420639 420911 420916) (-286 "FDIVCAT.spad" 418723 418747 420617 420622) (-285 "FDIVCAT.spad" 416817 416843 418713 418718) (-284 "FDIV2.spad" 416473 416513 416807 416812) (-283 "FDIV.spad" 415931 415955 416463 416468) (-282 "FCTRDATA.spad" 414939 414947 415921 415926) (-281 "FCOMP.spad" 414318 414328 414929 414934) (-280 "FAXF.spad" 407353 407367 414220 414313) (-279 "FAXF.spad" 400440 400456 407309 407314) (-278 "FARRAY.spad" 398632 398642 399665 399692) (-277 "FAMR.spad" 396776 396788 398530 398627) (-276 "FAMR.spad" 394904 394918 396660 396665) (-275 "FAMONOID.spad" 394588 394598 394858 394863) (-274 "FAMONC.spad" 392908 392920 394578 394583) (-273 "FAGROUP.spad" 392548 392558 392804 392831) (-272 "FACUTIL.spad" 390760 390777 392538 392543) (-271 "FACTFUNC.spad" 389962 389972 390750 390755) (-270 "EXPUPXS.spad" 386854 386877 388153 388302) (-269 "EXPRTUBE.spad" 384142 384150 386844 386849) (-268 "EXPRODE.spad" 381310 381326 384132 384137) (-267 "EXPR2UPS.spad" 377432 377445 381300 381305) (-266 "EXPR2.spad" 377137 377149 377422 377427) (-265 "EXPR.spad" 372782 372792 373496 373783) (-264 "EXPEXPAN.spad" 369727 369752 370359 370452) (-263 "EXITAST.spad" 369463 369471 369717 369722) (-262 "EXIT.spad" 369134 369142 369453 369458) (-261 "EVALCYC.spad" 368594 368608 369124 369129) (-260 "EVALAB.spad" 368174 368184 368584 368589) (-259 "EVALAB.spad" 367752 367764 368164 368169) (-258 "EUCDOM.spad" 365342 365350 367678 367747) (-257 "EUCDOM.spad" 362994 363004 365332 365337) (-256 "ES2.spad" 362507 362523 362984 362989) (-255 "ES1.spad" 362077 362093 362497 362502) (-254 "ES.spad" 354948 354956 362067 362072) (-253 "ES.spad" 347740 347750 354861 354866) (-252 "ERROR.spad" 345067 345075 347730 347735) (-251 "EQTBL.spad" 343403 343425 343612 343639) (-250 "EQ2.spad" 343121 343133 343393 343398) (-249 "EQ.spad" 338027 338037 340822 340928) (-248 "EP.spad" 334353 334363 338017 338022) (-247 "ENV.spad" 333031 333039 334343 334348) (-246 "ENTIRER.spad" 332699 332707 332975 333026) (-245 "ENTIRER.spad" 332411 332421 332689 332694) (-244 "EMR.spad" 331699 331740 332337 332406) (-243 "ELTAGG.spad" 329953 329972 331689 331694) (-242 "ELTAGG.spad" 328171 328192 329909 329914) (-241 "ELTAB.spad" 327646 327659 328161 328166) (-240 "ELFUTS.spad" 327081 327100 327636 327641) (-239 "ELEMFUN.spad" 326770 326778 327071 327076) (-238 "ELEMFUN.spad" 326457 326467 326760 326765) (-237 "ELAGG.spad" 324428 324438 326437 326452) (-236 "ELAGG.spad" 322336 322348 324347 324352) (-235 "ELABOR.spad" 321682 321690 322326 322331) (-234 "ELABEXPR.spad" 320614 320622 321672 321677) (-233 "EFUPXS.spad" 317390 317420 320570 320575) (-232 "EFULS.spad" 314226 314249 317346 317351) (-231 "EFSTRUC.spad" 312241 312257 314216 314221) (-230 "EF.spad" 307017 307033 312231 312236) (-229 "EAB.spad" 305317 305325 307007 307012) (-228 "DVARCAT.spad" 302323 302333 305307 305312) (-227 "DVARCAT.spad" 299327 299339 302313 302318) (-226 "DSMP.spad" 297060 297074 297365 297492) (-225 "DSEXT.spad" 296362 296372 297050 297055) (-224 "DSEXT.spad" 295584 295596 296274 296279) (-223 "DROPT1.spad" 295249 295259 295574 295579) (-222 "DROPT0.spad" 290114 290122 295239 295244) (-221 "DROPT.spad" 284073 284081 290104 290109) (-220 "DRAWPT.spad" 282246 282254 284063 284068) (-219 "DRAWHACK.spad" 281554 281564 282236 282241) (-218 "DRAWCX.spad" 279032 279040 281544 281549) (-217 "DRAWCURV.spad" 278579 278594 279022 279027) (-216 "DRAWCFUN.spad" 268111 268119 278569 278574) (-215 "DRAW.spad" 260987 261000 268101 268106) (-214 "DQAGG.spad" 259165 259175 260955 260982) (-213 "DPOLCAT.spad" 254522 254538 259033 259160) (-212 "DPOLCAT.spad" 249965 249983 254478 254483) (-211 "DPMO.spad" 242668 242684 242806 243012) (-210 "DPMM.spad" 235384 235402 235509 235715) (-209 "DOMTMPLT.spad" 235155 235163 235374 235379) (-208 "DOMCTOR.spad" 234910 234918 235145 235150) (-207 "DOMAIN.spad" 234021 234029 234900 234905) (-206 "DMP.spad" 231614 231629 232184 232311) (-205 "DMEXT.spad" 231481 231491 231582 231609) (-204 "DLP.spad" 230841 230851 231471 231476) (-203 "DLIST.spad" 229462 229472 230066 230093) (-202 "DLAGG.spad" 227879 227889 229452 229457) (-201 "DIVRING.spad" 227421 227429 227823 227874) (-200 "DIVRING.spad" 227007 227017 227411 227416) (-199 "DISPLAY.spad" 225197 225205 226997 227002) (-198 "DIRPROD2.spad" 224015 224033 225187 225192) (-197 "DIRPROD.spad" 213385 213401 214025 214122) (-196 "DIRPCAT.spad" 212668 212684 213283 213380) (-195 "DIRPCAT.spad" 211577 211595 212194 212199) (-194 "DIOSP.spad" 210402 210410 211567 211572) (-193 "DIOPS.spad" 209398 209408 210382 210397) (-192 "DIOPS.spad" 208368 208380 209354 209359) (-191 "catdef.spad" 208226 208234 208358 208363) (-190 "DIFRING.spad" 208064 208072 208206 208221) (-189 "DIFFSPC.spad" 207643 207651 208054 208059) (-188 "DIFFSPC.spad" 207220 207230 207633 207638) (-187 "DIFFMOD.spad" 206709 206719 207188 207215) (-186 "DIFFDOM.spad" 205874 205885 206699 206704) (-185 "DIFFDOM.spad" 205037 205050 205864 205869) (-184 "DIFEXT.spad" 204856 204866 205017 205032) (-183 "DIAGG.spad" 204486 204496 204836 204851) (-182 "DIAGG.spad" 204124 204136 204476 204481) (-181 "DHMATRIX.spad" 202501 202511 203646 203673) (-180 "DFSFUN.spad" 196141 196149 202491 202496) (-179 "DFLOAT.spad" 192748 192756 196031 196136) (-178 "DFINTTLS.spad" 190979 190995 192738 192743) (-177 "DERHAM.spad" 188893 188925 190959 190974) (-176 "DEQUEUE.spad" 188282 188292 188565 188592) (-175 "DEGRED.spad" 187899 187913 188272 188277) (-174 "DEFINTRF.spad" 185481 185491 187889 187894) (-173 "DEFINTEF.spad" 184019 184035 185471 185476) (-172 "DEFAST.spad" 183403 183411 184009 184014) (-171 "DECIMAL.spad" 181632 181640 181993 182086) (-170 "DDFACT.spad" 179453 179470 181622 181627) (-169 "DBLRESP.spad" 179053 179077 179443 179448) (-168 "DBASIS.spad" 178679 178694 179043 179048) (-167 "DBASE.spad" 177343 177353 178669 178674) (-166 "DATAARY.spad" 176829 176842 177333 177338) (-165 "CYCLOTOM.spad" 176335 176343 176819 176824) (-164 "CYCLES.spad" 173127 173135 176325 176330) (-163 "CVMP.spad" 172544 172554 173117 173122) (-162 "CTRIGMNP.spad" 171044 171060 172534 172539) (-161 "CTORKIND.spad" 170647 170655 171034 171039) (-160 "CTORCAT.spad" 169888 169896 170637 170642) (-159 "CTORCAT.spad" 169127 169137 169878 169883) (-158 "CTORCALL.spad" 168716 168726 169117 169122) (-157 "CTOR.spad" 168407 168415 168706 168711) (-156 "CSTTOOLS.spad" 167652 167665 168397 168402) (-155 "CRFP.spad" 161424 161437 167642 167647) (-154 "CRCEAST.spad" 161144 161152 161414 161419) (-153 "CRAPACK.spad" 160211 160221 161134 161139) (-152 "CPMATCH.spad" 159712 159727 160133 160138) (-151 "CPIMA.spad" 159417 159436 159702 159707) (-150 "COORDSYS.spad" 154426 154436 159407 159412) (-149 "CONTOUR.spad" 153853 153861 154416 154421) (-148 "CONTFRAC.spad" 149603 149613 153755 153848) (-147 "CONDUIT.spad" 149361 149369 149593 149598) (-146 "COMRING.spad" 149035 149043 149299 149356) (-145 "COMPPROP.spad" 148553 148561 149025 149030) (-144 "COMPLPAT.spad" 148320 148335 148543 148548) (-143 "COMPLEX2.spad" 148035 148047 148310 148315) (-142 "COMPLEX.spad" 143741 143751 143985 144243) (-141 "COMPILER.spad" 143290 143298 143731 143736) (-140 "COMPFACT.spad" 142892 142906 143280 143285) (-139 "COMPCAT.spad" 140967 140977 142629 142887) (-138 "COMPCAT.spad" 138783 138795 140447 140452) (-137 "COMMUPC.spad" 138531 138549 138773 138778) (-136 "COMMONOP.spad" 138064 138072 138521 138526) (-135 "COMMAAST.spad" 137827 137835 138054 138059) (-134 "COMM.spad" 137638 137646 137817 137822) (-133 "COMBOPC.spad" 136561 136569 137628 137633) (-132 "COMBINAT.spad" 135328 135338 136551 136556) (-131 "COMBF.spad" 132750 132766 135318 135323) (-130 "COLOR.spad" 131587 131595 132740 132745) (-129 "COLONAST.spad" 131253 131261 131577 131582) (-128 "CMPLXRT.spad" 130964 130981 131243 131248) (-127 "CLLCTAST.spad" 130626 130634 130954 130959) (-126 "CLIP.spad" 126734 126742 130616 130621) (-125 "CLIF.spad" 125389 125405 126690 126729) (-124 "CLAGG.spad" 121926 121936 125379 125384) (-123 "CLAGG.spad" 118347 118359 121802 121807) (-122 "CINTSLPE.spad" 117702 117715 118337 118342) (-121 "CHVAR.spad" 115840 115862 117692 117697) (-120 "CHARZ.spad" 115755 115763 115820 115835) (-119 "CHARPOL.spad" 115281 115291 115745 115750) (-118 "CHARNZ.spad" 115043 115051 115261 115276) (-117 "CHAR.spad" 112411 112419 115033 115038) (-116 "CFCAT.spad" 111739 111747 112401 112406) (-115 "CDEN.spad" 110959 110973 111729 111734) (-114 "CCLASS.spad" 109139 109147 110401 110440) (-113 "CATEGORY.spad" 108213 108221 109129 109134) (-112 "CATCTOR.spad" 108104 108112 108203 108208) (-111 "CATAST.spad" 107730 107738 108094 108099) (-110 "CASEAST.spad" 107444 107452 107720 107725) (-109 "CARTEN2.spad" 106834 106861 107434 107439) (-108 "CARTEN.spad" 102586 102610 106824 106829) (-107 "CARD.spad" 99881 99889 102560 102581) (-106 "CAPSLAST.spad" 99663 99671 99871 99876) (-105 "CACHSET.spad" 99287 99295 99653 99658) (-104 "CABMON.spad" 98842 98850 99277 99282) (-103 "BYTEORD.spad" 98517 98525 98832 98837) (-102 "BYTEBUF.spad" 96564 96572 97770 97797) (-101 "BYTE.spad" 96039 96047 96554 96559) (-100 "BTREE.spad" 95177 95187 95711 95738) (-99 "BTOURN.spad" 94248 94257 94849 94876) (-98 "BTCAT.spad" 93727 93736 94216 94243) (-97 "BTCAT.spad" 93226 93237 93717 93722) (-96 "BTAGG.spad" 92693 92700 93194 93221) (-95 "BTAGG.spad" 92180 92189 92683 92688) (-94 "BSTREE.spad" 90987 90996 91852 91879) (-93 "BRILL.spad" 89193 89203 90977 90982) (-92 "BRAGG.spad" 88150 88159 89183 89188) (-91 "BRAGG.spad" 87071 87082 88106 88111) (-90 "BPADICRT.spad" 85131 85142 85377 85470) (-89 "BPADIC.spad" 84804 84815 85057 85126) (-88 "BOUNDZRO.spad" 84461 84477 84794 84799) (-87 "BOP1.spad" 81920 81929 84451 84456) (-86 "BOP.spad" 77063 77070 81910 81915) (-85 "BOOLEAN.spad" 76612 76619 77053 77058) (-84 "BOOLE.spad" 76263 76270 76602 76607) (-83 "BOOLE.spad" 75912 75921 76253 76258) (-82 "BMODULE.spad" 75625 75636 75880 75907) (-81 "BITS.spad" 75057 75064 75271 75298) (-80 "catdef.spad" 74940 74950 75047 75052) (-79 "catdef.spad" 74691 74701 74930 74935) (-78 "BINDING.spad" 74113 74120 74681 74686) (-77 "BINARY.spad" 72348 72355 72703 72796) (-76 "BGAGG.spad" 71554 71563 72328 72343) (-75 "BGAGG.spad" 70768 70779 71544 71549) (-74 "BEZOUT.spad" 69909 69935 70718 70723) (-73 "BBTREE.spad" 66852 66861 69581 69608) (-72 "BASTYPE.spad" 66352 66359 66842 66847) (-71 "BASTYPE.spad" 65850 65859 66342 66347) (-70 "BALFACT.spad" 65310 65322 65840 65845) (-69 "AUTOMOR.spad" 64761 64770 65290 65305) (-68 "ATTREG.spad" 61484 61491 64513 64756) (-67 "ATTRAST.spad" 61201 61208 61474 61479) (-66 "ATRIG.spad" 60671 60678 61191 61196) (-65 "ATRIG.spad" 60139 60148 60661 60666) (-64 "ASTCAT.spad" 60043 60050 60129 60134) (-63 "ASTCAT.spad" 59945 59954 60033 60038) (-62 "ASTACK.spad" 59349 59358 59617 59644) (-61 "ASSOCEQ.spad" 58183 58194 59305 59310) (-60 "ARRAY2.spad" 57706 57715 57855 57882) (-59 "ARRAY12.spad" 56419 56430 57696 57701) (-58 "ARRAY1.spad" 55298 55307 55644 55671) (-57 "ARR2CAT.spad" 51264 51285 55266 55293) (-56 "ARR2CAT.spad" 47250 47273 51254 51259) (-55 "ARITY.spad" 46622 46629 47240 47245) (-54 "APPRULE.spad" 45906 45928 46612 46617) (-53 "APPLYORE.spad" 45525 45538 45896 45901) (-52 "ANY1.spad" 44596 44605 45515 45520) (-51 "ANY.spad" 43447 43454 44586 44591) (-50 "ANTISYM.spad" 41892 41908 43427 43442) (-49 "ANON.spad" 41601 41608 41882 41887) (-48 "AN.spad" 40069 40076 41432 41525) (-47 "AMR.spad" 38254 38265 39967 40064) (-46 "AMR.spad" 36302 36315 38017 38022) (-45 "ALIST.spad" 33540 33561 33890 33917) (-44 "ALGSC.spad" 32675 32701 33412 33465) (-43 "ALGPKG.spad" 28458 28469 32631 32636) (-42 "ALGMFACT.spad" 27651 27665 28448 28453) (-41 "ALGMANIP.spad" 25152 25167 27495 27500) (-40 "ALGFF.spad" 22970 22997 23187 23343) (-39 "ALGFACT.spad" 22089 22099 22960 22965) (-38 "ALGEBRA.spad" 21922 21931 22045 22084) (-37 "ALGEBRA.spad" 21787 21798 21912 21917) (-36 "ALAGG.spad" 21303 21324 21755 21782) (-35 "AHYP.spad" 20684 20691 21293 21298) (-34 "AGG.spad" 19393 19400 20674 20679) (-33 "AGG.spad" 18066 18075 19349 19354) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 1a81e504..b5b08afa 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,289 +1,289 @@
-(199787 . 3577755914)
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-349 |#2|) |#3|) . T))
-((((-349 (-484))) |has| (-349 |#2|) (-950 (-349 (-484)))) (((-484)) |has| (-349 |#2|) (-950 (-484))) (((-349 |#2|)) . T))
-((((-349 |#2|)) . T))
-((((-484)) |has| (-349 |#2|) (-580 (-484))) (((-349 |#2|)) . T))
-((((-349 |#2|)) . T))
-((((-349 |#2|) |#3|) . T))
-(|has| (-349 |#2|) (-120))
-((((-349 |#2|) |#3|) . T))
-(|has| (-349 |#2|) (-118))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-(|has| (-349 |#2|) (-190))
-((($) OR (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-189))))
-(OR (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-189)))
-((((-349 |#2|)) . T))
-((($ (-1089)) OR (|has| (-349 |#2|) (-809 (-1089))) (|has| (-349 |#2|) (-811 (-1089)))))
-((((-1089)) OR (|has| (-349 |#2|) (-809 (-1089))) (|has| (-349 |#2|) (-811 (-1089)))))
-((((-1089)) |has| (-349 |#2|) (-809 (-1089))))
-((((-349 |#2|)) . T))
+(199787 . 3577772105)
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-350 |#2|) |#3|) . T))
+((((-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) (((-485)) |has| (-350 |#2|) (-951 (-485))) (((-350 |#2|)) . T))
+((((-350 |#2|)) . T))
+((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T))
+((((-350 |#2|)) . T))
+((((-350 |#2|) |#3|) . T))
+(|has| (-350 |#2|) (-120))
+((((-350 |#2|) |#3|) . T))
+(|has| (-350 |#2|) (-118))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+(|has| (-350 |#2|) (-190))
+((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))))
+(OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))
+((((-350 |#2|)) . T))
+((($ (-1090)) OR (|has| (-350 |#2|) (-810 (-1090))) (|has| (-350 |#2|) (-812 (-1090)))))
+((((-1090)) OR (|has| (-350 |#2|) (-810 (-1090))) (|has| (-350 |#2|) (-812 (-1090)))))
+((((-1090)) |has| (-350 |#2|) (-810 (-1090))))
+((((-350 |#2|)) . T))
(((|#3|) . T))
-((((-349 |#2|) (-349 |#2|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-484)) |has| (-349 |#2|) (-580 (-484))) (((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(((|#1| |#2| |#3|) . T))
-((((-484) |#1|) . T))
+((((-485) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1055 |#2| |#1|)) . T) ((|#1|) . T))
-((((-772)) . T))
-((((-1055 |#2| |#1|)) . T) ((|#1|) . T) (((-484)) . T))
+((((-1056 |#2| |#1|)) . T) ((|#1|) . T))
+((((-773)) . T))
+((((-1056 |#2| |#1|)) . T) ((|#1|) . T) (((-485)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-772)) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-773)) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) (((-1145 (-484)) $) . T) ((|#1| |#2|) . T))
-((((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) (((-1146 (-485)) $) . T) ((|#1| |#2|) . T))
+((((-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
((($) . T))
-((((-142 (-329))) . T) (((-179)) . T) (((-329)) . T))
-((((-349 (-484))) . T) (((-484)) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((($) . T))
-((($ $) . T) (((-550 $) $) . T))
-((((-349 (-484))) . T) (((-484)) . T) (((-550 $)) . T))
-((((-1038 (-484) (-550 $))) . T) (($) . T) (((-484)) . T) (((-349 (-484))) . T) (((-550 $)) . T))
-((((-772)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-484)) . T) (($) . T))
+((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T))
+((((-350 (-485))) . T) (((-485)) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-551 $) $) . T))
+((((-350 (-485))) . T) (((-485)) . T) (((-551 $)) . T))
+((((-1039 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T) (((-551 $)) . T))
+((((-773)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-485)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-484)) . T))
+(((|#1|) . T) (((-485)) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-694)) . T))
-((((-694)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-695)) . T))
+((((-695)) . T))
+((((-773)) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-((((-484) |#1|) . T))
-((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
-((((-484) |#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+((((-485) |#1|) . T))
+((((-1146 (-485)) $) . T) (((-485) |#1|) . T))
+((((-485) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
(((|#1|) . T))
(((|#1| (-58 |#1|) (-58 |#1|)) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1| |#1|) . T))
-((((-772)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-917 2)) . T) (((-349 (-484))) . T) (((-772)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((($) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-((((-484) (-484)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-473)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T))
-((((-349 (-484))) . T) (((-484)) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1014))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-918 2)) . T) (((-350 (-485))) . T) (((-773)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((($) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
+((((-350 (-485))) . T) (((-485)) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
((((-85)) . T))
((((-85)) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-484) (-85)) . T))
-((((-484) (-85)) . T))
-((((-484) (-85)) . T) (((-1145 (-484)) $) . T))
-((((-473)) . T))
+((((-485) (-85)) . T))
+((((-485) (-85)) . T))
+((((-485) (-85)) . T) (((-1146 (-485)) $) . T))
+((((-474)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-473)) . T))
-((((-772)) . T))
-((((-1089)) . T))
-((((-772)) . T))
+((((-474)) . T))
+((((-773)) . T))
+((((-1090)) . T))
+((((-773)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-484)) . T) (($) . T))
+((((-485)) . T) (($) . T))
(((|#1|) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
-((((-89 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-89 |#1|)) . T) (((-349 (-484))) . T))
-((((-89 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-89 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-89 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-89 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-89 |#1|) (-89 |#1|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
+((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-89 |#1|)) . T) (((-350 (-485))) . T))
+((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-89 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-89 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-89 |#1|) (-89 |#1|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
((((-89 |#1|)) . T))
-((((-1089) (-89 |#1|)) |has| (-89 |#1|) (-455 (-1089) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|))))
+((((-1090) (-89 |#1|)) |has| (-89 |#1|) (-456 (-1090) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|))))
((((-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|))))
((((-89 |#1|) $) |has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))))
((((-89 |#1|)) . T))
-((($) . T) (((-89 |#1|)) . T) (((-349 (-484))) . T))
+((($) . T) (((-89 |#1|)) . T) (((-350 (-485))) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
-((((-484)) . T) (((-89 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
+((((-485)) . T) (((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(|has| |#1| (-1014))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(|has| |#1| (-1014))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(|has| |#1| (-1014))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-101)) . T))
((((-101)) . T))
-((((-484) (-101)) . T))
-((((-1145 (-484)) $) . T) (((-484) (-101)) . T))
-((((-484) (-101)) . T))
+((((-485) (-101)) . T))
+((((-1146 (-485)) $) . T) (((-485) (-101)) . T))
+((((-485) (-101)) . T))
((((-101)) . T))
((((-101)) . T))
-((((-1072)) . T) (((-869 (-101))) . T) (((-772)) . T))
+((((-1073)) . T) (((-870 (-101))) . T) (((-773)) . T))
((((-101)) . T))
((((-101)) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-694)) . T))
-((((-694)) . T))
-((((-772)) . T))
-((((-484) |#3|) . T))
-((((-484) (-694)) . T) ((|#3| (-694)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-695)) . T))
+((((-695)) . T))
+((((-773)) . T))
+((((-485) |#3|) . T))
+((((-485) (-695)) . T) ((|#3| (-695)) . T))
+((((-773)) . T))
(((|#3|) . T))
-((((-583 $)) . T) (((-583 |#3|)) . T) (((-1055 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T))
-(((|#3| (-694)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-446)) . T))
-((((-157)) . T) (((-772)) . T))
-((((-772)) . T))
+((((-584 $)) . T) (((-584 |#3|)) . T) (((-1056 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T))
+(((|#3| (-695)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-447)) . T))
+((((-157)) . T) (((-773)) . T))
+((((-773)) . T))
((((-117)) . T))
((((-117)) . T))
((((-117)) . T))
@@ -292,9 +292,9 @@
((((-117)) . T))
((((-117)) . T))
((((-117)) . T))
-((((-583 (-117))) . T) (((-1072)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-584 (-117))) . T) (((-1073)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -302,1353 +302,1353 @@
(((|#2|) . T))
(((|#2| |#2|) . T))
(((|#2|) . T))
-(((|#2|) . T) (((-484)) . T))
+(((|#2|) . T) (((-485)) . T))
(((|#2|) . T) (($) . T))
-((((-772)) . T))
-(((|#2|) . T) (($) . T) (((-484)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
+((((-773)) . T))
+(((|#2|) . T) (($) . T) (((-485)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-299)))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-120))
(((|#1|) . T))
-((((-1089)) |has| |#1| (-809 (-1089))))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))))
+((((-1090)) |has| |#1| (-810 (-1090))))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299))))
(OR (|has| |#1| (-190)) (|has| |#1| (-299)))
(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)))
(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)))
-(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495)))
-(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496)))
(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)))
(OR (|has| |#1| (-312)) (|has| |#1| (-299)))
-(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312)) (|has| |#1| (-299)))
+(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312)) (|has| |#1| (-299)))
(OR (|has| |#1| (-312)) (|has| |#1| (-299)))
(((|#1|) . T))
-((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
+((((-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
(((|#1|) |has| |#1| (-260 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
(((|#1|) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
-(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
-(((|#1|) . T))
-((((-484)) |has| |#1| (-796 (-484))) (((-329)) |has| |#1| (-796 (-329))))
-(((|#1|) . T))
-((((-484)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-950 (-349 (-484))))) ((|#1|) . T))
-(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
-(((|#1| (-1084 |#1|)) . T))
-(((|#1| (-1084 |#1|)) . T))
-((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($ $) . T) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-(((|#1| (-1084 |#1|)) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+(((|#1|) . T))
+((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330))))
+(((|#1|) . T))
+((((-485)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T))
+(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+(((|#1| (-1085 |#1|)) . T))
+(((|#1| (-1085 |#1|)) . T))
+((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($ $) . T) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+(((|#1| (-1085 |#1|)) . T))
(|has| |#1| (-299))
(|has| |#1| (-299))
(|has| |#1| (-299))
-(OR (|has| |#1| (-319)) (|has| |#1| (-299)))
-(((|#1|) . T))
-((((-142 (-179))) |has| |#1| (-933)) (((-142 (-329))) |has| |#1| (-933)) (((-473)) |has| |#1| (-553 (-473))) (((-1084 |#1|)) . T) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329)))))
-(-12 (|has| |#1| (-258)) (|has| |#1| (-821)))
-(-12 (|has| |#1| (-915)) (|has| |#1| (-1114)))
-(|has| |#1| (-1114))
-(|has| |#1| (-1114))
-(|has| |#1| (-1114))
-(|has| |#1| (-1114))
-(|has| |#1| (-1114))
-(|has| |#1| (-1114))
-(((|#1|) . T))
-((((-772)) . T))
-((((-349 (-484))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((((-349 (-484))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-349 (-484))) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((($) . T) (((-349 (-484))) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((($ $) . T) (((-349 (-484)) (-349 (-484))) . T) (((-349 |#1|) (-349 |#1|)) . T) ((|#1| |#1|) . T))
-((((-349 (-484))) . T) (((-349 |#1|)) . T) ((|#1|) . T) (((-484)) . T) (($) . T))
-((((-349 (-484))) . T) (((-349 |#1|)) . T) ((|#1|) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T) (((-484)) . T))
-((((-349 (-484))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-446)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-583 |#1|)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-917 10)) . T) (((-349 (-484))) . T) (((-772)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((($) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-((((-484) (-484)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-473)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T))
-((((-349 (-484))) . T) (((-484)) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(OR (|has| |#1| (-320)) (|has| |#1| (-299)))
+(((|#1|) . T))
+((((-142 (-179))) |has| |#1| (-934)) (((-142 (-330))) |has| |#1| (-934)) (((-474)) |has| |#1| (-554 (-474))) (((-1085 |#1|)) . T) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))))
+(-12 (|has| |#1| (-258)) (|has| |#1| (-822)))
+(-12 (|has| |#1| (-916)) (|has| |#1| (-1115)))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(((|#1|) . T))
+((((-773)) . T))
+((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((($) . T) (((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) (((-350 (-485)) (-350 (-485))) . T) (((-350 |#1|) (-350 |#1|)) . T) ((|#1| |#1|) . T))
+((((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-485)) . T) (($) . T))
+((((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-485)) . T))
+((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-447)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-584 |#1|)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-918 10)) . T) (((-350 (-485))) . T) (((-773)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((($) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
+((((-350 (-485))) . T) (((-485)) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1014))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-265 |#1|)) . T))
-((((-772)) . T))
-((((-265 |#1|)) . T) (((-484)) . T) (($) . T))
+((((-773)) . T))
+((((-265 |#1|)) . T) (((-485)) . T) (($) . T))
((((-265 |#1|)) . T) (($) . T))
-((((-265 |#1|)) . T) (((-484)) . T))
+((((-265 |#1|)) . T) (((-485)) . T))
((((-265 |#1|)) . T))
((($) . T))
-((((-484)) . T) (((-349 (-484))) . T))
-((((-329)) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-473)) . T) (((-179)) . T) (((-329)) . T) (((-800 (-329))) . T))
-((((-772)) . T))
-((((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T) (((-484)) . T))
-(((|#1| (-1178 |#1|) (-1178 |#1|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-(((|#1|) . T))
-(((|#1| (-1178 |#1|) (-1178 |#1|)) . T))
-(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
-((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T))
-(((|#2|) |has| |#2| (-961)))
-((((-1089)) -12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))))
-((((-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961)))))
-((($ (-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961)))))
-(((|#2|) |has| |#2| (-961)))
-(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))
-((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961)))
-(-12 (|has| |#2| (-190)) (|has| |#2| (-961)))
-(|has| |#2| (-319))
-(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-(((|#2|) . T))
-(((|#2|) |has| |#2| (-961)))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-1013)))
-((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))))
-(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))))
-((((-484) |#2|) . T))
-((((-484) |#2|) . T))
-((((-484) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663))))
+((((-485)) . T) (((-350 (-485))) . T))
+((((-330)) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-474)) . T) (((-179)) . T) (((-330)) . T) (((-801 (-330))) . T))
+((((-773)) . T))
+((((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T) (((-485)) . T))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1014))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(((|#1|) . T))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
+((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1179 |#2|)) . T))
+(((|#2|) |has| |#2| (-962)))
+((((-1090)) -12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))))
+((((-1090)) OR (-12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962)))))
+((($ (-1090)) OR (-12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962)))))
+(((|#2|) |has| |#2| (-962)))
+(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))
+((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
+(-12 (|has| |#2| (-190)) (|has| |#2| (-962)))
+(|has| |#2| (-320))
+(((|#2|) . T))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-962)))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-1014)))
+((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
+(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
+((((-485) |#2|) . T))
+((((-485) |#2|) . T))
+((((-485) |#2|) . T))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664))))
(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312))))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
(((|#2|) |has| |#2| (-312)))
(((|#1| |#2|) . T))
-((((-583 |#1|)) . T))
-((((-583 |#1|)) . T))
+((((-584 |#1|)) . T))
+((((-584 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
-((((-583 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+((((-584 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-((((-484) |#1|) . T))
-((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
-((((-484) |#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+((((-485) |#1|) . T))
+((((-1146 (-485)) $) . T) (((-485) |#1|) . T))
+((((-485) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-473)) |has| |#2| (-553 (-473))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))))
+((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
((($) . T))
-(((|#2| (-197 (-3956 |#1|) (-694))) . T))
+(((|#2| (-197 (-3957 |#1|) (-695))) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-(((|#2| (-197 (-3956 |#1|) (-694))) . T))
-(((|#2|) . T))
-((($) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(OR (|has| |#2| (-391)) (|has| |#2| (-821)))
-((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
-((((-773 |#1|)) . T))
-((($ (-773 |#1|)) . T))
-((((-773 |#1|)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-349 (-484))) |has| |#2| (-950 (-349 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T))
-((((-484)) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
-(((|#2| (-197 (-3956 |#1|) (-694)) (-773 |#1|)) . T))
-((((-772)) . T))
-((((-446)) . T))
-((((-157)) . T) (((-772)) . T))
-((((-694) (-1094)) . T))
-((((-772)) . T))
-(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961))))
-(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)) (|has| |#4| (-961))))
-(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961))))
-((((-772)) . T) (((-1178 |#4|)) . T))
-(((|#4|) |has| |#4| (-961)))
-((((-1089)) -12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))))
-((((-1089)) OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))))
-((($ (-1089)) OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))))
-(((|#4|) |has| |#4| (-961)))
-(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961))))
-((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))))
-(|has| |#4| (-961))
-(|has| |#4| (-961))
-(|has| |#4| (-961))
-(|has| |#4| (-961))
-(|has| |#4| (-961))
-(((|#3|) . T) ((|#2|) . T) (((-484)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)) (|has| |#4| (-961))) (($) |has| |#4| (-961)))
-(-12 (|has| |#4| (-190)) (|has| |#4| (-961)))
-(|has| |#4| (-319))
+(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+(((|#2| (-197 (-3957 |#1|) (-695))) . T))
+(((|#2|) . T))
+((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
+((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
+((((-774 |#1|)) . T))
+((($ (-774 |#1|)) . T))
+((((-774 |#1|)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
+((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
+(((|#2| (-197 (-3957 |#1|) (-695)) (-774 |#1|)) . T))
+((((-773)) . T))
+((((-447)) . T))
+((((-157)) . T) (((-773)) . T))
+((((-695) (-1095)) . T))
+((((-773)) . T))
+(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962))))
+(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)) (|has| |#4| (-962))))
+(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962))))
+((((-773)) . T) (((-1179 |#4|)) . T))
+(((|#4|) |has| |#4| (-962)))
+((((-1090)) -12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))))
+((((-1090)) OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))))
+((($ (-1090)) OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))))
+(((|#4|) |has| |#4| (-962)))
+(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962))))
+((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))))
+(|has| |#4| (-962))
+(|has| |#4| (-962))
+(|has| |#4| (-962))
+(|has| |#4| (-962))
+(|has| |#4| (-962))
+(((|#3|) . T) ((|#2|) . T) (((-485)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)) (|has| |#4| (-962))) (($) |has| |#4| (-962)))
+(-12 (|has| |#4| (-190)) (|has| |#4| (-962)))
+(|has| |#4| (-320))
(((|#4|) . T))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
(((|#4|) . T))
-(((|#4|) |has| |#4| (-961)))
-(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961))) (($) |has| |#4| (-961)) (((-484)) -12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))))
-(((|#4|) |has| |#4| (-961)) (((-484)) -12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))))
-(((|#4|) |has| |#4| (-1013)))
-((((-484)) OR (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-961))) ((|#4|) |has| |#4| (-1013)) (((-349 (-484))) -12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013))))
-(((|#4|) |has| |#4| (-1013)) (((-484)) -12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (((-349 (-484))) -12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013))))
-((((-484) |#4|) . T))
-((((-484) |#4|) . T))
-((((-484) |#4|) . T))
-(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663))))
+(((|#4|) |has| |#4| (-962)))
+(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962))) (($) |has| |#4| (-962)) (((-485)) -12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))))
+(((|#4|) |has| |#4| (-962)) (((-485)) -12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))))
+(((|#4|) |has| |#4| (-1014)))
+((((-485)) OR (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ((|#4|) |has| |#4| (-1014)) (((-350 (-485))) -12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))))
+(((|#4|) |has| |#4| (-1014)) (((-485)) -12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (((-350 (-485))) -12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))))
+((((-485) |#4|) . T))
+((((-485) |#4|) . T))
+((((-485) |#4|) . T))
+(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664))))
(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312))))
-(|has| |#4| (-717))
-(|has| |#4| (-717))
-(OR (|has| |#4| (-717)) (|has| |#4| (-756)))
-(OR (|has| |#4| (-717)) (|has| |#4| (-756)))
-(|has| |#4| (-717))
-(|has| |#4| (-717))
+(|has| |#4| (-718))
+(|has| |#4| (-718))
+(OR (|has| |#4| (-718)) (|has| |#4| (-757)))
+(OR (|has| |#4| (-718)) (|has| |#4| (-757)))
+(|has| |#4| (-718))
+(|has| |#4| (-718))
(((|#4|) |has| |#4| (-312)))
(((|#1| |#4|) . T))
-(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))))
-((((-772)) . T) (((-1178 |#3|)) . T))
-(((|#3|) |has| |#3| (-961)))
-((((-1089)) -12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))))
-((((-1089)) OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))))
-((($ (-1089)) OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))))
-(((|#3|) |has| |#3| (-961)))
-(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))
-((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(((|#2|) . T) (((-484)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961)))
-(-12 (|has| |#3| (-190)) (|has| |#3| (-961)))
-(|has| |#3| (-319))
+(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))))
+((((-773)) . T) (((-1179 |#3|)) . T))
+(((|#3|) |has| |#3| (-962)))
+((((-1090)) -12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))))
+((((-1090)) OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))))
+((($ (-1090)) OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))))
+(((|#3|) |has| |#3| (-962)))
+(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))
+((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(((|#2|) . T) (((-485)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962)))
+(-12 (|has| |#3| (-190)) (|has| |#3| (-962)))
+(|has| |#3| (-320))
(((|#3|) . T))
-(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
-(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
+(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
+(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
(((|#3|) . T))
-(((|#3|) |has| |#3| (-961)))
-(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))))
-(((|#3|) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))))
-(((|#3|) |has| |#3| (-1013)))
-((((-484)) OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1013)) (((-349 (-484))) -12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))))
-(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (((-349 (-484))) -12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))))
-((((-484) |#3|) . T))
-((((-484) |#3|) . T))
-((((-484) |#3|) . T))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663))))
+(((|#3|) |has| |#3| (-962)))
+(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
+(((|#3|) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
+(((|#3|) |has| |#3| (-1014)))
+((((-485)) OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))))
+(((|#3|) |has| |#3| (-1014)) (((-485)) -12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))))
+((((-485) |#3|) . T))
+((((-485) |#3|) . T))
+((((-485) |#3|) . T))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312))))
-(|has| |#3| (-717))
-(|has| |#3| (-717))
-(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
-(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
-(|has| |#3| (-717))
-(|has| |#3| (-717))
+(|has| |#3| (-718))
+(|has| |#3| (-718))
+(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
+(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
+(|has| |#3| (-718))
+(|has| |#3| (-718))
(((|#3|) |has| |#3| (-312)))
(((|#1| |#3|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-190))
((($) . T))
-(((|#1| (-469 |#3|) |#3|) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) (((-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329)))))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) ((|#3|) . T))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ |#3|) . T))
-((((-1089)) |has| |#1| (-809 (-1089))) ((|#3|) . T))
+(((|#1| (-470 |#3|) |#3|) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) (((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) ((|#3|) . T))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (($ |#3|) . T))
+((((-1090)) |has| |#1| (-810 (-1090))) ((|#3|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(OR (|has| |#1| (-391)) (|has| |#1| (-821)))
-((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
+((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-469 |#3|)) . T))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(((|#1| (-470 |#3|)) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T))
-(((|#1| (-469 |#3|)) . T))
-((((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) (((-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) (((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))))
-((((-1038 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#2|) . T))
-((((-1038 |#1| |#2|)) . T) (((-484)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ((|#2|) . T))
-(((|#1| |#2| |#3| (-469 |#3|)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T))
+(((|#1| (-470 |#3|)) . T))
+((((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) (((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))))
+((((-1039 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#2|) . T))
+((((-1039 |#1| |#2|)) . T) (((-485)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#2|) . T))
+(((|#1| |#2| |#3| (-470 |#3|)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#2| |#2|) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T))
((($) . T))
((($) . T))
((($ $) . T))
-((($) . T) (((-484)) . T))
+((($) . T) (((-485)) . T))
((($) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) |has| |#1| (-312)))
-((((-1089)) |has| |#1| (-809 (-1089))))
-((($ (-1089)) |has| |#1| (-809 (-1089))))
-((((-1089)) |has| |#1| (-809 (-1089))))
+((((-1090)) |has| |#1| (-810 (-1090))))
+((($ (-1090)) |has| |#1| (-810 (-1090))))
+((((-1090)) |has| |#1| (-810 (-1090))))
(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312))))
(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312))))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))))
-(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))))
-((((-484)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))))
-(OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))
-(|has| |#1| (-412))
-(OR (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)) (|has| |#1| (-1025)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
-((((-85)) |has| |#1| (-1013)) (((-772)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
-((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-772)) . T))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))))
+(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))))
+((((-485)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-962))))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-962))))
+(OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)))
+(|has| |#1| (-413))
+(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)) (|has| |#1| (-1026)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-962))) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))
+((((-85)) |has| |#1| (-1014)) (((-773)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1090))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))
+((((-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T))
-(|has| (-1165 |#1| |#2| |#3| |#4|) (-118))
-(|has| (-1165 |#1| |#2| |#3| |#4|) (-120))
-((((-1165 |#1| |#2| |#3| |#4|)) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484))) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T))
-((((-1089) (-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-455 (-1089) (-1165 |#1| |#2| |#3| |#4|))) (((-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))))
-((((-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))))
-((((-1165 |#1| |#2| |#3| |#4|) $) |has| (-1165 |#1| |#2| |#3| |#4|) (-241 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))))
-((((-1165 |#1| |#2| |#3| |#4|)) . T))
-((($) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484))) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T))
-((((-1159 |#2| |#3| |#4|)) . T) (((-484)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-1159 |#2| |#3| |#4|)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T))
-((((-1165 |#1| |#2| |#3| |#4|)) . T))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(((|#1|) |has| |#1| (-495)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
-((((-772)) . T))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-412)) (|has| |#1| (-495)) (|has| |#1| (-961)) (|has| |#1| (-1025)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-412)) (|has| |#1| (-495)) (|has| |#1| (-961)) (|has| |#1| (-1025)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T))
+(|has| (-1166 |#1| |#2| |#3| |#4|) (-118))
+(|has| (-1166 |#1| |#2| |#3| |#4|) (-120))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1090) (-1166 |#1| |#2| |#3| |#4|)) |has| (-1166 |#1| |#2| |#3| |#4|) (-456 (-1090) (-1166 |#1| |#2| |#3| |#4|))) (((-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) |has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))))
+((((-1166 |#1| |#2| |#3| |#4|)) |has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))))
+((((-1166 |#1| |#2| |#3| |#4|) $) |has| (-1166 |#1| |#2| |#3| |#4|) (-241 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((($) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1160 |#2| |#3| |#4|)) . T) (((-485)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-1160 |#2| |#3| |#4|)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(((|#1|) |has| |#1| (-496)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
+((((-773)) . T))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
(|has| |#1| (-118))
(|has| |#1| (-120))
-((((-550 $) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-349 (-484))) |has| |#1| (-495)))
-((((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-349 (-484))) |has| |#1| (-495)))
-(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-349 (-484))) |has| |#1| (-495)))
-(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-349 (-484))) |has| |#1| (-495)))
-(|has| |#1| (-495))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495)))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495)))
-(((|#1| |#1|) |has| |#1| (-146)) (((-349 (-484)) (-349 (-484))) |has| |#1| (-495)) (($ $) |has| |#1| (-495)))
-(|has| |#1| (-495))
-(((|#1|) |has| |#1| (-961)))
-((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-349 (-484))) |has| |#1| (-495)) (((-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))))
-(((|#1|) |has| |#1| (-961)) (((-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))))
-(((|#1|) . T))
-((((-484)) |has| |#1| (-796 (-484))) (((-329)) |has| |#1| (-796 (-329))))
-(((|#1|) . T))
-(|has| |#1| (-412))
-((((-1089)) |has| |#1| (-961)))
-((($ (-1089)) |has| |#1| (-961)))
-((((-1089)) |has| |#1| (-961)))
-(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329)))))
-((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (((-550 $)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-349 (-857 |#1|))) |has| |#1| (-495)) (((-857 |#1|)) |has| |#1| (-961)) (((-1089)) . T))
-((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (((-484)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-950 (-484))) (|has| |#1| (-961))) ((|#1|) . T) (((-550 $)) . T) (($) |has| |#1| (-495)) (((-349 (-484))) OR (|has| |#1| (-495)) (|has| |#1| (-950 (-349 (-484))))) (((-349 (-857 |#1|))) |has| |#1| (-495)) (((-857 |#1|)) |has| |#1| (-961)) (((-1089)) . T))
+((((-551 $) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496)))
+((((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-350 (-485))) |has| |#1| (-496)))
+(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496)))
+(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496)))
+(|has| |#1| (-496))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496)))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496)))
+(((|#1| |#1|) |has| |#1| (-146)) (((-350 (-485)) (-350 (-485))) |has| |#1| (-496)) (($ $) |has| |#1| (-496)))
+(|has| |#1| (-496))
+(((|#1|) |has| |#1| (-962)))
+((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-350 (-485))) |has| |#1| (-496)) (((-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))))
+(((|#1|) |has| |#1| (-962)) (((-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))))
+(((|#1|) . T))
+((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330))))
+(((|#1|) . T))
+(|has| |#1| (-413))
+((((-1090)) |has| |#1| (-962)))
+((($ (-1090)) |has| |#1| (-962)))
+((((-1090)) |has| |#1| (-962)))
+(((|#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))))
+((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-551 $)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-350 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1090)) . T))
+((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-485)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ((|#1|) . T) (((-551 $)) . T) (($) |has| |#1| (-496)) (((-350 (-485))) OR (|has| |#1| (-496)) (|has| |#1| (-951 (-350 (-485))))) (((-350 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1090)) . T))
(((|#1|) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-((((-772)) . T))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+((((-773)) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(((|#1| (-349 (-484))) . T))
-(((|#1| (-349 (-484))) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-350 (-485))) . T))
+(((|#1| (-350 (-485))) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T))
-((((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-349 (-484)) (-994)) . T))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((((-349 (-484)) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-484)) . T))
-((((-484) (-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-772)) . T))
-((((-484)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-694)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-((((-484) |#1|) . T))
-((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
-((((-484) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-484)) . T))
-((((-772)) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T))
+((((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-350 (-485)) (-995)) . T))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((($ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((((-350 (-485)) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+(((|#1|) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-485)) . T))
+((((-485) (-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-773)) . T))
+((((-485)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-695)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+((((-485) |#1|) . T))
+((((-1146 (-485)) $) . T) (((-485) |#1|) . T))
+((((-485) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-485)) . T))
+((((-773)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| $ (-120))
((($) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| $ (-120))
((($) . T))
-((((-817 |#1|)) . T))
+((((-818 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| |#1| (-120))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+((($) |has| |#1| (-320)))
+(|has| |#1| (-320))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| |#1| (-120))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+((($) |has| |#1| (-320)))
+(|has| |#1| (-320))
+(((|#1|) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| $ (-120))
((($) . T))
-((((-817 |#1|)) . T))
+((((-818 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| |#1| (-120))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+((($) |has| |#1| (-320)))
+(|has| |#1| (-320))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| |#1| (-120))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+((($) |has| |#1| (-320)))
+(|has| |#1| (-320))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| |#1| (-120))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+((($) |has| |#1| (-320)))
+(|has| |#1| (-320))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| |#1| (-120))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+(|has| |#1| (-320))
+((($) |has| |#1| (-320)))
+(|has| |#1| (-320))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-337) |#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-338) |#1|) . T))
((((-179)) . T))
((($) . T))
-((((-484)) . T) (((-349 (-484))) . T))
-((((-329)) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-473)) . T) (((-1072)) . T) (((-179)) . T) (((-329)) . T) (((-800 (-329))) . T))
-((((-179)) . T) (((-772)) . T))
-((((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T) (((-484)) . T))
+((((-485)) . T) (((-350 (-485))) . T))
+((((-330)) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-474)) . T) (((-1073)) . T) (((-179)) . T) (((-330)) . T) (((-801 (-330))) . T))
+((((-179)) . T) (((-773)) . T))
+((((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T) (((-485)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-583 (-453 |#1| |#2|))) . T))
+((((-584 (-454 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-484)) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-485)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-484)) . T) ((|#1|) . T))
+((((-773)) . T))
+((((-485)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+((((-773)) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1072)) . T))
-((((-1072)) . T))
-((((-1072)) . T) (((-772)) . T))
+((((-1073)) . T))
+((((-1073)) . T))
+((((-1073)) . T) (((-773)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-((((-772)) . T))
-(((|#3|) . T) (((-484)) . T))
+((((-773)) . T))
+(((|#3|) . T) (((-485)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#3| |#3|) . T))
(((|#3|) . T))
-((((-349 |#2|)) . T))
+((((-350 |#2|)) . T))
((($) . T))
-((((-772)) . T))
-(|has| |#1| (-1133))
-((((-473)) |has| |#1| (-553 (-473))) (((-179)) |has| |#1| (-933)) (((-329)) |has| |#1| (-933)))
-(|has| |#1| (-933))
-(OR (|has| |#1| (-391)) (|has| |#1| (-1133)))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
+((((-773)) . T))
+(|has| |#1| (-1134))
+((((-474)) |has| |#1| (-554 (-474))) (((-179)) |has| |#1| (-934)) (((-330)) |has| |#1| (-934)))
+(|has| |#1| (-934))
+(OR (|has| |#1| (-392)) (|has| |#1| (-1134)))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
(((|#1|) . T))
((($ $) |has| |#1| (-241 $ $)) ((|#1| $) |has| |#1| (-241 |#1| |#1|)))
((($) |has| |#1| (-260 $)) ((|#1|) |has| |#1| (-260 |#1|)))
-((((-1089) $) |has| |#1| (-455 (-1089) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)))
+((((-1090) $) |has| |#1| (-456 (-1090) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)))
(((|#1|) . T))
(|has| |#1| (-190))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
(((|#1|) . T))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))))
-((((-1089)) |has| |#1| (-809 (-1089))))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))))
+((((-1090)) |has| |#1| (-810 (-1090))))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1| |#1|) . T) (($ $) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-484)) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-485)) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (((-484)) . T) (($) . T))
-((((-772)) . T))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T) (($) . T))
+((((-773)) . T))
(|has| |#1| (-118))
-(OR (|has| |#1| (-120)) (|has| |#1| (-740)))
+(OR (|has| |#1| (-120)) (|has| |#1| (-741)))
(((|#1|) . T))
-((((-1089)) |has| |#1| (-809 (-1089))))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))))
+((((-1090)) |has| |#1| (-810 (-1090))))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
(|has| |#1| (-190))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) ((|#1|) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-(((|#1|) . T))
-((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+(((|#1|) . T))
+((((-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
(((|#1|) |has| |#1| (-260 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-349 (-484))) . T) (((-484)) |has| |#1| (-580 (-484))))
-(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
+((($) . T) ((|#1|) . T) (((-350 (-485))) . T) (((-485)) |has| |#1| (-581 (-485))))
+(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
(((|#1|) . T))
-((((-484)) |has| |#1| (-796 (-484))) (((-329)) |has| |#1| (-796 (-329))))
-(|has| |#1| (-740))
-(|has| |#1| (-740))
-(|has| |#1| (-740))
-(OR (|has| |#1| (-740)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-740)) (|has| |#1| (-756)))
-(|has| |#1| (-740))
-(|has| |#1| (-740))
-(|has| |#1| (-740))
+((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330))))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
+(OR (|has| |#1| (-741)) (|has| |#1| (-757)))
+(OR (|has| |#1| (-741)) (|has| |#1| (-757)))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
(((|#1|) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-933))
-((((-473)) |has| |#1| (-553 (-473))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329)))) (((-329)) |has| |#1| (-933)) (((-179)) |has| |#1| (-933)))
-((((-484)) . T) ((|#1|) . T) (($) . T) (((-349 (-484))) . T) (((-1089)) |has| |#1| (-950 (-1089))))
-((((-349 (-484))) |has| |#1| (-950 (-484))) (((-484)) |has| |#1| (-950 (-484))) (((-1089)) |has| |#1| (-950 (-1089))) ((|#1|) . T))
-(|has| |#1| (-1065))
+(|has| |#1| (-822))
+(|has| |#1| (-934))
+((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-330)) |has| |#1| (-934)) (((-179)) |has| |#1| (-934)))
+((((-485)) . T) ((|#1|) . T) (($) . T) (((-350 (-485))) . T) (((-1090)) |has| |#1| (-951 (-1090))))
+((((-350 (-485))) |has| |#1| (-951 (-485))) (((-485)) |has| |#1| (-951 (-485))) (((-1090)) |has| |#1| (-951 (-1090))) ((|#1|) . T))
+(|has| |#1| (-1066))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-485)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-484)) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-484) (-349 (-857 |#1|))) . T))
-((((-349 (-857 |#1|))) . T))
-((((-349 (-857 |#1|))) . T))
-((((-349 (-857 |#1|))) . T))
-((((-1055 |#2| (-349 (-857 |#1|)))) . T) (((-349 (-857 |#1|))) . T))
-((((-772)) . T))
-((((-1055 |#2| (-349 (-857 |#1|)))) . T) (((-349 (-857 |#1|))) . T) (((-484)) . T))
-((((-349 (-857 |#1|))) . T))
-((((-349 (-857 |#1|))) . T))
-((((-349 (-857 |#1|)) (-349 (-857 |#1|))) . T))
-((((-349 (-857 |#1|))) . T))
-((((-349 (-857 |#1|))) . T))
-((((-473)) |has| |#2| (-553 (-473))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))))
+(((|#1|) . T) (((-485)) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-485) (-350 (-858 |#1|))) . T))
+((((-350 (-858 |#1|))) . T))
+((((-350 (-858 |#1|))) . T))
+((((-350 (-858 |#1|))) . T))
+((((-1056 |#2| (-350 (-858 |#1|)))) . T) (((-350 (-858 |#1|))) . T))
+((((-773)) . T))
+((((-1056 |#2| (-350 (-858 |#1|)))) . T) (((-350 (-858 |#1|))) . T) (((-485)) . T))
+((((-350 (-858 |#1|))) . T))
+((((-350 (-858 |#1|))) . T))
+((((-350 (-858 |#1|)) (-350 (-858 |#1|))) . T))
+((((-350 (-858 |#1|))) . T))
+((((-350 (-858 |#1|))) . T))
+((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
((($) . T))
(((|#2| |#3|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
(((|#2| |#3|) . T))
(((|#2|) . T))
-((($) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(OR (|has| |#2| (-391)) (|has| |#2| (-821)))
-((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
-((((-773 |#1|)) . T))
-((($ (-773 |#1|)) . T))
-((((-773 |#1|)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-349 (-484))) |has| |#2| (-950 (-349 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T))
-((((-484)) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
-(((|#2| |#3| (-773 |#1|)) . T))
+((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
+((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
+((((-774 |#1|)) . T))
+((($ (-774 |#1|)) . T))
+((((-774 |#1|)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
+((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
+(((|#2| |#3| (-774 |#1|)) . T))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
-((((-772)) . T))
-(((|#2|) . T) (((-484)) . T) ((|#6|) . T))
+((((-773)) . T))
+(((|#2|) . T) (((-485)) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#4|) . T))
-((((-583 |#4|)) . T) (((-772)) . T))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+((((-584 |#4|)) . T) (((-773)) . T))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
(((|#4|) . T))
-((((-473)) |has| |#4| (-553 (-473))))
+((((-474)) |has| |#4| (-554 (-474))))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-((((-772)) . T))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+((((-773)) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(((|#1| (-349 (-484))) . T))
-(((|#1| (-349 (-484))) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-350 (-485))) . T))
+(((|#1| (-350 (-485))) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T))
-((((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-349 (-484)) (-994)) . T))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((((-349 (-484)) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-(((|#1|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-772)) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T))
+((((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-350 (-485)) (-995)) . T))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((((-350 (-485)) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+(((|#1|) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-473)) |has| |#4| (-553 (-473))))
+((((-474)) |has| |#4| (-554 (-474))))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
(((|#4|) . T))
-((((-772)) . T) (((-583 |#4|)) . T))
+((((-773)) . T) (((-584 |#4|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-473)) . T) (((-349 (-1084 (-484)))) . T) (((-179)) . T) (((-329)) . T))
-((((-349 (-484))) . T) (((-484)) . T))
-((((-329)) . T) (((-179)) . T) (((-772)) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-772)) . T))
+((((-474)) . T) (((-350 (-1085 (-485)))) . T) (((-179)) . T) (((-330)) . T))
+((((-350 (-485))) . T) (((-485)) . T))
+((((-330)) . T) (((-179)) . T) (((-773)) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-473)) |has| |#2| (-553 (-473))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))))
+((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
((($) . T))
-(((|#2| (-421 (-3956 |#1|) (-694))) . T))
+(((|#2| (-422 (-3957 |#1|) (-695))) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-(((|#2| (-421 (-3956 |#1|) (-694))) . T))
-(((|#2|) . T))
-((($) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(OR (|has| |#2| (-391)) (|has| |#2| (-821)))
-((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
-((((-773 |#1|)) . T))
-((($ (-773 |#1|)) . T))
-((((-773 |#1|)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-349 (-484))) |has| |#2| (-950 (-349 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T))
-((((-484)) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
-(((|#2| (-421 (-3956 |#1|) (-694)) (-773 |#1|)) . T))
-(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
-((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T))
-(((|#2|) |has| |#2| (-961)))
-((((-1089)) -12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))))
-((((-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961)))))
-((($ (-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961)))))
-(((|#2|) |has| |#2| (-961)))
-(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))
-((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961)))
-(-12 (|has| |#2| (-190)) (|has| |#2| (-961)))
-(|has| |#2| (-319))
-(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-(((|#2|) . T))
-(((|#2|) |has| |#2| (-961)))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-1013)))
-((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))))
-(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))))
-((((-484) |#2|) . T))
-((((-484) |#2|) . T))
-((((-484) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663))))
+(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+(((|#2| (-422 (-3957 |#1|) (-695))) . T))
+(((|#2|) . T))
+((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
+((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
+((((-774 |#1|)) . T))
+((($ (-774 |#1|)) . T))
+((((-774 |#1|)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
+((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
+(((|#2| (-422 (-3957 |#1|) (-695)) (-774 |#1|)) . T))
+(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
+((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1179 |#2|)) . T))
+(((|#2|) |has| |#2| (-962)))
+((((-1090)) -12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))))
+((((-1090)) OR (-12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962)))))
+((($ (-1090)) OR (-12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962)))))
+(((|#2|) |has| |#2| (-962)))
+(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))
+((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
+(-12 (|has| |#2| (-190)) (|has| |#2| (-962)))
+(|has| |#2| (-320))
+(((|#2|) . T))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-962)))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-1014)))
+((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
+(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
+((((-485) |#2|) . T))
+((((-485) |#2|) . T))
+((((-485) |#2|) . T))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664))))
(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312))))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
(((|#2|) |has| |#2| (-312)))
(((|#1| |#2|) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-484)) . T))
-((((-772)) . T))
+((((-485)) . T))
+((((-773)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-917 16)) . T) (((-349 (-484))) . T) (((-772)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((($) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-((((-484) (-484)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-473)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T))
-((((-349 (-484))) . T) (((-484)) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T))
-((((-1072)) . T) (((-772)) . T))
-((($) . T))
-((((-142 (-329))) . T) (((-179)) . T) (((-329)) . T))
-((((-349 (-484))) . T) (((-484)) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((($) . T))
-((($ $) . T) (((-550 $) $) . T))
-((((-349 (-484))) . T) (((-484)) . T) (((-550 $)) . T))
-((((-1038 (-484) (-550 $))) . T) (($) . T) (((-484)) . T) (((-349 (-484))) . T) (((-550 $)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-((((-484) |#1|) . T))
-((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
-((((-484) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
+((((-918 16)) . T) (((-350 (-485))) . T) (((-773)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((($) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
+((((-350 (-485))) . T) (((-485)) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T))
+((((-1073)) . T) (((-773)) . T))
+((($) . T))
+((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T))
+((((-350 (-485))) . T) (((-485)) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-551 $) $) . T))
+((((-350 (-485))) . T) (((-485)) . T) (((-551 $)) . T))
+((((-1039 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T) (((-551 $)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+((((-485) |#1|) . T))
+((((-1146 (-485)) $) . T) (((-485) |#1|) . T))
+((((-485) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
(((|#1|) . T))
(((|#1| |#2| |#3|) . T))
((((-85)) . T))
((((-85)) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-484) (-85)) . T))
-((((-484) (-85)) . T))
-((((-484) (-85)) . T) (((-1145 (-484)) $) . T))
-((((-473)) . T))
+((((-485) (-85)) . T))
+((((-485) (-85)) . T))
+((((-485) (-85)) . T) (((-1146 (-485)) $) . T))
+((((-474)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-1072)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-583 (-453 |#1| |#2|))) . T))
+((((-1073)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-584 (-454 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-((((-484)) . T))
-((((-583 (-453 |#1| |#2|))) . T))
+((((-773)) . T))
+((((-485)) . T))
+((((-584 (-454 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-((((-583 (-453 |#1| |#2|))) . T))
-(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
-((((-772)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))
+((((-773)) . T))
+((((-584 (-454 |#1| |#2|))) . T))
+(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
+((((-773)) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))
(((|#1| |#2|) . T))
-((((-583 (-453 |#1| |#2|))) . T))
+((((-584 (-454 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-((((-583 (-453 |#1| |#2|))) . T))
+((((-773)) . T))
+((((-584 (-454 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-((((-782 |#2| |#1|)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-783 |#2| |#1|)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-((((-484) |#1|) . T))
-((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
-((((-484) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-517 |#1|)) . T))
-((((-517 |#1|)) . T))
-((((-517 |#1|)) . T))
-((((-517 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-517 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-517 |#1|) (-517 |#1|)) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-517 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-517 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-((((-517 |#1|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-517 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-517 |#1|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+((((-485) |#1|) . T))
+((((-1146 (-485)) $) . T) (((-485) |#1|) . T))
+((((-485) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-518 |#1|)) . T))
+((((-518 |#1|)) . T))
+((((-518 |#1|)) . T))
+((((-518 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-518 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-518 |#1|) (-518 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+((((-518 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(|has| $ (-120))
((($) . T))
-((((-517 |#1|)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T))
-((((-583 (-453 (-694) |#1|))) . T))
-((((-694) |#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-515)) . T))
-((((-1015)) . T))
-((((-583 $)) . T) (((-1072)) . T) (((-1089)) . T) (((-484)) . T) (((-179)) . T) (((-772)) . T))
-((((-484) $) . T) (((-583 (-484)) $) . T))
-((((-772)) . T))
-((((-1072) (-1089) (-484) (-179) (-772)) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T))
+((((-518 |#1|)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T))
+((((-584 (-454 (-695) |#1|))) . T))
+((((-695) |#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-516)) . T))
+((((-1016)) . T))
+((((-584 $)) . T) (((-1073)) . T) (((-1090)) . T) (((-485)) . T) (((-179)) . T) (((-773)) . T))
+((((-485) $) . T) (((-584 (-485)) $) . T))
+((((-773)) . T))
+((((-1073) (-1090) (-485) (-179) (-773)) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -1656,201 +1656,201 @@
((($) . T))
((($) . T))
((($) . T))
-((((-484)) . T) (($) . T))
-((((-484)) . T))
-((($) . T) (((-484)) . T))
-((((-484)) . T))
-((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T))
-((((-484)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-772)) . T))
+((((-485)) . T) (($) . T))
+((((-485)) . T))
+((($) . T) (((-485)) . T))
+((((-485)) . T))
+((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
+((((-485)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
-((((-772)) . T))
-((((-484)) . T) (($) . T))
+((((-773)) . T))
+((((-485)) . T) (($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-484)) . T) (($) . T))
-((((-484)) . T))
+((((-485)) . T) (($) . T))
+((((-485)) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-484)) . T) (($) . T))
+((((-485)) . T) (($) . T))
(((|#1|) . T))
-((((-484)) . T))
+((((-485)) . T))
((($) . T))
((($) . T))
((($) . T))
(|has| $ (-120))
((($) . T))
-((((-772)) . T))
-((($) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T))
-((((-349 (-484))) . T))
-((((-772)) . T))
-((((-484)) . T) (((-349 (-484))) . T))
-((((-349 (-484))) . T))
-((((-349 (-484))) . T))
-((((-349 (-484))) . T))
-((((-1094)) . T))
-((((-1094)) . T))
-((((-1094)) . T) (((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-(|has| |#1| (-15 * (|#1| (-484) |#1|)))
-((((-772)) . T))
-((($) |has| |#1| (-15 * (|#1| (-484) |#1|))))
-(|has| |#1| (-15 * (|#1| (-484) |#1|)))
-((($ $) . T) (((-484) |#1|) . T))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
-((($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
-(((|#1| (-484) (-994)) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T))
-((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T))
+((((-773)) . T))
+((($) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T))
+((((-350 (-485))) . T))
+((((-773)) . T))
+((((-485)) . T) (((-350 (-485))) . T))
+((((-350 (-485))) . T))
+((((-350 (-485))) . T))
+((((-350 (-485))) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T) (((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(|has| |#1| (-15 * (|#1| (-485) |#1|)))
+((((-773)) . T))
+((($) |has| |#1| (-15 * (|#1| (-485) |#1|))))
+(|has| |#1| (-15 * (|#1| (-485) |#1|)))
+((($ $) . T) (((-485) |#1|) . T))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
+((($ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
+(((|#1| (-485) (-995)) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
+((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
-((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-((((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-(((|#1| (-484)) . T))
-(((|#1| (-484)) . T))
-((($) |has| |#1| (-495)))
-((($) |has| |#1| (-495)))
-((($) |has| |#1| (-495)))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-((($) |has| |#1| (-495)) ((|#1|) . T))
-((($) |has| |#1| (-495)) ((|#1|) . T))
-((($ $) |has| |#1| (-495)) ((|#1| |#1|) . T))
-((($) |has| |#1| (-495)) (((-484)) . T))
+(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
+((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+(((|#1| (-485)) . T))
+(((|#1| (-485)) . T))
+((($) |has| |#1| (-496)))
+((($) |has| |#1| (-496)))
+((($) |has| |#1| (-496)))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+((($) |has| |#1| (-496)) ((|#1|) . T))
+((($) |has| |#1| (-496)) ((|#1|) . T))
+((($ $) |has| |#1| (-496)) ((|#1| |#1|) . T))
+((($) |has| |#1| (-496)) (((-485)) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-484)) . T))
-((((-1094)) . T))
-((((-1094)) . T))
-((((-1094)) . T) (((-772)) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-1129)) . T) (((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-484) |#1|) |has| |#2| (-360 |#1|)))
-(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-360 |#1|))))
-(((|#1|) |has| |#2| (-360 |#1|)))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-485)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T) (((-773)) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-1130)) . T) (((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-485) |#1|) |has| |#2| (-361 |#1|)))
+(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|))))
+(((|#1|) |has| |#2| (-361 |#1|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-772)) . T))
-(((|#1|) . T) (((-484)) . T))
+(((|#2|) . T) (((-773)) . T))
+(((|#1|) . T) (((-485)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
((((-101)) . T))
((((-101)) . T))
-((((-101)) . T) (((-772)) . T))
-((((-772)) . T))
-((((-101)) . T) (((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-101)) . T) (((-541)) . T))
-((((-101)) . T) (((-541)) . T))
-((((-101)) . T) (((-541)) . T) (((-772)) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-1072) |#1|) . T))
-((((-1072) |#1|) . T))
-((((-1072) |#1|) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-1072) |#1|) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-1072) |#1|) . T))
-((((-772)) . T))
-((((-337) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-473)) |has| |#1| (-553 (-473))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-772)) . T))
+((((-101)) . T) (((-773)) . T))
+((((-773)) . T))
+((((-101)) . T) (((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-101)) . T) (((-542)) . T))
+((((-101)) . T) (((-542)) . T))
+((((-101)) . T) (((-542)) . T) (((-773)) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-1073) |#1|) . T))
+((((-1073) |#1|) . T))
+((((-1073) |#1|) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-1073) |#1|) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-1073) |#1|) . T))
+((((-773)) . T))
+((((-338) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-474)) |has| |#1| (-554 (-474))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-773)) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2| |#2|) . T))
-(((|#2|) . T) (((-484)) . T) (($) . T))
+(((|#2|) . T) (((-485)) . T) (($) . T))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-484)) . T))
+(((|#2|) . T) (((-485)) . T))
(((|#2|) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#2|) . T) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
+(((|#2|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
(((|#1|) . T))
-((((-349 |#2|)) . T))
+((((-350 |#2|)) . T))
((($) . T))
((($ $) . T))
((($) . T))
@@ -1858,295 +1858,295 @@
((($) . T))
((($) . T))
(|has| |#2| (-190))
-(((|#2|) . T) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (($) . T) (((-484)) . T))
+(((|#2|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (($) . T) (((-485)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
(((|#2|) . T))
-((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))))
-((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))))
-((((-1089)) |has| |#2| (-809 (-1089))))
-(((|#2|) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T))
-((((-772)) . T))
-((((-1072) (-51)) . T))
-((((-1072) (-51)) . T))
-((((-1089) (-51)) . T) (((-1072) (-51)) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T) (((-51)) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))))
-((((-1072) (-51)) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T))
-((((-1072) (-51)) . T))
-((((-484) |#1|) |has| |#2| (-360 |#1|)))
-(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-360 |#1|))))
-(((|#1|) |has| |#2| (-360 |#1|)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-772)) . T))
-(((|#1|) . T) (((-484)) . T))
+((($ (-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))))
+((((-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))))
+((((-1090)) |has| |#2| (-810 (-1090))))
+(((|#2|) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T))
+((((-773)) . T))
+((((-1073) (-51)) . T))
+((((-1073) (-51)) . T))
+((((-1090) (-51)) . T) (((-1073) (-51)) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T) (((-51)) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))))
+((((-1073) (-51)) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T))
+((((-1073) (-51)) . T))
+((((-485) |#1|) |has| |#2| (-361 |#1|)))
+(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|))))
+(((|#1|) |has| |#2| (-361 |#1|)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#2|) . T) (((-773)) . T))
+(((|#1|) . T) (((-485)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-773 |#1|)) . T))
-((((-772)) . T))
-((((-583 (-453 |#1| (-577 |#2|)))) . T))
-(((|#1| (-577 |#2|)) . T))
-((((-577 |#2|)) . T))
+((((-774 |#1|)) . T))
+((((-773)) . T))
+((((-584 (-454 |#1| (-578 |#2|)))) . T))
+(((|#1| (-578 |#2|)) . T))
+((((-578 |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-484)) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-485)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-579 |#1| |#2|) |#1|) . T))
+((((-580 |#1| |#2|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-484)) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-485)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-((((-484) |#1|) . T))
-((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
-((((-484) |#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+((((-485) |#1|) . T))
+((((-1146 (-485)) $) . T) (((-485) |#1|) . T))
+((((-485) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1094)) . T))
-(((|#1|) . T) (((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
+((((-1095)) . T))
+(((|#1|) . T) (((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
+((((-474)) |has| |#1| (-554 (-474))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(|has| |#1| (-1014))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
+((((-773)) . T))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((((-484)) . T) ((|#2|) . T))
+((((-773)) . T))
+((((-485)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-485)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (((-484)) . T))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-485)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (((-484)) . T))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
(((|#1|) . T))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-485)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (((-484)) . T))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
-((((-614 |#1|)) . T))
-((((-614 |#1|)) . T))
-(((|#2| (-614 |#1|)) . T))
+((((-615 |#1|)) . T))
+((((-615 |#1|)) . T))
+(((|#2| (-615 |#1|)) . T))
(((|#2|) . T))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((((-484)) . T) ((|#2|) . T))
+((((-773)) . T))
+((((-485)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-484) |#2|) . T))
+((((-485) |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-6 (-3996 "*"))))
+(((|#2|) |has| |#2| (-6 (-3997 "*"))))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-630 |#2|)) . T) (((-772)) . T))
-((($) . T) (((-484)) . T) ((|#2|) . T))
+((((-631 |#2|)) . T) (((-773)) . T))
+((($) . T) (((-485)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1089)) |has| |#2| (-809 (-1089))))
-((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))))
-((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))))
+((((-1090)) |has| |#2| (-810 (-1090))))
+((((-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))))
+((($ (-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))))
(((|#2|) . T))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(|has| |#2| (-190))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
(((|#2|) . T))
-((((-484)) . T) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-950 (-349 (-484)))))
-(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-349 (-484))) |has| |#2| (-950 (-349 (-484)))))
+((((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
+(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
(((|#2|) . T))
(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-1129)) . T) (((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-(((|#1| (-1178 |#1|) (-1178 |#1|)) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-1130)) . T) (((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(|has| |#1| (-1014))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
(((|#1|) . T))
-(((|#1| (-1178 |#1|) (-1178 |#1|)) . T))
-((((-772)) . T))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(|has| |#1| (-319))
+((((-773)) . T))
+((((-773)) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(|has| |#1| (-320))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-772)) . T))
-((((-349 $) (-349 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T))
+((((-773)) . T))
+((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
(|has| |#1| (-312))
-(((|#1| (-694) (-994)) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-994)) . T))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-994)) . T))
-((((-1089)) |has| |#1| (-809 (-1089))) (((-994)) . T))
-((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-694)) . T))
+(((|#1| (-695) (-995)) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (((-995)) . T))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (($ (-995)) . T))
+((((-1090)) |has| |#1| (-810 (-1090))) (((-995)) . T))
+((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-695)) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-(((|#2|) . T) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T))
-((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
-(((|#1| (-694)) . T))
-((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-1065))
-(((|#1|) . T))
-((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T))
-((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T))
-((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T) (((-772)) . T))
+(((|#2|) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T))
+((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+(((|#1| (-695)) . T))
+((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1066))
+(((|#1|) . T))
+((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T))
+((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T))
+((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T) (((-773)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -2157,52 +2157,52 @@
(|has| |#1| (-120))
(((|#2| |#2|) . T))
((((-86)) . T) ((|#1|) . T))
-((((-86)) . T) ((|#1|) . T) (((-484)) . T))
+((((-86)) . T) ((|#1|) . T) (((-485)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
-((((-484)) . T))
+((((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
+((((-485)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T))
-((((-772)) . T))
-((((-1022 |#1|)) . T) (((-772)) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T))
+((((-773)) . T))
+((((-1023 |#1|)) . T) (((-773)) . T))
(((|#1|) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-473)) |has| |#2| (-553 (-473))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))))
+((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
((($) . T))
-(((|#2| (-469 (-773 |#1|))) . T))
+(((|#2| (-470 (-774 |#1|))) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))))
-(((|#2| (-469 (-773 |#1|))) . T))
-(((|#2|) . T))
-((($) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(OR (|has| |#2| (-391)) (|has| |#2| (-821)))
-((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
-((((-773 |#1|)) . T))
-((($ (-773 |#1|)) . T))
-((((-773 |#1|)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-349 (-484))) |has| |#2| (-950 (-349 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T))
-((((-484)) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
-(((|#2| (-469 (-773 |#1|)) (-773 |#1|)) . T))
-(-12 (|has| |#1| (-319)) (|has| |#2| (-319)))
+(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+(((|#2| (-470 (-774 |#1|))) . T))
+(((|#2|) . T))
+((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
+((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
+((((-774 |#1|)) . T))
+((($ (-774 |#1|)) . T))
+((((-774 |#1|)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
+((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
+(((|#2| (-470 (-774 |#1|)) (-774 |#1|)) . T))
+(-12 (|has| |#1| (-320)) (|has| |#2| (-320)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -2212,209 +2212,209 @@
(|has| |#1| (-118))
(|has| |#1| (-120))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) ((|#2|) . T) (((-484)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-485)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
+((((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-773)) . T))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
(((|#1|) . T))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
+((((-474)) |has| |#1| (-554 (-474))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-(((|#1| (-469 |#2|) |#2|) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) (((-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#2| (-796 (-329)))))
+((((-773)) . T))
+((((-773)) . T))
+(((|#1| (-470 |#2|) |#2|) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) (((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))))
(((|#2|) . T))
((($ |#2|) . T))
(((|#2|) . T))
-(OR (|has| |#1| (-391)) (|has| |#1| (-821)))
-((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
+((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-469 |#2|)) . T))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(((|#1| (-470 |#2|)) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((((-1038 |#1| |#2|)) . T) (((-857 |#1|)) |has| |#2| (-553 (-1089))) (((-772)) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T))
-((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T))
-((((-1038 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-484)) . T))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T))
-((((-1038 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
-(((|#1| (-469 |#2|)) . T))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((((-1039 |#1| |#2|)) . T) (((-858 |#1|)) |has| |#2| (-554 (-1090))) (((-773)) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
+((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
+((((-1039 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T))
+((((-1039 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+(((|#1| (-470 |#2|)) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
((($) . T))
-((((-857 |#1|)) |has| |#2| (-553 (-1089))) (((-1072)) -12 (|has| |#1| (-950 (-484))) (|has| |#2| (-553 (-1089)))) (((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) (((-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) (((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))))
-(((|#1| (-469 |#2|) |#2|) . T))
+((((-858 |#1|)) |has| |#2| (-554 (-1090))) (((-1073)) -12 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1090)))) (((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) (((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))))
+(((|#1| (-470 |#2|) |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-1084 |#1|)) . T) (((-772)) . T))
-((((-349 $) (-349 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T))
+((((-1085 |#1|)) . T) (((-773)) . T))
+((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
(|has| |#1| (-312))
-(((|#1| (-694) (-994)) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-994)) . T))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-994)) . T))
-((((-1089)) |has| |#1| (-809 (-1089))) (((-994)) . T))
-((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-694)) . T))
+(((|#1| (-695) (-995)) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (((-995)) . T))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (($ (-995)) . T))
+((((-1090)) |has| |#1| (-810 (-1090))) (((-995)) . T))
+((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-695)) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((((-1084 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
+((((-1085 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
(((|#1|) . T))
-((((-1084 |#1|)) . T) (((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
-(((|#1| (-694)) . T))
-((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T))
+((((-1085 |#1|)) . T) (((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+(((|#1| (-695)) . T))
+((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1065))
+(|has| |#1| (-1066))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) ((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) ((|#1|) . T))
((($) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-((((-473)) |has| |#1| (-553 (-473))))
-(|has| |#1| (-319))
+((((-474)) |has| |#1| (-554 (-474))))
+(|has| |#1| (-320))
(((|#1|) . T))
-((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
+((((-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
(((|#1|) |has| |#1| (-260 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
-((((-909 |#1|)) . T) ((|#1|) . T))
-((((-909 |#1|)) . T) (((-484)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| (-909 |#1|) (-950 (-349 (-484))))))
-((((-909 |#1|)) . T) ((|#1|) . T) (((-484)) OR (|has| |#1| (-950 (-484))) (|has| (-909 |#1|) (-950 (-484)))) (((-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| (-909 |#1|) (-950 (-349 (-484))))))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
-((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T))
-(((|#2|) |has| |#2| (-961)))
-((((-1089)) -12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))))
-((((-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961)))))
-((($ (-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961)))))
-(((|#2|) |has| |#2| (-961)))
-(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))
-((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961)))
-(-12 (|has| |#2| (-190)) (|has| |#2| (-961)))
-(|has| |#2| (-319))
-(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-(((|#2|) . T))
-(((|#2|) |has| |#2| (-961)))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-1013)))
-((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))))
-(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))))
-((((-484) |#2|) . T))
-((((-484) |#2|) . T))
-((((-484) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663))))
+((((-910 |#1|)) . T) ((|#1|) . T))
+((((-910 |#1|)) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| (-910 |#1|) (-951 (-350 (-485))))))
+((((-910 |#1|)) . T) ((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-910 |#1|) (-951 (-485)))) (((-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| (-910 |#1|) (-951 (-350 (-485))))))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
+((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1179 |#2|)) . T))
+(((|#2|) |has| |#2| (-962)))
+((((-1090)) -12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))))
+((((-1090)) OR (-12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962)))))
+((($ (-1090)) OR (-12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962)))))
+(((|#2|) |has| |#2| (-962)))
+(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))
+((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
+(-12 (|has| |#2| (-190)) (|has| |#2| (-962)))
+(|has| |#2| (-320))
+(((|#2|) . T))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-962)))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-1014)))
+((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
+(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
+((((-485) |#2|) . T))
+((((-485) |#2|) . T))
+((((-485) |#2|) . T))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664))))
(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312))))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
(((|#2|) |has| |#2| (-312)))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-190))
((($) . T))
-(((|#1| (-469 (-738 (-1089))) (-738 (-1089))) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-738 (-1089))) . T))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-738 (-1089))) . T))
-((((-1089)) |has| |#1| (-809 (-1089))) (((-738 (-1089))) . T))
-((($ $) . T) (((-1089) $) |has| |#1| (-190)) (((-1089) |#1|) |has| |#1| (-190)) (((-738 (-1089)) |#1|) . T) (((-738 (-1089)) $) . T))
-(OR (|has| |#1| (-391)) (|has| |#1| (-821)))
-((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-469 (-738 (-1089)))) . T))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(((|#1| (-470 (-739 (-1090))) (-739 (-1090))) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (((-739 (-1090))) . T))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (($ (-739 (-1090))) . T))
+((((-1090)) |has| |#1| (-810 (-1090))) (((-739 (-1090))) . T))
+((($ $) . T) (((-1090) $) |has| |#1| (-190)) (((-1090) |#1|) |has| |#1| (-190)) (((-739 (-1090)) |#1|) . T) (((-739 (-1090)) $) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
+((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-470 (-739 (-1090)))) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T))
-(((|#1| (-469 (-738 (-1089)))) . T))
-((((-1038 |#1| (-1089))) . T) (((-738 (-1089))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-1089)) . T))
-((((-1038 |#1| (-1089))) . T) (((-484)) . T) (((-738 (-1089))) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-1089)) . T))
-(((|#1| (-1089) (-738 (-1089)) (-469 (-738 (-1089)))) . T))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T))
+(((|#1| (-470 (-739 (-1090)))) . T))
+((((-1039 |#1| (-1090))) . T) (((-739 (-1090))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-1090)) . T))
+((((-1039 |#1| (-1090))) . T) (((-485)) . T) (((-739 (-1090))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-1090)) . T))
+(((|#1| (-1090) (-739 (-1090)) (-470 (-739 (-1090)))) . T))
(|has| |#2| (-312))
(|has| |#2| (-312))
(|has| |#2| (-312))
(|has| |#2| (-312))
-((((-349 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
-((((-349 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
-((((-349 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
+((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
+((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
+((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
(|has| |#2| (-312))
(|has| |#2| (-312))
(|has| |#2| (-312))
@@ -2422,19 +2422,19 @@
(|has| |#2| (-312))
(((|#2|) . T))
((($) . T))
-((((-349 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-484)) . T))
-((((-349 (-484))) |has| |#2| (-312)) (($) . T))
-(((|#2|) . T) (((-772)) . T))
-((((-349 (-484))) |has| |#2| (-312)) (($) . T) (((-484)) . T))
-((((-349 (-484))) |has| |#2| (-312)) (($) . T))
-((((-349 (-484))) |has| |#2| (-312)) (($) . T))
-((((-349 (-484)) (-349 (-484))) |has| |#2| (-312)) (($ $) . T))
+((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-485)) . T))
+((((-350 (-485))) |has| |#2| (-312)) (($) . T))
+(((|#2|) . T) (((-773)) . T))
+((((-350 (-485))) |has| |#2| (-312)) (($) . T) (((-485)) . T))
+((((-350 (-485))) |has| |#2| (-312)) (($) . T))
+((((-350 (-485))) |has| |#2| (-312)) (($) . T))
+((((-350 (-485)) (-350 (-485))) |has| |#2| (-312)) (($ $) . T))
((($) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2445,36 +2445,36 @@
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2|) |has| |#2| (-146)))
-((((-484)) . T) ((|#2|) |has| |#2| (-146)))
-(((|#2|) . T))
-(|has| |#1| (-755))
-((($) |has| |#1| (-755)))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-((($) |has| |#1| (-755)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-755))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
+((((-485)) . T) ((|#2|) |has| |#2| (-146)))
+(((|#2|) . T))
+(|has| |#1| (-756))
+((($) |has| |#1| (-756)))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-756))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -2485,454 +2485,454 @@
(|has| |#1| (-120))
(((|#1| |#1|) . T))
((((-86)) . T) ((|#1|) . T))
-((((-86)) . T) ((|#1|) . T) (((-484)) . T))
+((((-86)) . T) ((|#1|) . T) (((-485)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
-((((-772)) . T))
-((((-446)) . T))
-(|has| |#1| (-755))
-((($) |has| |#1| (-755)))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-((($) |has| |#1| (-755)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-755))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T))
-((((-772)) |has| |#1| (-552 (-772))) ((|#1|) . T))
+((((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
+((((-773)) . T))
+((((-447)) . T))
+(|has| |#1| (-756))
+((($) |has| |#1| (-756)))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-756))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
+(((|#1|) . T))
+((((-773)) |has| |#1| (-553 (-773))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) ((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) ((|#1|) . T))
((($) . T) ((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
-((((-484)) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
-(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
+((((-485)) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
(((|#1|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
-((((-1175 |#1|)) . T) (((-484)) . T) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-950 (-349 (-484)))))
-(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-349 (-484))) |has| |#2| (-950 (-349 (-484)))))
+((((-1176 |#1|)) . T) (((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
+(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
(((|#2|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-800 (-484))) . T) (((-800 (-329))) . T) (((-473)) . T) (((-1089)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-801 (-485))) . T) (((-801 (-330))) . T) (((-474)) . T) (((-1090)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-857 |#1|)) . T))
-(((|#1|) |has| |#1| (-146)) (((-857 |#1|)) . T) (((-484)) . T))
+((((-858 |#1|)) . T))
+(((|#1|) |has| |#1| (-146)) (((-858 |#1|)) . T) (((-485)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-857 |#1|)) . T) (((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
+((((-858 |#1|)) . T) (((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-484)) . T) (($) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-778 |#1|)) . T) (((-349 (-484))) . T))
-((((-778 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-778 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-778 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-778 |#1|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-778 |#1|) (-778 |#1|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((((-778 |#1|)) . T))
-((((-1089) (-778 |#1|)) |has| (-778 |#1|) (-455 (-1089) (-778 |#1|))) (((-778 |#1|) (-778 |#1|)) |has| (-778 |#1|) (-260 (-778 |#1|))))
-((((-778 |#1|)) |has| (-778 |#1|) (-260 (-778 |#1|))))
-((((-778 |#1|) $) |has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|))))
-((((-778 |#1|)) . T))
-((($) . T) (((-778 |#1|)) . T) (((-349 (-484))) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T))
-((((-484)) . T) (((-778 |#1|)) . T) (($) . T) (((-349 (-484))) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T))
-((((-772)) . T))
+((((-485)) . T) (($) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-779 |#1|)) . T) (((-350 (-485))) . T))
+((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-779 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-779 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-779 |#1|) (-779 |#1|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-779 |#1|)) . T))
+((((-1090) (-779 |#1|)) |has| (-779 |#1|) (-456 (-1090) (-779 |#1|))) (((-779 |#1|) (-779 |#1|)) |has| (-779 |#1|) (-260 (-779 |#1|))))
+((((-779 |#1|)) |has| (-779 |#1|) (-260 (-779 |#1|))))
+((((-779 |#1|) $) |has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|))))
+((((-779 |#1|)) . T))
+((($) . T) (((-779 |#1|)) . T) (((-350 (-485))) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T))
+((((-485)) . T) (((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T))
+((((-773)) . T))
(|has| |#2| (-118))
-(OR (|has| |#2| (-120)) (|has| |#2| (-740)))
+(OR (|has| |#2| (-120)) (|has| |#2| (-741)))
(((|#2|) . T))
-((((-1089)) |has| |#2| (-809 (-1089))))
-((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))))
-((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))))
+((((-1090)) |has| |#2| (-810 (-1090))))
+((((-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))))
+((($ (-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))))
(((|#2|) . T))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(|has| |#2| (-190))
-(((|#2|) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) ((|#2|) . T) (((-349 (-484))) . T))
-(((|#2|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#2|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#2|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#2|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#2| |#2|) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-(((|#2|) . T))
-((((-1089) |#2|) |has| |#2| (-455 (-1089) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|)))
+(((|#2|) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) ((|#2|) . T) (((-350 (-485))) . T))
+(((|#2|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#2|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#2|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#2|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#2| |#2|) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+(((|#2|) . T))
+((((-1090) |#2|) |has| |#2| (-456 (-1090) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|)))
(((|#2|) |has| |#2| (-260 |#2|)))
(((|#2| $) |has| |#2| (-241 |#2| |#2|)))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-349 (-484))) . T) (((-484)) |has| |#2| (-580 (-484))))
-(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(((|#2|) . T))
-((((-484)) |has| |#2| (-796 (-484))) (((-329)) |has| |#2| (-796 (-329))))
-(|has| |#2| (-740))
-(|has| |#2| (-740))
-(|has| |#2| (-740))
-(OR (|has| |#2| (-740)) (|has| |#2| (-756)))
-(OR (|has| |#2| (-740)) (|has| |#2| (-756)))
-(|has| |#2| (-740))
-(|has| |#2| (-740))
-(|has| |#2| (-740))
-(((|#2|) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-933))
-((((-473)) |has| |#2| (-553 (-473))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-329)) |has| |#2| (-933)) (((-179)) |has| |#2| (-933)))
-((((-484)) . T) ((|#2|) . T) (($) . T) (((-349 (-484))) . T) (((-1089)) |has| |#2| (-950 (-1089))))
-((((-349 (-484))) |has| |#2| (-950 (-484))) (((-484)) |has| |#2| (-950 (-484))) (((-1089)) |has| |#2| (-950 (-1089))) ((|#2|) . T))
-(|has| |#2| (-1065))
-(((|#2|) . T))
-(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
-(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
-((((-772)) OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))))
+((($) . T) ((|#2|) . T) (((-350 (-485))) . T) (((-485)) |has| |#2| (-581 (-485))))
+(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(((|#2|) . T))
+((((-485)) |has| |#2| (-797 (-485))) (((-330)) |has| |#2| (-797 (-330))))
+(|has| |#2| (-741))
+(|has| |#2| (-741))
+(|has| |#2| (-741))
+(OR (|has| |#2| (-741)) (|has| |#2| (-757)))
+(OR (|has| |#2| (-741)) (|has| |#2| (-757)))
+(|has| |#2| (-741))
+(|has| |#2| (-741))
+(|has| |#2| (-741))
+(((|#2|) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-934))
+((((-474)) |has| |#2| (-554 (-474))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-330)) |has| |#2| (-934)) (((-179)) |has| |#2| (-934)))
+((((-485)) . T) ((|#2|) . T) (($) . T) (((-350 (-485))) . T) (((-1090)) |has| |#2| (-951 (-1090))))
+((((-350 (-485))) |has| |#2| (-951 (-485))) (((-485)) |has| |#2| (-951 (-485))) (((-1090)) |has| |#2| (-951 (-1090))) ((|#2|) . T))
+(|has| |#2| (-1066))
+(((|#2|) . T))
+(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
+(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
+((((-773)) OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))))
((((-130)) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1089)) . T) ((|#1|) . T))
-((((-1089)) . T) ((|#1|) . T))
-((((-772)) . T))
-((((-614 |#1|)) . T))
-((((-614 |#1|)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-((((-1115 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1090)) . T) ((|#1|) . T))
+((((-1090)) . T) ((|#1|) . T))
+((((-773)) . T))
+((((-615 |#1|)) . T))
+((((-615 |#1|)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+((((-1116 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-((((-772)) . T))
-(OR (|has| |#1| (-319)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-319)) (|has| |#1| (-756)))
+((((-773)) . T))
+(OR (|has| |#1| (-320)) (|has| |#1| (-757)))
+(OR (|has| |#1| (-320)) (|has| |#1| (-757)))
(((|#1|) . T))
-((((-772)) . T))
-((((-484)) . T))
+((((-773)) . T))
+((((-485)) . T))
((($) . T))
((($) . T))
((($) . T))
(|has| $ (-120))
((($) . T))
-((((-772)) . T))
-((($) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($) . T) (((-349 (-484))) . T))
-((($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-349 (-484))) . T) (($) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-583 |#1|)) . T))
+((((-773)) . T))
+((($) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($) . T) (((-350 (-485))) . T))
+((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-350 (-485))) . T) (($) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-584 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-((((-484) |#1|) . T))
-((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
-((((-484) |#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+((((-485) |#1|) . T))
+((((-1146 (-485)) $) . T) (((-485) |#1|) . T))
+((((-485) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))))
+((((-474)) |has| |#1| (-554 (-474))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))))
((($) . T))
-(((|#1| (-469 (-1089))) . T))
+(((|#1| (-470 (-1090))) . T))
(((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-(((|#1| (-469 (-1089))) . T))
-(((|#1|) . T))
-((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
-(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
-(OR (|has| |#1| (-391)) (|has| |#1| (-821)))
-((($ $) . T) (((-1089) $) . T) (((-1089) |#1|) . T))
-((((-1089)) . T))
-((($ (-1089)) . T))
-((((-1089)) . T))
-((((-329)) |has| |#1| (-796 (-329))) (((-484)) |has| |#1| (-796 (-484))))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T) (((-1089)) . T))
-((((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-1089)) . T))
-(((|#1| (-469 (-1089)) (-1089)) . T))
-((((-1033)) . T) (((-772)) . T))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+(((|#1| (-470 (-1090))) . T))
+(((|#1|) . T))
+((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
+((($ $) . T) (((-1090) $) . T) (((-1090) |#1|) . T))
+((((-1090)) . T))
+((($ (-1090)) . T))
+((((-1090)) . T))
+((((-330)) |has| |#1| (-797 (-330))) (((-485)) |has| |#1| (-797 (-485))))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) (((-1090)) . T))
+((((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-1090)) . T))
+(((|#1| (-470 (-1090)) (-1090)) . T))
+((((-1034)) . T) (((-773)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((((-772)) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T))
-((($) |has| |#1| (-495)) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-484)) . T))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((((-773)) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
+((($) |has| |#1| (-496)) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-((((-484) |#1|) . T))
-((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
-((((-484) |#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+((((-485) |#1|) . T))
+((((-1146 (-485)) $) . T) (((-485) |#1|) . T))
+((((-485) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
(((|#1|) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
-(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
-(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756))))
-(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756))))
-(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
-(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
-((((-484)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
+(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
+(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
+(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))
+(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))
+(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
+(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
+((((-485)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-(-12 (|has| |#1| (-412)) (|has| |#2| (-412)))
-(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
-(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
-(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
-(OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
-(OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
-(-12 (|has| |#1| (-319)) (|has| |#2| (-319)))
-((((-772)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-583 (-830))) . T) (((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
+(-12 (|has| |#1| (-413)) (|has| |#2| (-413)))
+(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718))))
+(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718))))
+(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718))))
+(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))
+(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))
+(-12 (|has| |#1| (-320)) (|has| |#2| (-320)))
+((((-773)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-584 (-831))) . T) (((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
((((-197 |#1| |#2|) |#2|) . T))
-((((-772)) . T))
-((((-484)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-485)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-((((-473)) |has| |#1| (-553 (-473))))
+((((-474)) |has| |#1| (-554 (-474))))
(((|#1|) . T))
-((((-1089)) |has| |#1| (-809 (-1089))))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))))
+((((-1090)) |has| |#1| (-810 (-1090))))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
(|has| |#1| (-190))
(|has| |#1| (-312))
(OR (|has| |#1| (-246)) (|has| |#1| (-312)))
-((((-484)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-312)))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-312)))
-((($) . T) (((-484)) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-312)))
-(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-349 (-484))) |has| |#1| (-312)))
-(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-349 (-484))) |has| |#1| (-312)))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-349 (-484)) (-349 (-484))) |has| |#1| (-312)))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-312)))
-(((|#1|) . T))
-((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
+((((-485)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)))
+((($) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)))
+(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485))) |has| |#1| (-312)))
+(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485))) |has| |#1| (-312)))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485)) (-350 (-485))) |has| |#1| (-312)))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)))
+(((|#1|) . T))
+((((-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
(((|#1|) |has| |#1| (-260 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-312)) (((-484)) |has| |#1| (-580 (-484))))
-(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
-(((|#1|) . T))
-(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-349 |#2|) |#3|) . T))
-((((-349 (-484))) |has| (-349 |#2|) (-950 (-349 (-484)))) (((-484)) |has| (-349 |#2|) (-950 (-484))) (((-349 |#2|)) . T))
-((((-349 |#2|)) . T))
-((((-484)) |has| (-349 |#2|) (-580 (-484))) (((-349 |#2|)) . T))
-((((-349 |#2|)) . T))
-((((-349 |#2|) |#3|) . T))
-(|has| (-349 |#2|) (-120))
-((((-349 |#2|) |#3|) . T))
-(|has| (-349 |#2|) (-118))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-(|has| (-349 |#2|) (-190))
-((($) OR (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-189))))
-(OR (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-189)))
-((((-349 |#2|)) . T))
-((($ (-1089)) OR (|has| (-349 |#2|) (-809 (-1089))) (|has| (-349 |#2|) (-811 (-1089)))))
-((((-1089)) OR (|has| (-349 |#2|) (-809 (-1089))) (|has| (-349 |#2|) (-811 (-1089)))))
-((((-1089)) |has| (-349 |#2|) (-809 (-1089))))
-((((-349 |#2|)) . T))
+((($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)) (((-485)) |has| |#1| (-581 (-485))))
+(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+(((|#1|) . T))
+(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-350 |#2|) |#3|) . T))
+((((-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) (((-485)) |has| (-350 |#2|) (-951 (-485))) (((-350 |#2|)) . T))
+((((-350 |#2|)) . T))
+((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T))
+((((-350 |#2|)) . T))
+((((-350 |#2|) |#3|) . T))
+(|has| (-350 |#2|) (-120))
+((((-350 |#2|) |#3|) . T))
+(|has| (-350 |#2|) (-118))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+(|has| (-350 |#2|) (-190))
+((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))))
+(OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))
+((((-350 |#2|)) . T))
+((($ (-1090)) OR (|has| (-350 |#2|) (-810 (-1090))) (|has| (-350 |#2|) (-812 (-1090)))))
+((((-1090)) OR (|has| (-350 |#2|) (-810 (-1090))) (|has| (-350 |#2|) (-812 (-1090)))))
+((((-1090)) |has| (-350 |#2|) (-810 (-1090))))
+((((-350 |#2|)) . T))
(((|#3|) . T))
-((((-349 |#2|) (-349 |#2|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-772)) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-((((-484)) |has| (-349 |#2|) (-580 (-484))) (((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T))
+((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-773)) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
(((|#1| |#2| |#3|) . T))
-((((-349 (-484))) . T) (((-772)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((($) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-((((-484)) . T) (((-349 (-484))) . T) (($) . T))
-((((-484) (-484)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-484)) . T))
-((((-473)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T))
-((((-349 (-484))) . T) (((-484)) . T))
-((((-484)) . T) (($) . T) (((-349 (-484))) . T))
-((((-484)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-484)) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-484))) . T) (((-484)) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) . T) (((-484) (-484)) . T) (($ $) . T))
-(((|#1|) . T) (((-484)) . T) (((-349 (-484))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) . T))
-(((|#1|) . T) (((-484)) OR (|has| |#1| (-950 (-484))) (|has| (-349 (-484)) (-950 (-484)))) (((-349 (-484))) . T))
-((((-772)) . T))
+((((-350 (-485))) . T) (((-773)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((($) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+((((-485)) . T) (((-350 (-485))) . T) (($) . T))
+((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-485)) . T))
+((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
+((((-350 (-485))) . T) (((-485)) . T))
+((((-485)) . T) (($) . T) (((-350 (-485))) . T))
+((((-485)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-485))) . T) (((-485)) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) . T) (((-485) (-485)) . T) (($ $) . T))
+(((|#1|) . T) (((-485)) . T) (((-350 (-485))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) . T))
+(((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-350 (-485)) (-951 (-485)))) (((-350 (-485))) . T))
+((((-773)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-583 |#4|)) . T) (((-772)) . T))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+((((-584 |#4|)) . T) (((-773)) . T))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
(((|#4|) . T))
-((((-473)) |has| |#4| (-553 (-473))))
+((((-474)) |has| |#4| (-554 (-474))))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
@@ -2942,46 +2942,46 @@
(((|#1| |#1|) . T) (($ $) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-484)) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-485)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-484)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T))
-((((-703 |#1| (-773 |#2|))) . T))
-((((-583 (-703 |#1| (-773 |#2|)))) . T) (((-772)) . T))
-((((-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))))
-((((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))))
-((((-703 |#1| (-773 |#2|))) . T))
-((((-473)) |has| (-703 |#1| (-773 |#2|)) (-553 (-473))))
-((((-703 |#1| (-773 |#2|))) . T))
-(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T))
-(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T))
-((((-473)) |has| |#3| (-553 (-473))))
+(((|#1|) . T) (((-485)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
+((((-704 |#1| (-774 |#2|))) . T))
+((((-584 (-704 |#1| (-774 |#2|)))) . T) (((-773)) . T))
+((((-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))))
+((((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))))
+((((-704 |#1| (-774 |#2|))) . T))
+((((-474)) |has| (-704 |#1| (-774 |#2|)) (-554 (-474))))
+((((-704 |#1| (-774 |#2|))) . T))
+(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
+(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
+((((-474)) |has| |#3| (-554 (-474))))
(((|#3|) |has| |#3| (-312)))
(((|#3| |#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-((((-630 |#3|)) . T) (((-772)) . T))
-((((-484)) . T) ((|#3|) . T))
+((((-631 |#3|)) . T) (((-773)) . T))
+((((-485)) . T) ((|#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
-(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
+(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
+(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
(((|#3|) . T))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312))))
(((|#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) . T))
-(|has| |#1| (-1013))
-((((-772)) |has| |#1| (-1013)))
-(|has| |#1| (-1013))
-((((-772)) . T))
+(|has| |#1| (-1014))
+((((-773)) |has| |#1| (-1014)))
+(|has| |#1| (-1014))
+((((-773)) . T))
(((|#1| |#2|) . T))
-((((-1089)) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T))
+((((-1090)) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -2989,31 +2989,31 @@
((($) . T))
((($) . T))
((($) . T))
-((((-484)) . T) (($) . T))
-((((-484)) . T))
-((($) . T) (((-484)) . T))
-((((-484)) . T))
-((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T))
-((((-484)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
+((((-485)) . T) (($) . T))
+((((-485)) . T))
+((($) . T) (((-485)) . T))
+((((-485)) . T))
+((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
+((((-485)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
((((-249 |#3|)) . T))
((((-249 |#3|)) . T))
(((|#3| |#3|) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#3| |#3|) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#2|) . T))
(((|#1|) |has| |#1| (-312)))
-((((-1089)) -12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))))
-((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089))))))
-((($ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089))))))
+((((-1090)) -12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090))))))
+((($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090))))))
(((|#1|) |has| |#1| (-312)))
(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299)))
((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))))
@@ -3026,169 +3026,169 @@
(OR (|has| |#1| (-312)) (|has| |#1| (-299)))
(OR (|has| |#1| (-312)) (|has| |#1| (-299)))
(OR (|has| |#1| (-312)) (|has| |#1| (-299)))
-(OR (|has| |#1| (-319)) (|has| |#1| (-299)))
+(OR (|has| |#1| (-320)) (|has| |#1| (-299)))
(|has| |#1| (-299))
(|has| |#1| (-299))
(OR (|has| |#1| (-118)) (|has| |#1| (-299)))
(|has| |#1| (-299))
(((|#1| |#2|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($ $) . T) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T))
-((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-950 (-349 (-484))))) ((|#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($ $) . T) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T))
+((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T))
(|has| |#1| (-120))
(((|#1| |#2|) . T))
(((|#1|) . T))
-((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
-(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
+((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
(((|#1|) . T))
-(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
+(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
(((|#1| |#2|) . T))
-((((-1089)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-1090)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-190))
((($) . T))
-(((|#1| (-469 (-1000 (-1089))) (-1000 (-1089))) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-1000 (-1089))) . T))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-1000 (-1089))) . T))
-((((-1089)) |has| |#1| (-809 (-1089))) (((-1000 (-1089))) . T))
-((($ $) . T) (((-1089) $) |has| |#1| (-190)) (((-1089) |#1|) |has| |#1| (-190)) (((-1000 (-1089)) |#1|) . T) (((-1000 (-1089)) $) . T))
-(OR (|has| |#1| (-391)) (|has| |#1| (-821)))
-((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-469 (-1000 (-1089)))) . T))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(((|#1| (-470 (-1001 (-1090))) (-1001 (-1090))) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (((-1001 (-1090))) . T))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (($ (-1001 (-1090))) . T))
+((((-1090)) |has| |#1| (-810 (-1090))) (((-1001 (-1090))) . T))
+((($ $) . T) (((-1090) $) |has| |#1| (-190)) (((-1090) |#1|) |has| |#1| (-190)) (((-1001 (-1090)) |#1|) . T) (((-1001 (-1090)) $) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
+((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-470 (-1001 (-1090)))) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
(((|#1|) . T))
-(((|#1| (-469 (-1000 (-1089)))) . T))
-((((-1038 |#1| (-1089))) . T) (((-1000 (-1089))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-1089)) . T))
-((((-1038 |#1| (-1089))) . T) (((-484)) . T) (((-1000 (-1089))) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-1089)) . T))
-(((|#1| (-1089) (-1000 (-1089)) (-469 (-1000 (-1089)))) . T))
+(((|#1| (-470 (-1001 (-1090)))) . T))
+((((-1039 |#1| (-1090))) . T) (((-1001 (-1090))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-1090)) . T))
+((((-1039 |#1| (-1090))) . T) (((-485)) . T) (((-1001 (-1090))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-1090)) . T))
+(((|#1| (-1090) (-1001 (-1090)) (-470 (-1001 (-1090)))) . T))
((($) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-583 |#1|)) |has| |#1| (-755)))
-(|has| |#1| (-1013))
-(|has| |#1| (-1013))
-(|has| |#1| (-1013))
-((((-772)) |has| |#1| (-1013)))
-(|has| |#1| (-1013))
+(((|#1| (-584 |#1|)) |has| |#1| (-756)))
+(|has| |#1| (-1014))
+(|has| |#1| (-1014))
+(|has| |#1| (-1014))
+((((-773)) |has| |#1| (-1014)))
+(|has| |#1| (-1014))
(((|#1|) . T))
(((|#1|) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-(|has| (-1001 |#1|) (-1013))
-((((-772)) |has| (-1001 |#1|) (-1013)))
-(|has| (-1001 |#1|) (-1013))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(|has| (-1002 |#1|) (-1014))
+((((-773)) |has| (-1002 |#1|) (-1014)))
+(|has| (-1002 |#1|) (-1014))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-773)) . T))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
(((|#1|) . T))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
+((((-474)) |has| |#1| (-554 (-474))))
(((|#1|) . T))
-(|has| |#1| (-319))
+(|has| |#1| (-320))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-583 $)) . T) (((-1072)) . T) (((-1089)) . T) (((-484)) . T) (((-179)) . T) (((-772)) . T))
-((((-484) $) . T) (((-583 (-484)) $) . T))
-((((-772)) . T))
-((((-1072) (-1089) (-484) (-179) (-772)) . T))
-((((-583 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-((((-484) $) . T) (((-583 (-484)) $) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-584 $)) . T) (((-1073)) . T) (((-1090)) . T) (((-485)) . T) (((-179)) . T) (((-773)) . T))
+((((-485) $) . T) (((-584 (-485)) $) . T))
+((((-773)) . T))
+((((-1073) (-1090) (-485) (-179) (-773)) . T))
+((((-584 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+((((-485) $) . T) (((-584 (-485)) $) . T))
+((((-773)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
-(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-319)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-319)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961)))
-(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))))
-((((-772)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-552 (-772))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-319)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013))) (((-1178 |#3|)) . T))
-(((|#3|) |has| |#3| (-961)))
-((((-1089)) -12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))))
-((((-1089)) OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))))
-((($ (-1089)) OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))))
-(((|#3|) |has| |#3| (-961)))
-(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))
-((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-((((-484)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961)))
-(-12 (|has| |#3| (-190)) (|has| |#3| (-961)))
-(|has| |#3| (-319))
+(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962)))
+(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))))
+((((-773)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-553 (-773))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014))) (((-1179 |#3|)) . T))
+(((|#3|) |has| |#3| (-962)))
+((((-1090)) -12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))))
+((((-1090)) OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))))
+((($ (-1090)) OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))))
+(((|#3|) |has| |#3| (-962)))
+(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))
+((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+((((-485)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962)))
+(-12 (|has| |#3| (-190)) (|has| |#3| (-962)))
+(|has| |#3| (-320))
(((|#3|) . T))
-(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
-(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
+(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
+(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
(((|#3|) . T))
-(((|#3|) |has| |#3| (-961)))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))))
-(((|#3|) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))))
-(((|#3|) |has| |#3| (-1013)))
-((((-484)) OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1013)) (((-349 (-484))) -12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))))
-(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (((-349 (-484))) -12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))))
-((((-484) |#3|) . T))
-((((-484) |#3|) . T))
-((((-484) |#3|) . T))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663))))
+(((|#3|) |has| |#3| (-962)))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
+(((|#3|) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
+(((|#3|) |has| |#3| (-1014)))
+((((-485)) OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))))
+(((|#3|) |has| |#3| (-1014)) (((-485)) -12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))))
+((((-485) |#3|) . T))
+((((-485) |#3|) . T))
+((((-485) |#3|) . T))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312))))
-(|has| |#3| (-717))
-(|has| |#3| (-717))
-(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
-(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
-(|has| |#3| (-717))
-(|has| |#3| (-717))
+(|has| |#3| (-718))
+(|has| |#3| (-718))
+(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
+(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
+(|has| |#3| (-718))
+(|has| |#3| (-718))
(((|#3|) |has| |#3| (-312)))
(((|#1| |#3|) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -3196,785 +3196,785 @@
((($) . T))
((($) . T))
((($) . T))
-((((-484)) . T) (($) . T))
-((((-484)) . T))
-((($) . T) (((-484)) . T))
-((((-484)) . T))
-((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T))
-((((-484)) . T))
-((((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) (((-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) (((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))))
+((((-485)) . T) (($) . T))
+((((-485)) . T))
+((($) . T) (((-485)) . T))
+((((-485)) . T))
+((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
+((((-485)) . T))
+((((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) (((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))))
((($) . T))
-(((|#1| (-469 |#2|)) . T))
+(((|#1| (-470 |#2|)) . T))
(((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))))
-(((|#1| (-469 |#2|)) . T))
-(((|#1|) . T))
-((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
-(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
-(OR (|has| |#1| (-391)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
+(((|#1| (-470 |#2|)) . T))
+(((|#1|) . T))
+((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
(((|#2|) . T))
((($ |#2|) . T))
(((|#2|) . T))
-((((-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#2| (-796 (-329)))) (((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T) ((|#2|) . T))
-((((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#2|) . T))
-(((|#1| (-469 |#2|) |#2|) . T))
+((((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) (((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) ((|#2|) . T))
+((((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#2|) . T))
+(((|#1| (-470 |#2|) |#2|) . T))
((($) . T))
((($ $) . T) ((|#2| $) . T))
(((|#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
((($ |#2|) . T))
(((|#2|) . T))
-(((|#1| (-469 |#2|) |#2|) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T))
-((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T))
+(((|#1| (-470 |#2|) |#2|) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
+((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
-((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-((((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-(((|#1| (-469 |#2|)) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
+((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+(((|#1| (-470 |#2|)) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
(((|#1| |#2|) . T))
-((((-772)) . T))
-(((|#1|) . T))
-((((-1094)) . T))
-((((-1094)) . T))
-((((-1094)) . T) (((-772)) . T))
-((((-772)) . T))
-((((-1053 |#1| |#2|)) . T))
-((((-1053 |#1| |#2|)) . T))
-((((-1053 |#1| |#2|) (-1053 |#1| |#2|)) |has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))))
-((((-1053 |#1| |#2|)) |has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))))
-((((-772)) . T))
-((((-1053 |#1| |#2|)) . T))
-((((-473)) |has| |#2| (-553 (-473))))
-(((|#2|) |has| |#2| (-6 (-3996 "*"))))
+((((-773)) . T))
+(((|#1|) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T) (((-773)) . T))
+((((-773)) . T))
+((((-1054 |#1| |#2|)) . T))
+((((-1054 |#1| |#2|)) . T))
+((((-1054 |#1| |#2|) (-1054 |#1| |#2|)) |has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))))
+((((-1054 |#1| |#2|)) |has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))))
+((((-773)) . T))
+((((-1054 |#1| |#2|)) . T))
+((((-474)) |has| |#2| (-554 (-474))))
+(((|#2|) |has| |#2| (-6 (-3997 "*"))))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-630 |#2|)) . T) (((-772)) . T))
-((($) . T) (((-484)) . T) ((|#2|) . T))
-(((|#2|) OR (|has| |#2| (-6 (-3996 "*"))) (|has| |#2| (-146))))
-(((|#2|) OR (|has| |#2| (-6 (-3996 "*"))) (|has| |#2| (-146))))
+((((-631 |#2|)) . T) (((-773)) . T))
+((($) . T) (((-485)) . T) ((|#2|) . T))
+(((|#2|) OR (|has| |#2| (-6 (-3997 "*"))) (|has| |#2| (-146))))
+(((|#2|) OR (|has| |#2| (-6 (-3997 "*"))) (|has| |#2| (-146))))
(((|#2|) . T))
-((((-1089)) |has| |#2| (-809 (-1089))))
-((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))))
-((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))))
+((((-1090)) |has| |#2| (-810 (-1090))))
+((((-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))))
+((($ (-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))))
(((|#2|) . T))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(|has| |#2| (-190))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
-(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
(((|#2|) . T))
-((((-484)) . T) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-950 (-349 (-484)))))
-(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-349 (-484))) |has| |#2| (-950 (-349 (-484)))))
+((((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
+(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
(((|#2|) . T))
(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-473)) |has| |#4| (-553 (-473))))
+((((-474)) |has| |#4| (-554 (-474))))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
(((|#4|) . T))
-((((-772)) . T) (((-583 |#4|)) . T))
+((((-773)) . T) (((-584 |#4|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-772)) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-583 |#1|)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-584 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
(((|#1|) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-((((-484) |#1|) . T))
-((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
-((((-484) |#1|) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+((((-485) |#1|) . T))
+((((-1146 (-485)) $) . T) (((-485) |#1|) . T))
+((((-485) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-117)) . T))
((((-117)) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-117)) . T))
((((-117)) . T))
-((((-484) (-117)) . T))
-((((-484) (-117)) . T))
-((((-484) (-117)) . T) (((-1145 (-484)) $) . T))
+((((-485) (-117)) . T))
+((((-485) (-117)) . T))
+((((-485) (-117)) . T) (((-1146 (-485)) $) . T))
((((-117)) . T))
((((-117)) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-772)) . T))
-((((-1072) |#1|) . T))
-((((-1072) |#1|) . T))
-((((-1072) |#1|) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-1072) |#1|) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T))
-((((-1072) |#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1088 |#1| |#2| |#3|)) . T))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|)))))
-((((-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|)))) (((-1089) (-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-455 (-1089) (-1088 |#1| |#2| |#3|)))))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-773)) . T))
+((((-1073) |#1|) . T))
+((((-1073) |#1|) . T))
+((((-1073) |#1|) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-1073) |#1|) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T))
+((((-1073) |#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) . T))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|)))))
+((((-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|)))) (((-1090) (-1089 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-456 (-1090) (-1089 |#1| |#2| |#3|)))))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
-((($) OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
-(OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((($ (-1175 |#2|)) . T) (($ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
-((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
-((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)))
-(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-120))))
-(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-118))))
-((((-772)) . T))
-(((|#1|) . T))
-((((-1088 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-241 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T))
-(((|#1| (-484) (-994)) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-1088 |#1| |#2| |#3|)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-484)) . T))
-(((|#1| (-484)) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(((|#1| (-1088 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-772)) . T))
-((((-349 $) (-349 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T))
+(OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
+((($) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
+(OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((($ (-1176 |#2|)) . T) (($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090)))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090)))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090)))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-120))))
+(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-118))))
+((((-773)) . T))
+(((|#1|) . T))
+((((-1089 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-241 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T))
+(((|#1| (-485) (-995)) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-1089 |#1| |#2| |#3|)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-485)) . T))
+(((|#1| (-485)) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-1089 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-773)) . T))
+((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
(|has| |#1| (-312))
-(((|#1| (-694) (-994)) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-994)) . T))
-((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-994)) . T))
-((((-1089)) |has| |#1| (-809 (-1089))) (((-994)) . T))
-((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-694)) . T))
+(((|#1| (-695) (-995)) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (((-995)) . T))
+((($ (-1090)) OR (|has| |#1| (-810 (-1090))) (|has| |#1| (-812 (-1090)))) (($ (-995)) . T))
+((((-1090)) |has| |#1| (-810 (-1090))) (((-995)) . T))
+((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-695)) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T))
-((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
-(((|#1| (-694)) . T))
-((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-1065))
-(((|#1|) . T))
-((((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-((($ $) . T) (((-349 (-484)) |#1|) . T))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-(((|#1| (-349 (-484)) (-994)) . T))
+((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T))
+((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+(((|#1| (-695)) . T))
+((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1066))
+(((|#1|) . T))
+((((-1089 |#1| |#2| |#3|)) . T) (((-1082 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+((($ $) . T) (((-350 (-485)) |#1|) . T))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+(((|#1| (-350 (-485)) (-995)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#1| (-349 (-484))) . T))
-(((|#1| (-349 (-484))) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
+(((|#1| (-350 (-485))) . T))
+(((|#1| (-350 (-485))) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
-((((-772)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))))
-(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+((((-773)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
+(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-((((-1175 |#2|)) . T) (((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+((((-1176 |#2|)) . T) (((-1089 |#1| |#2| |#3|)) . T) (((-1082 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1| (-1081 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(((|#1| (-694)) . T))
-(((|#1| (-694)) . T))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+(((|#1| (-1082 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-695)) . T))
+(((|#1| (-695)) . T))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1| (-694) (-994)) . T))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((((-694) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-694) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-694) |#1|))))
-((((-772)) . T))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T))
-(|has| |#1| (-15 * (|#1| (-694) |#1|)))
-(((|#1|) . T))
-((((-329)) . T) (((-484)) . T))
-((((-446)) . T))
-((((-446)) . T) (((-1072)) . T))
-((((-800 (-329))) . T) (((-800 (-484))) . T) (((-1089)) . T) (((-473)) . T))
-((((-772)) . T))
-(((|#1| (-884)) . T))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1| (-695) (-995)) . T))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((((-695) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-695) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-695) |#1|))))
+((((-773)) . T))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T))
+(|has| |#1| (-15 * (|#1| (-695) |#1|)))
+(((|#1|) . T))
+((((-330)) . T) (((-485)) . T))
+((((-447)) . T))
+((((-447)) . T) (((-1073)) . T))
+((((-801 (-330))) . T) (((-801 (-485))) . T) (((-1090)) . T) (((-474)) . T))
+((((-773)) . T))
+(((|#1| (-885)) . T))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((((-772)) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T))
-((($) |has| |#1| (-495)) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-484)) . T))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))))
-(((|#1| (-884)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1072)) . T) (((-446)) . T) (((-179)) . T) (((-484)) . T))
-((((-1072)) . T) (((-446)) . T) (((-179)) . T) (((-484)) . T))
-((((-473)) . T) (((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-772)) . T))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((((-773)) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
+((($) |has| |#1| (-496)) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+(((|#1| (-885)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1073)) . T) (((-447)) . T) (((-179)) . T) (((-485)) . T))
+((((-1073)) . T) (((-447)) . T) (((-179)) . T) (((-485)) . T))
+((((-474)) . T) (((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-337) (-1072)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-338) (-1073)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(|has| |#1| (-1014))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
(((|#1|) . T))
((($) . T))
-((($ $) . T) (((-1089) $) . T))
-((((-1089)) . T))
-((((-772)) . T))
-((($ (-1089)) . T))
-((((-1089)) . T))
-(((|#1| (-469 (-1089)) (-1089)) . T))
-((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T))
-((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T))
+((($ $) . T) (((-1090) $) . T))
+((((-1090)) . T))
+((((-773)) . T))
+((($ (-1090)) . T))
+((((-1090)) . T))
+(((|#1| (-470 (-1090)) (-1090)) . T))
+((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
+((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
-((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-((((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
-(((|#1| (-469 (-1089))) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(((|#1| (-1089)) . T))
-(|has| |#1| (-1013))
-(|has| |#1| (-1013))
-(|has| |#1| (-1013))
-(|has| |#1| (-1013))
-((((-869 |#1|)) . T))
-((((-772)) |has| |#1| (-552 (-772))) (((-869 |#1|)) . T))
-((((-869 |#1|)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1168 |#1| |#2| |#3|)) . T))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|)))))
-((((-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|)))) (((-1089) (-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-455 (-1089) (-1168 |#1| |#2| |#3|)))))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
+((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
+(((|#1| (-470 (-1090))) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-1090)) . T))
+(|has| |#1| (-1014))
+(|has| |#1| (-1014))
+(|has| |#1| (-1014))
+(|has| |#1| (-1014))
+((((-870 |#1|)) . T))
+((((-773)) |has| |#1| (-553 (-773))) (((-870 |#1|)) . T))
+((((-870 |#1|)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) . T))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|)))))
+((((-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|)))) (((-1090) (-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-456 (-1090) (-1169 |#1| |#2| |#3|)))))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
-((($) OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
-(OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((($ (-1175 |#2|)) . T) (($ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
-((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
-((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)))
-(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-120))))
-(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-118))))
-((((-772)) . T))
-(((|#1|) . T))
-((((-1168 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-241 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T))
-(((|#1| (-484) (-994)) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-1168 |#1| |#2| |#3|)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-484)) . T))
-(((|#1| (-484)) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(((|#1| (-1168 |#1| |#2| |#3|)) . T))
+(OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
+((($) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
+(OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((($ (-1176 |#2|)) . T) (($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090)))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090)))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090)))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-120))))
+(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-118))))
+((((-773)) . T))
+(((|#1|) . T))
+((((-1169 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-241 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T))
+(((|#1| (-485) (-995)) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-1169 |#1| |#2| |#3|)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-485)) . T))
+(((|#1| (-485)) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-1169 |#1| |#2| |#3|)) . T))
(((|#2|) |has| |#1| (-312)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-1065)))
-(((|#2|) . T) (((-1089)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) (((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) (((-349 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-933)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-821)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-1066)))
+(((|#2|) . T) (((-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1090)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) (((-350 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-934)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-822)))
(((|#2|) |has| |#1| (-312)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
-(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-756))))
-(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-756))))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
-((((-329)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-329)))) (((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
+(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-757))))
+(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-757))))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
+((((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))))
(((|#2|) |has| |#1| (-312)))
-((((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((|#2|) |has| |#1| (-312)))
+((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((|#2|) |has| |#1| (-312)))
(((|#2|) |has| |#1| (-312)))
(((|#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))))
-(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1089) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1089) |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1090) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1090) |#2|))))
(((|#2|) |has| |#1| (-312)))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
-((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
-(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
+((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
+(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
(((|#2|) |has| |#1| (-312)))
-((($ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
-((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
-((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090)))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090)))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1090)))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
(((|#2|) |has| |#1| (-312)))
-((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) (((-329)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) (((-800 (-329))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-329))))) (((-800 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) (((-473)) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))))
-(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740))))
+((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) (((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) (((-801 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) (((-801 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) (((-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))))
+(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741))))
(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118))))
-((((-772)) . T))
-(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-484) |#1|) . T))
-(((|#1| (-484) (-994)) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T))
-((((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-(((|#2|) . T) (((-1089)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-484)) . T))
-(((|#1| (-484)) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
+((((-773)) . T))
+(((|#1|) . T))
+(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-485) |#1|) . T))
+(((|#1| (-485) (-995)) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T))
+((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+(((|#2|) . T) (((-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1090)))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-485)) . T))
+(((|#1| (-485)) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
(((|#1| |#2|) . T))
-(((|#1| (-1068 |#1|)) |has| |#1| (-755)))
-(|has| |#1| (-1013))
-(|has| |#1| (-1013))
-(|has| |#1| (-1013))
-((((-772)) |has| |#1| (-1013)))
-(|has| |#1| (-1013))
+(((|#1| (-1069 |#1|)) |has| |#1| (-756)))
+(|has| |#1| (-1014))
+(|has| |#1| (-1014))
+(|has| |#1| (-1014))
+((((-773)) |has| |#1| (-1014)))
+(|has| |#1| (-1014))
(((|#1|) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
((($) . T))
-((((-772)) . T))
-((((-349 $) (-349 $)) |has| |#2| (-495)) (($ $) . T) ((|#2| |#2|) . T))
+((((-773)) . T))
+((((-350 $) (-350 $)) |has| |#2| (-496)) (($ $) . T) ((|#2| |#2|) . T))
(|has| |#2| (-312))
-(OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
(|has| |#2| (-312))
-(((|#2| (-694) (-994)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))) (((-994)) . T))
-((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))) (($ (-994)) . T))
-((((-1089)) |has| |#2| (-809 (-1089))) (((-994)) . T))
-((((-484)) |has| |#2| (-580 (-484))) ((|#2|) . T))
-(((|#2|) . T))
-(((|#2| (-694)) . T))
+(((|#2| (-695) (-995)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))) (((-995)) . T))
+((($ (-1090)) OR (|has| |#2| (-810 (-1090))) (|has| |#2| (-812 (-1090)))) (($ (-995)) . T))
+((((-1090)) |has| |#2| (-810 (-1090))) (((-995)) . T))
+((((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2| (-695)) . T))
(|has| |#2| (-120))
(|has| |#2| (-118))
-((((-1175 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-994)) . T) ((|#2|) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))))
-((($) OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))))
-((($) OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))))
-((($) . T) (((-484)) |has| |#2| (-580 (-484))) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))))
-((((-484)) . T) (($) . T) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))))
-((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))))
-((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2| |#2|) . T) (((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484)))))
-((($) OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))))
-(((|#2|) . T))
-((((-994)) . T) ((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-349 (-484))) |has| |#2| (-950 (-349 (-484)))))
-(((|#2| (-694)) . T))
-((((-994) |#2|) . T) (((-994) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#2| (-1065))
-(((|#2|) . T))
-((((-1168 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-((($ $) . T) (((-349 (-484)) |#1|) . T))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-(((|#1| (-349 (-484)) (-994)) . T))
+((((-1176 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-995)) . T) ((|#2|) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))))
+((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
+((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
+((($) . T) (((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
+((((-485)) . T) (($) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
+((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
+((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2| |#2|) . T) (((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
+((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
+(((|#2|) . T))
+((((-995)) . T) ((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
+(((|#2| (-695)) . T))
+((((-995) |#2|) . T) (((-995) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#2| (-1066))
+(((|#2|) . T))
+((((-1169 |#1| |#2| |#3|)) . T) (((-1139 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+((($ $) . T) (((-350 (-485)) |#1|) . T))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+(((|#1| (-350 (-485)) (-995)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#1| (-349 (-484))) . T))
-(((|#1| (-349 (-484))) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
+(((|#1| (-350 (-485))) . T))
+(((|#1| (-350 (-485))) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
-((((-772)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))))
-(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+((((-773)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
+(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-((((-1175 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+((((-1176 |#2|)) . T) (((-1169 |#1| |#2| |#3|)) . T) (((-1139 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1| (-1138 |#1| |#2| |#3|)) . T))
+(((|#1| (-1139 |#1| |#2| |#3|)) . T))
(((|#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))
-((($ $) . T) (((-349 (-484)) |#1|) . T))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))))
-(((|#1| (-349 (-484)) (-994)) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
+((($ $) . T) (((-350 (-485)) |#1|) . T))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((($ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
+(((|#1| (-350 (-485)) (-995)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#1| (-349 (-484))) . T))
-(((|#1| (-349 (-484))) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
+(((|#1| (-350 (-485))) . T))
+(((|#1| (-350 (-485))) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
-((((-772)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))))
-(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+((((-773)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
+(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
(((|#1| |#2|) . T))
-((((-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T))
-(|has| (-1159 |#2| |#3| |#4|) (-120))
-(|has| (-1159 |#2| |#3| |#4|) (-118))
-((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))))
-((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))))
-((((-772)) . T))
-((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))))
-((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))))
-((($ $) . T) (((-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) . T) (((-349 (-484)) (-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))))
-((((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) (((-484)) . T) (($) . T))
-((((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) (($) . T))
-((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) (((-484)) . T))
-((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))))
-((((-1159 |#2| |#3| |#4|)) . T))
-((((-1159 |#2| |#3| |#4|)) . T))
-((((-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(|has| |#1| (-38 (-349 (-484))))
-(((|#1| (-694)) . T))
-(((|#1| (-694)) . T))
-(|has| |#1| (-495))
-(|has| |#1| (-495))
-(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+((((-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T))
+(|has| (-1160 |#2| |#3| |#4|) (-120))
+(|has| (-1160 |#2| |#3| |#4|) (-118))
+((($) . T) (((-1160 |#2| |#3| |#4|)) |has| (-1160 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))))
+((($) . T) (((-1160 |#2| |#3| |#4|)) |has| (-1160 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))))
+((((-773)) . T))
+((($) . T) (((-1160 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))))
+((($) . T) (((-1160 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))))
+((($ $) . T) (((-1160 |#2| |#3| |#4|) (-1160 |#2| |#3| |#4|)) . T) (((-350 (-485)) (-350 (-485))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))))
+((((-1160 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
+((((-1160 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))) (($) . T))
+((($) . T) (((-1160 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))) (((-485)) . T))
+((($) . T) (((-1160 |#2| |#3| |#4|)) |has| (-1160 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))))
+((((-1160 |#2| |#3| |#4|)) . T))
+((((-1160 |#2| |#3| |#4|)) . T))
+((((-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-695)) . T))
+(((|#1| (-695)) . T))
+(|has| |#1| (-496))
+(|has| |#1| (-496))
+(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))))
-(((|#1| (-694) (-994)) . T))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((((-694) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-694) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-694) |#1|))))
-((((-772)) . T))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T))
-((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T))
-(|has| |#1| (-15 * (|#1| (-694) |#1|)))
-(((|#1|) . T))
-((((-1089)) . T) (((-772)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-484) |#1|) . T))
-((((-484) |#1|) . T))
-((((-484) |#1|) . T) (((-1145 (-484)) $) . T))
-((((-473)) |has| |#1| (-553 (-473))))
-(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
-((((-1094)) . T))
-((((-772)) . T) (((-1094)) . T))
-((((-1094)) . T))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
+(((|#1| (-695) (-995)) . T))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((((-695) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-695) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-695) |#1|))))
+((((-773)) . T))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
+((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T))
+(|has| |#1| (-15 * (|#1| (-695) |#1|)))
+(((|#1|) . T))
+((((-1090)) . T) (((-773)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-485) |#1|) . T))
+((((-485) |#1|) . T))
+((((-485) |#1|) . T) (((-1146 (-485)) $) . T))
+((((-474)) |has| |#1| (-554 (-474))))
+(((|#1|) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-773)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -3982,18 +3982,18 @@
(((|#1| |#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#4|) . T))
-(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-484)) . T))
+(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-485)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-(((|#4|) . T) (((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
+(((|#4|) . T) (((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-473)) |has| |#4| (-553 (-473))))
+((((-474)) |has| |#4| (-554 (-474))))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
(((|#4|) . T))
-((((-772)) . T) (((-583 |#4|)) . T))
+((((-773)) . T) (((-584 |#4|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-146)))
@@ -4002,15 +4002,15 @@
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-484)) . T) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-485)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2|) |has| |#2| (-146)))
-((((-739 |#1|)) . T))
-(((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T))
-(((|#2| (-739 |#1|)) . T))
-(((|#2| (-803 |#1|)) . T))
+((((-740 |#1|)) . T))
+(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T))
+(((|#2| (-740 |#1|)) . T))
+(((|#2| (-804 |#1|)) . T))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2| |#2|) . T))
@@ -4020,12 +4020,12 @@
(((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
(((|#2|) . T) (($) . T))
-((((-772)) . T))
-(((|#2|) . T) (($) . T) (((-484)) . T))
-((((-803 |#1|)) . T) ((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T))
-((((-803 |#1|)) . T) (((-739 |#1|)) . T))
+((((-773)) . T))
+(((|#2|) . T) (($) . T) (((-485)) . T))
+((((-804 |#1|)) . T) ((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T))
+((((-804 |#1|)) . T) (((-740 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1089) |#1|) . T))
+((((-1090) |#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#1|) . T))
(((|#1|) . T))
@@ -4034,11 +4034,11 @@
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-484)) . T))
-(((|#1|) . T) (((-484)) . T) (((-739 (-1089))) . T))
-((((-739 (-1089))) . T))
-((((-1089) |#1|) . T))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-485)) . T))
+(((|#1|) . T) (((-485)) . T) (((-740 (-1090))) . T))
+((((-740 (-1090))) . T))
+((((-1090) |#1|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-146)))
@@ -4048,10 +4048,10 @@
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
-(((|#2|) . T) ((|#1|) . T) (((-484)) . T))
+(((|#2|) . T) ((|#1|) . T) (((-485)) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-484)) . T))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-485)) . T))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2| |#2|) . T))
@@ -4061,20 +4061,20 @@
(((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
(((|#2|) . T) (($) . T))
-((((-772)) . T))
-(((|#2|) . T) (($) . T) (((-484)) . T))
-(((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T))
-((((-739 |#1|)) . T))
+((((-773)) . T))
+(((|#2|) . T) (($) . T) (((-485)) . T))
+(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T))
+((((-740 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-884)) . T))
-((((-884)) . T))
-((((-884)) . T) (((-772)) . T))
-((((-484)) . T))
+((((-885)) . T))
+((((-885)) . T))
+((((-885)) . T) (((-773)) . T))
+((((-485)) . T))
((($ $) . T))
((($) . T))
((($) . T))
-((((-772)) . T))
-((((-484)) . T) (($) . T))
+((((-773)) . T))
+((((-485)) . T) (($) . T))
((($) . T))
-((((-484)) . T))
-(((-1208 . -146) T) ((-1208 . -555) 199769) ((-1208 . -970) T) ((-1208 . -1025) T) ((-1208 . -1060) T) ((-1208 . -663) T) ((-1208 . -961) T) ((-1208 . -590) 199756) ((-1208 . -588) 199728) ((-1208 . -104) T) ((-1208 . -25) T) ((-1208 . -72) T) ((-1208 . -13) T) ((-1208 . -1128) T) ((-1208 . -552) 199710) ((-1208 . -1013) T) ((-1208 . -23) T) ((-1208 . -21) T) ((-1208 . -968) 199697) ((-1208 . -963) 199684) ((-1208 . -82) 199669) ((-1208 . -319) T) ((-1208 . -553) 199651) ((-1208 . -1065) T) ((-1204 . -1013) T) ((-1204 . -552) 199618) ((-1204 . -1128) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -429) 199600) ((-1204 . -555) 199582) ((-1203 . -1201) 199561) ((-1203 . -950) 199538) ((-1203 . -555) 199487) ((-1203 . -961) T) ((-1203 . -663) T) ((-1203 . -1060) T) ((-1203 . -1025) T) ((-1203 . -970) T) ((-1203 . -21) T) ((-1203 . -588) 199446) ((-1203 . -23) T) ((-1203 . -1013) T) ((-1203 . -552) 199428) ((-1203 . -1128) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -25) T) ((-1203 . -104) T) ((-1203 . -590) 199402) ((-1203 . -1193) 199386) ((-1203 . -654) 199356) ((-1203 . -582) 199326) ((-1203 . -968) 199310) ((-1203 . -963) 199294) ((-1203 . -82) 199273) ((-1203 . -38) 199243) ((-1203 . -1198) 199222) ((-1202 . -961) T) ((-1202 . -663) T) ((-1202 . -1060) T) ((-1202 . -1025) T) ((-1202 . -970) T) ((-1202 . -21) T) ((-1202 . -588) 199181) ((-1202 . -23) T) ((-1202 . -1013) T) ((-1202 . -552) 199163) ((-1202 . -1128) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -590) 199137) ((-1202 . -555) 199093) ((-1202 . -1193) 199077) ((-1202 . -654) 199047) ((-1202 . -582) 199017) ((-1202 . -968) 199001) ((-1202 . -963) 198985) ((-1202 . -82) 198964) ((-1202 . -38) 198934) ((-1202 . -334) 198913) ((-1202 . -950) 198897) ((-1200 . -1201) 198873) ((-1200 . -950) 198847) ((-1200 . -555) 198793) ((-1200 . -961) T) ((-1200 . -663) T) ((-1200 . -1060) T) ((-1200 . -1025) T) ((-1200 . -970) T) ((-1200 . -21) T) ((-1200 . -588) 198752) ((-1200 . -23) T) ((-1200 . -1013) T) ((-1200 . -552) 198734) ((-1200 . -1128) T) ((-1200 . -13) T) ((-1200 . -72) T) ((-1200 . -25) T) ((-1200 . -104) T) ((-1200 . -590) 198708) ((-1200 . -1193) 198692) ((-1200 . -654) 198662) ((-1200 . -582) 198632) ((-1200 . -968) 198616) ((-1200 . -963) 198600) ((-1200 . -82) 198579) ((-1200 . -38) 198549) ((-1200 . -1198) 198525) ((-1199 . -1201) 198504) ((-1199 . -950) 198461) ((-1199 . -555) 198390) ((-1199 . -961) T) ((-1199 . -663) T) ((-1199 . -1060) T) ((-1199 . -1025) T) ((-1199 . -970) T) ((-1199 . -21) T) ((-1199 . -588) 198349) ((-1199 . -23) T) ((-1199 . -1013) T) ((-1199 . -552) 198331) ((-1199 . -1128) T) ((-1199 . -13) T) ((-1199 . -72) T) ((-1199 . -25) T) ((-1199 . -104) T) ((-1199 . -590) 198305) ((-1199 . -1193) 198289) ((-1199 . -654) 198259) ((-1199 . -582) 198229) ((-1199 . -968) 198213) ((-1199 . -963) 198197) ((-1199 . -82) 198176) ((-1199 . -38) 198146) ((-1199 . -1198) 198125) ((-1199 . -334) 198097) ((-1194 . -334) 198069) ((-1194 . -555) 198018) ((-1194 . -950) 197995) ((-1194 . -582) 197965) ((-1194 . -654) 197935) ((-1194 . -590) 197909) ((-1194 . -588) 197868) ((-1194 . -104) T) ((-1194 . -25) T) ((-1194 . -72) T) ((-1194 . -13) T) ((-1194 . -1128) T) ((-1194 . -552) 197850) ((-1194 . -1013) T) ((-1194 . -23) T) ((-1194 . -21) T) ((-1194 . -968) 197834) ((-1194 . -963) 197818) ((-1194 . -82) 197797) ((-1194 . -1201) 197776) ((-1194 . -961) T) ((-1194 . -663) T) ((-1194 . -1060) T) ((-1194 . -1025) T) ((-1194 . -970) T) ((-1194 . -1193) 197760) ((-1194 . -38) 197730) ((-1194 . -1198) 197709) ((-1192 . -1123) 197678) ((-1192 . -552) 197640) ((-1192 . -124) 197624) ((-1192 . -34) T) ((-1192 . -13) T) ((-1192 . -1128) T) ((-1192 . -72) T) ((-1192 . -260) 197562) ((-1192 . -455) 197495) ((-1192 . -1013) T) ((-1192 . -428) 197479) ((-1192 . -553) 197440) ((-1192 . -317) 197424) ((-1192 . -889) 197393) ((-1191 . -961) T) ((-1191 . -663) T) ((-1191 . -1060) T) ((-1191 . -1025) T) ((-1191 . -970) T) ((-1191 . -21) T) ((-1191 . -588) 197338) ((-1191 . -23) T) ((-1191 . -1013) T) ((-1191 . -552) 197307) ((-1191 . -1128) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -25) T) ((-1191 . -104) T) ((-1191 . -590) 197267) ((-1191 . -555) 197209) ((-1191 . -429) 197193) ((-1191 . -38) 197163) ((-1191 . -82) 197128) ((-1191 . -963) 197098) ((-1191 . -968) 197068) ((-1191 . -582) 197038) ((-1191 . -654) 197008) ((-1190 . -995) T) ((-1190 . -429) 196989) ((-1190 . -552) 196955) ((-1190 . -555) 196936) ((-1190 . -1013) T) ((-1190 . -1128) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -64) T) ((-1189 . -995) T) ((-1189 . -429) 196917) ((-1189 . -552) 196883) ((-1189 . -555) 196864) ((-1189 . -1013) T) ((-1189 . -1128) T) ((-1189 . -13) T) ((-1189 . -72) T) ((-1189 . -64) T) ((-1184 . -552) 196846) ((-1182 . -1013) T) ((-1182 . -552) 196828) ((-1182 . -1128) T) ((-1182 . -13) T) ((-1182 . -72) T) ((-1181 . -1013) T) ((-1181 . -552) 196810) ((-1181 . -1128) T) ((-1181 . -13) T) ((-1181 . -72) T) ((-1178 . -1177) 196794) ((-1178 . -323) 196778) ((-1178 . -759) 196757) ((-1178 . -756) 196736) ((-1178 . -124) 196720) ((-1178 . -553) 196681) ((-1178 . -241) 196633) ((-1178 . -538) 196610) ((-1178 . -243) 196587) ((-1178 . -593) 196571) ((-1178 . -428) 196555) ((-1178 . -1013) 196508) ((-1178 . -455) 196441) ((-1178 . -260) 196379) ((-1178 . -552) 196294) ((-1178 . -72) 196228) ((-1178 . -1128) T) ((-1178 . -13) T) ((-1178 . -34) T) ((-1178 . -317) 196212) ((-1178 . -19) 196196) ((-1175 . -1013) T) ((-1175 . -552) 196162) ((-1175 . -1128) T) ((-1175 . -13) T) ((-1175 . -72) T) ((-1168 . -1171) 196146) ((-1168 . -190) 196105) ((-1168 . -555) 195987) ((-1168 . -590) 195912) ((-1168 . -588) 195822) ((-1168 . -104) T) ((-1168 . -25) T) ((-1168 . -72) T) ((-1168 . -552) 195804) ((-1168 . -1013) T) ((-1168 . -23) T) ((-1168 . -21) T) ((-1168 . -970) T) ((-1168 . -1025) T) ((-1168 . -1060) T) ((-1168 . -663) T) ((-1168 . -961) T) ((-1168 . -186) 195757) ((-1168 . -13) T) ((-1168 . -1128) T) ((-1168 . -189) 195716) ((-1168 . -241) 195681) ((-1168 . -809) 195594) ((-1168 . -806) 195482) ((-1168 . -811) 195395) ((-1168 . -886) 195365) ((-1168 . -38) 195262) ((-1168 . -82) 195127) ((-1168 . -963) 195013) ((-1168 . -968) 194899) ((-1168 . -582) 194796) ((-1168 . -654) 194693) ((-1168 . -118) 194672) ((-1168 . -120) 194651) ((-1168 . -146) 194605) ((-1168 . -495) 194584) ((-1168 . -246) 194563) ((-1168 . -47) 194540) ((-1168 . -1157) 194517) ((-1168 . -35) 194483) ((-1168 . -66) 194449) ((-1168 . -239) 194415) ((-1168 . -432) 194381) ((-1168 . -1117) 194347) ((-1168 . -1114) 194313) ((-1168 . -915) 194279) ((-1165 . -277) 194223) ((-1165 . -950) 194189) ((-1165 . -354) 194155) ((-1165 . -38) 194012) ((-1165 . -555) 193886) ((-1165 . -590) 193775) ((-1165 . -588) 193649) ((-1165 . -970) T) ((-1165 . -1025) T) ((-1165 . -1060) T) ((-1165 . -663) T) ((-1165 . -961) T) ((-1165 . -82) 193499) ((-1165 . -963) 193388) ((-1165 . -968) 193277) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1013) T) ((-1165 . -552) 193259) ((-1165 . -1128) T) ((-1165 . -13) T) ((-1165 . -72) T) ((-1165 . -25) T) ((-1165 . -104) T) ((-1165 . -582) 193116) ((-1165 . -654) 192973) ((-1165 . -118) 192934) ((-1165 . -120) 192895) ((-1165 . -146) T) ((-1165 . -495) T) ((-1165 . -246) T) ((-1165 . -47) 192839) ((-1164 . -1163) 192818) ((-1164 . -312) 192797) ((-1164 . -1133) 192776) ((-1164 . -832) 192755) ((-1164 . -495) 192709) ((-1164 . -146) 192643) ((-1164 . -555) 192462) ((-1164 . -654) 192309) ((-1164 . -582) 192156) ((-1164 . -38) 192003) ((-1164 . -391) 191982) ((-1164 . -258) 191961) ((-1164 . -590) 191861) ((-1164 . -588) 191746) ((-1164 . -970) T) ((-1164 . -1025) T) ((-1164 . -1060) T) ((-1164 . -663) T) ((-1164 . -961) T) ((-1164 . -82) 191566) ((-1164 . -963) 191407) ((-1164 . -968) 191248) ((-1164 . -21) T) ((-1164 . -23) T) ((-1164 . -1013) T) ((-1164 . -552) 191230) ((-1164 . -1128) T) ((-1164 . -13) T) ((-1164 . -72) T) ((-1164 . -25) T) ((-1164 . -104) T) ((-1164 . -246) 191184) ((-1164 . -201) 191163) ((-1164 . -915) 191129) ((-1164 . -1114) 191095) ((-1164 . -1117) 191061) ((-1164 . -432) 191027) ((-1164 . -239) 190993) ((-1164 . -66) 190959) ((-1164 . -35) 190925) ((-1164 . -1157) 190895) ((-1164 . -47) 190865) ((-1164 . -120) 190844) ((-1164 . -118) 190823) ((-1164 . -886) 190786) ((-1164 . -811) 190692) ((-1164 . -806) 190596) ((-1164 . -809) 190502) ((-1164 . -241) 190460) ((-1164 . -189) 190412) ((-1164 . -186) 190358) ((-1164 . -190) 190310) ((-1164 . -1161) 190294) ((-1164 . -950) 190278) ((-1159 . -1163) 190239) ((-1159 . -312) 190218) ((-1159 . -1133) 190197) ((-1159 . -832) 190176) ((-1159 . -495) 190130) ((-1159 . -146) 190064) ((-1159 . -555) 189813) ((-1159 . -654) 189660) ((-1159 . -582) 189507) ((-1159 . -38) 189354) ((-1159 . -391) 189333) ((-1159 . -258) 189312) ((-1159 . -590) 189212) ((-1159 . -588) 189097) ((-1159 . -970) T) ((-1159 . -1025) T) ((-1159 . -1060) T) ((-1159 . -663) T) ((-1159 . -961) T) ((-1159 . -82) 188917) ((-1159 . -963) 188758) ((-1159 . -968) 188599) ((-1159 . -21) T) ((-1159 . -23) T) ((-1159 . -1013) T) ((-1159 . -552) 188581) ((-1159 . -1128) T) ((-1159 . -13) T) ((-1159 . -72) T) ((-1159 . -25) T) ((-1159 . -104) T) ((-1159 . -246) 188535) ((-1159 . -201) 188514) ((-1159 . -915) 188480) ((-1159 . -1114) 188446) ((-1159 . -1117) 188412) ((-1159 . -432) 188378) ((-1159 . -239) 188344) ((-1159 . -66) 188310) ((-1159 . -35) 188276) ((-1159 . -1157) 188246) ((-1159 . -47) 188216) ((-1159 . -120) 188195) ((-1159 . -118) 188174) ((-1159 . -886) 188137) ((-1159 . -811) 188043) ((-1159 . -806) 187924) ((-1159 . -809) 187830) ((-1159 . -241) 187788) ((-1159 . -189) 187740) ((-1159 . -186) 187686) ((-1159 . -190) 187638) ((-1159 . -1161) 187622) ((-1159 . -950) 187557) ((-1147 . -1154) 187541) ((-1147 . -1065) 187519) ((-1147 . -553) NIL) ((-1147 . -260) 187506) ((-1147 . -455) 187454) ((-1147 . -277) 187431) ((-1147 . -950) 187314) ((-1147 . -354) 187298) ((-1147 . -38) 187130) ((-1147 . -82) 186935) ((-1147 . -963) 186761) ((-1147 . -968) 186587) ((-1147 . -588) 186497) ((-1147 . -590) 186386) ((-1147 . -582) 186218) ((-1147 . -654) 186050) ((-1147 . -555) 185806) ((-1147 . -118) 185785) ((-1147 . -120) 185764) ((-1147 . -47) 185741) ((-1147 . -328) 185725) ((-1147 . -580) 185673) ((-1147 . -809) 185617) ((-1147 . -806) 185524) ((-1147 . -811) 185435) ((-1147 . -796) NIL) ((-1147 . -821) 185414) ((-1147 . -1133) 185393) ((-1147 . -861) 185363) ((-1147 . -832) 185342) ((-1147 . -495) 185256) ((-1147 . -246) 185170) ((-1147 . -146) 185064) ((-1147 . -391) 184998) ((-1147 . -258) 184977) ((-1147 . -241) 184904) ((-1147 . -190) T) ((-1147 . -104) T) ((-1147 . -25) T) ((-1147 . -72) T) ((-1147 . -552) 184886) ((-1147 . -1013) T) ((-1147 . -23) T) ((-1147 . -21) T) ((-1147 . -970) T) ((-1147 . -1025) T) ((-1147 . -1060) T) ((-1147 . -663) T) ((-1147 . -961) T) ((-1147 . -186) 184873) ((-1147 . -13) T) ((-1147 . -1128) T) ((-1147 . -189) T) ((-1147 . -225) 184857) ((-1147 . -184) 184841) ((-1145 . -1006) 184825) ((-1145 . -557) 184809) ((-1145 . -1013) 184787) ((-1145 . -552) 184754) ((-1145 . -1128) 184732) ((-1145 . -13) 184710) ((-1145 . -72) 184688) ((-1145 . -1007) 184645) ((-1143 . -1142) 184624) ((-1143 . -915) 184590) ((-1143 . -1114) 184556) ((-1143 . -1117) 184522) ((-1143 . -432) 184488) ((-1143 . -239) 184454) ((-1143 . -66) 184420) ((-1143 . -35) 184386) ((-1143 . -1157) 184363) ((-1143 . -47) 184340) ((-1143 . -555) 184095) ((-1143 . -654) 183915) ((-1143 . -582) 183735) ((-1143 . -590) 183546) ((-1143 . -588) 183404) ((-1143 . -968) 183218) ((-1143 . -963) 183032) ((-1143 . -82) 182820) ((-1143 . -38) 182640) ((-1143 . -886) 182610) ((-1143 . -241) 182510) ((-1143 . -1140) 182494) ((-1143 . -970) T) ((-1143 . -1025) T) ((-1143 . -1060) T) ((-1143 . -663) T) ((-1143 . -961) T) ((-1143 . -21) T) ((-1143 . -23) T) ((-1143 . -1013) T) ((-1143 . -552) 182476) ((-1143 . -1128) T) ((-1143 . -13) T) ((-1143 . -72) T) ((-1143 . -25) T) ((-1143 . -104) T) ((-1143 . -118) 182404) ((-1143 . -120) 182286) ((-1143 . -553) 181959) ((-1143 . -184) 181929) ((-1143 . -809) 181783) ((-1143 . -811) 181583) ((-1143 . -806) 181381) ((-1143 . -225) 181351) ((-1143 . -189) 181213) ((-1143 . -186) 181069) ((-1143 . -190) 180977) ((-1143 . -312) 180956) ((-1143 . -1133) 180935) ((-1143 . -832) 180914) ((-1143 . -495) 180868) ((-1143 . -146) 180802) ((-1143 . -391) 180781) ((-1143 . -258) 180760) ((-1143 . -246) 180714) ((-1143 . -201) 180693) ((-1143 . -288) 180663) ((-1143 . -455) 180523) ((-1143 . -260) 180462) ((-1143 . -328) 180432) ((-1143 . -580) 180340) ((-1143 . -342) 180310) ((-1143 . -796) 180183) ((-1143 . -740) 180136) ((-1143 . -714) 180089) ((-1143 . -716) 180042) ((-1143 . -756) 179944) ((-1143 . -759) 179846) ((-1143 . -718) 179799) ((-1143 . -721) 179752) ((-1143 . -755) 179705) ((-1143 . -794) 179675) ((-1143 . -821) 179628) ((-1143 . -933) 179581) ((-1143 . -950) 179370) ((-1143 . -1065) 179322) ((-1143 . -904) 179292) ((-1138 . -1142) 179253) ((-1138 . -915) 179219) ((-1138 . -1114) 179185) ((-1138 . -1117) 179151) ((-1138 . -432) 179117) ((-1138 . -239) 179083) ((-1138 . -66) 179049) ((-1138 . -35) 179015) ((-1138 . -1157) 178992) ((-1138 . -47) 178969) ((-1138 . -555) 178770) ((-1138 . -654) 178572) ((-1138 . -582) 178374) ((-1138 . -590) 178229) ((-1138 . -588) 178069) ((-1138 . -968) 177865) ((-1138 . -963) 177661) ((-1138 . -82) 177413) ((-1138 . -38) 177215) ((-1138 . -886) 177185) ((-1138 . -241) 177013) ((-1138 . -1140) 176997) ((-1138 . -970) T) ((-1138 . -1025) T) ((-1138 . -1060) T) ((-1138 . -663) T) ((-1138 . -961) T) ((-1138 . -21) T) ((-1138 . -23) T) ((-1138 . -1013) T) ((-1138 . -552) 176979) ((-1138 . -1128) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -25) T) ((-1138 . -104) T) ((-1138 . -118) 176889) ((-1138 . -120) 176799) ((-1138 . -553) NIL) ((-1138 . -184) 176751) ((-1138 . -809) 176587) ((-1138 . -811) 176351) ((-1138 . -806) 176090) ((-1138 . -225) 176042) ((-1138 . -189) 175868) ((-1138 . -186) 175688) ((-1138 . -190) 175578) ((-1138 . -312) 175557) ((-1138 . -1133) 175536) ((-1138 . -832) 175515) ((-1138 . -495) 175469) ((-1138 . -146) 175403) ((-1138 . -391) 175382) ((-1138 . -258) 175361) ((-1138 . -246) 175315) ((-1138 . -201) 175294) ((-1138 . -288) 175246) ((-1138 . -455) 174980) ((-1138 . -260) 174865) ((-1138 . -328) 174817) ((-1138 . -580) 174769) ((-1138 . -342) 174721) ((-1138 . -796) NIL) ((-1138 . -740) NIL) ((-1138 . -714) NIL) ((-1138 . -716) NIL) ((-1138 . -756) NIL) ((-1138 . -759) NIL) ((-1138 . -718) NIL) ((-1138 . -721) NIL) ((-1138 . -755) NIL) ((-1138 . -794) 174673) ((-1138 . -821) NIL) ((-1138 . -933) NIL) ((-1138 . -950) 174639) ((-1138 . -1065) NIL) ((-1138 . -904) 174591) ((-1137 . -752) T) ((-1137 . -759) T) ((-1137 . -756) T) ((-1137 . -1013) T) ((-1137 . -552) 174573) ((-1137 . -1128) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -319) T) ((-1137 . -604) T) ((-1136 . -752) T) ((-1136 . -759) T) ((-1136 . -756) T) ((-1136 . -1013) T) ((-1136 . -552) 174555) ((-1136 . -1128) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -319) T) ((-1136 . -604) T) ((-1135 . -752) T) ((-1135 . -759) T) ((-1135 . -756) T) ((-1135 . -1013) T) ((-1135 . -552) 174537) ((-1135 . -1128) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -319) T) ((-1135 . -604) T) ((-1134 . -752) T) ((-1134 . -759) T) ((-1134 . -756) T) ((-1134 . -1013) T) ((-1134 . -552) 174519) ((-1134 . -1128) T) ((-1134 . -13) T) ((-1134 . -72) T) ((-1134 . -319) T) ((-1134 . -604) T) ((-1129 . -995) T) ((-1129 . -429) 174500) ((-1129 . -552) 174466) ((-1129 . -555) 174447) ((-1129 . -1013) T) ((-1129 . -1128) T) ((-1129 . -13) T) ((-1129 . -72) T) ((-1129 . -64) T) ((-1126 . -429) 174424) ((-1126 . -552) 174365) ((-1126 . -555) 174342) ((-1126 . -1013) 174320) ((-1126 . -1128) 174298) ((-1126 . -13) 174276) ((-1126 . -72) 174254) ((-1121 . -679) 174230) ((-1121 . -35) 174196) ((-1121 . -66) 174162) ((-1121 . -239) 174128) ((-1121 . -432) 174094) ((-1121 . -1117) 174060) ((-1121 . -1114) 174026) ((-1121 . -915) 173992) ((-1121 . -47) 173961) ((-1121 . -38) 173858) ((-1121 . -582) 173755) ((-1121 . -654) 173652) ((-1121 . -555) 173534) ((-1121 . -246) 173513) ((-1121 . -495) 173492) ((-1121 . -82) 173357) ((-1121 . -963) 173243) ((-1121 . -968) 173129) ((-1121 . -146) 173083) ((-1121 . -120) 173062) ((-1121 . -118) 173041) ((-1121 . -590) 172966) ((-1121 . -588) 172876) ((-1121 . -886) 172837) ((-1121 . -811) 172818) ((-1121 . -1128) T) ((-1121 . -13) T) ((-1121 . -806) 172797) ((-1121 . -961) T) ((-1121 . -663) T) ((-1121 . -1060) T) ((-1121 . -1025) T) ((-1121 . -970) T) ((-1121 . -21) T) ((-1121 . -23) T) ((-1121 . -1013) T) ((-1121 . -552) 172779) ((-1121 . -72) T) ((-1121 . -25) T) ((-1121 . -104) T) ((-1121 . -809) 172760) ((-1121 . -455) 172727) ((-1121 . -260) 172714) ((-1115 . -923) 172698) ((-1115 . -34) T) ((-1115 . -13) T) ((-1115 . -1128) T) ((-1115 . -72) 172652) ((-1115 . -552) 172587) ((-1115 . -260) 172525) ((-1115 . -455) 172458) ((-1115 . -1013) 172436) ((-1115 . -428) 172420) ((-1115 . -317) 172404) ((-1110 . -314) 172378) ((-1110 . -72) T) ((-1110 . -13) T) ((-1110 . -1128) T) ((-1110 . -552) 172360) ((-1110 . -1013) T) ((-1108 . -1013) T) ((-1108 . -552) 172342) ((-1108 . -1128) T) ((-1108 . -13) T) ((-1108 . -72) T) ((-1108 . -555) 172324) ((-1103 . -747) 172308) ((-1103 . -72) T) ((-1103 . -13) T) ((-1103 . -1128) T) ((-1103 . -552) 172290) ((-1103 . -1013) T) ((-1101 . -1106) 172269) ((-1101 . -183) 172217) ((-1101 . -76) 172165) ((-1101 . -124) 172113) ((-1101 . -553) NIL) ((-1101 . -193) 172061) ((-1101 . -538) 172040) ((-1101 . -260) 171838) ((-1101 . -455) 171590) ((-1101 . -428) 171525) ((-1101 . -241) 171504) ((-1101 . -243) 171483) ((-1101 . -549) 171462) ((-1101 . -1013) T) ((-1101 . -552) 171444) ((-1101 . -72) T) ((-1101 . -1128) T) ((-1101 . -13) T) ((-1101 . -34) T) ((-1101 . -317) 171392) ((-1097 . -1013) T) ((-1097 . -552) 171374) ((-1097 . -1128) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1096 . -752) T) ((-1096 . -759) T) ((-1096 . -756) T) ((-1096 . -1013) T) ((-1096 . -552) 171356) ((-1096 . -1128) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -319) T) ((-1096 . -604) T) ((-1095 . -752) T) ((-1095 . -759) T) ((-1095 . -756) T) ((-1095 . -1013) T) ((-1095 . -552) 171338) ((-1095 . -1128) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -319) T) ((-1094 . -1174) T) ((-1094 . -1013) T) ((-1094 . -552) 171305) ((-1094 . -1128) T) ((-1094 . -13) T) ((-1094 . -72) T) ((-1094 . -950) 171241) ((-1094 . -555) 171177) ((-1093 . -552) 171159) ((-1092 . -552) 171141) ((-1091 . -277) 171118) ((-1091 . -950) 171016) ((-1091 . -354) 171000) ((-1091 . -38) 170897) ((-1091 . -555) 170754) ((-1091 . -590) 170679) ((-1091 . -588) 170589) ((-1091 . -970) T) ((-1091 . -1025) T) ((-1091 . -1060) T) ((-1091 . -663) T) ((-1091 . -961) T) ((-1091 . -82) 170454) ((-1091 . -963) 170340) ((-1091 . -968) 170226) ((-1091 . -21) T) ((-1091 . -23) T) ((-1091 . -1013) T) ((-1091 . -552) 170208) ((-1091 . -1128) T) ((-1091 . -13) T) ((-1091 . -72) T) ((-1091 . -25) T) ((-1091 . -104) T) ((-1091 . -582) 170105) ((-1091 . -654) 170002) ((-1091 . -118) 169981) ((-1091 . -120) 169960) ((-1091 . -146) 169914) ((-1091 . -495) 169893) ((-1091 . -246) 169872) ((-1091 . -47) 169849) ((-1089 . -756) T) ((-1089 . -552) 169831) ((-1089 . -1013) T) ((-1089 . -72) T) ((-1089 . -13) T) ((-1089 . -1128) T) ((-1089 . -759) T) ((-1089 . -553) 169753) ((-1089 . -555) 169719) ((-1089 . -950) 169701) ((-1089 . -796) 169668) ((-1088 . -1171) 169652) ((-1088 . -190) 169611) ((-1088 . -555) 169493) ((-1088 . -590) 169418) ((-1088 . -588) 169328) ((-1088 . -104) T) ((-1088 . -25) T) ((-1088 . -72) T) ((-1088 . -552) 169310) ((-1088 . -1013) T) ((-1088 . -23) T) ((-1088 . -21) T) ((-1088 . -970) T) ((-1088 . -1025) T) ((-1088 . -1060) T) ((-1088 . -663) T) ((-1088 . -961) T) ((-1088 . -186) 169263) ((-1088 . -13) T) ((-1088 . -1128) T) ((-1088 . -189) 169222) ((-1088 . -241) 169187) ((-1088 . -809) 169100) ((-1088 . -806) 168988) ((-1088 . -811) 168901) ((-1088 . -886) 168871) ((-1088 . -38) 168768) ((-1088 . -82) 168633) ((-1088 . -963) 168519) ((-1088 . -968) 168405) ((-1088 . -582) 168302) ((-1088 . -654) 168199) ((-1088 . -118) 168178) ((-1088 . -120) 168157) ((-1088 . -146) 168111) ((-1088 . -495) 168090) ((-1088 . -246) 168069) ((-1088 . -47) 168046) ((-1088 . -1157) 168023) ((-1088 . -35) 167989) ((-1088 . -66) 167955) ((-1088 . -239) 167921) ((-1088 . -432) 167887) ((-1088 . -1117) 167853) ((-1088 . -1114) 167819) ((-1088 . -915) 167785) ((-1087 . -1163) 167746) ((-1087 . -312) 167725) ((-1087 . -1133) 167704) ((-1087 . -832) 167683) ((-1087 . -495) 167637) ((-1087 . -146) 167571) ((-1087 . -555) 167320) ((-1087 . -654) 167167) ((-1087 . -582) 167014) ((-1087 . -38) 166861) ((-1087 . -391) 166840) ((-1087 . -258) 166819) ((-1087 . -590) 166719) ((-1087 . -588) 166604) ((-1087 . -970) T) ((-1087 . -1025) T) ((-1087 . -1060) T) ((-1087 . -663) T) ((-1087 . -961) T) ((-1087 . -82) 166424) ((-1087 . -963) 166265) ((-1087 . -968) 166106) ((-1087 . -21) T) ((-1087 . -23) T) ((-1087 . -1013) T) ((-1087 . -552) 166088) ((-1087 . -1128) T) ((-1087 . -13) T) ((-1087 . -72) T) ((-1087 . -25) T) ((-1087 . -104) T) ((-1087 . -246) 166042) ((-1087 . -201) 166021) ((-1087 . -915) 165987) ((-1087 . -1114) 165953) ((-1087 . -1117) 165919) ((-1087 . -432) 165885) ((-1087 . -239) 165851) ((-1087 . -66) 165817) ((-1087 . -35) 165783) ((-1087 . -1157) 165753) ((-1087 . -47) 165723) ((-1087 . -120) 165702) ((-1087 . -118) 165681) ((-1087 . -886) 165644) ((-1087 . -811) 165550) ((-1087 . -806) 165431) ((-1087 . -809) 165337) ((-1087 . -241) 165295) ((-1087 . -189) 165247) ((-1087 . -186) 165193) ((-1087 . -190) 165145) ((-1087 . -1161) 165129) ((-1087 . -950) 165064) ((-1084 . -1154) 165048) ((-1084 . -1065) 165026) ((-1084 . -553) NIL) ((-1084 . -260) 165013) ((-1084 . -455) 164961) ((-1084 . -277) 164938) ((-1084 . -950) 164821) ((-1084 . -354) 164805) ((-1084 . -38) 164637) ((-1084 . -82) 164442) ((-1084 . -963) 164268) ((-1084 . -968) 164094) ((-1084 . -588) 164004) ((-1084 . -590) 163893) ((-1084 . -582) 163725) ((-1084 . -654) 163557) ((-1084 . -555) 163334) ((-1084 . -118) 163313) ((-1084 . -120) 163292) ((-1084 . -47) 163269) ((-1084 . -328) 163253) ((-1084 . -580) 163201) ((-1084 . -809) 163145) ((-1084 . -806) 163052) ((-1084 . -811) 162963) ((-1084 . -796) NIL) ((-1084 . -821) 162942) ((-1084 . -1133) 162921) ((-1084 . -861) 162891) ((-1084 . -832) 162870) ((-1084 . -495) 162784) ((-1084 . -246) 162698) ((-1084 . -146) 162592) ((-1084 . -391) 162526) ((-1084 . -258) 162505) ((-1084 . -241) 162432) ((-1084 . -190) T) ((-1084 . -104) T) ((-1084 . -25) T) ((-1084 . -72) T) ((-1084 . -552) 162414) ((-1084 . -1013) T) ((-1084 . -23) T) ((-1084 . -21) T) ((-1084 . -970) T) ((-1084 . -1025) T) ((-1084 . -1060) T) ((-1084 . -663) T) ((-1084 . -961) T) ((-1084 . -186) 162401) ((-1084 . -13) T) ((-1084 . -1128) T) ((-1084 . -189) T) ((-1084 . -225) 162385) ((-1084 . -184) 162369) ((-1081 . -1142) 162330) ((-1081 . -915) 162296) ((-1081 . -1114) 162262) ((-1081 . -1117) 162228) ((-1081 . -432) 162194) ((-1081 . -239) 162160) ((-1081 . -66) 162126) ((-1081 . -35) 162092) ((-1081 . -1157) 162069) ((-1081 . -47) 162046) ((-1081 . -555) 161847) ((-1081 . -654) 161649) ((-1081 . -582) 161451) ((-1081 . -590) 161306) ((-1081 . -588) 161146) ((-1081 . -968) 160942) ((-1081 . -963) 160738) ((-1081 . -82) 160490) ((-1081 . -38) 160292) ((-1081 . -886) 160262) ((-1081 . -241) 160090) ((-1081 . -1140) 160074) ((-1081 . -970) T) ((-1081 . -1025) T) ((-1081 . -1060) T) ((-1081 . -663) T) ((-1081 . -961) T) ((-1081 . -21) T) ((-1081 . -23) T) ((-1081 . -1013) T) ((-1081 . -552) 160056) ((-1081 . -1128) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1081 . -25) T) ((-1081 . -104) T) ((-1081 . -118) 159966) ((-1081 . -120) 159876) ((-1081 . -553) NIL) ((-1081 . -184) 159828) ((-1081 . -809) 159664) ((-1081 . -811) 159428) ((-1081 . -806) 159167) ((-1081 . -225) 159119) ((-1081 . -189) 158945) ((-1081 . -186) 158765) ((-1081 . -190) 158655) ((-1081 . -312) 158634) ((-1081 . -1133) 158613) ((-1081 . -832) 158592) ((-1081 . -495) 158546) ((-1081 . -146) 158480) ((-1081 . -391) 158459) ((-1081 . -258) 158438) ((-1081 . -246) 158392) ((-1081 . -201) 158371) ((-1081 . -288) 158323) ((-1081 . -455) 158057) ((-1081 . -260) 157942) ((-1081 . -328) 157894) ((-1081 . -580) 157846) ((-1081 . -342) 157798) ((-1081 . -796) NIL) ((-1081 . -740) NIL) ((-1081 . -714) NIL) ((-1081 . -716) NIL) ((-1081 . -756) NIL) ((-1081 . -759) NIL) ((-1081 . -718) NIL) ((-1081 . -721) NIL) ((-1081 . -755) NIL) ((-1081 . -794) 157750) ((-1081 . -821) NIL) ((-1081 . -933) NIL) ((-1081 . -950) 157716) ((-1081 . -1065) NIL) ((-1081 . -904) 157668) ((-1080 . -995) T) ((-1080 . -429) 157649) ((-1080 . -552) 157615) ((-1080 . -555) 157596) ((-1080 . -1013) T) ((-1080 . -1128) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1080 . -64) T) ((-1079 . -1013) T) ((-1079 . -552) 157578) ((-1079 . -1128) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1078 . -1013) T) ((-1078 . -552) 157560) ((-1078 . -1128) T) ((-1078 . -13) T) ((-1078 . -72) T) ((-1073 . -1106) 157536) ((-1073 . -183) 157481) ((-1073 . -76) 157426) ((-1073 . -124) 157371) ((-1073 . -553) NIL) ((-1073 . -193) 157316) ((-1073 . -538) 157292) ((-1073 . -260) 157081) ((-1073 . -455) 156821) ((-1073 . -428) 156753) ((-1073 . -241) 156729) ((-1073 . -243) 156705) ((-1073 . -549) 156681) ((-1073 . -1013) T) ((-1073 . -552) 156663) ((-1073 . -72) T) ((-1073 . -1128) T) ((-1073 . -13) T) ((-1073 . -34) T) ((-1073 . -317) 156608) ((-1072 . -1057) T) ((-1072 . -323) 156590) ((-1072 . -759) T) ((-1072 . -756) T) ((-1072 . -124) 156572) ((-1072 . -553) NIL) ((-1072 . -241) 156522) ((-1072 . -538) 156497) ((-1072 . -243) 156472) ((-1072 . -593) 156454) ((-1072 . -428) 156436) ((-1072 . -1013) T) ((-1072 . -455) NIL) ((-1072 . -260) NIL) ((-1072 . -552) 156418) ((-1072 . -72) T) ((-1072 . -1128) T) ((-1072 . -13) T) ((-1072 . -34) T) ((-1072 . -317) 156400) ((-1072 . -19) 156382) ((-1068 . -616) 156366) ((-1068 . -593) 156350) ((-1068 . -243) 156327) ((-1068 . -241) 156279) ((-1068 . -538) 156256) ((-1068 . -553) 156217) ((-1068 . -428) 156201) ((-1068 . -1013) 156179) ((-1068 . -455) 156112) ((-1068 . -260) 156050) ((-1068 . -552) 155985) ((-1068 . -72) 155939) ((-1068 . -1128) T) ((-1068 . -13) T) ((-1068 . -34) T) ((-1068 . -124) 155923) ((-1068 . -1167) 155907) ((-1068 . -923) 155891) ((-1068 . -1063) 155875) ((-1068 . -555) 155852) ((-1066 . -995) T) ((-1066 . -429) 155833) ((-1066 . -552) 155799) ((-1066 . -555) 155780) ((-1066 . -1013) T) ((-1066 . -1128) T) ((-1066 . -13) T) ((-1066 . -72) T) ((-1066 . -64) T) ((-1064 . -1106) 155759) ((-1064 . -183) 155707) ((-1064 . -76) 155655) ((-1064 . -124) 155603) ((-1064 . -553) NIL) ((-1064 . -193) 155551) ((-1064 . -538) 155530) ((-1064 . -260) 155328) ((-1064 . -455) 155080) ((-1064 . -428) 155015) ((-1064 . -241) 154994) ((-1064 . -243) 154973) ((-1064 . -549) 154952) ((-1064 . -1013) T) ((-1064 . -552) 154934) ((-1064 . -72) T) ((-1064 . -1128) T) ((-1064 . -13) T) ((-1064 . -34) T) ((-1064 . -317) 154882) ((-1061 . -1034) 154866) ((-1061 . -317) 154850) ((-1061 . -428) 154834) ((-1061 . -1013) 154812) ((-1061 . -455) 154745) ((-1061 . -260) 154683) ((-1061 . -552) 154618) ((-1061 . -72) 154572) ((-1061 . -1128) T) ((-1061 . -13) T) ((-1061 . -34) T) ((-1061 . -76) 154556) ((-1059 . -1020) 154525) ((-1059 . -1123) 154494) ((-1059 . -552) 154456) ((-1059 . -124) 154440) ((-1059 . -34) T) ((-1059 . -13) T) ((-1059 . -1128) T) ((-1059 . -72) T) ((-1059 . -260) 154378) ((-1059 . -455) 154311) ((-1059 . -1013) T) ((-1059 . -428) 154295) ((-1059 . -553) 154256) ((-1059 . -317) 154240) ((-1059 . -889) 154209) ((-1059 . -983) 154178) ((-1055 . -1036) 154123) ((-1055 . -317) 154107) ((-1055 . -34) T) ((-1055 . -260) 154045) ((-1055 . -455) 153978) ((-1055 . -428) 153962) ((-1055 . -965) 153902) ((-1055 . -950) 153800) ((-1055 . -555) 153719) ((-1055 . -354) 153703) ((-1055 . -580) 153651) ((-1055 . -590) 153589) ((-1055 . -328) 153573) ((-1055 . -190) 153552) ((-1055 . -186) 153500) ((-1055 . -189) 153454) ((-1055 . -225) 153438) ((-1055 . -806) 153362) ((-1055 . -811) 153288) ((-1055 . -809) 153247) ((-1055 . -184) 153231) ((-1055 . -654) 153166) ((-1055 . -582) 153101) ((-1055 . -588) 153060) ((-1055 . -104) T) ((-1055 . -25) T) ((-1055 . -72) T) ((-1055 . -13) T) ((-1055 . -1128) T) ((-1055 . -552) 153022) ((-1055 . -1013) T) ((-1055 . -23) T) ((-1055 . -21) T) ((-1055 . -968) 153006) ((-1055 . -963) 152990) ((-1055 . -82) 152969) ((-1055 . -961) T) ((-1055 . -663) T) ((-1055 . -1060) T) ((-1055 . -1025) T) ((-1055 . -970) T) ((-1055 . -38) 152929) ((-1055 . -553) 152890) ((-1054 . -923) 152861) ((-1054 . -34) T) ((-1054 . -13) T) ((-1054 . -1128) T) ((-1054 . -72) T) ((-1054 . -552) 152843) ((-1054 . -260) 152769) ((-1054 . -455) 152677) ((-1054 . -1013) T) ((-1054 . -428) 152648) ((-1054 . -317) 152619) ((-1053 . -1013) T) ((-1053 . -552) 152601) ((-1053 . -1128) T) ((-1053 . -13) T) ((-1053 . -72) T) ((-1048 . -1050) T) ((-1048 . -1174) T) ((-1048 . -64) T) ((-1048 . -72) T) ((-1048 . -13) T) ((-1048 . -1128) T) ((-1048 . -552) 152567) ((-1048 . -1013) T) ((-1048 . -555) 152548) ((-1048 . -429) 152529) ((-1048 . -995) T) ((-1046 . -1047) 152513) ((-1046 . -72) T) ((-1046 . -13) T) ((-1046 . -1128) T) ((-1046 . -552) 152495) ((-1046 . -1013) T) ((-1039 . -679) 152474) ((-1039 . -35) 152440) ((-1039 . -66) 152406) ((-1039 . -239) 152372) ((-1039 . -432) 152338) ((-1039 . -1117) 152304) ((-1039 . -1114) 152270) ((-1039 . -915) 152236) ((-1039 . -47) 152208) ((-1039 . -38) 152105) ((-1039 . -582) 152002) ((-1039 . -654) 151899) ((-1039 . -555) 151781) ((-1039 . -246) 151760) ((-1039 . -495) 151739) ((-1039 . -82) 151604) ((-1039 . -963) 151490) ((-1039 . -968) 151376) ((-1039 . -146) 151330) ((-1039 . -120) 151309) ((-1039 . -118) 151288) ((-1039 . -590) 151213) ((-1039 . -588) 151123) ((-1039 . -886) 151090) ((-1039 . -811) 151074) ((-1039 . -1128) T) ((-1039 . -13) T) ((-1039 . -806) 151056) ((-1039 . -961) T) ((-1039 . -663) T) ((-1039 . -1060) T) ((-1039 . -1025) T) ((-1039 . -970) T) ((-1039 . -21) T) ((-1039 . -23) T) ((-1039 . -1013) T) ((-1039 . -552) 151038) ((-1039 . -72) T) ((-1039 . -25) T) ((-1039 . -104) T) ((-1039 . -809) 151022) ((-1039 . -455) 150992) ((-1039 . -260) 150979) ((-1038 . -861) 150946) ((-1038 . -555) 150745) ((-1038 . -950) 150630) ((-1038 . -1133) 150609) ((-1038 . -821) 150588) ((-1038 . -796) 150447) ((-1038 . -811) 150431) ((-1038 . -806) 150413) ((-1038 . -809) 150397) ((-1038 . -455) 150349) ((-1038 . -391) 150303) ((-1038 . -580) 150251) ((-1038 . -590) 150140) ((-1038 . -328) 150124) ((-1038 . -47) 150096) ((-1038 . -38) 149948) ((-1038 . -582) 149800) ((-1038 . -654) 149652) ((-1038 . -246) 149586) ((-1038 . -495) 149520) ((-1038 . -82) 149345) ((-1038 . -963) 149191) ((-1038 . -968) 149037) ((-1038 . -146) 148951) ((-1038 . -120) 148930) ((-1038 . -118) 148909) ((-1038 . -588) 148819) ((-1038 . -104) T) ((-1038 . -25) T) ((-1038 . -72) T) ((-1038 . -13) T) ((-1038 . -1128) T) ((-1038 . -552) 148801) ((-1038 . -1013) T) ((-1038 . -23) T) ((-1038 . -21) T) ((-1038 . -961) T) ((-1038 . -663) T) ((-1038 . -1060) T) ((-1038 . -1025) T) ((-1038 . -970) T) ((-1038 . -354) 148785) ((-1038 . -277) 148757) ((-1038 . -260) 148744) ((-1038 . -553) 148492) ((-1033 . -483) T) ((-1033 . -1133) T) ((-1033 . -1065) T) ((-1033 . -950) 148474) ((-1033 . -553) 148389) ((-1033 . -933) T) ((-1033 . -796) 148371) ((-1033 . -755) T) ((-1033 . -721) T) ((-1033 . -718) T) ((-1033 . -759) T) ((-1033 . -756) T) ((-1033 . -716) T) ((-1033 . -714) T) ((-1033 . -740) T) ((-1033 . -590) 148343) ((-1033 . -580) 148325) ((-1033 . -832) T) ((-1033 . -495) T) ((-1033 . -246) T) ((-1033 . -146) T) ((-1033 . -555) 148297) ((-1033 . -654) 148284) ((-1033 . -582) 148271) ((-1033 . -968) 148258) ((-1033 . -963) 148245) ((-1033 . -82) 148230) ((-1033 . -38) 148217) ((-1033 . -391) T) ((-1033 . -258) T) ((-1033 . -189) T) ((-1033 . -186) 148204) ((-1033 . -190) T) ((-1033 . -116) T) ((-1033 . -961) T) ((-1033 . -663) T) ((-1033 . -1060) T) ((-1033 . -1025) T) ((-1033 . -970) T) ((-1033 . -21) T) ((-1033 . -588) 148176) ((-1033 . -23) T) ((-1033 . -1013) T) ((-1033 . -552) 148158) ((-1033 . -1128) T) ((-1033 . -13) T) ((-1033 . -72) T) ((-1033 . -25) T) ((-1033 . -104) T) ((-1033 . -120) T) ((-1033 . -752) T) ((-1033 . -319) T) ((-1033 . -84) T) ((-1033 . -604) T) ((-1029 . -995) T) ((-1029 . -429) 148139) ((-1029 . -552) 148105) ((-1029 . -555) 148086) ((-1029 . -1013) T) ((-1029 . -1128) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1029 . -64) T) ((-1028 . -1013) T) ((-1028 . -552) 148068) ((-1028 . -1128) T) ((-1028 . -13) T) ((-1028 . -72) T) ((-1026 . -196) 148047) ((-1026 . -1186) 148017) ((-1026 . -721) 147996) ((-1026 . -718) 147975) ((-1026 . -759) 147929) ((-1026 . -756) 147883) ((-1026 . -716) 147862) ((-1026 . -717) 147841) ((-1026 . -654) 147786) ((-1026 . -582) 147711) ((-1026 . -243) 147688) ((-1026 . -241) 147665) ((-1026 . -538) 147642) ((-1026 . -950) 147471) ((-1026 . -555) 147275) ((-1026 . -354) 147244) ((-1026 . -580) 147152) ((-1026 . -590) 146991) ((-1026 . -328) 146961) ((-1026 . -428) 146945) ((-1026 . -455) 146878) ((-1026 . -260) 146816) ((-1026 . -34) T) ((-1026 . -317) 146800) ((-1026 . -319) 146779) ((-1026 . -190) 146732) ((-1026 . -588) 146520) ((-1026 . -970) 146499) ((-1026 . -1025) 146478) ((-1026 . -1060) 146457) ((-1026 . -663) 146436) ((-1026 . -961) 146415) ((-1026 . -186) 146311) ((-1026 . -189) 146213) ((-1026 . -225) 146183) ((-1026 . -806) 146055) ((-1026 . -811) 145929) ((-1026 . -809) 145862) ((-1026 . -184) 145832) ((-1026 . -552) 145529) ((-1026 . -968) 145454) ((-1026 . -963) 145359) ((-1026 . -82) 145279) ((-1026 . -104) 145154) ((-1026 . -25) 144991) ((-1026 . -72) 144728) ((-1026 . -13) T) ((-1026 . -1128) T) ((-1026 . -1013) 144484) ((-1026 . -23) 144340) ((-1026 . -21) 144255) ((-1022 . -1023) 144239) ((-1022 . |MappingCategory|) 144213) ((-1022 . -1128) T) ((-1022 . -80) 144197) ((-1022 . -1013) T) ((-1022 . -552) 144179) ((-1022 . -13) T) ((-1022 . -72) T) ((-1017 . -1016) 144143) ((-1017 . -72) T) ((-1017 . -552) 144125) ((-1017 . -1013) T) ((-1017 . -241) 144081) ((-1017 . -1128) T) ((-1017 . -13) T) ((-1017 . -557) 143996) ((-1015 . -1016) 143948) ((-1015 . -72) T) ((-1015 . -552) 143930) ((-1015 . -1013) T) ((-1015 . -241) 143886) ((-1015 . -1128) T) ((-1015 . -13) T) ((-1015 . -557) 143789) ((-1014 . -319) T) ((-1014 . -72) T) ((-1014 . -13) T) ((-1014 . -1128) T) ((-1014 . -552) 143771) ((-1014 . -1013) T) ((-1009 . -368) 143755) ((-1009 . -1011) 143739) ((-1009 . -317) 143723) ((-1009 . -319) 143702) ((-1009 . -193) 143686) ((-1009 . -553) 143647) ((-1009 . -124) 143631) ((-1009 . -428) 143615) ((-1009 . -1013) T) ((-1009 . -455) 143548) ((-1009 . -260) 143486) ((-1009 . -552) 143468) ((-1009 . -72) T) ((-1009 . -1128) T) ((-1009 . -13) T) ((-1009 . -34) T) ((-1009 . -76) 143452) ((-1009 . -183) 143436) ((-1008 . -995) T) ((-1008 . -429) 143417) ((-1008 . -552) 143383) ((-1008 . -555) 143364) ((-1008 . -1013) T) ((-1008 . -1128) T) ((-1008 . -13) T) ((-1008 . -72) T) ((-1008 . -64) T) ((-1004 . -1128) T) ((-1004 . -13) T) ((-1004 . -1013) 143334) ((-1004 . -552) 143293) ((-1004 . -72) 143263) ((-1003 . -995) T) ((-1003 . -429) 143244) ((-1003 . -552) 143210) ((-1003 . -555) 143191) ((-1003 . -1013) T) ((-1003 . -1128) T) ((-1003 . -13) T) ((-1003 . -72) T) ((-1003 . -64) T) ((-1001 . -1006) 143175) ((-1001 . -557) 143159) ((-1001 . -1013) 143137) ((-1001 . -552) 143104) ((-1001 . -1128) 143082) ((-1001 . -13) 143060) ((-1001 . -72) 143038) ((-1001 . -1007) 142996) ((-1000 . -228) 142980) ((-1000 . -555) 142964) ((-1000 . -950) 142948) ((-1000 . -759) T) ((-1000 . -72) T) ((-1000 . -1013) T) ((-1000 . -552) 142930) ((-1000 . -756) T) ((-1000 . -186) 142917) ((-1000 . -13) T) ((-1000 . -1128) T) ((-1000 . -189) T) ((-999 . -213) 142854) ((-999 . -555) 142597) ((-999 . -950) 142426) ((-999 . -553) NIL) ((-999 . -277) 142387) ((-999 . -354) 142371) ((-999 . -38) 142223) ((-999 . -82) 142048) ((-999 . -963) 141894) ((-999 . -968) 141740) ((-999 . -588) 141650) ((-999 . -590) 141539) ((-999 . -582) 141391) ((-999 . -654) 141243) ((-999 . -118) 141222) ((-999 . -120) 141201) ((-999 . -146) 141115) ((-999 . -495) 141049) ((-999 . -246) 140983) ((-999 . -47) 140944) ((-999 . -328) 140928) ((-999 . -580) 140876) ((-999 . -391) 140830) ((-999 . -455) 140693) ((-999 . -809) 140628) ((-999 . -806) 140526) ((-999 . -811) 140428) ((-999 . -796) NIL) ((-999 . -821) 140407) ((-999 . -1133) 140386) ((-999 . -861) 140331) ((-999 . -260) 140318) ((-999 . -190) 140297) ((-999 . -104) T) ((-999 . -25) T) ((-999 . -72) T) ((-999 . -552) 140279) ((-999 . -1013) T) ((-999 . -23) T) ((-999 . -21) T) ((-999 . -970) T) ((-999 . -1025) T) ((-999 . -1060) T) ((-999 . -663) T) ((-999 . -961) T) ((-999 . -186) 140227) ((-999 . -13) T) ((-999 . -1128) T) ((-999 . -189) 140181) ((-999 . -225) 140165) ((-999 . -184) 140149) ((-997 . -552) 140131) ((-994 . -756) T) ((-994 . -552) 140113) ((-994 . -1013) T) ((-994 . -72) T) ((-994 . -13) T) ((-994 . -1128) T) ((-994 . -759) T) ((-994 . -553) 140094) ((-991 . -661) 140073) ((-991 . -950) 139971) ((-991 . -354) 139955) ((-991 . -580) 139903) ((-991 . -590) 139780) ((-991 . -328) 139764) ((-991 . -321) 139743) ((-991 . -120) 139722) ((-991 . -555) 139547) ((-991 . -654) 139421) ((-991 . -582) 139295) ((-991 . -588) 139193) ((-991 . -968) 139106) ((-991 . -963) 139019) ((-991 . -82) 138911) ((-991 . -38) 138785) ((-991 . -352) 138764) ((-991 . -344) 138743) ((-991 . -118) 138697) ((-991 . -1065) 138676) ((-991 . -299) 138655) ((-991 . -319) 138609) ((-991 . -201) 138563) ((-991 . -246) 138517) ((-991 . -258) 138471) ((-991 . -391) 138425) ((-991 . -495) 138379) ((-991 . -832) 138333) ((-991 . -1133) 138287) ((-991 . -312) 138241) ((-991 . -190) 138169) ((-991 . -186) 138045) ((-991 . -189) 137927) ((-991 . -225) 137897) ((-991 . -806) 137769) ((-991 . -811) 137643) ((-991 . -809) 137576) ((-991 . -184) 137546) ((-991 . -553) 137530) ((-991 . -21) T) ((-991 . -23) T) ((-991 . -1013) T) ((-991 . -552) 137512) ((-991 . -1128) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -25) T) ((-991 . -104) T) ((-991 . -961) T) ((-991 . -663) T) ((-991 . -1060) T) ((-991 . -1025) T) ((-991 . -970) T) ((-991 . -146) T) ((-989 . -1013) T) ((-989 . -552) 137494) ((-989 . -1128) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -241) 137473) ((-988 . -1013) T) ((-988 . -552) 137455) ((-988 . -1128) T) ((-988 . -13) T) ((-988 . -72) T) ((-987 . -1013) T) ((-987 . -552) 137437) ((-987 . -1128) T) ((-987 . -13) T) ((-987 . -72) T) ((-987 . -241) 137416) ((-987 . -950) 137393) ((-987 . -555) 137370) ((-986 . -1128) T) ((-986 . -13) T) ((-985 . -995) T) ((-985 . -429) 137351) ((-985 . -552) 137317) ((-985 . -555) 137298) ((-985 . -1013) T) ((-985 . -1128) T) ((-985 . -13) T) ((-985 . -72) T) ((-985 . -64) T) ((-978 . -995) T) ((-978 . -429) 137279) ((-978 . -552) 137245) ((-978 . -555) 137226) ((-978 . -1013) T) ((-978 . -1128) T) ((-978 . -13) T) ((-978 . -72) T) ((-978 . -64) T) ((-975 . -483) T) ((-975 . -1133) T) ((-975 . -1065) T) ((-975 . -950) 137208) ((-975 . -553) 137123) ((-975 . -933) T) ((-975 . -796) 137105) ((-975 . -755) T) ((-975 . -721) T) ((-975 . -718) T) ((-975 . -759) T) ((-975 . -756) T) ((-975 . -716) T) ((-975 . -714) T) ((-975 . -740) T) ((-975 . -590) 137077) ((-975 . -580) 137059) ((-975 . -832) T) ((-975 . -495) T) ((-975 . -246) T) ((-975 . -146) T) ((-975 . -555) 137031) ((-975 . -654) 137018) ((-975 . -582) 137005) ((-975 . -968) 136992) ((-975 . -963) 136979) ((-975 . -82) 136964) ((-975 . -38) 136951) ((-975 . -391) T) ((-975 . -258) T) ((-975 . -189) T) ((-975 . -186) 136938) ((-975 . -190) T) ((-975 . -116) T) ((-975 . -961) T) ((-975 . -663) T) ((-975 . -1060) T) ((-975 . -1025) T) ((-975 . -970) T) ((-975 . -21) T) ((-975 . -588) 136910) ((-975 . -23) T) ((-975 . -1013) T) ((-975 . -552) 136892) ((-975 . -1128) T) ((-975 . -13) T) ((-975 . -72) T) ((-975 . -25) T) ((-975 . -104) T) ((-975 . -120) T) ((-975 . -557) 136873) ((-974 . -980) 136852) ((-974 . -72) T) ((-974 . -13) T) ((-974 . -1128) T) ((-974 . -552) 136834) ((-974 . -1013) T) ((-971 . -1128) T) ((-971 . -13) T) ((-971 . -1013) 136812) ((-971 . -552) 136779) ((-971 . -72) 136757) ((-966 . -965) 136697) ((-966 . -582) 136642) ((-966 . -654) 136587) ((-966 . -428) 136571) ((-966 . -455) 136504) ((-966 . -260) 136442) ((-966 . -34) T) ((-966 . -317) 136426) ((-966 . -590) 136410) ((-966 . -588) 136379) ((-966 . -104) T) ((-966 . -25) T) ((-966 . -72) T) ((-966 . -13) T) ((-966 . -1128) T) ((-966 . -552) 136341) ((-966 . -1013) T) ((-966 . -23) T) ((-966 . -21) T) ((-966 . -968) 136325) ((-966 . -963) 136309) ((-966 . -82) 136288) ((-966 . -1186) 136258) ((-966 . -553) 136219) ((-958 . -983) 136148) ((-958 . -889) 136077) ((-958 . -317) 136042) ((-958 . -553) 135984) ((-958 . -428) 135949) ((-958 . -1013) T) ((-958 . -455) 135833) ((-958 . -260) 135741) ((-958 . -552) 135684) ((-958 . -72) T) ((-958 . -1128) T) ((-958 . -13) T) ((-958 . -34) T) ((-958 . -124) 135649) ((-958 . -1123) 135578) ((-948 . -995) T) ((-948 . -429) 135559) ((-948 . -552) 135525) ((-948 . -555) 135506) ((-948 . -1013) T) ((-948 . -1128) T) ((-948 . -13) T) ((-948 . -72) T) ((-948 . -64) T) ((-947 . -146) T) ((-947 . -555) 135475) ((-947 . -970) T) ((-947 . -1025) T) ((-947 . -1060) T) ((-947 . -663) T) ((-947 . -961) T) ((-947 . -590) 135449) ((-947 . -588) 135408) ((-947 . -104) T) ((-947 . -25) T) ((-947 . -72) T) ((-947 . -13) T) ((-947 . -1128) T) ((-947 . -552) 135390) ((-947 . -1013) T) ((-947 . -23) T) ((-947 . -21) T) ((-947 . -968) 135364) ((-947 . -963) 135338) ((-947 . -82) 135305) ((-947 . -38) 135289) ((-947 . -582) 135273) ((-947 . -654) 135257) ((-940 . -983) 135226) ((-940 . -889) 135195) ((-940 . -317) 135179) ((-940 . -553) 135140) ((-940 . -428) 135124) ((-940 . -1013) T) ((-940 . -455) 135057) ((-940 . -260) 134995) ((-940 . -552) 134957) ((-940 . -72) T) ((-940 . -1128) T) ((-940 . -13) T) ((-940 . -34) T) ((-940 . -124) 134941) ((-940 . -1123) 134910) ((-939 . -1013) T) ((-939 . -552) 134892) ((-939 . -1128) T) ((-939 . -13) T) ((-939 . -72) T) ((-937 . -925) T) ((-937 . -915) T) ((-937 . -714) T) ((-937 . -716) T) ((-937 . -756) T) ((-937 . -759) T) ((-937 . -718) T) ((-937 . -721) T) ((-937 . -755) T) ((-937 . -950) 134777) ((-937 . -354) 134739) ((-937 . -201) T) ((-937 . -246) T) ((-937 . -258) T) ((-937 . -391) T) ((-937 . -38) 134676) ((-937 . -582) 134613) ((-937 . -654) 134550) ((-937 . -555) 134487) ((-937 . -495) T) ((-937 . -832) T) ((-937 . -1133) T) ((-937 . -312) T) ((-937 . -82) 134396) ((-937 . -963) 134333) ((-937 . -968) 134270) ((-937 . -146) T) ((-937 . -120) T) ((-937 . -590) 134207) ((-937 . -588) 134144) ((-937 . -104) T) ((-937 . -25) T) ((-937 . -72) T) ((-937 . -13) T) ((-937 . -1128) T) ((-937 . -552) 134126) ((-937 . -1013) T) ((-937 . -23) T) ((-937 . -21) T) ((-937 . -961) T) ((-937 . -663) T) ((-937 . -1060) T) ((-937 . -1025) T) ((-937 . -970) T) ((-932 . -995) T) ((-932 . -429) 134107) ((-932 . -552) 134073) ((-932 . -555) 134054) ((-932 . -1013) T) ((-932 . -1128) T) ((-932 . -13) T) ((-932 . -72) T) ((-932 . -64) T) ((-917 . -904) 134036) ((-917 . -1065) T) ((-917 . -555) 133986) ((-917 . -950) 133946) ((-917 . -553) 133876) ((-917 . -933) T) ((-917 . -821) NIL) ((-917 . -794) 133858) ((-917 . -755) T) ((-917 . -721) T) ((-917 . -718) T) ((-917 . -759) T) ((-917 . -756) T) ((-917 . -716) T) ((-917 . -714) T) ((-917 . -740) T) ((-917 . -796) 133840) ((-917 . -342) 133822) ((-917 . -580) 133804) ((-917 . -328) 133786) ((-917 . -241) NIL) ((-917 . -260) NIL) ((-917 . -455) NIL) ((-917 . -288) 133768) ((-917 . -201) T) ((-917 . -82) 133695) ((-917 . -963) 133645) ((-917 . -968) 133595) ((-917 . -246) T) ((-917 . -654) 133545) ((-917 . -582) 133495) ((-917 . -590) 133445) ((-917 . -588) 133395) ((-917 . -38) 133345) ((-917 . -258) T) ((-917 . -391) T) ((-917 . -146) T) ((-917 . -495) T) ((-917 . -832) T) ((-917 . -1133) T) ((-917 . -312) T) ((-917 . -190) T) ((-917 . -186) 133332) ((-917 . -189) T) ((-917 . -225) 133314) ((-917 . -806) NIL) ((-917 . -811) NIL) ((-917 . -809) NIL) ((-917 . -184) 133296) ((-917 . -120) T) ((-917 . -118) NIL) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1128) T) ((-917 . -552) 133256) ((-917 . -1013) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -961) T) ((-917 . -663) T) ((-917 . -1060) T) ((-917 . -1025) T) ((-917 . -970) T) ((-916 . -291) 133230) ((-916 . -146) T) ((-916 . -555) 133160) ((-916 . -970) T) ((-916 . -1025) T) ((-916 . -1060) T) ((-916 . -663) T) ((-916 . -961) T) ((-916 . -590) 133062) ((-916 . -588) 132992) ((-916 . -104) T) ((-916 . -25) T) ((-916 . -72) T) ((-916 . -13) T) ((-916 . -1128) T) ((-916 . -552) 132974) ((-916 . -1013) T) ((-916 . -23) T) ((-916 . -21) T) ((-916 . -968) 132919) ((-916 . -963) 132864) ((-916 . -82) 132781) ((-916 . -553) 132765) ((-916 . -184) 132742) ((-916 . -809) 132694) ((-916 . -811) 132606) ((-916 . -806) 132516) ((-916 . -225) 132493) ((-916 . -189) 132433) ((-916 . -186) 132367) ((-916 . -190) 132339) ((-916 . -312) T) ((-916 . -1133) T) ((-916 . -832) T) ((-916 . -495) T) ((-916 . -654) 132284) ((-916 . -582) 132229) ((-916 . -38) 132174) ((-916 . -391) T) ((-916 . -258) T) ((-916 . -246) T) ((-916 . -201) T) ((-916 . -319) NIL) ((-916 . -299) NIL) ((-916 . -1065) NIL) ((-916 . -118) 132146) ((-916 . -344) NIL) ((-916 . -352) 132118) ((-916 . -120) 132090) ((-916 . -321) 132062) ((-916 . -328) 132039) ((-916 . -580) 131973) ((-916 . -354) 131950) ((-916 . -950) 131827) ((-916 . -661) 131799) ((-913 . -908) 131783) ((-913 . -317) 131767) ((-913 . -428) 131751) ((-913 . -1013) 131729) ((-913 . -455) 131662) ((-913 . -260) 131600) ((-913 . -552) 131535) ((-913 . -72) 131489) ((-913 . -1128) T) ((-913 . -13) T) ((-913 . -34) T) ((-913 . -76) 131473) ((-909 . -911) 131457) ((-909 . -759) 131436) ((-909 . -756) 131415) ((-909 . -950) 131313) ((-909 . -354) 131297) ((-909 . -580) 131245) ((-909 . -590) 131147) ((-909 . -328) 131131) ((-909 . -241) 131089) ((-909 . -260) 131054) ((-909 . -455) 130966) ((-909 . -288) 130950) ((-909 . -38) 130898) ((-909 . -82) 130776) ((-909 . -963) 130675) ((-909 . -968) 130574) ((-909 . -588) 130497) ((-909 . -582) 130445) ((-909 . -654) 130393) ((-909 . -555) 130287) ((-909 . -246) 130241) ((-909 . -201) 130220) ((-909 . -190) 130199) ((-909 . -186) 130147) ((-909 . -189) 130101) ((-909 . -225) 130085) ((-909 . -806) 130009) ((-909 . -811) 129935) ((-909 . -809) 129894) ((-909 . -184) 129878) ((-909 . -553) 129839) ((-909 . -120) 129818) ((-909 . -118) 129797) ((-909 . -104) T) ((-909 . -25) T) ((-909 . -72) T) ((-909 . -13) T) ((-909 . -1128) T) ((-909 . -552) 129779) ((-909 . -1013) T) ((-909 . -23) T) ((-909 . -21) T) ((-909 . -961) T) ((-909 . -663) T) ((-909 . -1060) T) ((-909 . -1025) T) ((-909 . -970) T) ((-907 . -995) T) ((-907 . -429) 129760) ((-907 . -552) 129726) ((-907 . -555) 129707) ((-907 . -1013) T) ((-907 . -1128) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -64) T) ((-906 . -21) T) ((-906 . -588) 129689) ((-906 . -23) T) ((-906 . -1013) T) ((-906 . -552) 129671) ((-906 . -1128) T) ((-906 . -13) T) ((-906 . -72) T) ((-906 . -25) T) ((-906 . -104) T) ((-906 . -241) 129638) ((-902 . -552) 129620) ((-899 . -1013) T) ((-899 . -552) 129602) ((-899 . -1128) T) ((-899 . -13) T) ((-899 . -72) T) ((-884 . -721) T) ((-884 . -718) T) ((-884 . -759) T) ((-884 . -756) T) ((-884 . -716) T) ((-884 . -23) T) ((-884 . -1013) T) ((-884 . -552) 129562) ((-884 . -1128) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -25) T) ((-884 . -104) T) ((-883 . -995) T) ((-883 . -429) 129543) ((-883 . -552) 129509) ((-883 . -555) 129490) ((-883 . -1013) T) ((-883 . -1128) T) ((-883 . -13) T) ((-883 . -72) T) ((-883 . -64) T) ((-877 . -880) T) ((-877 . -72) T) ((-877 . -552) 129472) ((-877 . -1013) T) ((-877 . -604) T) ((-877 . -13) T) ((-877 . -1128) T) ((-877 . -84) T) ((-877 . -555) 129456) ((-876 . -552) 129438) ((-875 . -1013) T) ((-875 . -552) 129420) ((-875 . -1128) T) ((-875 . -13) T) ((-875 . -72) T) ((-875 . -319) 129373) ((-875 . -663) 129275) ((-875 . -1025) 129177) ((-875 . -23) 128991) ((-875 . -25) 128805) ((-875 . -104) 128663) ((-875 . -412) 128616) ((-875 . -21) 128571) ((-875 . -588) 128515) ((-875 . -717) 128468) ((-875 . -716) 128421) ((-875 . -756) 128323) ((-875 . -759) 128225) ((-875 . -718) 128178) ((-875 . -721) 128131) ((-869 . -19) 128115) ((-869 . -317) 128099) ((-869 . -34) T) ((-869 . -13) T) ((-869 . -1128) T) ((-869 . -72) 128033) ((-869 . -552) 127948) ((-869 . -260) 127886) ((-869 . -455) 127819) ((-869 . -1013) 127772) ((-869 . -428) 127756) ((-869 . -593) 127740) ((-869 . -243) 127717) ((-869 . -241) 127669) ((-869 . -538) 127646) ((-869 . -553) 127607) ((-869 . -124) 127591) ((-869 . -756) 127570) ((-869 . -759) 127549) ((-869 . -323) 127533) ((-867 . -277) 127512) ((-867 . -950) 127410) ((-867 . -354) 127394) ((-867 . -38) 127291) ((-867 . -555) 127148) ((-867 . -590) 127073) ((-867 . -588) 126983) ((-867 . -970) T) ((-867 . -1025) T) ((-867 . -1060) T) ((-867 . -663) T) ((-867 . -961) T) ((-867 . -82) 126848) ((-867 . -963) 126734) ((-867 . -968) 126620) ((-867 . -21) T) ((-867 . -23) T) ((-867 . -1013) T) ((-867 . -552) 126602) ((-867 . -1128) T) ((-867 . -13) T) ((-867 . -72) T) ((-867 . -25) T) ((-867 . -104) T) ((-867 . -582) 126499) ((-867 . -654) 126396) ((-867 . -118) 126375) ((-867 . -120) 126354) ((-867 . -146) 126308) ((-867 . -495) 126287) ((-867 . -246) 126266) ((-867 . -47) 126245) ((-865 . -1013) T) ((-865 . -552) 126211) ((-865 . -1128) T) ((-865 . -13) T) ((-865 . -72) T) ((-857 . -861) 126172) ((-857 . -555) 125968) ((-857 . -950) 125850) ((-857 . -1133) 125829) ((-857 . -821) 125808) ((-857 . -796) 125733) ((-857 . -811) 125714) ((-857 . -806) 125693) ((-857 . -809) 125674) ((-857 . -455) 125620) ((-857 . -391) 125574) ((-857 . -580) 125522) ((-857 . -590) 125411) ((-857 . -328) 125395) ((-857 . -47) 125364) ((-857 . -38) 125216) ((-857 . -582) 125068) ((-857 . -654) 124920) ((-857 . -246) 124854) ((-857 . -495) 124788) ((-857 . -82) 124613) ((-857 . -963) 124459) ((-857 . -968) 124305) ((-857 . -146) 124219) ((-857 . -120) 124198) ((-857 . -118) 124177) ((-857 . -588) 124087) ((-857 . -104) T) ((-857 . -25) T) ((-857 . -72) T) ((-857 . -13) T) ((-857 . -1128) T) ((-857 . -552) 124069) ((-857 . -1013) T) ((-857 . -23) T) ((-857 . -21) T) ((-857 . -961) T) ((-857 . -663) T) ((-857 . -1060) T) ((-857 . -1025) T) ((-857 . -970) T) ((-857 . -354) 124053) ((-857 . -277) 124022) ((-857 . -260) 124009) ((-857 . -553) 123870) ((-854 . -893) 123854) ((-854 . -19) 123838) ((-854 . -317) 123822) ((-854 . -34) T) ((-854 . -13) T) ((-854 . -1128) T) ((-854 . -72) 123756) ((-854 . -552) 123671) ((-854 . -260) 123609) ((-854 . -455) 123542) ((-854 . -1013) 123495) ((-854 . -428) 123479) ((-854 . -593) 123463) ((-854 . -243) 123440) ((-854 . -241) 123392) ((-854 . -538) 123369) ((-854 . -553) 123330) ((-854 . -124) 123314) ((-854 . -756) 123293) ((-854 . -759) 123272) ((-854 . -323) 123256) ((-854 . -1177) 123240) ((-854 . -557) 123217) ((-838 . -887) T) ((-838 . -552) 123199) ((-836 . -866) T) ((-836 . -552) 123181) ((-830 . -718) T) ((-830 . -759) T) ((-830 . -756) T) ((-830 . -1013) T) ((-830 . -552) 123163) ((-830 . -1128) T) ((-830 . -13) T) ((-830 . -72) T) ((-830 . -25) T) ((-830 . -663) T) ((-830 . -1025) T) ((-825 . -312) T) ((-825 . -1133) T) ((-825 . -832) T) ((-825 . -495) T) ((-825 . -146) T) ((-825 . -555) 123100) ((-825 . -654) 123052) ((-825 . -582) 123004) ((-825 . -38) 122956) ((-825 . -391) T) ((-825 . -258) T) ((-825 . -590) 122908) ((-825 . -588) 122845) ((-825 . -970) T) ((-825 . -1025) T) ((-825 . -1060) T) ((-825 . -663) T) ((-825 . -961) T) ((-825 . -82) 122776) ((-825 . -963) 122728) ((-825 . -968) 122680) ((-825 . -21) T) ((-825 . -23) T) ((-825 . -1013) T) ((-825 . -552) 122662) ((-825 . -1128) T) ((-825 . -13) T) ((-825 . -72) T) ((-825 . -25) T) ((-825 . -104) T) ((-825 . -246) T) ((-825 . -201) T) ((-817 . -299) T) ((-817 . -1065) T) ((-817 . -319) T) ((-817 . -118) T) ((-817 . -312) T) ((-817 . -1133) T) ((-817 . -832) T) ((-817 . -495) T) ((-817 . -146) T) ((-817 . -555) 122612) ((-817 . -654) 122577) ((-817 . -582) 122542) ((-817 . -38) 122507) ((-817 . -391) T) ((-817 . -258) T) ((-817 . -82) 122456) ((-817 . -963) 122421) ((-817 . -968) 122386) ((-817 . -588) 122336) ((-817 . -590) 122301) ((-817 . -246) T) ((-817 . -201) T) ((-817 . -344) T) ((-817 . -189) T) ((-817 . -1128) T) ((-817 . -13) T) ((-817 . -186) 122288) ((-817 . -961) T) ((-817 . -663) T) ((-817 . -1060) T) ((-817 . -1025) T) ((-817 . -970) T) ((-817 . -21) T) ((-817 . -23) T) ((-817 . -1013) T) ((-817 . -552) 122270) ((-817 . -72) T) ((-817 . -25) T) ((-817 . -104) T) ((-817 . -190) T) ((-817 . -280) 122257) ((-817 . -120) 122239) ((-817 . -950) 122226) ((-817 . -1186) 122213) ((-817 . -1197) 122200) ((-817 . -553) 122182) ((-816 . -1013) T) ((-816 . -552) 122164) ((-816 . -1128) T) ((-816 . -13) T) ((-816 . -72) T) ((-813 . -815) 122148) ((-813 . -759) 122102) ((-813 . -756) 122056) ((-813 . -663) T) ((-813 . -1013) T) ((-813 . -552) 122038) ((-813 . -72) T) ((-813 . -1025) T) ((-813 . -412) T) ((-813 . -1128) T) ((-813 . -13) T) ((-813 . -241) 122017) ((-812 . -92) 122001) ((-812 . -428) 121985) ((-812 . -1013) 121963) ((-812 . -455) 121896) ((-812 . -260) 121834) ((-812 . -552) 121748) ((-812 . -72) 121702) ((-812 . -1128) T) ((-812 . -13) T) ((-812 . -34) T) ((-812 . -923) 121686) ((-803 . -756) T) ((-803 . -552) 121668) ((-803 . -1013) T) ((-803 . -72) T) ((-803 . -13) T) ((-803 . -1128) T) ((-803 . -759) T) ((-803 . -950) 121645) ((-803 . -555) 121622) ((-800 . -1013) T) ((-800 . -552) 121604) ((-800 . -1128) T) ((-800 . -13) T) ((-800 . -72) T) ((-800 . -950) 121572) ((-800 . -555) 121540) ((-798 . -1013) T) ((-798 . -552) 121522) ((-798 . -1128) T) ((-798 . -13) T) ((-798 . -72) T) ((-795 . -1013) T) ((-795 . -552) 121504) ((-795 . -1128) T) ((-795 . -13) T) ((-795 . -72) T) ((-785 . -995) T) ((-785 . -429) 121485) ((-785 . -552) 121451) ((-785 . -555) 121432) ((-785 . -1013) T) ((-785 . -1128) T) ((-785 . -13) T) ((-785 . -72) T) ((-785 . -64) T) ((-785 . -1174) T) ((-783 . -1013) T) ((-783 . -552) 121414) ((-783 . -1128) T) ((-783 . -13) T) ((-783 . -72) T) ((-783 . -555) 121396) ((-782 . -1128) T) ((-782 . -13) T) ((-782 . -552) 121271) ((-782 . -1013) 121222) ((-782 . -72) 121173) ((-781 . -904) 121157) ((-781 . -1065) 121135) ((-781 . -950) 121002) ((-781 . -555) 120901) ((-781 . -553) 120704) ((-781 . -933) 120683) ((-781 . -821) 120662) ((-781 . -794) 120646) ((-781 . -755) 120625) ((-781 . -721) 120604) ((-781 . -718) 120583) ((-781 . -759) 120537) ((-781 . -756) 120491) ((-781 . -716) 120470) ((-781 . -714) 120449) ((-781 . -740) 120428) ((-781 . -796) 120353) ((-781 . -342) 120337) ((-781 . -580) 120285) ((-781 . -590) 120201) ((-781 . -328) 120185) ((-781 . -241) 120143) ((-781 . -260) 120108) ((-781 . -455) 120020) ((-781 . -288) 120004) ((-781 . -201) T) ((-781 . -82) 119935) ((-781 . -963) 119887) ((-781 . -968) 119839) ((-781 . -246) T) ((-781 . -654) 119791) ((-781 . -582) 119743) ((-781 . -588) 119680) ((-781 . -38) 119632) ((-781 . -258) T) ((-781 . -391) T) ((-781 . -146) T) ((-781 . -495) T) ((-781 . -832) T) ((-781 . -1133) T) ((-781 . -312) T) ((-781 . -190) 119611) ((-781 . -186) 119559) ((-781 . -189) 119513) ((-781 . -225) 119497) ((-781 . -806) 119421) ((-781 . -811) 119347) ((-781 . -809) 119306) ((-781 . -184) 119290) ((-781 . -120) 119244) ((-781 . -118) 119223) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1128) T) ((-781 . -552) 119205) ((-781 . -1013) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -961) T) ((-781 . -663) T) ((-781 . -1060) T) ((-781 . -1025) T) ((-781 . -970) T) ((-780 . -904) 119182) ((-780 . -1065) NIL) ((-780 . -950) 119159) ((-780 . -555) 119089) ((-780 . -553) NIL) ((-780 . -933) NIL) ((-780 . -821) NIL) ((-780 . -794) 119066) ((-780 . -755) NIL) ((-780 . -721) NIL) ((-780 . -718) NIL) ((-780 . -759) NIL) ((-780 . -756) NIL) ((-780 . -716) NIL) ((-780 . -714) NIL) ((-780 . -740) NIL) ((-780 . -796) NIL) ((-780 . -342) 119043) ((-780 . -580) 119020) ((-780 . -590) 118965) ((-780 . -328) 118942) ((-780 . -241) 118872) ((-780 . -260) 118816) ((-780 . -455) 118679) ((-780 . -288) 118656) ((-780 . -201) T) ((-780 . -82) 118573) ((-780 . -963) 118518) ((-780 . -968) 118463) ((-780 . -246) T) ((-780 . -654) 118408) ((-780 . -582) 118353) ((-780 . -588) 118283) ((-780 . -38) 118228) ((-780 . -258) T) ((-780 . -391) T) ((-780 . -146) T) ((-780 . -495) T) ((-780 . -832) T) ((-780 . -1133) T) ((-780 . -312) T) ((-780 . -190) NIL) ((-780 . -186) NIL) ((-780 . -189) NIL) ((-780 . -225) 118205) ((-780 . -806) NIL) ((-780 . -811) NIL) ((-780 . -809) NIL) ((-780 . -184) 118182) ((-780 . -120) T) ((-780 . -118) NIL) ((-780 . -104) T) ((-780 . -25) T) ((-780 . -72) T) ((-780 . -13) T) ((-780 . -1128) T) ((-780 . -552) 118164) ((-780 . -1013) T) ((-780 . -23) T) ((-780 . -21) T) ((-780 . -961) T) ((-780 . -663) T) ((-780 . -1060) T) ((-780 . -1025) T) ((-780 . -970) T) ((-778 . -779) 118148) ((-778 . -832) T) ((-778 . -495) T) ((-778 . -246) T) ((-778 . -146) T) ((-778 . -555) 118120) ((-778 . -654) 118107) ((-778 . -582) 118094) ((-778 . -968) 118081) ((-778 . -963) 118068) ((-778 . -82) 118053) ((-778 . -38) 118040) ((-778 . -391) T) ((-778 . -258) T) ((-778 . -961) T) ((-778 . -663) T) ((-778 . -1060) T) ((-778 . -1025) T) ((-778 . -970) T) ((-778 . -21) T) ((-778 . -588) 118012) ((-778 . -23) T) ((-778 . -1013) T) ((-778 . -552) 117994) ((-778 . -1128) T) ((-778 . -13) T) ((-778 . -72) T) ((-778 . -25) T) ((-778 . -104) T) ((-778 . -590) 117981) ((-778 . -120) T) ((-775 . -961) T) ((-775 . -663) T) ((-775 . -1060) T) ((-775 . -1025) T) ((-775 . -970) T) ((-775 . -21) T) ((-775 . -588) 117926) ((-775 . -23) T) ((-775 . -1013) T) ((-775 . -552) 117888) ((-775 . -1128) T) ((-775 . -13) T) ((-775 . -72) T) ((-775 . -25) T) ((-775 . -104) T) ((-775 . -590) 117848) ((-775 . -555) 117783) ((-775 . -429) 117760) ((-775 . -38) 117730) ((-775 . -82) 117695) ((-775 . -963) 117665) ((-775 . -968) 117635) ((-775 . -582) 117605) ((-775 . -654) 117575) ((-774 . -1013) T) ((-774 . -552) 117557) ((-774 . -1128) T) ((-774 . -13) T) ((-774 . -72) T) ((-773 . -752) T) ((-773 . -759) T) ((-773 . -756) T) ((-773 . -1013) T) ((-773 . -552) 117539) ((-773 . -1128) T) ((-773 . -13) T) ((-773 . -72) T) ((-773 . -319) T) ((-773 . -553) 117461) ((-772 . -1013) T) ((-772 . -552) 117443) ((-772 . -1128) T) ((-772 . -13) T) ((-772 . -72) T) ((-771 . -770) T) ((-771 . -147) T) ((-771 . -552) 117425) ((-767 . -756) T) ((-767 . -552) 117407) ((-767 . -1013) T) ((-767 . -72) T) ((-767 . -13) T) ((-767 . -1128) T) ((-767 . -759) T) ((-764 . -761) 117391) ((-764 . -950) 117289) ((-764 . -555) 117187) ((-764 . -354) 117171) ((-764 . -654) 117141) ((-764 . -582) 117111) ((-764 . -590) 117085) ((-764 . -588) 117044) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1128) T) ((-764 . -552) 117026) ((-764 . -1013) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -968) 117010) ((-764 . -963) 116994) ((-764 . -82) 116973) ((-764 . -961) T) ((-764 . -663) T) ((-764 . -1060) T) ((-764 . -1025) T) ((-764 . -970) T) ((-764 . -38) 116943) ((-763 . -761) 116927) ((-763 . -950) 116825) ((-763 . -555) 116744) ((-763 . -354) 116728) ((-763 . -654) 116698) ((-763 . -582) 116668) ((-763 . -590) 116642) ((-763 . -588) 116601) ((-763 . -104) T) ((-763 . -25) T) ((-763 . -72) T) ((-763 . -13) T) ((-763 . -1128) T) ((-763 . -552) 116583) ((-763 . -1013) T) ((-763 . -23) T) ((-763 . -21) T) ((-763 . -968) 116567) ((-763 . -963) 116551) ((-763 . -82) 116530) ((-763 . -961) T) ((-763 . -663) T) ((-763 . -1060) T) ((-763 . -1025) T) ((-763 . -970) T) ((-763 . -38) 116500) ((-757 . -759) T) ((-757 . -1128) T) ((-757 . -13) T) ((-757 . -72) T) ((-757 . -429) 116484) ((-757 . -552) 116432) ((-757 . -555) 116416) ((-750 . -1013) T) ((-750 . -552) 116398) ((-750 . -1128) T) ((-750 . -13) T) ((-750 . -72) T) ((-750 . -354) 116382) ((-750 . -555) 116255) ((-750 . -950) 116153) ((-750 . -21) 116108) ((-750 . -588) 116028) ((-750 . -23) 115983) ((-750 . -25) 115938) ((-750 . -104) 115893) ((-750 . -755) 115872) ((-750 . -721) 115851) ((-750 . -718) 115830) ((-750 . -759) 115809) ((-750 . -756) 115788) ((-750 . -716) 115767) ((-750 . -714) 115746) ((-750 . -961) 115725) ((-750 . -663) 115704) ((-750 . -1060) 115683) ((-750 . -1025) 115662) ((-750 . -970) 115641) ((-750 . -590) 115614) ((-750 . -120) 115593) ((-749 . -747) 115575) ((-749 . -72) T) ((-749 . -13) T) ((-749 . -1128) T) ((-749 . -552) 115557) ((-749 . -1013) T) ((-745 . -961) T) ((-745 . -663) T) ((-745 . -1060) T) ((-745 . -1025) T) ((-745 . -970) T) ((-745 . -21) T) ((-745 . -588) 115502) ((-745 . -23) T) ((-745 . -1013) T) ((-745 . -552) 115484) ((-745 . -1128) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -25) T) ((-745 . -104) T) ((-745 . -590) 115444) ((-745 . -555) 115399) ((-745 . -950) 115369) ((-745 . -241) 115348) ((-745 . -120) 115327) ((-745 . -118) 115306) ((-745 . -38) 115276) ((-745 . -82) 115241) ((-745 . -963) 115211) ((-745 . -968) 115181) ((-745 . -582) 115151) ((-745 . -654) 115121) ((-743 . -1013) T) ((-743 . -552) 115103) ((-743 . -1128) T) ((-743 . -13) T) ((-743 . -72) T) ((-743 . -354) 115087) ((-743 . -555) 114960) ((-743 . -950) 114858) ((-743 . -21) 114813) ((-743 . -588) 114733) ((-743 . -23) 114688) ((-743 . -25) 114643) ((-743 . -104) 114598) ((-743 . -755) 114577) ((-743 . -721) 114556) ((-743 . -718) 114535) ((-743 . -759) 114514) ((-743 . -756) 114493) ((-743 . -716) 114472) ((-743 . -714) 114451) ((-743 . -961) 114430) ((-743 . -663) 114409) ((-743 . -1060) 114388) ((-743 . -1025) 114367) ((-743 . -970) 114346) ((-743 . -590) 114319) ((-743 . -120) 114298) ((-741 . -645) 114282) ((-741 . -555) 114237) ((-741 . -654) 114207) ((-741 . -582) 114177) ((-741 . -590) 114151) ((-741 . -588) 114110) ((-741 . -104) T) ((-741 . -25) T) ((-741 . -72) T) ((-741 . -13) T) ((-741 . -1128) T) ((-741 . -552) 114092) ((-741 . -1013) T) ((-741 . -23) T) ((-741 . -21) T) ((-741 . -968) 114076) ((-741 . -963) 114060) ((-741 . -82) 114039) ((-741 . -961) T) ((-741 . -663) T) ((-741 . -1060) T) ((-741 . -1025) T) ((-741 . -970) T) ((-741 . -38) 114009) ((-741 . -190) 113988) ((-741 . -186) 113961) ((-741 . -189) 113940) ((-739 . -335) 113924) ((-739 . -555) 113908) ((-739 . -950) 113892) ((-739 . -759) T) ((-739 . -756) T) ((-739 . -1025) T) ((-739 . -72) T) ((-739 . -13) T) ((-739 . -1128) T) ((-739 . -552) 113874) ((-739 . -1013) T) ((-739 . -663) T) ((-739 . -754) T) ((-739 . -766) T) ((-738 . -228) 113858) ((-738 . -555) 113842) ((-738 . -950) 113826) ((-738 . -759) T) ((-738 . -72) T) ((-738 . -1013) T) ((-738 . -552) 113808) ((-738 . -756) T) ((-738 . -186) 113795) ((-738 . -13) T) ((-738 . -1128) T) ((-738 . -189) T) ((-737 . -82) 113730) ((-737 . -963) 113681) ((-737 . -968) 113632) ((-737 . -21) T) ((-737 . -588) 113568) ((-737 . -23) T) ((-737 . -1013) T) ((-737 . -552) 113537) ((-737 . -1128) T) ((-737 . -13) T) ((-737 . -72) T) ((-737 . -25) T) ((-737 . -104) T) ((-737 . -590) 113488) ((-737 . -190) T) ((-737 . -555) 113397) ((-737 . -970) T) ((-737 . -1025) T) ((-737 . -1060) T) ((-737 . -663) T) ((-737 . -961) T) ((-737 . -186) 113384) ((-737 . -189) T) ((-737 . -429) 113368) ((-737 . -312) 113347) ((-737 . -1133) 113326) ((-737 . -832) 113305) ((-737 . -495) 113284) ((-737 . -146) 113263) ((-737 . -654) 113200) ((-737 . -582) 113137) ((-737 . -38) 113074) ((-737 . -391) 113053) ((-737 . -258) 113032) ((-737 . -246) 113011) ((-737 . -201) 112990) ((-736 . -213) 112929) ((-736 . -555) 112673) ((-736 . -950) 112503) ((-736 . -553) NIL) ((-736 . -277) 112465) ((-736 . -354) 112449) ((-736 . -38) 112301) ((-736 . -82) 112126) ((-736 . -963) 111972) ((-736 . -968) 111818) ((-736 . -588) 111728) ((-736 . -590) 111617) ((-736 . -582) 111469) ((-736 . -654) 111321) ((-736 . -118) 111300) ((-736 . -120) 111279) ((-736 . -146) 111193) ((-736 . -495) 111127) ((-736 . -246) 111061) ((-736 . -47) 111023) ((-736 . -328) 111007) ((-736 . -580) 110955) ((-736 . -391) 110909) ((-736 . -455) 110774) ((-736 . -809) 110710) ((-736 . -806) 110609) ((-736 . -811) 110512) ((-736 . -796) NIL) ((-736 . -821) 110491) ((-736 . -1133) 110470) ((-736 . -861) 110417) ((-736 . -260) 110404) ((-736 . -190) 110383) ((-736 . -104) T) ((-736 . -25) T) ((-736 . -72) T) ((-736 . -552) 110365) ((-736 . -1013) T) ((-736 . -23) T) ((-736 . -21) T) ((-736 . -970) T) ((-736 . -1025) T) ((-736 . -1060) T) ((-736 . -663) T) ((-736 . -961) T) ((-736 . -186) 110313) ((-736 . -13) T) ((-736 . -1128) T) ((-736 . -189) 110267) ((-736 . -225) 110251) ((-736 . -184) 110235) ((-735 . -196) 110214) ((-735 . -1186) 110184) ((-735 . -721) 110163) ((-735 . -718) 110142) ((-735 . -759) 110096) ((-735 . -756) 110050) ((-735 . -716) 110029) ((-735 . -717) 110008) ((-735 . -654) 109953) ((-735 . -582) 109878) ((-735 . -243) 109855) ((-735 . -241) 109832) ((-735 . -538) 109809) ((-735 . -950) 109638) ((-735 . -555) 109442) ((-735 . -354) 109411) ((-735 . -580) 109319) ((-735 . -590) 109158) ((-735 . -328) 109128) ((-735 . -428) 109112) ((-735 . -455) 109045) ((-735 . -260) 108983) ((-735 . -34) T) ((-735 . -317) 108967) ((-735 . -319) 108946) ((-735 . -190) 108899) ((-735 . -588) 108687) ((-735 . -970) 108666) ((-735 . -1025) 108645) ((-735 . -1060) 108624) ((-735 . -663) 108603) ((-735 . -961) 108582) ((-735 . -186) 108478) ((-735 . -189) 108380) ((-735 . -225) 108350) ((-735 . -806) 108222) ((-735 . -811) 108096) ((-735 . -809) 108029) ((-735 . -184) 107999) ((-735 . -552) 107696) ((-735 . -968) 107621) ((-735 . -963) 107526) ((-735 . -82) 107446) ((-735 . -104) 107321) ((-735 . -25) 107158) ((-735 . -72) 106895) ((-735 . -13) T) ((-735 . -1128) T) ((-735 . -1013) 106651) ((-735 . -23) 106507) ((-735 . -21) 106422) ((-722 . -720) 106406) ((-722 . -759) 106385) ((-722 . -756) 106364) ((-722 . -950) 106157) ((-722 . -555) 106010) ((-722 . -354) 105974) ((-722 . -241) 105932) ((-722 . -260) 105897) ((-722 . -455) 105809) ((-722 . -288) 105793) ((-722 . -319) 105772) ((-722 . -553) 105733) ((-722 . -120) 105712) ((-722 . -118) 105691) ((-722 . -654) 105675) ((-722 . -582) 105659) ((-722 . -590) 105633) ((-722 . -588) 105592) ((-722 . -104) T) ((-722 . -25) T) ((-722 . -72) T) ((-722 . -13) T) ((-722 . -1128) T) ((-722 . -552) 105574) ((-722 . -1013) T) ((-722 . -23) T) ((-722 . -21) T) ((-722 . -968) 105558) ((-722 . -963) 105542) ((-722 . -82) 105521) ((-722 . -961) T) ((-722 . -663) T) ((-722 . -1060) T) ((-722 . -1025) T) ((-722 . -970) T) ((-722 . -38) 105505) ((-704 . -1154) 105489) ((-704 . -1065) 105467) ((-704 . -553) NIL) ((-704 . -260) 105454) ((-704 . -455) 105402) ((-704 . -277) 105379) ((-704 . -950) 105241) ((-704 . -354) 105225) ((-704 . -38) 105057) ((-704 . -82) 104862) ((-704 . -963) 104688) ((-704 . -968) 104514) ((-704 . -588) 104424) ((-704 . -590) 104313) ((-704 . -582) 104145) ((-704 . -654) 103977) ((-704 . -555) 103733) ((-704 . -118) 103712) ((-704 . -120) 103691) ((-704 . -47) 103668) ((-704 . -328) 103652) ((-704 . -580) 103600) ((-704 . -809) 103544) ((-704 . -806) 103451) ((-704 . -811) 103362) ((-704 . -796) NIL) ((-704 . -821) 103341) ((-704 . -1133) 103320) ((-704 . -861) 103290) ((-704 . -832) 103269) ((-704 . -495) 103183) ((-704 . -246) 103097) ((-704 . -146) 102991) ((-704 . -391) 102925) ((-704 . -258) 102904) ((-704 . -241) 102831) ((-704 . -190) T) ((-704 . -104) T) ((-704 . -25) T) ((-704 . -72) T) ((-704 . -552) 102792) ((-704 . -1013) T) ((-704 . -23) T) ((-704 . -21) T) ((-704 . -970) T) ((-704 . -1025) T) ((-704 . -1060) T) ((-704 . -663) T) ((-704 . -961) T) ((-704 . -186) 102779) ((-704 . -13) T) ((-704 . -1128) T) ((-704 . -189) T) ((-704 . -225) 102763) ((-704 . -184) 102747) ((-703 . -977) 102714) ((-703 . -553) 102349) ((-703 . -260) 102336) ((-703 . -455) 102288) ((-703 . -277) 102260) ((-703 . -950) 102119) ((-703 . -354) 102103) ((-703 . -38) 101955) ((-703 . -555) 101728) ((-703 . -590) 101617) ((-703 . -588) 101527) ((-703 . -970) T) ((-703 . -1025) T) ((-703 . -1060) T) ((-703 . -663) T) ((-703 . -961) T) ((-703 . -82) 101352) ((-703 . -963) 101198) ((-703 . -968) 101044) ((-703 . -21) T) ((-703 . -23) T) ((-703 . -1013) T) ((-703 . -552) 100958) ((-703 . -1128) T) ((-703 . -13) T) ((-703 . -72) T) ((-703 . -25) T) ((-703 . -104) T) ((-703 . -582) 100810) ((-703 . -654) 100662) ((-703 . -118) 100641) ((-703 . -120) 100620) ((-703 . -146) 100534) ((-703 . -495) 100468) ((-703 . -246) 100402) ((-703 . -47) 100374) ((-703 . -328) 100358) ((-703 . -580) 100306) ((-703 . -391) 100260) ((-703 . -809) 100244) ((-703 . -806) 100226) ((-703 . -811) 100210) ((-703 . -796) 100069) ((-703 . -821) 100048) ((-703 . -1133) 100027) ((-703 . -861) 99994) ((-696 . -1013) T) ((-696 . -552) 99976) ((-696 . -1128) T) ((-696 . -13) T) ((-696 . -72) T) ((-694 . -717) T) ((-694 . -104) T) ((-694 . -25) T) ((-694 . -72) T) ((-694 . -13) T) ((-694 . -1128) T) ((-694 . -552) 99958) ((-694 . -1013) T) ((-694 . -23) T) ((-694 . -716) T) ((-694 . -756) T) ((-694 . -759) T) ((-694 . -718) T) ((-694 . -721) T) ((-694 . -663) T) ((-694 . -1025) T) ((-675 . -676) 99942) ((-675 . -1011) 99926) ((-675 . -193) 99910) ((-675 . -553) 99871) ((-675 . -124) 99855) ((-675 . -428) 99839) ((-675 . -1013) T) ((-675 . -455) 99772) ((-675 . -260) 99710) ((-675 . -552) 99692) ((-675 . -72) T) ((-675 . -1128) T) ((-675 . -13) T) ((-675 . -34) T) ((-675 . -76) 99676) ((-675 . -634) 99660) ((-675 . -317) 99644) ((-674 . -961) T) ((-674 . -663) T) ((-674 . -1060) T) ((-674 . -1025) T) ((-674 . -970) T) ((-674 . -21) T) ((-674 . -588) 99589) ((-674 . -23) T) ((-674 . -1013) T) ((-674 . -552) 99571) ((-674 . -1128) T) ((-674 . -13) T) ((-674 . -72) T) ((-674 . -25) T) ((-674 . -104) T) ((-674 . -590) 99531) ((-674 . -555) 99487) ((-674 . -950) 99458) ((-674 . -120) 99437) ((-674 . -118) 99416) ((-674 . -38) 99386) ((-674 . -82) 99351) ((-674 . -963) 99321) ((-674 . -968) 99291) ((-674 . -582) 99261) ((-674 . -654) 99231) ((-674 . -319) 99184) ((-670 . -861) 99137) ((-670 . -555) 98929) ((-670 . -950) 98807) ((-670 . -1133) 98786) ((-670 . -821) 98765) ((-670 . -796) NIL) ((-670 . -811) 98742) ((-670 . -806) 98717) ((-670 . -809) 98694) ((-670 . -455) 98632) ((-670 . -391) 98586) ((-670 . -580) 98534) ((-670 . -590) 98423) ((-670 . -328) 98407) ((-670 . -47) 98372) ((-670 . -38) 98224) ((-670 . -582) 98076) ((-670 . -654) 97928) ((-670 . -246) 97862) ((-670 . -495) 97796) ((-670 . -82) 97621) ((-670 . -963) 97467) ((-670 . -968) 97313) ((-670 . -146) 97227) ((-670 . -120) 97206) ((-670 . -118) 97185) ((-670 . -588) 97095) ((-670 . -104) T) ((-670 . -25) T) ((-670 . -72) T) ((-670 . -13) T) ((-670 . -1128) T) ((-670 . -552) 97077) ((-670 . -1013) T) ((-670 . -23) T) ((-670 . -21) T) ((-670 . -961) T) ((-670 . -663) T) ((-670 . -1060) T) ((-670 . -1025) T) ((-670 . -970) T) ((-670 . -354) 97061) ((-670 . -277) 97026) ((-670 . -260) 97013) ((-670 . -553) 96874) ((-664 . -665) 96858) ((-664 . -80) 96842) ((-664 . -1128) T) ((-664 . |MappingCategory|) 96816) ((-664 . -1023) 96800) ((-664 . -1013) T) ((-664 . -552) 96761) ((-664 . -13) T) ((-664 . -72) T) ((-655 . -412) T) ((-655 . -1025) T) ((-655 . -72) T) ((-655 . -13) T) ((-655 . -1128) T) ((-655 . -552) 96743) ((-655 . -1013) T) ((-655 . -663) T) ((-652 . -961) T) ((-652 . -663) T) ((-652 . -1060) T) ((-652 . -1025) T) ((-652 . -970) T) ((-652 . -21) T) ((-652 . -588) 96715) ((-652 . -23) T) ((-652 . -1013) T) ((-652 . -552) 96697) ((-652 . -1128) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -590) 96684) ((-652 . -555) 96666) ((-651 . -961) T) ((-651 . -663) T) ((-651 . -1060) T) ((-651 . -1025) T) ((-651 . -970) T) ((-651 . -21) T) ((-651 . -588) 96611) ((-651 . -23) T) ((-651 . -1013) T) ((-651 . -552) 96593) ((-651 . -1128) T) ((-651 . -13) T) ((-651 . -72) T) ((-651 . -25) T) ((-651 . -104) T) ((-651 . -590) 96553) ((-651 . -555) 96508) ((-651 . -950) 96478) ((-651 . -241) 96457) ((-651 . -120) 96436) ((-651 . -118) 96415) ((-651 . -38) 96385) ((-651 . -82) 96350) ((-651 . -963) 96320) ((-651 . -968) 96290) ((-651 . -582) 96260) ((-651 . -654) 96230) ((-650 . -756) T) ((-650 . -552) 96165) ((-650 . -1013) T) ((-650 . -72) T) ((-650 . -13) T) ((-650 . -1128) T) ((-650 . -759) T) ((-650 . -429) 96115) ((-650 . -555) 96065) ((-649 . -1154) 96049) ((-649 . -1065) 96027) ((-649 . -553) NIL) ((-649 . -260) 96014) ((-649 . -455) 95962) ((-649 . -277) 95939) ((-649 . -950) 95822) ((-649 . -354) 95806) ((-649 . -38) 95638) ((-649 . -82) 95443) ((-649 . -963) 95269) ((-649 . -968) 95095) ((-649 . -588) 95005) ((-649 . -590) 94894) ((-649 . -582) 94726) ((-649 . -654) 94558) ((-649 . -555) 94322) ((-649 . -118) 94301) ((-649 . -120) 94280) ((-649 . -47) 94257) ((-649 . -328) 94241) ((-649 . -580) 94189) ((-649 . -809) 94133) ((-649 . -806) 94040) ((-649 . -811) 93951) ((-649 . -796) NIL) ((-649 . -821) 93930) ((-649 . -1133) 93909) ((-649 . -861) 93879) ((-649 . -832) 93858) ((-649 . -495) 93772) ((-649 . -246) 93686) ((-649 . -146) 93580) ((-649 . -391) 93514) ((-649 . -258) 93493) ((-649 . -241) 93420) ((-649 . -190) T) ((-649 . -104) T) ((-649 . -25) T) ((-649 . -72) T) ((-649 . -552) 93402) ((-649 . -1013) T) ((-649 . -23) T) ((-649 . -21) T) ((-649 . -970) T) ((-649 . -1025) T) ((-649 . -1060) T) ((-649 . -663) T) ((-649 . -961) T) ((-649 . -186) 93389) ((-649 . -13) T) ((-649 . -1128) T) ((-649 . -189) T) ((-649 . -225) 93373) ((-649 . -184) 93357) ((-649 . -319) 93336) ((-648 . -312) T) ((-648 . -1133) T) ((-648 . -832) T) ((-648 . -495) T) ((-648 . -146) T) ((-648 . -555) 93286) ((-648 . -654) 93251) ((-648 . -582) 93216) ((-648 . -38) 93181) ((-648 . -391) T) ((-648 . -258) T) ((-648 . -590) 93146) ((-648 . -588) 93096) ((-648 . -970) T) ((-648 . -1025) T) ((-648 . -1060) T) ((-648 . -663) T) ((-648 . -961) T) ((-648 . -82) 93045) ((-648 . -963) 93010) ((-648 . -968) 92975) ((-648 . -21) T) ((-648 . -23) T) ((-648 . -1013) T) ((-648 . -552) 92957) ((-648 . -1128) T) ((-648 . -13) T) ((-648 . -72) T) ((-648 . -25) T) ((-648 . -104) T) ((-648 . -246) T) ((-648 . -201) T) ((-647 . -1013) T) ((-647 . -552) 92939) ((-647 . -1128) T) ((-647 . -13) T) ((-647 . -72) T) ((-632 . -1174) T) ((-632 . -950) 92923) ((-632 . -555) 92907) ((-632 . -552) 92889) ((-630 . -627) 92847) ((-630 . -317) 92831) ((-630 . -34) T) ((-630 . -13) T) ((-630 . -1128) T) ((-630 . -72) 92785) ((-630 . -552) 92720) ((-630 . -260) 92658) ((-630 . -455) 92591) ((-630 . -1013) 92569) ((-630 . -428) 92553) ((-630 . -57) 92511) ((-630 . -553) 92472) ((-622 . -995) T) ((-622 . -429) 92453) ((-622 . -552) 92403) ((-622 . -555) 92384) ((-622 . -1013) T) ((-622 . -1128) T) ((-622 . -13) T) ((-622 . -72) T) ((-622 . -64) T) ((-618 . -756) T) ((-618 . -552) 92366) ((-618 . -1013) T) ((-618 . -72) T) ((-618 . -13) T) ((-618 . -1128) T) ((-618 . -759) T) ((-618 . -950) 92350) ((-618 . -555) 92334) ((-617 . -995) T) ((-617 . -429) 92315) ((-617 . -552) 92281) ((-617 . -555) 92262) ((-617 . -1013) T) ((-617 . -1128) T) ((-617 . -13) T) ((-617 . -72) T) ((-617 . -64) T) ((-614 . -756) T) ((-614 . -552) 92244) ((-614 . -1013) T) ((-614 . -72) T) ((-614 . -13) T) ((-614 . -1128) T) ((-614 . -759) T) ((-614 . -950) 92228) ((-614 . -555) 92212) ((-613 . -995) T) ((-613 . -429) 92193) ((-613 . -552) 92159) ((-613 . -555) 92140) ((-613 . -1013) T) ((-613 . -1128) T) ((-613 . -13) T) ((-613 . -72) T) ((-613 . -64) T) ((-612 . -1036) 92085) ((-612 . -317) 92069) ((-612 . -34) T) ((-612 . -260) 92007) ((-612 . -455) 91940) ((-612 . -428) 91924) ((-612 . -965) 91864) ((-612 . -950) 91762) ((-612 . -555) 91681) ((-612 . -354) 91665) ((-612 . -580) 91613) ((-612 . -590) 91551) ((-612 . -328) 91535) ((-612 . -190) 91514) ((-612 . -186) 91462) ((-612 . -189) 91416) ((-612 . -225) 91400) ((-612 . -806) 91324) ((-612 . -811) 91250) ((-612 . -809) 91209) ((-612 . -184) 91193) ((-612 . -654) 91177) ((-612 . -582) 91161) ((-612 . -588) 91120) ((-612 . -104) T) ((-612 . -25) T) ((-612 . -72) T) ((-612 . -13) T) ((-612 . -1128) T) ((-612 . -552) 91082) ((-612 . -1013) T) ((-612 . -23) T) ((-612 . -21) T) ((-612 . -968) 91066) ((-612 . -963) 91050) ((-612 . -82) 91029) ((-612 . -961) T) ((-612 . -663) T) ((-612 . -1060) T) ((-612 . -1025) T) ((-612 . -970) T) ((-612 . -38) 90989) ((-612 . -360) 90973) ((-612 . -683) 90957) ((-612 . -657) T) ((-612 . -685) T) ((-612 . -316) 90941) ((-612 . -241) 90918) ((-606 . -325) 90897) ((-606 . -654) 90881) ((-606 . -582) 90865) ((-606 . -590) 90849) ((-606 . -588) 90818) ((-606 . -104) T) ((-606 . -25) T) ((-606 . -72) T) ((-606 . -13) T) ((-606 . -1128) T) ((-606 . -552) 90800) ((-606 . -1013) T) ((-606 . -23) T) ((-606 . -21) T) ((-606 . -968) 90784) ((-606 . -963) 90768) ((-606 . -82) 90747) ((-606 . -574) 90731) ((-606 . -334) 90703) ((-606 . -555) 90680) ((-606 . -950) 90657) ((-598 . -600) 90641) ((-598 . -38) 90611) ((-598 . -555) 90530) ((-598 . -590) 90504) ((-598 . -588) 90463) ((-598 . -970) T) ((-598 . -1025) T) ((-598 . -1060) T) ((-598 . -663) T) ((-598 . -961) T) ((-598 . -82) 90442) ((-598 . -963) 90426) ((-598 . -968) 90410) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1013) T) ((-598 . -552) 90392) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -582) 90362) ((-598 . -654) 90332) ((-598 . -354) 90316) ((-598 . -950) 90214) ((-598 . -761) 90198) ((-598 . -1128) T) ((-598 . -13) T) ((-598 . -241) 90159) ((-597 . -600) 90143) ((-597 . -38) 90113) ((-597 . -555) 90032) ((-597 . -590) 90006) ((-597 . -588) 89965) ((-597 . -970) T) ((-597 . -1025) T) ((-597 . -1060) T) ((-597 . -663) T) ((-597 . -961) T) ((-597 . -82) 89944) ((-597 . -963) 89928) ((-597 . -968) 89912) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1013) T) ((-597 . -552) 89894) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -582) 89864) ((-597 . -654) 89834) ((-597 . -354) 89818) ((-597 . -950) 89716) ((-597 . -761) 89700) ((-597 . -1128) T) ((-597 . -13) T) ((-597 . -241) 89679) ((-596 . -600) 89663) ((-596 . -38) 89633) ((-596 . -555) 89552) ((-596 . -590) 89526) ((-596 . -588) 89485) ((-596 . -970) T) ((-596 . -1025) T) ((-596 . -1060) T) ((-596 . -663) T) ((-596 . -961) T) ((-596 . -82) 89464) ((-596 . -963) 89448) ((-596 . -968) 89432) ((-596 . -21) T) ((-596 . -23) T) ((-596 . -1013) T) ((-596 . -552) 89414) ((-596 . -72) T) ((-596 . -25) T) ((-596 . -104) T) ((-596 . -582) 89384) ((-596 . -654) 89354) ((-596 . -354) 89338) ((-596 . -950) 89236) ((-596 . -761) 89220) ((-596 . -1128) T) ((-596 . -13) T) ((-596 . -241) 89199) ((-594 . -654) 89183) ((-594 . -582) 89167) ((-594 . -590) 89151) ((-594 . -588) 89120) ((-594 . -104) T) ((-594 . -25) T) ((-594 . -72) T) ((-594 . -13) T) ((-594 . -1128) T) ((-594 . -552) 89102) ((-594 . -1013) T) ((-594 . -23) T) ((-594 . -21) T) ((-594 . -968) 89086) ((-594 . -963) 89070) ((-594 . -82) 89049) ((-594 . -714) 89028) ((-594 . -716) 89007) ((-594 . -756) 88986) ((-594 . -759) 88965) ((-594 . -718) 88944) ((-594 . -721) 88923) ((-591 . -1013) T) ((-591 . -552) 88905) ((-591 . -1128) T) ((-591 . -13) T) ((-591 . -72) T) ((-591 . -950) 88889) ((-591 . -555) 88873) ((-589 . -634) 88857) ((-589 . -76) 88841) ((-589 . -34) T) ((-589 . -13) T) ((-589 . -1128) T) ((-589 . -72) 88795) ((-589 . -552) 88730) ((-589 . -260) 88668) ((-589 . -455) 88601) ((-589 . -1013) 88579) ((-589 . -428) 88563) ((-589 . -124) 88547) ((-589 . -553) 88508) ((-589 . -193) 88492) ((-589 . -317) 88476) ((-587 . -995) T) ((-587 . -429) 88457) ((-587 . -552) 88410) ((-587 . -555) 88391) ((-587 . -1013) T) ((-587 . -1128) T) ((-587 . -13) T) ((-587 . -72) T) ((-587 . -64) T) ((-583 . -608) 88375) ((-583 . -1167) 88359) ((-583 . -923) 88343) ((-583 . -1063) 88327) ((-583 . -317) 88311) ((-583 . -756) 88290) ((-583 . -759) 88269) ((-583 . -323) 88253) ((-583 . -593) 88237) ((-583 . -243) 88214) ((-583 . -241) 88166) ((-583 . -538) 88143) ((-583 . -553) 88104) ((-583 . -428) 88088) ((-583 . -1013) 88041) ((-583 . -455) 87974) ((-583 . -260) 87912) ((-583 . -552) 87827) ((-583 . -72) 87761) ((-583 . -1128) T) ((-583 . -13) T) ((-583 . -34) T) ((-583 . -124) 87745) ((-583 . -237) 87729) ((-581 . -1186) 87713) ((-581 . -82) 87692) ((-581 . -963) 87676) ((-581 . -968) 87660) ((-581 . -21) T) ((-581 . -588) 87629) ((-581 . -23) T) ((-581 . -1013) T) ((-581 . -552) 87611) ((-581 . -1128) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -25) T) ((-581 . -104) T) ((-581 . -590) 87595) ((-581 . -582) 87579) ((-581 . -654) 87563) ((-581 . -241) 87530) ((-579 . -1186) 87514) ((-579 . -82) 87493) ((-579 . -963) 87477) ((-579 . -968) 87461) ((-579 . -21) T) ((-579 . -588) 87430) ((-579 . -23) T) ((-579 . -1013) T) ((-579 . -552) 87412) ((-579 . -1128) T) ((-579 . -13) T) ((-579 . -72) T) ((-579 . -25) T) ((-579 . -104) T) ((-579 . -590) 87396) ((-579 . -582) 87380) ((-579 . -654) 87364) ((-579 . -555) 87341) ((-579 . -449) 87313) ((-579 . -557) 87271) ((-577 . -752) T) ((-577 . -759) T) ((-577 . -756) T) ((-577 . -1013) T) ((-577 . -552) 87253) ((-577 . -1128) T) ((-577 . -13) T) ((-577 . -72) T) ((-577 . -319) T) ((-577 . -555) 87230) ((-572 . -683) 87214) ((-572 . -657) T) ((-572 . -685) T) ((-572 . -82) 87193) ((-572 . -963) 87177) ((-572 . -968) 87161) ((-572 . -21) T) ((-572 . -588) 87130) ((-572 . -23) T) ((-572 . -1013) T) ((-572 . -552) 87099) ((-572 . -1128) T) ((-572 . -13) T) ((-572 . -72) T) ((-572 . -25) T) ((-572 . -104) T) ((-572 . -590) 87083) ((-572 . -582) 87067) ((-572 . -654) 87051) ((-572 . -360) 87016) ((-572 . -316) 86951) ((-572 . -241) 86909) ((-571 . -1106) 86884) ((-571 . -183) 86828) ((-571 . -76) 86772) ((-571 . -124) 86716) ((-571 . -553) NIL) ((-571 . -193) 86660) ((-571 . -538) 86635) ((-571 . -260) 86480) ((-571 . -455) 86280) ((-571 . -428) 86210) ((-571 . -241) 86163) ((-571 . -243) 86138) ((-571 . -549) 86113) ((-571 . -1013) T) ((-571 . -552) 86095) ((-571 . -72) T) ((-571 . -1128) T) ((-571 . -13) T) ((-571 . -34) T) ((-571 . -317) 86039) ((-566 . -412) T) ((-566 . -1025) T) ((-566 . -72) T) ((-566 . -13) T) ((-566 . -1128) T) ((-566 . -552) 86021) ((-566 . -1013) T) ((-566 . -663) T) ((-565 . -995) T) ((-565 . -429) 86002) ((-565 . -552) 85968) ((-565 . -555) 85949) ((-565 . -1013) T) ((-565 . -1128) T) ((-565 . -13) T) ((-565 . -72) T) ((-565 . -64) T) ((-562 . -184) 85933) ((-562 . -809) 85892) ((-562 . -811) 85818) ((-562 . -806) 85742) ((-562 . -225) 85726) ((-562 . -189) 85680) ((-562 . -1128) T) ((-562 . -13) T) ((-562 . -186) 85628) ((-562 . -961) T) ((-562 . -663) T) ((-562 . -1060) T) ((-562 . -1025) T) ((-562 . -970) T) ((-562 . -21) T) ((-562 . -588) 85600) ((-562 . -23) T) ((-562 . -1013) T) ((-562 . -552) 85582) ((-562 . -72) T) ((-562 . -25) T) ((-562 . -104) T) ((-562 . -590) 85569) ((-562 . -555) 85465) ((-562 . -190) 85444) ((-562 . -495) T) ((-562 . -246) T) ((-562 . -146) T) ((-562 . -654) 85431) ((-562 . -582) 85418) ((-562 . -968) 85405) ((-562 . -963) 85392) ((-562 . -82) 85377) ((-562 . -38) 85364) ((-562 . -553) 85341) ((-562 . -354) 85325) ((-562 . -950) 85210) ((-562 . -120) 85189) ((-562 . -118) 85168) ((-562 . -258) 85147) ((-562 . -391) 85126) ((-562 . -832) 85105) ((-558 . -38) 85089) ((-558 . -555) 85058) ((-558 . -590) 85032) ((-558 . -588) 84991) ((-558 . -970) T) ((-558 . -1025) T) ((-558 . -1060) T) ((-558 . -663) T) ((-558 . -961) T) ((-558 . -82) 84970) ((-558 . -963) 84954) ((-558 . -968) 84938) ((-558 . -21) T) ((-558 . -23) T) ((-558 . -1013) T) ((-558 . -552) 84920) ((-558 . -1128) T) ((-558 . -13) T) ((-558 . -72) T) ((-558 . -25) T) ((-558 . -104) T) ((-558 . -582) 84904) ((-558 . -654) 84888) ((-558 . -755) 84867) ((-558 . -721) 84846) ((-558 . -718) 84825) ((-558 . -759) 84804) ((-558 . -756) 84783) ((-558 . -716) 84762) ((-558 . -714) 84741) ((-558 . -120) 84720) ((-556 . -880) T) ((-556 . -72) T) ((-556 . -552) 84702) ((-556 . -1013) T) ((-556 . -604) T) ((-556 . -13) T) ((-556 . -1128) T) ((-556 . -84) T) ((-556 . -319) T) ((-550 . -105) T) ((-550 . -72) T) ((-550 . -13) T) ((-550 . -1128) T) ((-550 . -552) 84684) ((-550 . -1013) T) ((-550 . -756) T) ((-550 . -759) T) ((-550 . -794) 84668) ((-550 . -553) 84529) ((-547 . -314) 84467) ((-547 . -72) T) ((-547 . -13) T) ((-547 . -1128) T) ((-547 . -552) 84449) ((-547 . -1013) T) ((-547 . -1106) 84425) ((-547 . -183) 84370) ((-547 . -76) 84315) ((-547 . -124) 84260) ((-547 . -553) NIL) ((-547 . -193) 84205) ((-547 . -538) 84181) ((-547 . -260) 83970) ((-547 . -455) 83710) ((-547 . -428) 83642) ((-547 . -241) 83618) ((-547 . -243) 83594) ((-547 . -549) 83570) ((-547 . -34) T) ((-547 . -317) 83515) ((-546 . -1013) T) ((-546 . -552) 83467) ((-546 . -1128) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -429) 83434) ((-546 . -555) 83401) ((-545 . -1013) T) ((-545 . -552) 83383) ((-545 . -1128) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -604) T) ((-544 . -1013) T) ((-544 . -552) 83365) ((-544 . -1128) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -604) T) ((-543 . -1013) T) ((-543 . -552) 83332) ((-543 . -1128) T) ((-543 . -13) T) ((-543 . -72) T) ((-542 . -1013) T) ((-542 . -552) 83314) ((-542 . -1128) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -604) T) ((-541 . -1013) T) ((-541 . -552) 83281) ((-541 . -1128) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -429) 83263) ((-541 . -555) 83245) ((-540 . -683) 83229) ((-540 . -657) T) ((-540 . -685) T) ((-540 . -82) 83208) ((-540 . -963) 83192) ((-540 . -968) 83176) ((-540 . -21) T) ((-540 . -588) 83145) ((-540 . -23) T) ((-540 . -1013) T) ((-540 . -552) 83114) ((-540 . -1128) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -25) T) ((-540 . -104) T) ((-540 . -590) 83098) ((-540 . -582) 83082) ((-540 . -654) 83066) ((-540 . -360) 83031) ((-540 . -316) 82966) ((-540 . -241) 82924) ((-539 . -995) T) ((-539 . -429) 82905) ((-539 . -552) 82855) ((-539 . -555) 82836) ((-539 . -1013) T) ((-539 . -1128) T) ((-539 . -13) T) ((-539 . -72) T) ((-539 . -64) T) ((-536 . -552) 82818) ((-532 . -1013) T) ((-532 . -552) 82784) ((-532 . -1128) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -429) 82765) ((-532 . -555) 82746) ((-531 . -961) T) ((-531 . -663) T) ((-531 . -1060) T) ((-531 . -1025) T) ((-531 . -970) T) ((-531 . -21) T) ((-531 . -588) 82705) ((-531 . -23) T) ((-531 . -1013) T) ((-531 . -552) 82687) ((-531 . -1128) T) ((-531 . -13) T) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -590) 82661) ((-531 . -555) 82619) ((-531 . -82) 82572) ((-531 . -963) 82532) ((-531 . -968) 82492) ((-531 . -495) 82471) ((-531 . -246) 82450) ((-531 . -146) 82429) ((-531 . -654) 82402) ((-531 . -582) 82375) ((-531 . -38) 82348) ((-530 . -1157) 82325) ((-530 . -47) 82302) ((-530 . -38) 82199) ((-530 . -582) 82096) ((-530 . -654) 81993) ((-530 . -555) 81875) ((-530 . -246) 81854) ((-530 . -495) 81833) ((-530 . -82) 81698) ((-530 . -963) 81584) ((-530 . -968) 81470) ((-530 . -146) 81424) ((-530 . -120) 81403) ((-530 . -118) 81382) ((-530 . -590) 81307) ((-530 . -588) 81217) ((-530 . -886) 81187) ((-530 . -811) 81100) ((-530 . -806) 81011) ((-530 . -809) 80924) ((-530 . -241) 80889) ((-530 . -189) 80848) ((-530 . -1128) T) ((-530 . -13) T) ((-530 . -186) 80801) ((-530 . -961) T) ((-530 . -663) T) ((-530 . -1060) T) ((-530 . -1025) T) ((-530 . -970) T) ((-530 . -21) T) ((-530 . -23) T) ((-530 . -1013) T) ((-530 . -552) 80783) ((-530 . -72) T) ((-530 . -25) T) ((-530 . -104) T) ((-530 . -190) 80742) ((-528 . -995) T) ((-528 . -429) 80723) ((-528 . -552) 80689) ((-528 . -555) 80670) ((-528 . -1013) T) ((-528 . -1128) T) ((-528 . -13) T) ((-528 . -72) T) ((-528 . -64) T) ((-522 . -1013) T) ((-522 . -552) 80636) ((-522 . -1128) T) ((-522 . -13) T) ((-522 . -72) T) ((-522 . -429) 80617) ((-522 . -555) 80598) ((-519 . -654) 80573) ((-519 . -582) 80548) ((-519 . -590) 80523) ((-519 . -588) 80483) ((-519 . -104) T) ((-519 . -25) T) ((-519 . -72) T) ((-519 . -13) T) ((-519 . -1128) T) ((-519 . -552) 80465) ((-519 . -1013) T) ((-519 . -23) T) ((-519 . -21) T) ((-519 . -968) 80440) ((-519 . -963) 80415) ((-519 . -82) 80376) ((-519 . -950) 80360) ((-519 . -555) 80344) ((-517 . -299) T) ((-517 . -1065) T) ((-517 . -319) T) ((-517 . -118) T) ((-517 . -312) T) ((-517 . -1133) T) ((-517 . -832) T) ((-517 . -495) T) ((-517 . -146) T) ((-517 . -555) 80294) ((-517 . -654) 80259) ((-517 . -582) 80224) ((-517 . -38) 80189) ((-517 . -391) T) ((-517 . -258) T) ((-517 . -82) 80138) ((-517 . -963) 80103) ((-517 . -968) 80068) ((-517 . -588) 80018) ((-517 . -590) 79983) ((-517 . -246) T) ((-517 . -201) T) ((-517 . -344) T) ((-517 . -189) T) ((-517 . -1128) T) ((-517 . -13) T) ((-517 . -186) 79970) ((-517 . -961) T) ((-517 . -663) T) ((-517 . -1060) T) ((-517 . -1025) T) ((-517 . -970) T) ((-517 . -21) T) ((-517 . -23) T) ((-517 . -1013) T) ((-517 . -552) 79952) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -190) T) ((-517 . -280) 79939) ((-517 . -120) 79921) ((-517 . -950) 79908) ((-517 . -1186) 79895) ((-517 . -1197) 79882) ((-517 . -553) 79864) ((-516 . -779) 79848) ((-516 . -832) T) ((-516 . -495) T) ((-516 . -246) T) ((-516 . -146) T) ((-516 . -555) 79820) ((-516 . -654) 79807) ((-516 . -582) 79794) ((-516 . -968) 79781) ((-516 . -963) 79768) ((-516 . -82) 79753) ((-516 . -38) 79740) ((-516 . -391) T) ((-516 . -258) T) ((-516 . -961) T) ((-516 . -663) T) ((-516 . -1060) T) ((-516 . -1025) T) ((-516 . -970) T) ((-516 . -21) T) ((-516 . -588) 79712) ((-516 . -23) T) ((-516 . -1013) T) ((-516 . -552) 79694) ((-516 . -1128) T) ((-516 . -13) T) ((-516 . -72) T) ((-516 . -25) T) ((-516 . -104) T) ((-516 . -590) 79681) ((-516 . -120) T) ((-515 . -1013) T) ((-515 . -552) 79663) ((-515 . -1128) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -1013) T) ((-514 . -552) 79645) ((-514 . -1128) T) ((-514 . -13) T) ((-514 . -72) T) ((-513 . -512) T) ((-513 . -770) T) ((-513 . -147) T) ((-513 . -465) T) ((-513 . -552) 79627) ((-507 . -493) 79611) ((-507 . -35) T) ((-507 . -66) T) ((-507 . -239) T) ((-507 . -432) T) ((-507 . -1117) T) ((-507 . -1114) T) ((-507 . -950) 79593) ((-507 . -915) T) ((-507 . -759) T) ((-507 . -756) T) ((-507 . -495) T) ((-507 . -246) T) ((-507 . -146) T) ((-507 . -555) 79565) ((-507 . -654) 79552) ((-507 . -582) 79539) ((-507 . -590) 79526) ((-507 . -588) 79498) ((-507 . -104) T) ((-507 . -25) T) ((-507 . -72) T) ((-507 . -13) T) ((-507 . -1128) T) ((-507 . -552) 79480) ((-507 . -1013) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -968) 79467) ((-507 . -963) 79454) ((-507 . -82) 79439) ((-507 . -961) T) ((-507 . -663) T) ((-507 . -1060) T) ((-507 . -1025) T) ((-507 . -970) T) ((-507 . -38) 79426) ((-507 . -391) T) ((-489 . -1106) 79405) ((-489 . -183) 79353) ((-489 . -76) 79301) ((-489 . -124) 79249) ((-489 . -553) NIL) ((-489 . -193) 79197) ((-489 . -538) 79176) ((-489 . -260) 78974) ((-489 . -455) 78726) ((-489 . -428) 78661) ((-489 . -241) 78640) ((-489 . -243) 78619) ((-489 . -549) 78598) ((-489 . -1013) T) ((-489 . -552) 78580) ((-489 . -72) T) ((-489 . -1128) T) ((-489 . -13) T) ((-489 . -34) T) ((-489 . -317) 78528) ((-488 . -752) T) ((-488 . -759) T) ((-488 . -756) T) ((-488 . -1013) T) ((-488 . -552) 78510) ((-488 . -1128) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -319) T) ((-487 . -752) T) ((-487 . -759) T) ((-487 . -756) T) ((-487 . -1013) T) ((-487 . -552) 78492) ((-487 . -1128) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -319) T) ((-486 . -752) T) ((-486 . -759) T) ((-486 . -756) T) ((-486 . -1013) T) ((-486 . -552) 78474) ((-486 . -1128) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -319) T) ((-485 . -752) T) ((-485 . -759) T) ((-485 . -756) T) ((-485 . -1013) T) ((-485 . -552) 78456) ((-485 . -1128) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -319) T) ((-484 . -483) T) ((-484 . -1133) T) ((-484 . -1065) T) ((-484 . -950) 78438) ((-484 . -553) 78353) ((-484 . -933) T) ((-484 . -796) 78335) ((-484 . -755) T) ((-484 . -721) T) ((-484 . -718) T) ((-484 . -759) T) ((-484 . -756) T) ((-484 . -716) T) ((-484 . -714) T) ((-484 . -740) T) ((-484 . -590) 78307) ((-484 . -580) 78289) ((-484 . -832) T) ((-484 . -495) T) ((-484 . -246) T) ((-484 . -146) T) ((-484 . -555) 78261) ((-484 . -654) 78248) ((-484 . -582) 78235) ((-484 . -968) 78222) ((-484 . -963) 78209) ((-484 . -82) 78194) ((-484 . -38) 78181) ((-484 . -391) T) ((-484 . -258) T) ((-484 . -189) T) ((-484 . -186) 78168) ((-484 . -190) T) ((-484 . -116) T) ((-484 . -961) T) ((-484 . -663) T) ((-484 . -1060) T) ((-484 . -1025) T) ((-484 . -970) T) ((-484 . -21) T) ((-484 . -588) 78140) ((-484 . -23) T) ((-484 . -1013) T) ((-484 . -552) 78122) ((-484 . -1128) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -25) T) ((-484 . -104) T) ((-484 . -120) T) ((-473 . -1016) 78074) ((-473 . -72) T) ((-473 . -552) 78056) ((-473 . -1013) T) ((-473 . -241) 78012) ((-473 . -1128) T) ((-473 . -13) T) ((-473 . -557) 77915) ((-473 . -553) 77896) ((-471 . -691) 77878) ((-471 . -465) T) ((-471 . -147) T) ((-471 . -770) T) ((-471 . -512) T) ((-471 . -552) 77860) ((-469 . -717) T) ((-469 . -104) T) ((-469 . -25) T) ((-469 . -72) T) ((-469 . -13) T) ((-469 . -1128) T) ((-469 . -552) 77842) ((-469 . -1013) T) ((-469 . -23) T) ((-469 . -716) T) ((-469 . -756) T) ((-469 . -759) T) ((-469 . -718) T) ((-469 . -721) T) ((-469 . -449) 77819) ((-469 . -557) 77782) ((-467 . -465) T) ((-467 . -147) T) ((-467 . -552) 77764) ((-463 . -995) T) ((-463 . -429) 77745) ((-463 . -552) 77711) ((-463 . -555) 77692) ((-463 . -1013) T) ((-463 . -1128) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-462 . -995) T) ((-462 . -429) 77673) ((-462 . -552) 77639) ((-462 . -555) 77620) ((-462 . -1013) T) ((-462 . -1128) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-459 . -280) 77597) ((-459 . -190) T) ((-459 . -186) 77584) ((-459 . -189) T) ((-459 . -319) T) ((-459 . -1065) T) ((-459 . -299) T) ((-459 . -120) 77566) ((-459 . -555) 77496) ((-459 . -590) 77441) ((-459 . -588) 77371) ((-459 . -104) T) ((-459 . -25) T) ((-459 . -72) T) ((-459 . -13) T) ((-459 . -1128) T) ((-459 . -552) 77353) ((-459 . -1013) T) ((-459 . -23) T) ((-459 . -21) T) ((-459 . -970) T) ((-459 . -1025) T) ((-459 . -1060) T) ((-459 . -663) T) ((-459 . -961) T) ((-459 . -312) T) ((-459 . -1133) T) ((-459 . -832) T) ((-459 . -495) T) ((-459 . -146) T) ((-459 . -654) 77298) ((-459 . -582) 77243) ((-459 . -38) 77208) ((-459 . -391) T) ((-459 . -258) T) ((-459 . -82) 77125) ((-459 . -963) 77070) ((-459 . -968) 77015) ((-459 . -246) T) ((-459 . -201) T) ((-459 . -344) T) ((-459 . -118) T) ((-459 . -950) 76992) ((-459 . -1186) 76969) ((-459 . -1197) 76946) ((-458 . -995) T) ((-458 . -429) 76927) ((-458 . -552) 76893) ((-458 . -555) 76874) ((-458 . -1013) T) ((-458 . -1128) T) ((-458 . -13) T) ((-458 . -72) T) ((-458 . -64) T) ((-457 . -19) 76858) ((-457 . -317) 76842) ((-457 . -34) T) ((-457 . -13) T) ((-457 . -1128) T) ((-457 . -72) 76776) ((-457 . -552) 76691) ((-457 . -260) 76629) ((-457 . -455) 76562) ((-457 . -1013) 76515) ((-457 . -428) 76499) ((-457 . -593) 76483) ((-457 . -243) 76460) ((-457 . -241) 76412) ((-457 . -538) 76389) ((-457 . -553) 76350) ((-457 . -124) 76334) ((-457 . -756) 76313) ((-457 . -759) 76292) ((-457 . -323) 76276) ((-457 . -237) 76260) ((-456 . -274) 76239) ((-456 . -555) 76223) ((-456 . -950) 76207) ((-456 . -23) T) ((-456 . -1013) T) ((-456 . -552) 76189) ((-456 . -1128) T) ((-456 . -13) T) ((-456 . -72) T) ((-456 . -25) T) ((-456 . -104) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1128) T) ((-453 . -552) 76161) ((-452 . -717) T) ((-452 . -104) T) ((-452 . -25) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1128) T) ((-452 . -552) 76143) ((-452 . -1013) T) ((-452 . -23) T) ((-452 . -716) T) ((-452 . -756) T) ((-452 . -759) T) ((-452 . -718) T) ((-452 . -721) T) ((-452 . -449) 76122) ((-452 . -557) 76087) ((-451 . -716) T) ((-451 . -756) T) ((-451 . -759) T) ((-451 . -718) T) ((-451 . -25) T) ((-451 . -72) T) ((-451 . -13) T) ((-451 . -1128) T) ((-451 . -552) 76069) ((-451 . -1013) T) ((-451 . -23) T) ((-451 . -449) 76048) ((-451 . -557) 76013) ((-450 . -449) 75992) ((-450 . -552) 75932) ((-450 . -1013) 75883) ((-450 . -557) 75848) ((-450 . -1128) T) ((-450 . -13) T) ((-450 . -72) T) ((-448 . -23) T) ((-448 . -1013) T) ((-448 . -552) 75830) ((-448 . -1128) T) ((-448 . -13) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -449) 75809) ((-448 . -557) 75774) ((-447 . -21) T) ((-447 . -588) 75756) ((-447 . -23) T) ((-447 . -1013) T) ((-447 . -552) 75738) ((-447 . -1128) T) ((-447 . -13) T) ((-447 . -72) T) ((-447 . -25) T) ((-447 . -104) T) ((-447 . -449) 75717) ((-447 . -557) 75682) ((-446 . -1013) T) ((-446 . -552) 75664) ((-446 . -1128) T) ((-446 . -13) T) ((-446 . -72) T) ((-443 . -1013) T) ((-443 . -552) 75646) ((-443 . -1128) T) ((-443 . -13) T) ((-443 . -72) T) ((-441 . -756) T) ((-441 . -552) 75628) ((-441 . -1013) T) ((-441 . -72) T) ((-441 . -13) T) ((-441 . -1128) T) ((-441 . -759) T) ((-441 . -555) 75609) ((-439 . -96) T) ((-439 . -323) 75592) ((-439 . -759) T) ((-439 . -756) T) ((-439 . -124) 75575) ((-439 . -553) 75557) ((-439 . -241) 75508) ((-439 . -538) 75484) ((-439 . -243) 75460) ((-439 . -593) 75443) ((-439 . -428) 75426) ((-439 . -1013) T) ((-439 . -455) NIL) ((-439 . -260) NIL) ((-439 . -552) 75408) ((-439 . -72) T) ((-439 . -34) T) ((-439 . -317) 75391) ((-439 . -19) 75374) ((-439 . -604) T) ((-439 . -13) T) ((-439 . -1128) T) ((-439 . -84) T) ((-436 . -57) 75348) ((-436 . -428) 75332) ((-436 . -1013) 75310) ((-436 . -455) 75243) ((-436 . -260) 75181) ((-436 . -552) 75116) ((-436 . -72) 75070) ((-436 . -1128) T) ((-436 . -13) T) ((-436 . -34) T) ((-436 . -317) 75054) ((-435 . -19) 75038) ((-435 . -317) 75022) ((-435 . -34) T) ((-435 . -13) T) ((-435 . -1128) T) ((-435 . -72) 74956) ((-435 . -552) 74871) ((-435 . -260) 74809) ((-435 . -455) 74742) ((-435 . -1013) 74695) ((-435 . -428) 74679) ((-435 . -593) 74663) ((-435 . -243) 74640) ((-435 . -241) 74592) ((-435 . -538) 74569) ((-435 . -553) 74530) ((-435 . -124) 74514) ((-435 . -756) 74493) ((-435 . -759) 74472) ((-435 . -323) 74456) ((-434 . -254) T) ((-434 . -72) T) ((-434 . -13) T) ((-434 . -1128) T) ((-434 . -552) 74438) ((-434 . -1013) T) ((-434 . -555) 74339) ((-434 . -950) 74282) ((-434 . -455) 74248) ((-434 . -260) 74235) ((-434 . -27) T) ((-434 . -915) T) ((-434 . -201) T) ((-434 . -82) 74184) ((-434 . -963) 74149) ((-434 . -968) 74114) ((-434 . -246) T) ((-434 . -654) 74079) ((-434 . -582) 74044) ((-434 . -590) 73994) ((-434 . -588) 73944) ((-434 . -104) T) ((-434 . -25) T) ((-434 . -23) T) ((-434 . -21) T) ((-434 . -961) T) ((-434 . -663) T) ((-434 . -1060) T) ((-434 . -1025) T) ((-434 . -970) T) ((-434 . -38) 73909) ((-434 . -258) T) ((-434 . -391) T) ((-434 . -146) T) ((-434 . -495) T) ((-434 . -832) T) ((-434 . -1133) T) ((-434 . -312) T) ((-434 . -580) 73869) ((-434 . -933) T) ((-434 . -553) 73814) ((-434 . -120) T) ((-434 . -190) T) ((-434 . -186) 73801) ((-434 . -189) T) ((-430 . -1013) T) ((-430 . -552) 73767) ((-430 . -1128) T) ((-430 . -13) T) ((-430 . -72) T) ((-426 . -904) 73749) ((-426 . -1065) T) ((-426 . -555) 73699) ((-426 . -950) 73659) ((-426 . -553) 73589) ((-426 . -933) T) ((-426 . -821) NIL) ((-426 . -794) 73571) ((-426 . -755) T) ((-426 . -721) T) ((-426 . -718) T) ((-426 . -759) T) ((-426 . -756) T) ((-426 . -716) T) ((-426 . -714) T) ((-426 . -740) T) ((-426 . -796) 73553) ((-426 . -342) 73535) ((-426 . -580) 73517) ((-426 . -328) 73499) ((-426 . -241) NIL) ((-426 . -260) NIL) ((-426 . -455) NIL) ((-426 . -288) 73481) ((-426 . -201) T) ((-426 . -82) 73408) ((-426 . -963) 73358) ((-426 . -968) 73308) ((-426 . -246) T) ((-426 . -654) 73258) ((-426 . -582) 73208) ((-426 . -590) 73158) ((-426 . -588) 73108) ((-426 . -38) 73058) ((-426 . -258) T) ((-426 . -391) T) ((-426 . -146) T) ((-426 . -495) T) ((-426 . -832) T) ((-426 . -1133) T) ((-426 . -312) T) ((-426 . -190) T) ((-426 . -186) 73045) ((-426 . -189) T) ((-426 . -225) 73027) ((-426 . -806) NIL) ((-426 . -811) NIL) ((-426 . -809) NIL) ((-426 . -184) 73009) ((-426 . -120) T) ((-426 . -118) NIL) ((-426 . -104) T) ((-426 . -25) T) ((-426 . -72) T) ((-426 . -13) T) ((-426 . -1128) T) ((-426 . -552) 72951) ((-426 . -1013) T) ((-426 . -23) T) ((-426 . -21) T) ((-426 . -961) T) ((-426 . -663) T) ((-426 . -1060) T) ((-426 . -1025) T) ((-426 . -970) T) ((-424 . -286) 72920) ((-424 . -104) T) ((-424 . -25) T) ((-424 . -72) T) ((-424 . -13) T) ((-424 . -1128) T) ((-424 . -552) 72902) ((-424 . -1013) T) ((-424 . -23) T) ((-424 . -588) 72884) ((-424 . -21) T) ((-423 . -881) 72868) ((-423 . -317) 72852) ((-423 . -428) 72836) ((-423 . -1013) 72814) ((-423 . -455) 72747) ((-423 . -260) 72685) ((-423 . -552) 72620) ((-423 . -72) 72574) ((-423 . -1128) T) ((-423 . -13) T) ((-423 . -34) T) ((-423 . -76) 72558) ((-422 . -995) T) ((-422 . -429) 72539) ((-422 . -552) 72505) ((-422 . -555) 72486) ((-422 . -1013) T) ((-422 . -1128) T) ((-422 . -13) T) ((-422 . -72) T) ((-422 . -64) T) ((-421 . -196) 72465) ((-421 . -1186) 72435) ((-421 . -721) 72414) ((-421 . -718) 72393) ((-421 . -759) 72347) ((-421 . -756) 72301) ((-421 . -716) 72280) ((-421 . -717) 72259) ((-421 . -654) 72204) ((-421 . -582) 72129) ((-421 . -243) 72106) ((-421 . -241) 72083) ((-421 . -538) 72060) ((-421 . -950) 71889) ((-421 . -555) 71693) ((-421 . -354) 71662) ((-421 . -580) 71570) ((-421 . -590) 71409) ((-421 . -328) 71379) ((-421 . -428) 71363) ((-421 . -455) 71296) ((-421 . -260) 71234) ((-421 . -34) T) ((-421 . -317) 71218) ((-421 . -319) 71197) ((-421 . -190) 71150) ((-421 . -588) 70938) ((-421 . -970) 70917) ((-421 . -1025) 70896) ((-421 . -1060) 70875) ((-421 . -663) 70854) ((-421 . -961) 70833) ((-421 . -186) 70729) ((-421 . -189) 70631) ((-421 . -225) 70601) ((-421 . -806) 70473) ((-421 . -811) 70347) ((-421 . -809) 70280) ((-421 . -184) 70250) ((-421 . -552) 69947) ((-421 . -968) 69872) ((-421 . -963) 69777) ((-421 . -82) 69697) ((-421 . -104) 69572) ((-421 . -25) 69409) ((-421 . -72) 69146) ((-421 . -13) T) ((-421 . -1128) T) ((-421 . -1013) 68902) ((-421 . -23) 68758) ((-421 . -21) 68673) ((-420 . -861) 68618) ((-420 . -555) 68410) ((-420 . -950) 68288) ((-420 . -1133) 68267) ((-420 . -821) 68246) ((-420 . -796) NIL) ((-420 . -811) 68223) ((-420 . -806) 68198) ((-420 . -809) 68175) ((-420 . -455) 68113) ((-420 . -391) 68067) ((-420 . -580) 68015) ((-420 . -590) 67904) ((-420 . -328) 67888) ((-420 . -47) 67845) ((-420 . -38) 67697) ((-420 . -582) 67549) ((-420 . -654) 67401) ((-420 . -246) 67335) ((-420 . -495) 67269) ((-420 . -82) 67094) ((-420 . -963) 66940) ((-420 . -968) 66786) ((-420 . -146) 66700) ((-420 . -120) 66679) ((-420 . -118) 66658) ((-420 . -588) 66568) ((-420 . -104) T) ((-420 . -25) T) ((-420 . -72) T) ((-420 . -13) T) ((-420 . -1128) T) ((-420 . -552) 66550) ((-420 . -1013) T) ((-420 . -23) T) ((-420 . -21) T) ((-420 . -961) T) ((-420 . -663) T) ((-420 . -1060) T) ((-420 . -1025) T) ((-420 . -970) T) ((-420 . -354) 66534) ((-420 . -277) 66491) ((-420 . -260) 66478) ((-420 . -553) 66339) ((-418 . -1106) 66318) ((-418 . -183) 66266) ((-418 . -76) 66214) ((-418 . -124) 66162) ((-418 . -553) NIL) ((-418 . -193) 66110) ((-418 . -538) 66089) ((-418 . -260) 65887) ((-418 . -455) 65639) ((-418 . -428) 65574) ((-418 . -241) 65553) ((-418 . -243) 65532) ((-418 . -549) 65511) ((-418 . -1013) T) ((-418 . -552) 65493) ((-418 . -72) T) ((-418 . -1128) T) ((-418 . -13) T) ((-418 . -34) T) ((-418 . -317) 65441) ((-417 . -995) T) ((-417 . -429) 65422) ((-417 . -552) 65388) ((-417 . -555) 65369) ((-417 . -1013) T) ((-417 . -1128) T) ((-417 . -13) T) ((-417 . -72) T) ((-417 . -64) T) ((-416 . -312) T) ((-416 . -1133) T) ((-416 . -832) T) ((-416 . -495) T) ((-416 . -146) T) ((-416 . -555) 65319) ((-416 . -654) 65284) ((-416 . -582) 65249) ((-416 . -38) 65214) ((-416 . -391) T) ((-416 . -258) T) ((-416 . -590) 65179) ((-416 . -588) 65129) ((-416 . -970) T) ((-416 . -1025) T) ((-416 . -1060) T) ((-416 . -663) T) ((-416 . -961) T) ((-416 . -82) 65078) ((-416 . -963) 65043) ((-416 . -968) 65008) ((-416 . -21) T) ((-416 . -23) T) ((-416 . -1013) T) ((-416 . -552) 64960) ((-416 . -1128) T) ((-416 . -13) T) ((-416 . -72) T) ((-416 . -25) T) ((-416 . -104) T) ((-416 . -246) T) ((-416 . -201) T) ((-416 . -120) T) ((-416 . -950) 64920) ((-416 . -933) T) ((-416 . -553) 64842) ((-415 . -1123) 64811) ((-415 . -552) 64773) ((-415 . -124) 64757) ((-415 . -34) T) ((-415 . -13) T) ((-415 . -1128) T) ((-415 . -72) T) ((-415 . -260) 64695) ((-415 . -455) 64628) ((-415 . -1013) T) ((-415 . -428) 64612) ((-415 . -553) 64573) ((-415 . -317) 64557) ((-415 . -889) 64526) ((-414 . -1106) 64505) ((-414 . -183) 64453) ((-414 . -76) 64401) ((-414 . -124) 64349) ((-414 . -553) NIL) ((-414 . -193) 64297) ((-414 . -538) 64276) ((-414 . -260) 64074) ((-414 . -455) 63826) ((-414 . -428) 63761) ((-414 . -241) 63740) ((-414 . -243) 63719) ((-414 . -549) 63698) ((-414 . -1013) T) ((-414 . -552) 63680) ((-414 . -72) T) ((-414 . -1128) T) ((-414 . -13) T) ((-414 . -34) T) ((-414 . -317) 63628) ((-413 . -1161) 63612) ((-413 . -190) 63564) ((-413 . -186) 63510) ((-413 . -189) 63462) ((-413 . -241) 63420) ((-413 . -809) 63326) ((-413 . -806) 63207) ((-413 . -811) 63113) ((-413 . -886) 63076) ((-413 . -38) 62923) ((-413 . -82) 62743) ((-413 . -963) 62584) ((-413 . -968) 62425) ((-413 . -588) 62310) ((-413 . -590) 62210) ((-413 . -582) 62057) ((-413 . -654) 61904) ((-413 . -555) 61736) ((-413 . -118) 61715) ((-413 . -120) 61694) ((-413 . -47) 61664) ((-413 . -1157) 61634) ((-413 . -35) 61600) ((-413 . -66) 61566) ((-413 . -239) 61532) ((-413 . -432) 61498) ((-413 . -1117) 61464) ((-413 . -1114) 61430) ((-413 . -915) 61396) ((-413 . -201) 61375) ((-413 . -246) 61329) ((-413 . -104) T) ((-413 . -25) T) ((-413 . -72) T) ((-413 . -13) T) ((-413 . -1128) T) ((-413 . -552) 61311) ((-413 . -1013) T) ((-413 . -23) T) ((-413 . -21) T) ((-413 . -961) T) ((-413 . -663) T) ((-413 . -1060) T) ((-413 . -1025) T) ((-413 . -970) T) ((-413 . -258) 61290) ((-413 . -391) 61269) ((-413 . -146) 61203) ((-413 . -495) 61157) ((-413 . -832) 61136) ((-413 . -1133) 61115) ((-413 . -312) 61094) ((-407 . -1013) T) ((-407 . -552) 61076) ((-407 . -1128) T) ((-407 . -13) T) ((-407 . -72) T) ((-402 . -889) 61045) ((-402 . -317) 61029) ((-402 . -553) 60990) ((-402 . -428) 60974) ((-402 . -1013) T) ((-402 . -455) 60907) ((-402 . -260) 60845) ((-402 . -552) 60807) ((-402 . -72) T) ((-402 . -1128) T) ((-402 . -13) T) ((-402 . -34) T) ((-402 . -124) 60791) ((-400 . -654) 60762) ((-400 . -582) 60733) ((-400 . -590) 60704) ((-400 . -588) 60660) ((-400 . -104) T) ((-400 . -25) T) ((-400 . -72) T) ((-400 . -13) T) ((-400 . -1128) T) ((-400 . -552) 60642) ((-400 . -1013) T) ((-400 . -23) T) ((-400 . -21) T) ((-400 . -968) 60613) ((-400 . -963) 60584) ((-400 . -82) 60545) ((-393 . -861) 60512) ((-393 . -555) 60304) ((-393 . -950) 60182) ((-393 . -1133) 60161) ((-393 . -821) 60140) ((-393 . -796) NIL) ((-393 . -811) 60117) ((-393 . -806) 60092) ((-393 . -809) 60069) ((-393 . -455) 60007) ((-393 . -391) 59961) ((-393 . -580) 59909) ((-393 . -590) 59798) ((-393 . -328) 59782) ((-393 . -47) 59761) ((-393 . -38) 59613) ((-393 . -582) 59465) ((-393 . -654) 59317) ((-393 . -246) 59251) ((-393 . -495) 59185) ((-393 . -82) 59010) ((-393 . -963) 58856) ((-393 . -968) 58702) ((-393 . -146) 58616) ((-393 . -120) 58595) ((-393 . -118) 58574) ((-393 . -588) 58484) ((-393 . -104) T) ((-393 . -25) T) ((-393 . -72) T) ((-393 . -13) T) ((-393 . -1128) T) ((-393 . -552) 58466) ((-393 . -1013) T) ((-393 . -23) T) ((-393 . -21) T) ((-393 . -961) T) ((-393 . -663) T) ((-393 . -1060) T) ((-393 . -1025) T) ((-393 . -970) T) ((-393 . -354) 58450) ((-393 . -277) 58429) ((-393 . -260) 58416) ((-393 . -553) 58277) ((-392 . -360) 58247) ((-392 . -683) 58217) ((-392 . -657) T) ((-392 . -685) T) ((-392 . -82) 58168) ((-392 . -963) 58138) ((-392 . -968) 58108) ((-392 . -21) T) ((-392 . -588) 58023) ((-392 . -23) T) ((-392 . -1013) T) ((-392 . -552) 58005) ((-392 . -72) T) ((-392 . -25) T) ((-392 . -104) T) ((-392 . -590) 57935) ((-392 . -582) 57905) ((-392 . -654) 57875) ((-392 . -316) 57845) ((-392 . -1128) T) ((-392 . -13) T) ((-392 . -241) 57808) ((-380 . -1013) T) ((-380 . -552) 57790) ((-380 . -1128) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1013) T) ((-379 . -552) 57772) ((-379 . -1128) T) ((-379 . -13) T) ((-379 . -72) T) ((-378 . -1013) T) ((-378 . -552) 57754) ((-378 . -1128) T) ((-378 . -13) T) ((-378 . -72) T) ((-376 . -552) 57736) ((-371 . -38) 57720) ((-371 . -555) 57689) ((-371 . -590) 57663) ((-371 . -588) 57622) ((-371 . -970) T) ((-371 . -1025) T) ((-371 . -1060) T) ((-371 . -663) T) ((-371 . -961) T) ((-371 . -82) 57601) ((-371 . -963) 57585) ((-371 . -968) 57569) ((-371 . -21) T) ((-371 . -23) T) ((-371 . -1013) T) ((-371 . -552) 57551) ((-371 . -1128) T) ((-371 . -13) T) ((-371 . -72) T) ((-371 . -25) T) ((-371 . -104) T) ((-371 . -582) 57535) ((-371 . -654) 57519) ((-357 . -663) T) ((-357 . -1013) T) ((-357 . -552) 57501) ((-357 . -1128) T) ((-357 . -13) T) ((-357 . -72) T) ((-357 . -1025) T) ((-355 . -412) T) ((-355 . -1025) T) ((-355 . -72) T) ((-355 . -13) T) ((-355 . -1128) T) ((-355 . -552) 57483) ((-355 . -1013) T) ((-355 . -663) T) ((-349 . -904) 57467) ((-349 . -1065) 57445) ((-349 . -950) 57312) ((-349 . -555) 57211) ((-349 . -553) 57014) ((-349 . -933) 56993) ((-349 . -821) 56972) ((-349 . -794) 56956) ((-349 . -755) 56935) ((-349 . -721) 56914) ((-349 . -718) 56893) ((-349 . -759) 56847) ((-349 . -756) 56801) ((-349 . -716) 56780) ((-349 . -714) 56759) ((-349 . -740) 56738) ((-349 . -796) 56663) ((-349 . -342) 56647) ((-349 . -580) 56595) ((-349 . -590) 56511) ((-349 . -328) 56495) ((-349 . -241) 56453) ((-349 . -260) 56418) ((-349 . -455) 56330) ((-349 . -288) 56314) ((-349 . -201) T) ((-349 . -82) 56245) ((-349 . -963) 56197) ((-349 . -968) 56149) ((-349 . -246) T) ((-349 . -654) 56101) ((-349 . -582) 56053) ((-349 . -588) 55990) ((-349 . -38) 55942) ((-349 . -258) T) ((-349 . -391) T) ((-349 . -146) T) ((-349 . -495) T) ((-349 . -832) T) ((-349 . -1133) T) ((-349 . -312) T) ((-349 . -190) 55921) ((-349 . -186) 55869) ((-349 . -189) 55823) ((-349 . -225) 55807) ((-349 . -806) 55731) ((-349 . -811) 55657) ((-349 . -809) 55616) ((-349 . -184) 55600) ((-349 . -120) 55554) ((-349 . -118) 55533) ((-349 . -104) T) ((-349 . -25) T) ((-349 . -72) T) ((-349 . -13) T) ((-349 . -1128) T) ((-349 . -552) 55515) ((-349 . -1013) T) ((-349 . -23) T) ((-349 . -21) T) ((-349 . -961) T) ((-349 . -663) T) ((-349 . -1060) T) ((-349 . -1025) T) ((-349 . -970) T) ((-347 . -495) T) ((-347 . -246) T) ((-347 . -146) T) ((-347 . -555) 55424) ((-347 . -654) 55398) ((-347 . -582) 55372) ((-347 . -590) 55346) ((-347 . -588) 55305) ((-347 . -104) T) ((-347 . -25) T) ((-347 . -72) T) ((-347 . -13) T) ((-347 . -1128) T) ((-347 . -552) 55287) ((-347 . -1013) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -968) 55261) ((-347 . -963) 55235) ((-347 . -82) 55202) ((-347 . -961) T) ((-347 . -663) T) ((-347 . -1060) T) ((-347 . -1025) T) ((-347 . -970) T) ((-347 . -38) 55176) ((-347 . -184) 55160) ((-347 . -809) 55119) ((-347 . -811) 55045) ((-347 . -806) 54969) ((-347 . -225) 54953) ((-347 . -189) 54907) ((-347 . -186) 54855) ((-347 . -190) 54834) ((-347 . -288) 54818) ((-347 . -455) 54660) ((-347 . -260) 54599) ((-347 . -241) 54527) ((-347 . -354) 54511) ((-347 . -950) 54409) ((-347 . -391) 54362) ((-347 . -933) 54341) ((-347 . -553) 54244) ((-347 . -1133) 54222) ((-341 . -1013) T) ((-341 . -552) 54204) ((-341 . -1128) T) ((-341 . -13) T) ((-341 . -72) T) ((-341 . -189) T) ((-341 . -186) 54191) ((-341 . -553) 54168) ((-339 . -683) 54152) ((-339 . -657) T) ((-339 . -685) T) ((-339 . -82) 54131) ((-339 . -963) 54115) ((-339 . -968) 54099) ((-339 . -21) T) ((-339 . -588) 54068) ((-339 . -23) T) ((-339 . -1013) T) ((-339 . -552) 54050) ((-339 . -1128) T) ((-339 . -13) T) ((-339 . -72) T) ((-339 . -25) T) ((-339 . -104) T) ((-339 . -590) 54034) ((-339 . -582) 54018) ((-339 . -654) 54002) ((-337 . -338) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1128) T) ((-337 . -552) 53968) ((-337 . -1013) T) ((-337 . -555) 53949) ((-337 . -429) 53930) ((-336 . -335) 53914) ((-336 . -555) 53898) ((-336 . -950) 53882) ((-336 . -759) 53861) ((-336 . -756) 53840) ((-336 . -1025) T) ((-336 . -72) T) ((-336 . -13) T) ((-336 . -1128) T) ((-336 . -552) 53822) ((-336 . -1013) T) ((-336 . -663) T) ((-333 . -334) 53801) ((-333 . -555) 53785) ((-333 . -950) 53769) ((-333 . -582) 53739) ((-333 . -654) 53709) ((-333 . -590) 53693) ((-333 . -588) 53662) ((-333 . -104) T) ((-333 . -25) T) ((-333 . -72) T) ((-333 . -13) T) ((-333 . -1128) T) ((-333 . -552) 53644) ((-333 . -1013) T) ((-333 . -23) T) ((-333 . -21) T) ((-333 . -968) 53628) ((-333 . -963) 53612) ((-333 . -82) 53591) ((-332 . -82) 53570) ((-332 . -963) 53554) ((-332 . -968) 53538) ((-332 . -21) T) ((-332 . -588) 53507) ((-332 . -23) T) ((-332 . -1013) T) ((-332 . -552) 53489) ((-332 . -1128) T) ((-332 . -13) T) ((-332 . -72) T) ((-332 . -25) T) ((-332 . -104) T) ((-332 . -590) 53473) ((-332 . -449) 53452) ((-332 . -557) 53417) ((-332 . -654) 53387) ((-332 . -582) 53357) ((-329 . -346) T) ((-329 . -120) T) ((-329 . -555) 53307) ((-329 . -590) 53272) ((-329 . -588) 53222) ((-329 . -104) T) ((-329 . -25) T) ((-329 . -72) T) ((-329 . -13) T) ((-329 . -1128) T) ((-329 . -552) 53189) ((-329 . -1013) T) ((-329 . -23) T) ((-329 . -21) T) ((-329 . -970) T) ((-329 . -1025) T) ((-329 . -1060) T) ((-329 . -663) T) ((-329 . -961) T) ((-329 . -553) 53103) ((-329 . -312) T) ((-329 . -1133) T) ((-329 . -832) T) ((-329 . -495) T) ((-329 . -146) T) ((-329 . -654) 53068) ((-329 . -582) 53033) ((-329 . -38) 52998) ((-329 . -391) T) ((-329 . -258) T) ((-329 . -82) 52947) ((-329 . -963) 52912) ((-329 . -968) 52877) ((-329 . -246) T) ((-329 . -201) T) ((-329 . -755) T) ((-329 . -721) T) ((-329 . -718) T) ((-329 . -759) T) ((-329 . -756) T) ((-329 . -716) T) ((-329 . -714) T) ((-329 . -796) 52859) ((-329 . -915) T) ((-329 . -933) T) ((-329 . -950) 52819) ((-329 . -973) T) ((-329 . -190) T) ((-329 . -186) 52806) ((-329 . -189) T) ((-329 . -1114) T) ((-329 . -1117) T) ((-329 . -432) T) ((-329 . -239) T) ((-329 . -66) T) ((-329 . -35) T) ((-329 . -557) 52788) ((-313 . -314) 52765) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1128) T) ((-313 . -552) 52747) ((-313 . -1013) T) ((-310 . -412) T) ((-310 . -1025) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1128) T) ((-310 . -552) 52729) ((-310 . -1013) T) ((-310 . -663) T) ((-310 . -950) 52713) ((-310 . -555) 52697) ((-308 . -280) 52681) ((-308 . -190) 52660) ((-308 . -186) 52633) ((-308 . -189) 52612) ((-308 . -319) 52591) ((-308 . -1065) 52570) ((-308 . -299) 52549) ((-308 . -120) 52528) ((-308 . -555) 52465) ((-308 . -590) 52417) ((-308 . -588) 52354) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1128) T) ((-308 . -552) 52336) ((-308 . -1013) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -970) T) ((-308 . -1025) T) ((-308 . -1060) T) ((-308 . -663) T) ((-308 . -961) T) ((-308 . -312) T) ((-308 . -1133) T) ((-308 . -832) T) ((-308 . -495) T) ((-308 . -146) T) ((-308 . -654) 52288) ((-308 . -582) 52240) ((-308 . -38) 52205) ((-308 . -391) T) ((-308 . -258) T) ((-308 . -82) 52136) ((-308 . -963) 52088) ((-308 . -968) 52040) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -344) 51994) ((-308 . -118) 51948) ((-308 . -950) 51932) ((-308 . -1186) 51916) ((-308 . -1197) 51900) ((-304 . -280) 51884) ((-304 . -190) 51863) ((-304 . -186) 51836) ((-304 . -189) 51815) ((-304 . -319) 51794) ((-304 . -1065) 51773) ((-304 . -299) 51752) ((-304 . -120) 51731) ((-304 . -555) 51668) ((-304 . -590) 51620) ((-304 . -588) 51557) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1128) T) ((-304 . -552) 51539) ((-304 . -1013) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -970) T) ((-304 . -1025) T) ((-304 . -1060) T) ((-304 . -663) T) ((-304 . -961) T) ((-304 . -312) T) ((-304 . -1133) T) ((-304 . -832) T) ((-304 . -495) T) ((-304 . -146) T) ((-304 . -654) 51491) ((-304 . -582) 51443) ((-304 . -38) 51408) ((-304 . -391) T) ((-304 . -258) T) ((-304 . -82) 51339) ((-304 . -963) 51291) ((-304 . -968) 51243) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -344) 51197) ((-304 . -118) 51151) ((-304 . -950) 51135) ((-304 . -1186) 51119) ((-304 . -1197) 51103) ((-303 . -280) 51087) ((-303 . -190) 51066) ((-303 . -186) 51039) ((-303 . -189) 51018) ((-303 . -319) 50997) ((-303 . -1065) 50976) ((-303 . -299) 50955) ((-303 . -120) 50934) ((-303 . -555) 50871) ((-303 . -590) 50823) ((-303 . -588) 50760) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1128) T) ((-303 . -552) 50742) ((-303 . -1013) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -970) T) ((-303 . -1025) T) ((-303 . -1060) T) ((-303 . -663) T) ((-303 . -961) T) ((-303 . -312) T) ((-303 . -1133) T) ((-303 . -832) T) ((-303 . -495) T) ((-303 . -146) T) ((-303 . -654) 50694) ((-303 . -582) 50646) ((-303 . -38) 50611) ((-303 . -391) T) ((-303 . -258) T) ((-303 . -82) 50542) ((-303 . -963) 50494) ((-303 . -968) 50446) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -344) 50400) ((-303 . -118) 50354) ((-303 . -950) 50338) ((-303 . -1186) 50322) ((-303 . -1197) 50306) ((-302 . -280) 50290) ((-302 . -190) 50269) ((-302 . -186) 50242) ((-302 . -189) 50221) ((-302 . -319) 50200) ((-302 . -1065) 50179) ((-302 . -299) 50158) ((-302 . -120) 50137) ((-302 . -555) 50074) ((-302 . -590) 50026) ((-302 . -588) 49963) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1128) T) ((-302 . -552) 49945) ((-302 . -1013) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -970) T) ((-302 . -1025) T) ((-302 . -1060) T) ((-302 . -663) T) ((-302 . -961) T) ((-302 . -312) T) ((-302 . -1133) T) ((-302 . -832) T) ((-302 . -495) T) ((-302 . -146) T) ((-302 . -654) 49897) ((-302 . -582) 49849) ((-302 . -38) 49814) ((-302 . -391) T) ((-302 . -258) T) ((-302 . -82) 49745) ((-302 . -963) 49697) ((-302 . -968) 49649) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -344) 49603) ((-302 . -118) 49557) ((-302 . -950) 49541) ((-302 . -1186) 49525) ((-302 . -1197) 49509) ((-301 . -280) 49486) ((-301 . -190) T) ((-301 . -186) 49473) ((-301 . -189) T) ((-301 . -319) T) ((-301 . -1065) T) ((-301 . -299) T) ((-301 . -120) 49455) ((-301 . -555) 49385) ((-301 . -590) 49330) ((-301 . -588) 49260) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1128) T) ((-301 . -552) 49242) ((-301 . -1013) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -970) T) ((-301 . -1025) T) ((-301 . -1060) T) ((-301 . -663) T) ((-301 . -961) T) ((-301 . -312) T) ((-301 . -1133) T) ((-301 . -832) T) ((-301 . -495) T) ((-301 . -146) T) ((-301 . -654) 49187) ((-301 . -582) 49132) ((-301 . -38) 49097) ((-301 . -391) T) ((-301 . -258) T) ((-301 . -82) 49014) ((-301 . -963) 48959) ((-301 . -968) 48904) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -344) T) ((-301 . -118) T) ((-301 . -950) 48881) ((-301 . -1186) 48858) ((-301 . -1197) 48835) ((-295 . -280) 48819) ((-295 . -190) 48798) ((-295 . -186) 48771) ((-295 . -189) 48750) ((-295 . -319) 48729) ((-295 . -1065) 48708) ((-295 . -299) 48687) ((-295 . -120) 48666) ((-295 . -555) 48603) ((-295 . -590) 48555) ((-295 . -588) 48492) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1128) T) ((-295 . -552) 48474) ((-295 . -1013) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -970) T) ((-295 . -1025) T) ((-295 . -1060) T) ((-295 . -663) T) ((-295 . -961) T) ((-295 . -312) T) ((-295 . -1133) T) ((-295 . -832) T) ((-295 . -495) T) ((-295 . -146) T) ((-295 . -654) 48426) ((-295 . -582) 48378) ((-295 . -38) 48343) ((-295 . -391) T) ((-295 . -258) T) ((-295 . -82) 48274) ((-295 . -963) 48226) ((-295 . -968) 48178) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -344) 48132) ((-295 . -118) 48086) ((-295 . -950) 48070) ((-295 . -1186) 48054) ((-295 . -1197) 48038) ((-294 . -280) 48022) ((-294 . -190) 48001) ((-294 . -186) 47974) ((-294 . -189) 47953) ((-294 . -319) 47932) ((-294 . -1065) 47911) ((-294 . -299) 47890) ((-294 . -120) 47869) ((-294 . -555) 47806) ((-294 . -590) 47758) ((-294 . -588) 47695) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1128) T) ((-294 . -552) 47677) ((-294 . -1013) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -970) T) ((-294 . -1025) T) ((-294 . -1060) T) ((-294 . -663) T) ((-294 . -961) T) ((-294 . -312) T) ((-294 . -1133) T) ((-294 . -832) T) ((-294 . -495) T) ((-294 . -146) T) ((-294 . -654) 47629) ((-294 . -582) 47581) ((-294 . -38) 47546) ((-294 . -391) T) ((-294 . -258) T) ((-294 . -82) 47477) ((-294 . -963) 47429) ((-294 . -968) 47381) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -344) 47335) ((-294 . -118) 47289) ((-294 . -950) 47273) ((-294 . -1186) 47257) ((-294 . -1197) 47241) ((-293 . -280) 47218) ((-293 . -190) T) ((-293 . -186) 47205) ((-293 . -189) T) ((-293 . -319) T) ((-293 . -1065) T) ((-293 . -299) T) ((-293 . -120) 47187) ((-293 . -555) 47117) ((-293 . -590) 47062) ((-293 . -588) 46992) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1128) T) ((-293 . -552) 46974) ((-293 . -1013) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -970) T) ((-293 . -1025) T) ((-293 . -1060) T) ((-293 . -663) T) ((-293 . -961) T) ((-293 . -312) T) ((-293 . -1133) T) ((-293 . -832) T) ((-293 . -495) T) ((-293 . -146) T) ((-293 . -654) 46919) ((-293 . -582) 46864) ((-293 . -38) 46829) ((-293 . -391) T) ((-293 . -258) T) ((-293 . -82) 46746) ((-293 . -963) 46691) ((-293 . -968) 46636) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -344) T) ((-293 . -118) T) ((-293 . -950) 46613) ((-293 . -1186) 46590) ((-293 . -1197) 46567) ((-289 . -280) 46544) ((-289 . -190) T) ((-289 . -186) 46531) ((-289 . -189) T) ((-289 . -319) T) ((-289 . -1065) T) ((-289 . -299) T) ((-289 . -120) 46513) ((-289 . -555) 46443) ((-289 . -590) 46388) ((-289 . -588) 46318) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1128) T) ((-289 . -552) 46300) ((-289 . -1013) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -970) T) ((-289 . -1025) T) ((-289 . -1060) T) ((-289 . -663) T) ((-289 . -961) T) ((-289 . -312) T) ((-289 . -1133) T) ((-289 . -832) T) ((-289 . -495) T) ((-289 . -146) T) ((-289 . -654) 46245) ((-289 . -582) 46190) ((-289 . -38) 46155) ((-289 . -391) T) ((-289 . -258) T) ((-289 . -82) 46072) ((-289 . -963) 46017) ((-289 . -968) 45962) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -344) T) ((-289 . -118) T) ((-289 . -950) 45939) ((-289 . -1186) 45916) ((-289 . -1197) 45893) ((-283 . -286) 45862) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1128) T) ((-283 . -552) 45844) ((-283 . -1013) T) ((-283 . -23) T) ((-283 . -588) 45826) ((-283 . -21) T) ((-282 . -1013) T) ((-282 . -552) 45808) ((-282 . -1128) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -756) T) ((-281 . -552) 45790) ((-281 . -1013) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1128) T) ((-281 . -759) T) ((-278 . -19) 45774) ((-278 . -317) 45758) ((-278 . -34) T) ((-278 . -13) T) ((-278 . -1128) T) ((-278 . -72) 45692) ((-278 . -552) 45607) ((-278 . -260) 45545) ((-278 . -455) 45478) ((-278 . -1013) 45431) ((-278 . -428) 45415) ((-278 . -593) 45399) ((-278 . -243) 45376) ((-278 . -241) 45328) ((-278 . -538) 45305) ((-278 . -553) 45266) ((-278 . -124) 45250) ((-278 . -756) 45229) ((-278 . -759) 45208) ((-278 . -323) 45192) ((-278 . -237) 45176) ((-275 . -274) 45153) ((-275 . -555) 45137) ((-275 . -950) 45121) ((-275 . -23) T) ((-275 . -1013) T) ((-275 . -552) 45103) ((-275 . -1128) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -588) 45085) ((-273 . -23) T) ((-273 . -1013) T) ((-273 . -552) 45067) ((-273 . -1128) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -654) 45049) ((-273 . -582) 45031) ((-273 . -590) 45013) ((-273 . -968) 44995) ((-273 . -963) 44977) ((-273 . -82) 44952) ((-273 . -274) 44929) ((-273 . -555) 44913) ((-273 . -950) 44897) ((-273 . -756) 44876) ((-273 . -759) 44855) ((-270 . -1161) 44839) ((-270 . -190) 44791) ((-270 . -186) 44737) ((-270 . -189) 44689) ((-270 . -241) 44647) ((-270 . -809) 44553) ((-270 . -806) 44457) ((-270 . -811) 44363) ((-270 . -886) 44326) ((-270 . -38) 44173) ((-270 . -82) 43993) ((-270 . -963) 43834) ((-270 . -968) 43675) ((-270 . -588) 43560) ((-270 . -590) 43460) ((-270 . -582) 43307) ((-270 . -654) 43154) ((-270 . -555) 42986) ((-270 . -118) 42965) ((-270 . -120) 42944) ((-270 . -47) 42914) ((-270 . -1157) 42884) ((-270 . -35) 42850) ((-270 . -66) 42816) ((-270 . -239) 42782) ((-270 . -432) 42748) ((-270 . -1117) 42714) ((-270 . -1114) 42680) ((-270 . -915) 42646) ((-270 . -201) 42625) ((-270 . -246) 42579) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1128) T) ((-270 . -552) 42561) ((-270 . -1013) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -961) T) ((-270 . -663) T) ((-270 . -1060) T) ((-270 . -1025) T) ((-270 . -970) T) ((-270 . -258) 42540) ((-270 . -391) 42519) ((-270 . -146) 42453) ((-270 . -495) 42407) ((-270 . -832) 42386) ((-270 . -1133) 42365) ((-270 . -312) 42344) ((-270 . -716) T) ((-270 . -756) T) ((-270 . -759) T) ((-270 . -718) T) ((-265 . -363) 42328) ((-265 . -555) 41903) ((-265 . -950) 41574) ((-265 . -553) 41435) ((-265 . -794) 41419) ((-265 . -811) 41386) ((-265 . -806) 41351) ((-265 . -809) 41318) ((-265 . -412) 41297) ((-265 . -354) 41281) ((-265 . -796) 41206) ((-265 . -342) 41190) ((-265 . -580) 41098) ((-265 . -590) 40836) ((-265 . -328) 40806) ((-265 . -201) 40785) ((-265 . -82) 40674) ((-265 . -963) 40584) ((-265 . -968) 40494) ((-265 . -246) 40473) ((-265 . -654) 40383) ((-265 . -582) 40293) ((-265 . -588) 39960) ((-265 . -38) 39870) ((-265 . -258) 39849) ((-265 . -391) 39828) ((-265 . -146) 39807) ((-265 . -495) 39786) ((-265 . -832) 39765) ((-265 . -1133) 39744) ((-265 . -312) 39723) ((-265 . -260) 39710) ((-265 . -455) 39676) ((-265 . -254) T) ((-265 . -120) 39655) ((-265 . -118) 39634) ((-265 . -961) 39528) ((-265 . -663) 39381) ((-265 . -1060) 39275) ((-265 . -1025) 39128) ((-265 . -970) 39022) ((-265 . -104) 38897) ((-265 . -25) 38753) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1128) T) ((-265 . -552) 38735) ((-265 . -1013) T) ((-265 . -23) 38591) ((-265 . -21) 38466) ((-265 . -29) 38436) ((-265 . -915) 38415) ((-265 . -27) 38394) ((-265 . -1114) 38373) ((-265 . -1117) 38352) ((-265 . -432) 38331) ((-265 . -239) 38310) ((-265 . -66) 38289) ((-265 . -35) 38268) ((-265 . -133) 38247) ((-265 . -116) 38226) ((-265 . -569) 38205) ((-265 . -871) 38184) ((-265 . -1052) 38163) ((-264 . -904) 38124) ((-264 . -1065) NIL) ((-264 . -950) 38054) ((-264 . -555) 37937) ((-264 . -553) NIL) ((-264 . -933) NIL) ((-264 . -821) NIL) ((-264 . -794) 37898) ((-264 . -755) NIL) ((-264 . -721) NIL) ((-264 . -718) NIL) ((-264 . -759) NIL) ((-264 . -756) NIL) ((-264 . -716) NIL) ((-264 . -714) NIL) ((-264 . -740) NIL) ((-264 . -796) NIL) ((-264 . -342) 37859) ((-264 . -580) 37820) ((-264 . -590) 37749) ((-264 . -328) 37710) ((-264 . -241) 37576) ((-264 . -260) 37472) ((-264 . -455) 37223) ((-264 . -288) 37184) ((-264 . -201) T) ((-264 . -82) 37069) ((-264 . -963) 36998) ((-264 . -968) 36927) ((-264 . -246) T) ((-264 . -654) 36856) ((-264 . -582) 36785) ((-264 . -588) 36699) ((-264 . -38) 36628) ((-264 . -258) T) ((-264 . -391) T) ((-264 . -146) T) ((-264 . -495) T) ((-264 . -832) T) ((-264 . -1133) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36589) ((-264 . -806) NIL) ((-264 . -811) NIL) ((-264 . -809) NIL) ((-264 . -184) 36550) ((-264 . -120) 36506) ((-264 . -118) 36462) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1128) T) ((-264 . -552) 36444) ((-264 . -1013) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -961) T) ((-264 . -663) T) ((-264 . -1060) T) ((-264 . -1025) T) ((-264 . -970) T) ((-263 . -995) T) ((-263 . -429) 36425) ((-263 . -552) 36391) ((-263 . -555) 36372) ((-263 . -1013) T) ((-263 . -1128) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1013) T) ((-262 . -552) 36354) ((-262 . -1128) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1106) 36333) ((-251 . -183) 36281) ((-251 . -76) 36229) ((-251 . -124) 36177) ((-251 . -553) NIL) ((-251 . -193) 36125) ((-251 . -538) 36104) ((-251 . -260) 35902) ((-251 . -455) 35654) ((-251 . -428) 35589) ((-251 . -241) 35568) ((-251 . -243) 35547) ((-251 . -549) 35526) ((-251 . -1013) T) ((-251 . -552) 35508) ((-251 . -72) T) ((-251 . -1128) T) ((-251 . -13) T) ((-251 . -34) T) ((-251 . -317) 35456) ((-249 . -1128) T) ((-249 . -13) T) ((-249 . -455) 35405) ((-249 . -1013) 35191) ((-249 . -552) 34937) ((-249 . -72) 34723) ((-249 . -25) 34591) ((-249 . -21) 34478) ((-249 . -588) 34225) ((-249 . -23) 34112) ((-249 . -104) 33999) ((-249 . -1025) 33884) ((-249 . -663) 33790) ((-249 . -412) 33769) ((-249 . -961) 33715) ((-249 . -1060) 33661) ((-249 . -970) 33607) ((-249 . -590) 33475) ((-249 . -555) 33410) ((-249 . -82) 33330) ((-249 . -963) 33255) ((-249 . -968) 33180) ((-249 . -654) 33125) ((-249 . -582) 33070) ((-249 . -809) 33029) ((-249 . -806) 32986) ((-249 . -811) 32945) ((-249 . -1186) 32915) ((-247 . -552) 32897) ((-244 . -258) T) ((-244 . -391) T) ((-244 . -38) 32884) ((-244 . -555) 32856) ((-244 . -970) T) ((-244 . -1025) T) ((-244 . -1060) T) ((-244 . -663) T) ((-244 . -961) T) ((-244 . -82) 32841) ((-244 . -963) 32828) ((-244 . -968) 32815) ((-244 . -21) T) ((-244 . -588) 32787) ((-244 . -23) T) ((-244 . -1013) T) ((-244 . -552) 32769) ((-244 . -1128) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -590) 32756) ((-244 . -582) 32743) ((-244 . -654) 32730) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -495) T) ((-244 . -832) T) ((-244 . -241) 32709) ((-235 . -552) 32691) ((-234 . -552) 32673) ((-229 . -756) T) ((-229 . -552) 32655) ((-229 . -1013) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1128) T) ((-229 . -759) T) ((-226 . -213) 32617) ((-226 . -555) 32377) ((-226 . -950) 32223) ((-226 . -553) 31971) ((-226 . -277) 31943) ((-226 . -354) 31927) ((-226 . -38) 31779) ((-226 . -82) 31604) ((-226 . -963) 31450) ((-226 . -968) 31296) ((-226 . -588) 31206) ((-226 . -590) 31095) ((-226 . -582) 30947) ((-226 . -654) 30799) ((-226 . -118) 30778) ((-226 . -120) 30757) ((-226 . -146) 30671) ((-226 . -495) 30605) ((-226 . -246) 30539) ((-226 . -47) 30511) ((-226 . -328) 30495) ((-226 . -580) 30443) ((-226 . -391) 30397) ((-226 . -455) 30288) ((-226 . -809) 30234) ((-226 . -806) 30143) ((-226 . -811) 30056) ((-226 . -796) 29915) ((-226 . -821) 29894) ((-226 . -1133) 29873) ((-226 . -861) 29840) ((-226 . -260) 29827) ((-226 . -190) 29806) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -552) 29788) ((-226 . -1013) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -970) T) ((-226 . -1025) T) ((-226 . -1060) T) ((-226 . -663) T) ((-226 . -961) T) ((-226 . -186) 29736) ((-226 . -13) T) ((-226 . -1128) T) ((-226 . -189) 29690) ((-226 . -225) 29674) ((-226 . -184) 29658) ((-221 . -1013) T) ((-221 . -552) 29640) ((-221 . -1128) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29619) ((-211 . -1186) 29589) ((-211 . -721) 29568) ((-211 . -718) 29547) ((-211 . -759) 29501) ((-211 . -756) 29455) ((-211 . -716) 29434) ((-211 . -717) 29413) ((-211 . -654) 29358) ((-211 . -582) 29283) ((-211 . -243) 29260) ((-211 . -241) 29237) ((-211 . -538) 29214) ((-211 . -950) 29043) ((-211 . -555) 28847) ((-211 . -354) 28816) ((-211 . -580) 28724) ((-211 . -590) 28550) ((-211 . -328) 28520) ((-211 . -428) 28504) ((-211 . -455) 28437) ((-211 . -260) 28375) ((-211 . -34) T) ((-211 . -317) 28359) ((-211 . -319) 28338) ((-211 . -190) 28291) ((-211 . -588) 28144) ((-211 . -970) 28123) ((-211 . -1025) 28102) ((-211 . -1060) 28081) ((-211 . -663) 28060) ((-211 . -961) 28039) ((-211 . -186) 27935) ((-211 . -189) 27837) ((-211 . -225) 27807) ((-211 . -806) 27679) ((-211 . -811) 27553) ((-211 . -809) 27486) ((-211 . -184) 27456) ((-211 . -552) 27417) ((-211 . -968) 27342) ((-211 . -963) 27247) ((-211 . -82) 27167) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1128) T) ((-211 . -1013) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 27146) ((-210 . -1186) 27116) ((-210 . -721) 27095) ((-210 . -718) 27074) ((-210 . -759) 27028) ((-210 . -756) 26982) ((-210 . -716) 26961) ((-210 . -717) 26940) ((-210 . -654) 26885) ((-210 . -582) 26810) ((-210 . -243) 26787) ((-210 . -241) 26764) ((-210 . -538) 26741) ((-210 . -950) 26570) ((-210 . -555) 26374) ((-210 . -354) 26343) ((-210 . -580) 26251) ((-210 . -590) 26064) ((-210 . -328) 26034) ((-210 . -428) 26018) ((-210 . -455) 25951) ((-210 . -260) 25889) ((-210 . -34) T) ((-210 . -317) 25873) ((-210 . -319) 25852) ((-210 . -190) 25805) ((-210 . -588) 25645) ((-210 . -970) 25624) ((-210 . -1025) 25603) ((-210 . -1060) 25582) ((-210 . -663) 25561) ((-210 . -961) 25540) ((-210 . -186) 25436) ((-210 . -189) 25338) ((-210 . -225) 25308) ((-210 . -806) 25180) ((-210 . -811) 25054) ((-210 . -809) 24987) ((-210 . -184) 24957) ((-210 . -552) 24918) ((-210 . -968) 24843) ((-210 . -963) 24748) ((-210 . -82) 24668) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1128) T) ((-210 . -1013) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1013) T) ((-209 . -552) 24650) ((-209 . -1128) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24624) ((-208 . -160) T) ((-208 . -1013) T) ((-208 . -552) 24591) ((-208 . -1128) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -747) 24573) ((-207 . -1013) T) ((-207 . -552) 24555) ((-207 . -1128) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -861) 24500) ((-206 . -555) 24292) ((-206 . -950) 24170) ((-206 . -1133) 24149) ((-206 . -821) 24128) ((-206 . -796) NIL) ((-206 . -811) 24105) ((-206 . -806) 24080) ((-206 . -809) 24057) ((-206 . -455) 23995) ((-206 . -391) 23949) ((-206 . -580) 23897) ((-206 . -590) 23786) ((-206 . -328) 23770) ((-206 . -47) 23727) ((-206 . -38) 23579) ((-206 . -582) 23431) ((-206 . -654) 23283) ((-206 . -246) 23217) ((-206 . -495) 23151) ((-206 . -82) 22976) ((-206 . -963) 22822) ((-206 . -968) 22668) ((-206 . -146) 22582) ((-206 . -120) 22561) ((-206 . -118) 22540) ((-206 . -588) 22450) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1128) T) ((-206 . -552) 22432) ((-206 . -1013) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -961) T) ((-206 . -663) T) ((-206 . -1060) T) ((-206 . -1025) T) ((-206 . -970) T) ((-206 . -354) 22416) ((-206 . -277) 22373) ((-206 . -260) 22360) ((-206 . -553) 22221) ((-203 . -608) 22205) ((-203 . -1167) 22189) ((-203 . -923) 22173) ((-203 . -1063) 22157) ((-203 . -317) 22141) ((-203 . -756) 22120) ((-203 . -759) 22099) ((-203 . -323) 22083) ((-203 . -593) 22067) ((-203 . -243) 22044) ((-203 . -241) 21996) ((-203 . -538) 21973) ((-203 . -553) 21934) ((-203 . -428) 21918) ((-203 . -1013) 21871) ((-203 . -455) 21804) ((-203 . -260) 21742) ((-203 . -552) 21637) ((-203 . -72) 21571) ((-203 . -1128) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21555) ((-203 . -237) 21539) ((-203 . -429) 21516) ((-203 . -555) 21493) ((-197 . -196) 21472) ((-197 . -1186) 21442) ((-197 . -721) 21421) ((-197 . -718) 21400) ((-197 . -759) 21354) ((-197 . -756) 21308) ((-197 . -716) 21287) ((-197 . -717) 21266) ((-197 . -654) 21211) ((-197 . -582) 21136) ((-197 . -243) 21113) ((-197 . -241) 21090) ((-197 . -538) 21067) ((-197 . -950) 20896) ((-197 . -555) 20700) ((-197 . -354) 20669) ((-197 . -580) 20577) ((-197 . -590) 20416) ((-197 . -328) 20386) ((-197 . -428) 20370) ((-197 . -455) 20303) ((-197 . -260) 20241) ((-197 . -34) T) ((-197 . -317) 20225) ((-197 . -319) 20204) ((-197 . -190) 20157) ((-197 . -588) 19945) ((-197 . -970) 19924) ((-197 . -1025) 19903) ((-197 . -1060) 19882) ((-197 . -663) 19861) ((-197 . -961) 19840) ((-197 . -186) 19736) ((-197 . -189) 19638) ((-197 . -225) 19608) ((-197 . -806) 19480) ((-197 . -811) 19354) ((-197 . -809) 19287) ((-197 . -184) 19257) ((-197 . -552) 18954) ((-197 . -968) 18879) ((-197 . -963) 18784) ((-197 . -82) 18704) ((-197 . -104) 18579) ((-197 . -25) 18416) ((-197 . -72) 18153) ((-197 . -13) T) ((-197 . -1128) T) ((-197 . -1013) 17909) ((-197 . -23) 17765) ((-197 . -21) 17680) ((-181 . -627) 17638) ((-181 . -317) 17622) ((-181 . -34) T) ((-181 . -13) T) ((-181 . -1128) T) ((-181 . -72) 17576) ((-181 . -552) 17511) ((-181 . -260) 17449) ((-181 . -455) 17382) ((-181 . -1013) 17360) ((-181 . -428) 17344) ((-181 . -57) 17302) ((-179 . -346) T) ((-179 . -120) T) ((-179 . -555) 17252) ((-179 . -590) 17217) ((-179 . -588) 17167) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1128) T) ((-179 . -552) 17149) ((-179 . -1013) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -970) T) ((-179 . -1025) T) ((-179 . -1060) T) ((-179 . -663) T) ((-179 . -961) T) ((-179 . -553) 17079) ((-179 . -312) T) ((-179 . -1133) T) ((-179 . -832) T) ((-179 . -495) T) ((-179 . -146) T) ((-179 . -654) 17044) ((-179 . -582) 17009) ((-179 . -38) 16974) ((-179 . -391) T) ((-179 . -258) T) ((-179 . -82) 16923) ((-179 . -963) 16888) ((-179 . -968) 16853) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -755) T) ((-179 . -721) T) ((-179 . -718) T) ((-179 . -759) T) ((-179 . -756) T) ((-179 . -716) T) ((-179 . -714) T) ((-179 . -796) 16835) ((-179 . -915) T) ((-179 . -933) T) ((-179 . -950) 16795) ((-179 . -973) T) ((-179 . -190) T) ((-179 . -186) 16782) ((-179 . -189) T) ((-179 . -1114) T) ((-179 . -1117) T) ((-179 . -432) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -560) 16759) ((-177 . -555) 16721) ((-177 . -590) 16688) ((-177 . -588) 16640) ((-177 . -970) T) ((-177 . -1025) T) ((-177 . -1060) T) ((-177 . -663) T) ((-177 . -961) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1013) T) ((-177 . -552) 16622) ((-177 . -1128) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -950) 16599) ((-176 . -214) 16583) ((-176 . -1034) 16567) ((-176 . -76) 16551) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1128) T) ((-176 . -72) 16505) ((-176 . -552) 16440) ((-176 . -260) 16378) ((-176 . -455) 16311) ((-176 . -1013) 16289) ((-176 . -428) 16273) ((-176 . -317) 16257) ((-176 . -908) 16241) ((-172 . -995) T) ((-172 . -429) 16222) ((-172 . -552) 16188) ((-172 . -555) 16169) ((-172 . -1013) T) ((-172 . -1128) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -904) 16151) ((-171 . -1065) T) ((-171 . -555) 16101) ((-171 . -950) 16061) ((-171 . -553) 15991) ((-171 . -933) T) ((-171 . -821) NIL) ((-171 . -794) 15973) ((-171 . -755) T) ((-171 . -721) T) ((-171 . -718) T) ((-171 . -759) T) ((-171 . -756) T) ((-171 . -716) T) ((-171 . -714) T) ((-171 . -740) T) ((-171 . -796) 15955) ((-171 . -342) 15937) ((-171 . -580) 15919) ((-171 . -328) 15901) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -455) NIL) ((-171 . -288) 15883) ((-171 . -201) T) ((-171 . -82) 15810) ((-171 . -963) 15760) ((-171 . -968) 15710) ((-171 . -246) T) ((-171 . -654) 15660) ((-171 . -582) 15610) ((-171 . -590) 15560) ((-171 . -588) 15510) ((-171 . -38) 15460) ((-171 . -258) T) ((-171 . -391) T) ((-171 . -146) T) ((-171 . -495) T) ((-171 . -832) T) ((-171 . -1133) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15447) ((-171 . -189) T) ((-171 . -225) 15429) ((-171 . -806) NIL) ((-171 . -811) NIL) ((-171 . -809) NIL) ((-171 . -184) 15411) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1128) T) ((-171 . -552) 15353) ((-171 . -1013) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -961) T) ((-171 . -663) T) ((-171 . -1060) T) ((-171 . -1025) T) ((-171 . -970) T) ((-168 . -752) T) ((-168 . -759) T) ((-168 . -756) T) ((-168 . -1013) T) ((-168 . -552) 15335) ((-168 . -1128) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -319) T) ((-167 . -1013) T) ((-167 . -552) 15317) ((-167 . -1128) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -555) 15294) ((-166 . -1013) T) ((-166 . -552) 15276) ((-166 . -1128) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1013) T) ((-161 . -552) 15258) ((-161 . -1128) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1013) T) ((-158 . -552) 15240) ((-158 . -1128) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1013) T) ((-157 . -552) 15222) ((-157 . -1128) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -747) 15204) ((-154 . -995) T) ((-154 . -429) 15185) ((-154 . -552) 15151) ((-154 . -555) 15132) ((-154 . -1013) T) ((-154 . -1128) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -552) 15114) ((-148 . -38) 15046) ((-148 . -555) 14963) ((-148 . -590) 14895) ((-148 . -588) 14812) ((-148 . -970) T) ((-148 . -1025) T) ((-148 . -1060) T) ((-148 . -663) T) ((-148 . -961) T) ((-148 . -82) 14711) ((-148 . -963) 14643) ((-148 . -968) 14575) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1013) T) ((-148 . -552) 14557) ((-148 . -1128) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -582) 14489) ((-148 . -654) 14421) ((-148 . -312) T) ((-148 . -1133) T) ((-148 . -832) T) ((-148 . -495) T) ((-148 . -146) T) ((-148 . -391) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1013) T) ((-145 . -552) 14403) ((-145 . -1128) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14387) ((-142 . -35) 14365) ((-142 . -66) 14343) ((-142 . -239) 14321) ((-142 . -432) 14299) ((-142 . -1117) 14277) ((-142 . -1114) 14255) ((-142 . -915) 14207) ((-142 . -821) 14160) ((-142 . -553) 13928) ((-142 . -794) 13912) ((-142 . -319) 13866) ((-142 . -299) 13845) ((-142 . -1065) 13824) ((-142 . -344) 13803) ((-142 . -352) 13774) ((-142 . -38) 13608) ((-142 . -82) 13500) ((-142 . -963) 13413) ((-142 . -968) 13326) ((-142 . -582) 13160) ((-142 . -654) 12994) ((-142 . -321) 12965) ((-142 . -661) 12936) ((-142 . -950) 12834) ((-142 . -555) 12619) ((-142 . -354) 12603) ((-142 . -796) 12528) ((-142 . -342) 12512) ((-142 . -580) 12460) ((-142 . -590) 12337) ((-142 . -588) 12235) ((-142 . -328) 12219) ((-142 . -241) 12177) ((-142 . -260) 12142) ((-142 . -455) 12054) ((-142 . -288) 12038) ((-142 . -201) 11992) ((-142 . -1133) 11900) ((-142 . -312) 11854) ((-142 . -832) 11788) ((-142 . -495) 11702) ((-142 . -246) 11616) ((-142 . -391) 11550) ((-142 . -258) 11484) ((-142 . -190) 11438) ((-142 . -186) 11366) ((-142 . -189) 11300) ((-142 . -225) 11284) ((-142 . -806) 11208) ((-142 . -811) 11134) ((-142 . -809) 11093) ((-142 . -184) 11077) ((-142 . -146) T) ((-142 . -120) 11056) ((-142 . -961) T) ((-142 . -663) T) ((-142 . -1060) T) ((-142 . -1025) T) ((-142 . -970) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1013) T) ((-142 . -552) 11038) ((-142 . -1128) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10992) ((-135 . -995) T) ((-135 . -429) 10973) ((-135 . -552) 10939) ((-135 . -555) 10920) ((-135 . -1013) T) ((-135 . -1128) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1013) T) ((-134 . -552) 10902) ((-134 . -1128) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1128) T) ((-130 . -552) 10884) ((-130 . -1013) T) ((-129 . -995) T) ((-129 . -429) 10865) ((-129 . -552) 10831) ((-129 . -555) 10812) ((-129 . -1013) T) ((-129 . -1128) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -995) T) ((-127 . -429) 10793) ((-127 . -552) 10759) ((-127 . -555) 10740) ((-127 . -1013) T) ((-127 . -1128) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -961) T) ((-125 . -663) T) ((-125 . -1060) T) ((-125 . -1025) T) ((-125 . -970) T) ((-125 . -21) T) ((-125 . -588) 10699) ((-125 . -23) T) ((-125 . -1013) T) ((-125 . -552) 10681) ((-125 . -1128) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -590) 10655) ((-125 . -555) 10624) ((-125 . -38) 10608) ((-125 . -82) 10587) ((-125 . -963) 10571) ((-125 . -968) 10555) ((-125 . -582) 10539) ((-125 . -654) 10523) ((-125 . -1186) 10507) ((-117 . -752) T) ((-117 . -759) T) ((-117 . -756) T) ((-117 . -1013) T) ((-117 . -552) 10489) ((-117 . -1128) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -319) T) ((-114 . -1013) T) ((-114 . -552) 10471) ((-114 . -1128) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -553) 10430) ((-114 . -368) 10412) ((-114 . -1011) 10394) ((-114 . -317) 10376) ((-114 . -319) T) ((-114 . -193) 10358) ((-114 . -124) 10340) ((-114 . -428) 10322) ((-114 . -455) NIL) ((-114 . -260) NIL) ((-114 . -34) T) ((-114 . -76) 10304) ((-114 . -183) 10286) ((-113 . -552) 10268) ((-112 . -160) T) ((-112 . -1013) T) ((-112 . -552) 10235) ((-112 . -1128) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -747) 10217) ((-111 . -995) T) ((-111 . -429) 10198) ((-111 . -552) 10164) ((-111 . -555) 10145) ((-111 . -1013) T) ((-111 . -1128) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -995) T) ((-110 . -429) 10126) ((-110 . -552) 10092) ((-110 . -555) 10073) ((-110 . -1013) T) ((-110 . -1128) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -404) 10050) ((-108 . -555) 9946) ((-108 . -950) 9930) ((-108 . -1013) T) ((-108 . -552) 9912) ((-108 . -1128) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -409) 9867) ((-108 . -241) 9844) ((-107 . -756) T) ((-107 . -552) 9826) ((-107 . -1013) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1128) T) ((-107 . -759) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -663) T) ((-107 . -1025) T) ((-107 . -950) 9808) ((-107 . -555) 9790) ((-106 . -995) T) ((-106 . -429) 9771) ((-106 . -552) 9737) ((-106 . -555) 9718) ((-106 . -1013) T) ((-106 . -1128) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1013) T) ((-103 . -552) 9700) ((-103 . -1128) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9682) ((-102 . -317) 9664) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1128) T) ((-102 . -72) T) ((-102 . -552) 9608) ((-102 . -260) NIL) ((-102 . -455) NIL) ((-102 . -1013) T) ((-102 . -428) 9590) ((-102 . -593) 9572) ((-102 . -243) 9547) ((-102 . -241) 9497) ((-102 . -538) 9472) ((-102 . -553) NIL) ((-102 . -124) 9454) ((-102 . -756) T) ((-102 . -759) T) ((-102 . -323) 9436) ((-101 . -752) T) ((-101 . -759) T) ((-101 . -756) T) ((-101 . -1013) T) ((-101 . -552) 9418) ((-101 . -1128) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -319) T) ((-101 . -604) T) ((-100 . -98) 9402) ((-100 . -317) 9386) ((-100 . -923) 9370) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1128) T) ((-100 . -72) 9324) ((-100 . -552) 9259) ((-100 . -260) 9197) ((-100 . -455) 9130) ((-100 . -1013) 9108) ((-100 . -428) 9092) ((-100 . -92) 9076) ((-99 . -98) 9060) ((-99 . -317) 9044) ((-99 . -923) 9028) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1128) T) ((-99 . -72) 8982) ((-99 . -552) 8917) ((-99 . -260) 8855) ((-99 . -455) 8788) ((-99 . -1013) 8766) ((-99 . -428) 8750) ((-99 . -92) 8734) ((-94 . -98) 8718) ((-94 . -317) 8702) ((-94 . -923) 8686) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1128) T) ((-94 . -72) 8640) ((-94 . -552) 8575) ((-94 . -260) 8513) ((-94 . -455) 8446) ((-94 . -1013) 8424) ((-94 . -428) 8408) ((-94 . -92) 8392) ((-90 . -904) 8370) ((-90 . -1065) NIL) ((-90 . -950) 8348) ((-90 . -555) 8279) ((-90 . -553) NIL) ((-90 . -933) NIL) ((-90 . -821) NIL) ((-90 . -794) 8257) ((-90 . -755) NIL) ((-90 . -721) NIL) ((-90 . -718) NIL) ((-90 . -759) NIL) ((-90 . -756) NIL) ((-90 . -716) NIL) ((-90 . -714) NIL) ((-90 . -740) NIL) ((-90 . -796) NIL) ((-90 . -342) 8235) ((-90 . -580) 8213) ((-90 . -590) 8159) ((-90 . -328) 8137) ((-90 . -241) 8071) ((-90 . -260) 8018) ((-90 . -455) 7888) ((-90 . -288) 7866) ((-90 . -201) T) ((-90 . -82) 7785) ((-90 . -963) 7731) ((-90 . -968) 7677) ((-90 . -246) T) ((-90 . -654) 7623) ((-90 . -582) 7569) ((-90 . -588) 7500) ((-90 . -38) 7446) ((-90 . -258) T) ((-90 . -391) T) ((-90 . -146) T) ((-90 . -495) T) ((-90 . -832) T) ((-90 . -1133) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7424) ((-90 . -806) NIL) ((-90 . -811) NIL) ((-90 . -809) NIL) ((-90 . -184) 7402) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1128) T) ((-90 . -552) 7384) ((-90 . -1013) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -961) T) ((-90 . -663) T) ((-90 . -1060) T) ((-90 . -1025) T) ((-90 . -970) T) ((-89 . -779) 7368) ((-89 . -832) T) ((-89 . -495) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -555) 7340) ((-89 . -654) 7327) ((-89 . -582) 7314) ((-89 . -968) 7301) ((-89 . -963) 7288) ((-89 . -82) 7273) ((-89 . -38) 7260) ((-89 . -391) T) ((-89 . -258) T) ((-89 . -961) T) ((-89 . -663) T) ((-89 . -1060) T) ((-89 . -1025) T) ((-89 . -970) T) ((-89 . -21) T) ((-89 . -588) 7232) ((-89 . -23) T) ((-89 . -1013) T) ((-89 . -552) 7214) ((-89 . -1128) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -590) 7201) ((-89 . -120) T) ((-86 . -756) T) ((-86 . -552) 7183) ((-86 . -1013) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1128) T) ((-86 . -759) T) ((-86 . -747) 7164) ((-85 . -752) T) ((-85 . -759) T) ((-85 . -756) T) ((-85 . -1013) T) ((-85 . -552) 7146) ((-85 . -1128) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -319) T) ((-85 . -880) T) ((-85 . -604) T) ((-85 . -84) T) ((-85 . -553) 7128) ((-81 . -96) T) ((-81 . -323) 7111) ((-81 . -759) T) ((-81 . -756) T) ((-81 . -124) 7094) ((-81 . -553) 7076) ((-81 . -241) 7027) ((-81 . -538) 7003) ((-81 . -243) 6979) ((-81 . -593) 6962) ((-81 . -428) 6945) ((-81 . -1013) T) ((-81 . -455) NIL) ((-81 . -260) NIL) ((-81 . -552) 6927) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -317) 6910) ((-81 . -19) 6893) ((-81 . -604) T) ((-81 . -13) T) ((-81 . -1128) T) ((-81 . -84) T) ((-79 . -80) 6877) ((-79 . -1128) T) ((-79 . |MappingCategory|) 6851) ((-79 . -1013) T) ((-79 . -552) 6833) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -552) 6815) ((-77 . -904) 6797) ((-77 . -1065) T) ((-77 . -555) 6747) ((-77 . -950) 6707) ((-77 . -553) 6637) ((-77 . -933) T) ((-77 . -821) NIL) ((-77 . -794) 6619) ((-77 . -755) T) ((-77 . -721) T) ((-77 . -718) T) ((-77 . -759) T) ((-77 . -756) T) ((-77 . -716) T) ((-77 . -714) T) ((-77 . -740) T) ((-77 . -796) 6601) ((-77 . -342) 6583) ((-77 . -580) 6565) ((-77 . -328) 6547) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -455) NIL) ((-77 . -288) 6529) ((-77 . -201) T) ((-77 . -82) 6456) ((-77 . -963) 6406) ((-77 . -968) 6356) ((-77 . -246) T) ((-77 . -654) 6306) ((-77 . -582) 6256) ((-77 . -590) 6206) ((-77 . -588) 6156) ((-77 . -38) 6106) ((-77 . -258) T) ((-77 . -391) T) ((-77 . -146) T) ((-77 . -495) T) ((-77 . -832) T) ((-77 . -1133) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 6093) ((-77 . -189) T) ((-77 . -225) 6075) ((-77 . -806) NIL) ((-77 . -811) NIL) ((-77 . -809) NIL) ((-77 . -184) 6057) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1128) T) ((-77 . -552) 6000) ((-77 . -1013) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -961) T) ((-77 . -663) T) ((-77 . -1060) T) ((-77 . -1025) T) ((-77 . -970) T) ((-73 . -98) 5984) ((-73 . -317) 5968) ((-73 . -923) 5952) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1128) T) ((-73 . -72) 5906) ((-73 . -552) 5841) ((-73 . -260) 5779) ((-73 . -455) 5712) ((-73 . -1013) 5690) ((-73 . -428) 5674) ((-73 . -92) 5658) ((-69 . -412) T) ((-69 . -1025) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1128) T) ((-69 . -552) 5640) ((-69 . -1013) T) ((-69 . -663) T) ((-69 . -241) 5619) ((-67 . -995) T) ((-67 . -429) 5600) ((-67 . -552) 5566) ((-67 . -555) 5547) ((-67 . -1013) T) ((-67 . -1128) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1034) 5531) ((-62 . -317) 5515) ((-62 . -428) 5499) ((-62 . -1013) 5477) ((-62 . -455) 5410) ((-62 . -260) 5348) ((-62 . -552) 5283) ((-62 . -72) 5237) ((-62 . -1128) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5221) ((-60 . -57) 5183) ((-60 . -428) 5167) ((-60 . -1013) 5145) ((-60 . -455) 5078) ((-60 . -260) 5016) ((-60 . -552) 4951) ((-60 . -72) 4905) ((-60 . -1128) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -317) 4889) ((-58 . -19) 4873) ((-58 . -317) 4857) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1128) T) ((-58 . -72) 4791) ((-58 . -552) 4706) ((-58 . -260) 4644) ((-58 . -455) 4577) ((-58 . -1013) 4530) ((-58 . -428) 4514) ((-58 . -593) 4498) ((-58 . -243) 4475) ((-58 . -241) 4427) ((-58 . -538) 4404) ((-58 . -553) 4365) ((-58 . -124) 4349) ((-58 . -756) 4328) ((-58 . -759) 4307) ((-58 . -323) 4291) ((-55 . -1013) T) ((-55 . -552) 4273) ((-55 . -1128) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -950) 4255) ((-55 . -555) 4237) ((-51 . -1013) T) ((-51 . -552) 4219) ((-51 . -1128) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -560) 4203) ((-50 . -555) 4172) ((-50 . -590) 4146) ((-50 . -588) 4105) ((-50 . -970) T) ((-50 . -1025) T) ((-50 . -1060) T) ((-50 . -663) T) ((-50 . -961) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1013) T) ((-50 . -552) 4087) ((-50 . -1128) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -950) 4071) ((-49 . -1013) T) ((-49 . -552) 4053) ((-49 . -1128) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1128) T) ((-48 . -552) 4035) ((-48 . -1013) T) ((-48 . -555) 3936) ((-48 . -950) 3879) ((-48 . -455) 3845) ((-48 . -260) 3832) ((-48 . -27) T) ((-48 . -915) T) ((-48 . -201) T) ((-48 . -82) 3781) ((-48 . -963) 3746) ((-48 . -968) 3711) ((-48 . -246) T) ((-48 . -654) 3676) ((-48 . -582) 3641) ((-48 . -590) 3591) ((-48 . -588) 3541) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -961) T) ((-48 . -663) T) ((-48 . -1060) T) ((-48 . -1025) T) ((-48 . -970) T) ((-48 . -38) 3506) ((-48 . -258) T) ((-48 . -391) T) ((-48 . -146) T) ((-48 . -495) T) ((-48 . -832) T) ((-48 . -1133) T) ((-48 . -312) T) ((-48 . -580) 3466) ((-48 . -933) T) ((-48 . -553) 3411) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3398) ((-48 . -189) T) ((-45 . -36) 3377) ((-45 . -549) 3356) ((-45 . -243) 3279) ((-45 . -241) 3177) ((-45 . -428) 3112) ((-45 . -455) 2864) ((-45 . -260) 2662) ((-45 . -538) 2585) ((-45 . -193) 2533) ((-45 . -76) 2481) ((-45 . -183) 2429) ((-45 . -1106) 2408) ((-45 . -237) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1128) T) ((-45 . -72) T) ((-45 . -552) 2286) ((-45 . -1013) T) ((-45 . -553) NIL) ((-45 . -593) 2234) ((-45 . -323) 2182) ((-45 . -759) NIL) ((-45 . -756) NIL) ((-45 . -317) 2130) ((-45 . -1063) 2078) ((-45 . -923) 2026) ((-45 . -1167) 1974) ((-45 . -608) 1922) ((-44 . -360) 1906) ((-44 . -683) 1890) ((-44 . -657) T) ((-44 . -685) T) ((-44 . -82) 1869) ((-44 . -963) 1853) ((-44 . -968) 1837) ((-44 . -21) T) ((-44 . -588) 1780) ((-44 . -23) T) ((-44 . -1013) T) ((-44 . -552) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -590) 1720) ((-44 . -582) 1704) ((-44 . -654) 1688) ((-44 . -316) 1672) ((-44 . -1128) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -555) 1553) ((-40 . -970) T) ((-40 . -1025) T) ((-40 . -1060) T) ((-40 . -663) T) ((-40 . -961) T) ((-40 . -590) 1455) ((-40 . -588) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1128) T) ((-40 . -552) 1367) ((-40 . -1013) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -968) 1312) ((-40 . -963) 1257) ((-40 . -82) 1174) ((-40 . -553) 1158) ((-40 . -184) 1135) ((-40 . -809) 1087) ((-40 . -811) 999) ((-40 . -806) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1133) T) ((-40 . -832) T) ((-40 . -495) T) ((-40 . -654) 677) ((-40 . -582) 622) ((-40 . -38) 567) ((-40 . -391) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -319) NIL) ((-40 . -299) NIL) ((-40 . -1065) NIL) ((-40 . -118) 539) ((-40 . -344) NIL) ((-40 . -352) 511) ((-40 . -120) 483) ((-40 . -321) 455) ((-40 . -328) 432) ((-40 . -580) 366) ((-40 . -354) 343) ((-40 . -950) 220) ((-40 . -661) 192) ((-31 . -995) T) ((-31 . -429) 173) ((-31 . -552) 139) ((-31 . -555) 120) ((-31 . -1013) T) ((-31 . -1128) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -866) T) ((-30 . -552) 102) ((0 . |EnumerationCategory|) T) ((0 . -552) 84) ((0 . -1013) T) ((0 . -72) T) ((0 . -1128) T) ((-2 . |RecordCategory|) T) ((-2 . -552) 66) ((-2 . -1013) T) ((-2 . -72) T) ((-2 . -1128) T) ((-3 . |UnionCategory|) T) ((-3 . -552) 48) ((-3 . -1013) T) ((-3 . -72) T) ((-3 . -1128) T) ((-1 . -1013) T) ((-1 . -552) 30) ((-1 . -1128) T) ((-1 . -13) T) ((-1 . -72) T)) \ No newline at end of file
+((((-485)) . T))
+(((-1209 . -146) T) ((-1209 . -556) 199769) ((-1209 . -971) T) ((-1209 . -1026) T) ((-1209 . -1061) T) ((-1209 . -664) T) ((-1209 . -962) T) ((-1209 . -591) 199756) ((-1209 . -589) 199728) ((-1209 . -104) T) ((-1209 . -25) T) ((-1209 . -72) T) ((-1209 . -13) T) ((-1209 . -1129) T) ((-1209 . -553) 199710) ((-1209 . -1014) T) ((-1209 . -23) T) ((-1209 . -21) T) ((-1209 . -969) 199697) ((-1209 . -964) 199684) ((-1209 . -82) 199669) ((-1209 . -320) T) ((-1209 . -554) 199651) ((-1209 . -1066) T) ((-1205 . -1014) T) ((-1205 . -553) 199618) ((-1205 . -1129) T) ((-1205 . -13) T) ((-1205 . -72) T) ((-1205 . -430) 199600) ((-1205 . -556) 199582) ((-1204 . -1202) 199561) ((-1204 . -951) 199538) ((-1204 . -556) 199487) ((-1204 . -962) T) ((-1204 . -664) T) ((-1204 . -1061) T) ((-1204 . -1026) T) ((-1204 . -971) T) ((-1204 . -21) T) ((-1204 . -589) 199446) ((-1204 . -23) T) ((-1204 . -1014) T) ((-1204 . -553) 199428) ((-1204 . -1129) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -25) T) ((-1204 . -104) T) ((-1204 . -591) 199402) ((-1204 . -1194) 199386) ((-1204 . -655) 199356) ((-1204 . -583) 199326) ((-1204 . -969) 199310) ((-1204 . -964) 199294) ((-1204 . -82) 199273) ((-1204 . -38) 199243) ((-1204 . -1199) 199222) ((-1203 . -962) T) ((-1203 . -664) T) ((-1203 . -1061) T) ((-1203 . -1026) T) ((-1203 . -971) T) ((-1203 . -21) T) ((-1203 . -589) 199181) ((-1203 . -23) T) ((-1203 . -1014) T) ((-1203 . -553) 199163) ((-1203 . -1129) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -25) T) ((-1203 . -104) T) ((-1203 . -591) 199137) ((-1203 . -556) 199093) ((-1203 . -1194) 199077) ((-1203 . -655) 199047) ((-1203 . -583) 199017) ((-1203 . -969) 199001) ((-1203 . -964) 198985) ((-1203 . -82) 198964) ((-1203 . -38) 198934) ((-1203 . -335) 198913) ((-1203 . -951) 198897) ((-1201 . -1202) 198873) ((-1201 . -951) 198847) ((-1201 . -556) 198793) ((-1201 . -962) T) ((-1201 . -664) T) ((-1201 . -1061) T) ((-1201 . -1026) T) ((-1201 . -971) T) ((-1201 . -21) T) ((-1201 . -589) 198752) ((-1201 . -23) T) ((-1201 . -1014) T) ((-1201 . -553) 198734) ((-1201 . -1129) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -591) 198708) ((-1201 . -1194) 198692) ((-1201 . -655) 198662) ((-1201 . -583) 198632) ((-1201 . -969) 198616) ((-1201 . -964) 198600) ((-1201 . -82) 198579) ((-1201 . -38) 198549) ((-1201 . -1199) 198525) ((-1200 . -1202) 198504) ((-1200 . -951) 198461) ((-1200 . -556) 198390) ((-1200 . -962) T) ((-1200 . -664) T) ((-1200 . -1061) T) ((-1200 . -1026) T) ((-1200 . -971) T) ((-1200 . -21) T) ((-1200 . -589) 198349) ((-1200 . -23) T) ((-1200 . -1014) T) ((-1200 . -553) 198331) ((-1200 . -1129) T) ((-1200 . -13) T) ((-1200 . -72) T) ((-1200 . -25) T) ((-1200 . -104) T) ((-1200 . -591) 198305) ((-1200 . -1194) 198289) ((-1200 . -655) 198259) ((-1200 . -583) 198229) ((-1200 . -969) 198213) ((-1200 . -964) 198197) ((-1200 . -82) 198176) ((-1200 . -38) 198146) ((-1200 . -1199) 198125) ((-1200 . -335) 198097) ((-1195 . -335) 198069) ((-1195 . -556) 198018) ((-1195 . -951) 197995) ((-1195 . -583) 197965) ((-1195 . -655) 197935) ((-1195 . -591) 197909) ((-1195 . -589) 197868) ((-1195 . -104) T) ((-1195 . -25) T) ((-1195 . -72) T) ((-1195 . -13) T) ((-1195 . -1129) T) ((-1195 . -553) 197850) ((-1195 . -1014) T) ((-1195 . -23) T) ((-1195 . -21) T) ((-1195 . -969) 197834) ((-1195 . -964) 197818) ((-1195 . -82) 197797) ((-1195 . -1202) 197776) ((-1195 . -962) T) ((-1195 . -664) T) ((-1195 . -1061) T) ((-1195 . -1026) T) ((-1195 . -971) T) ((-1195 . -1194) 197760) ((-1195 . -38) 197730) ((-1195 . -1199) 197709) ((-1193 . -1124) 197678) ((-1193 . -553) 197640) ((-1193 . -124) 197624) ((-1193 . -34) T) ((-1193 . -13) T) ((-1193 . -1129) T) ((-1193 . -72) T) ((-1193 . -260) 197562) ((-1193 . -456) 197495) ((-1193 . -1014) T) ((-1193 . -429) 197479) ((-1193 . -554) 197440) ((-1193 . -318) 197424) ((-1193 . -890) 197393) ((-1192 . -962) T) ((-1192 . -664) T) ((-1192 . -1061) T) ((-1192 . -1026) T) ((-1192 . -971) T) ((-1192 . -21) T) ((-1192 . -589) 197338) ((-1192 . -23) T) ((-1192 . -1014) T) ((-1192 . -553) 197307) ((-1192 . -1129) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -25) T) ((-1192 . -104) T) ((-1192 . -591) 197267) ((-1192 . -556) 197209) ((-1192 . -430) 197193) ((-1192 . -38) 197163) ((-1192 . -82) 197128) ((-1192 . -964) 197098) ((-1192 . -969) 197068) ((-1192 . -583) 197038) ((-1192 . -655) 197008) ((-1191 . -996) T) ((-1191 . -430) 196989) ((-1191 . -553) 196955) ((-1191 . -556) 196936) ((-1191 . -1014) T) ((-1191 . -1129) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -64) T) ((-1190 . -996) T) ((-1190 . -430) 196917) ((-1190 . -553) 196883) ((-1190 . -556) 196864) ((-1190 . -1014) T) ((-1190 . -1129) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -64) T) ((-1185 . -553) 196846) ((-1183 . -1014) T) ((-1183 . -553) 196828) ((-1183 . -1129) T) ((-1183 . -13) T) ((-1183 . -72) T) ((-1182 . -1014) T) ((-1182 . -553) 196810) ((-1182 . -1129) T) ((-1182 . -13) T) ((-1182 . -72) T) ((-1179 . -1178) 196794) ((-1179 . -324) 196778) ((-1179 . -760) 196757) ((-1179 . -757) 196736) ((-1179 . -124) 196720) ((-1179 . -554) 196681) ((-1179 . -241) 196633) ((-1179 . -539) 196610) ((-1179 . -243) 196587) ((-1179 . -594) 196571) ((-1179 . -429) 196555) ((-1179 . -1014) 196508) ((-1179 . -456) 196441) ((-1179 . -260) 196379) ((-1179 . -553) 196294) ((-1179 . -72) 196228) ((-1179 . -1129) T) ((-1179 . -13) T) ((-1179 . -34) T) ((-1179 . -318) 196212) ((-1179 . -19) 196196) ((-1176 . -1014) T) ((-1176 . -553) 196162) ((-1176 . -1129) T) ((-1176 . -13) T) ((-1176 . -72) T) ((-1169 . -1172) 196146) ((-1169 . -190) 196105) ((-1169 . -556) 195987) ((-1169 . -591) 195912) ((-1169 . -589) 195822) ((-1169 . -104) T) ((-1169 . -25) T) ((-1169 . -72) T) ((-1169 . -553) 195804) ((-1169 . -1014) T) ((-1169 . -23) T) ((-1169 . -21) T) ((-1169 . -971) T) ((-1169 . -1026) T) ((-1169 . -1061) T) ((-1169 . -664) T) ((-1169 . -962) T) ((-1169 . -186) 195757) ((-1169 . -13) T) ((-1169 . -1129) T) ((-1169 . -189) 195716) ((-1169 . -241) 195681) ((-1169 . -810) 195594) ((-1169 . -807) 195482) ((-1169 . -812) 195395) ((-1169 . -887) 195365) ((-1169 . -38) 195262) ((-1169 . -82) 195127) ((-1169 . -964) 195013) ((-1169 . -969) 194899) ((-1169 . -583) 194796) ((-1169 . -655) 194693) ((-1169 . -118) 194672) ((-1169 . -120) 194651) ((-1169 . -146) 194605) ((-1169 . -496) 194584) ((-1169 . -246) 194563) ((-1169 . -47) 194540) ((-1169 . -1158) 194517) ((-1169 . -35) 194483) ((-1169 . -66) 194449) ((-1169 . -239) 194415) ((-1169 . -433) 194381) ((-1169 . -1118) 194347) ((-1169 . -1115) 194313) ((-1169 . -916) 194279) ((-1166 . -277) 194223) ((-1166 . -951) 194189) ((-1166 . -355) 194155) ((-1166 . -38) 194012) ((-1166 . -556) 193886) ((-1166 . -591) 193775) ((-1166 . -589) 193649) ((-1166 . -971) T) ((-1166 . -1026) T) ((-1166 . -1061) T) ((-1166 . -664) T) ((-1166 . -962) T) ((-1166 . -82) 193499) ((-1166 . -964) 193388) ((-1166 . -969) 193277) ((-1166 . -21) T) ((-1166 . -23) T) ((-1166 . -1014) T) ((-1166 . -553) 193259) ((-1166 . -1129) T) ((-1166 . -13) T) ((-1166 . -72) T) ((-1166 . -25) T) ((-1166 . -104) T) ((-1166 . -583) 193116) ((-1166 . -655) 192973) ((-1166 . -118) 192934) ((-1166 . -120) 192895) ((-1166 . -146) T) ((-1166 . -496) T) ((-1166 . -246) T) ((-1166 . -47) 192839) ((-1165 . -1164) 192818) ((-1165 . -312) 192797) ((-1165 . -1134) 192776) ((-1165 . -833) 192755) ((-1165 . -496) 192709) ((-1165 . -146) 192643) ((-1165 . -556) 192462) ((-1165 . -655) 192309) ((-1165 . -583) 192156) ((-1165 . -38) 192003) ((-1165 . -392) 191982) ((-1165 . -258) 191961) ((-1165 . -591) 191861) ((-1165 . -589) 191746) ((-1165 . -971) T) ((-1165 . -1026) T) ((-1165 . -1061) T) ((-1165 . -664) T) ((-1165 . -962) T) ((-1165 . -82) 191566) ((-1165 . -964) 191407) ((-1165 . -969) 191248) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1014) T) ((-1165 . -553) 191230) ((-1165 . -1129) T) ((-1165 . -13) T) ((-1165 . -72) T) ((-1165 . -25) T) ((-1165 . -104) T) ((-1165 . -246) 191184) ((-1165 . -201) 191163) ((-1165 . -916) 191129) ((-1165 . -1115) 191095) ((-1165 . -1118) 191061) ((-1165 . -433) 191027) ((-1165 . -239) 190993) ((-1165 . -66) 190959) ((-1165 . -35) 190925) ((-1165 . -1158) 190895) ((-1165 . -47) 190865) ((-1165 . -120) 190844) ((-1165 . -118) 190823) ((-1165 . -887) 190786) ((-1165 . -812) 190692) ((-1165 . -807) 190596) ((-1165 . -810) 190502) ((-1165 . -241) 190460) ((-1165 . -189) 190412) ((-1165 . -186) 190358) ((-1165 . -190) 190310) ((-1165 . -1162) 190294) ((-1165 . -951) 190278) ((-1160 . -1164) 190239) ((-1160 . -312) 190218) ((-1160 . -1134) 190197) ((-1160 . -833) 190176) ((-1160 . -496) 190130) ((-1160 . -146) 190064) ((-1160 . -556) 189813) ((-1160 . -655) 189660) ((-1160 . -583) 189507) ((-1160 . -38) 189354) ((-1160 . -392) 189333) ((-1160 . -258) 189312) ((-1160 . -591) 189212) ((-1160 . -589) 189097) ((-1160 . -971) T) ((-1160 . -1026) T) ((-1160 . -1061) T) ((-1160 . -664) T) ((-1160 . -962) T) ((-1160 . -82) 188917) ((-1160 . -964) 188758) ((-1160 . -969) 188599) ((-1160 . -21) T) ((-1160 . -23) T) ((-1160 . -1014) T) ((-1160 . -553) 188581) ((-1160 . -1129) T) ((-1160 . -13) T) ((-1160 . -72) T) ((-1160 . -25) T) ((-1160 . -104) T) ((-1160 . -246) 188535) ((-1160 . -201) 188514) ((-1160 . -916) 188480) ((-1160 . -1115) 188446) ((-1160 . -1118) 188412) ((-1160 . -433) 188378) ((-1160 . -239) 188344) ((-1160 . -66) 188310) ((-1160 . -35) 188276) ((-1160 . -1158) 188246) ((-1160 . -47) 188216) ((-1160 . -120) 188195) ((-1160 . -118) 188174) ((-1160 . -887) 188137) ((-1160 . -812) 188043) ((-1160 . -807) 187924) ((-1160 . -810) 187830) ((-1160 . -241) 187788) ((-1160 . -189) 187740) ((-1160 . -186) 187686) ((-1160 . -190) 187638) ((-1160 . -1162) 187622) ((-1160 . -951) 187557) ((-1148 . -1155) 187541) ((-1148 . -1066) 187519) ((-1148 . -554) NIL) ((-1148 . -260) 187506) ((-1148 . -456) 187454) ((-1148 . -277) 187431) ((-1148 . -951) 187314) ((-1148 . -355) 187298) ((-1148 . -38) 187130) ((-1148 . -82) 186935) ((-1148 . -964) 186761) ((-1148 . -969) 186587) ((-1148 . -589) 186497) ((-1148 . -591) 186386) ((-1148 . -583) 186218) ((-1148 . -655) 186050) ((-1148 . -556) 185806) ((-1148 . -118) 185785) ((-1148 . -120) 185764) ((-1148 . -47) 185741) ((-1148 . -329) 185725) ((-1148 . -581) 185673) ((-1148 . -810) 185617) ((-1148 . -807) 185524) ((-1148 . -812) 185435) ((-1148 . -797) NIL) ((-1148 . -822) 185414) ((-1148 . -1134) 185393) ((-1148 . -862) 185363) ((-1148 . -833) 185342) ((-1148 . -496) 185256) ((-1148 . -246) 185170) ((-1148 . -146) 185064) ((-1148 . -392) 184998) ((-1148 . -258) 184977) ((-1148 . -241) 184904) ((-1148 . -190) T) ((-1148 . -104) T) ((-1148 . -25) T) ((-1148 . -72) T) ((-1148 . -553) 184886) ((-1148 . -1014) T) ((-1148 . -23) T) ((-1148 . -21) T) ((-1148 . -971) T) ((-1148 . -1026) T) ((-1148 . -1061) T) ((-1148 . -664) T) ((-1148 . -962) T) ((-1148 . -186) 184873) ((-1148 . -13) T) ((-1148 . -1129) T) ((-1148 . -189) T) ((-1148 . -225) 184857) ((-1148 . -184) 184841) ((-1146 . -1007) 184825) ((-1146 . -558) 184809) ((-1146 . -1014) 184787) ((-1146 . -553) 184754) ((-1146 . -1129) 184732) ((-1146 . -13) 184710) ((-1146 . -72) 184688) ((-1146 . -1008) 184645) ((-1144 . -1143) 184624) ((-1144 . -916) 184590) ((-1144 . -1115) 184556) ((-1144 . -1118) 184522) ((-1144 . -433) 184488) ((-1144 . -239) 184454) ((-1144 . -66) 184420) ((-1144 . -35) 184386) ((-1144 . -1158) 184363) ((-1144 . -47) 184340) ((-1144 . -556) 184095) ((-1144 . -655) 183915) ((-1144 . -583) 183735) ((-1144 . -591) 183546) ((-1144 . -589) 183404) ((-1144 . -969) 183218) ((-1144 . -964) 183032) ((-1144 . -82) 182820) ((-1144 . -38) 182640) ((-1144 . -887) 182610) ((-1144 . -241) 182510) ((-1144 . -1141) 182494) ((-1144 . -971) T) ((-1144 . -1026) T) ((-1144 . -1061) T) ((-1144 . -664) T) ((-1144 . -962) T) ((-1144 . -21) T) ((-1144 . -23) T) ((-1144 . -1014) T) ((-1144 . -553) 182476) ((-1144 . -1129) T) ((-1144 . -13) T) ((-1144 . -72) T) ((-1144 . -25) T) ((-1144 . -104) T) ((-1144 . -118) 182404) ((-1144 . -120) 182286) ((-1144 . -554) 181959) ((-1144 . -184) 181929) ((-1144 . -810) 181783) ((-1144 . -812) 181583) ((-1144 . -807) 181381) ((-1144 . -225) 181351) ((-1144 . -189) 181213) ((-1144 . -186) 181069) ((-1144 . -190) 180977) ((-1144 . -312) 180956) ((-1144 . -1134) 180935) ((-1144 . -833) 180914) ((-1144 . -496) 180868) ((-1144 . -146) 180802) ((-1144 . -392) 180781) ((-1144 . -258) 180760) ((-1144 . -246) 180714) ((-1144 . -201) 180693) ((-1144 . -288) 180663) ((-1144 . -456) 180523) ((-1144 . -260) 180462) ((-1144 . -329) 180432) ((-1144 . -581) 180340) ((-1144 . -343) 180310) ((-1144 . -797) 180183) ((-1144 . -741) 180136) ((-1144 . -715) 180089) ((-1144 . -717) 180042) ((-1144 . -757) 179944) ((-1144 . -760) 179846) ((-1144 . -719) 179799) ((-1144 . -722) 179752) ((-1144 . -756) 179705) ((-1144 . -795) 179675) ((-1144 . -822) 179628) ((-1144 . -934) 179581) ((-1144 . -951) 179370) ((-1144 . -1066) 179322) ((-1144 . -905) 179292) ((-1139 . -1143) 179253) ((-1139 . -916) 179219) ((-1139 . -1115) 179185) ((-1139 . -1118) 179151) ((-1139 . -433) 179117) ((-1139 . -239) 179083) ((-1139 . -66) 179049) ((-1139 . -35) 179015) ((-1139 . -1158) 178992) ((-1139 . -47) 178969) ((-1139 . -556) 178770) ((-1139 . -655) 178572) ((-1139 . -583) 178374) ((-1139 . -591) 178229) ((-1139 . -589) 178069) ((-1139 . -969) 177865) ((-1139 . -964) 177661) ((-1139 . -82) 177413) ((-1139 . -38) 177215) ((-1139 . -887) 177185) ((-1139 . -241) 177013) ((-1139 . -1141) 176997) ((-1139 . -971) T) ((-1139 . -1026) T) ((-1139 . -1061) T) ((-1139 . -664) T) ((-1139 . -962) T) ((-1139 . -21) T) ((-1139 . -23) T) ((-1139 . -1014) T) ((-1139 . -553) 176979) ((-1139 . -1129) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -25) T) ((-1139 . -104) T) ((-1139 . -118) 176889) ((-1139 . -120) 176799) ((-1139 . -554) NIL) ((-1139 . -184) 176751) ((-1139 . -810) 176587) ((-1139 . -812) 176351) ((-1139 . -807) 176090) ((-1139 . -225) 176042) ((-1139 . -189) 175868) ((-1139 . -186) 175688) ((-1139 . -190) 175578) ((-1139 . -312) 175557) ((-1139 . -1134) 175536) ((-1139 . -833) 175515) ((-1139 . -496) 175469) ((-1139 . -146) 175403) ((-1139 . -392) 175382) ((-1139 . -258) 175361) ((-1139 . -246) 175315) ((-1139 . -201) 175294) ((-1139 . -288) 175246) ((-1139 . -456) 174980) ((-1139 . -260) 174865) ((-1139 . -329) 174817) ((-1139 . -581) 174769) ((-1139 . -343) 174721) ((-1139 . -797) NIL) ((-1139 . -741) NIL) ((-1139 . -715) NIL) ((-1139 . -717) NIL) ((-1139 . -757) NIL) ((-1139 . -760) NIL) ((-1139 . -719) NIL) ((-1139 . -722) NIL) ((-1139 . -756) NIL) ((-1139 . -795) 174673) ((-1139 . -822) NIL) ((-1139 . -934) NIL) ((-1139 . -951) 174639) ((-1139 . -1066) NIL) ((-1139 . -905) 174591) ((-1138 . -753) T) ((-1138 . -760) T) ((-1138 . -757) T) ((-1138 . -1014) T) ((-1138 . -553) 174573) ((-1138 . -1129) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -320) T) ((-1138 . -605) T) ((-1137 . -753) T) ((-1137 . -760) T) ((-1137 . -757) T) ((-1137 . -1014) T) ((-1137 . -553) 174555) ((-1137 . -1129) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -320) T) ((-1137 . -605) T) ((-1136 . -753) T) ((-1136 . -760) T) ((-1136 . -757) T) ((-1136 . -1014) T) ((-1136 . -553) 174537) ((-1136 . -1129) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -320) T) ((-1136 . -605) T) ((-1135 . -753) T) ((-1135 . -760) T) ((-1135 . -757) T) ((-1135 . -1014) T) ((-1135 . -553) 174519) ((-1135 . -1129) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -320) T) ((-1135 . -605) T) ((-1130 . -996) T) ((-1130 . -430) 174500) ((-1130 . -553) 174466) ((-1130 . -556) 174447) ((-1130 . -1014) T) ((-1130 . -1129) T) ((-1130 . -13) T) ((-1130 . -72) T) ((-1130 . -64) T) ((-1127 . -430) 174424) ((-1127 . -553) 174365) ((-1127 . -556) 174342) ((-1127 . -1014) 174320) ((-1127 . -1129) 174298) ((-1127 . -13) 174276) ((-1127 . -72) 174254) ((-1122 . -680) 174230) ((-1122 . -35) 174196) ((-1122 . -66) 174162) ((-1122 . -239) 174128) ((-1122 . -433) 174094) ((-1122 . -1118) 174060) ((-1122 . -1115) 174026) ((-1122 . -916) 173992) ((-1122 . -47) 173961) ((-1122 . -38) 173858) ((-1122 . -583) 173755) ((-1122 . -655) 173652) ((-1122 . -556) 173534) ((-1122 . -246) 173513) ((-1122 . -496) 173492) ((-1122 . -82) 173357) ((-1122 . -964) 173243) ((-1122 . -969) 173129) ((-1122 . -146) 173083) ((-1122 . -120) 173062) ((-1122 . -118) 173041) ((-1122 . -591) 172966) ((-1122 . -589) 172876) ((-1122 . -887) 172837) ((-1122 . -812) 172818) ((-1122 . -1129) T) ((-1122 . -13) T) ((-1122 . -807) 172797) ((-1122 . -962) T) ((-1122 . -664) T) ((-1122 . -1061) T) ((-1122 . -1026) T) ((-1122 . -971) T) ((-1122 . -21) T) ((-1122 . -23) T) ((-1122 . -1014) T) ((-1122 . -553) 172779) ((-1122 . -72) T) ((-1122 . -25) T) ((-1122 . -104) T) ((-1122 . -810) 172760) ((-1122 . -456) 172727) ((-1122 . -260) 172714) ((-1116 . -924) 172698) ((-1116 . -34) T) ((-1116 . -13) T) ((-1116 . -1129) T) ((-1116 . -72) 172652) ((-1116 . -553) 172587) ((-1116 . -260) 172525) ((-1116 . -456) 172458) ((-1116 . -1014) 172436) ((-1116 . -429) 172420) ((-1116 . -318) 172404) ((-1111 . -314) 172378) ((-1111 . -72) T) ((-1111 . -13) T) ((-1111 . -1129) T) ((-1111 . -553) 172360) ((-1111 . -1014) T) ((-1109 . -1014) T) ((-1109 . -553) 172342) ((-1109 . -1129) T) ((-1109 . -13) T) ((-1109 . -72) T) ((-1109 . -556) 172324) ((-1104 . -748) 172308) ((-1104 . -72) T) ((-1104 . -13) T) ((-1104 . -1129) T) ((-1104 . -553) 172290) ((-1104 . -1014) T) ((-1102 . -1107) 172269) ((-1102 . -183) 172217) ((-1102 . -76) 172165) ((-1102 . -124) 172113) ((-1102 . -554) NIL) ((-1102 . -193) 172061) ((-1102 . -539) 172040) ((-1102 . -260) 171838) ((-1102 . -456) 171590) ((-1102 . -429) 171525) ((-1102 . -241) 171504) ((-1102 . -243) 171483) ((-1102 . -550) 171462) ((-1102 . -1014) T) ((-1102 . -553) 171444) ((-1102 . -72) T) ((-1102 . -1129) T) ((-1102 . -13) T) ((-1102 . -34) T) ((-1102 . -318) 171392) ((-1098 . -1014) T) ((-1098 . -553) 171374) ((-1098 . -1129) T) ((-1098 . -13) T) ((-1098 . -72) T) ((-1097 . -753) T) ((-1097 . -760) T) ((-1097 . -757) T) ((-1097 . -1014) T) ((-1097 . -553) 171356) ((-1097 . -1129) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1097 . -320) T) ((-1097 . -605) T) ((-1096 . -753) T) ((-1096 . -760) T) ((-1096 . -757) T) ((-1096 . -1014) T) ((-1096 . -553) 171338) ((-1096 . -1129) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -320) T) ((-1095 . -1175) T) ((-1095 . -1014) T) ((-1095 . -553) 171305) ((-1095 . -1129) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -951) 171241) ((-1095 . -556) 171177) ((-1094 . -553) 171159) ((-1093 . -553) 171141) ((-1092 . -277) 171118) ((-1092 . -951) 171016) ((-1092 . -355) 171000) ((-1092 . -38) 170897) ((-1092 . -556) 170754) ((-1092 . -591) 170679) ((-1092 . -589) 170589) ((-1092 . -971) T) ((-1092 . -1026) T) ((-1092 . -1061) T) ((-1092 . -664) T) ((-1092 . -962) T) ((-1092 . -82) 170454) ((-1092 . -964) 170340) ((-1092 . -969) 170226) ((-1092 . -21) T) ((-1092 . -23) T) ((-1092 . -1014) T) ((-1092 . -553) 170208) ((-1092 . -1129) T) ((-1092 . -13) T) ((-1092 . -72) T) ((-1092 . -25) T) ((-1092 . -104) T) ((-1092 . -583) 170105) ((-1092 . -655) 170002) ((-1092 . -118) 169981) ((-1092 . -120) 169960) ((-1092 . -146) 169914) ((-1092 . -496) 169893) ((-1092 . -246) 169872) ((-1092 . -47) 169849) ((-1090 . -757) T) ((-1090 . -553) 169831) ((-1090 . -1014) T) ((-1090 . -72) T) ((-1090 . -13) T) ((-1090 . -1129) T) ((-1090 . -760) T) ((-1090 . -554) 169753) ((-1090 . -556) 169719) ((-1090 . -951) 169701) ((-1090 . -797) 169668) ((-1089 . -1172) 169652) ((-1089 . -190) 169611) ((-1089 . -556) 169493) ((-1089 . -591) 169418) ((-1089 . -589) 169328) ((-1089 . -104) T) ((-1089 . -25) T) ((-1089 . -72) T) ((-1089 . -553) 169310) ((-1089 . -1014) T) ((-1089 . -23) T) ((-1089 . -21) T) ((-1089 . -971) T) ((-1089 . -1026) T) ((-1089 . -1061) T) ((-1089 . -664) T) ((-1089 . -962) T) ((-1089 . -186) 169263) ((-1089 . -13) T) ((-1089 . -1129) T) ((-1089 . -189) 169222) ((-1089 . -241) 169187) ((-1089 . -810) 169100) ((-1089 . -807) 168988) ((-1089 . -812) 168901) ((-1089 . -887) 168871) ((-1089 . -38) 168768) ((-1089 . -82) 168633) ((-1089 . -964) 168519) ((-1089 . -969) 168405) ((-1089 . -583) 168302) ((-1089 . -655) 168199) ((-1089 . -118) 168178) ((-1089 . -120) 168157) ((-1089 . -146) 168111) ((-1089 . -496) 168090) ((-1089 . -246) 168069) ((-1089 . -47) 168046) ((-1089 . -1158) 168023) ((-1089 . -35) 167989) ((-1089 . -66) 167955) ((-1089 . -239) 167921) ((-1089 . -433) 167887) ((-1089 . -1118) 167853) ((-1089 . -1115) 167819) ((-1089 . -916) 167785) ((-1088 . -1164) 167746) ((-1088 . -312) 167725) ((-1088 . -1134) 167704) ((-1088 . -833) 167683) ((-1088 . -496) 167637) ((-1088 . -146) 167571) ((-1088 . -556) 167320) ((-1088 . -655) 167167) ((-1088 . -583) 167014) ((-1088 . -38) 166861) ((-1088 . -392) 166840) ((-1088 . -258) 166819) ((-1088 . -591) 166719) ((-1088 . -589) 166604) ((-1088 . -971) T) ((-1088 . -1026) T) ((-1088 . -1061) T) ((-1088 . -664) T) ((-1088 . -962) T) ((-1088 . -82) 166424) ((-1088 . -964) 166265) ((-1088 . -969) 166106) ((-1088 . -21) T) ((-1088 . -23) T) ((-1088 . -1014) T) ((-1088 . -553) 166088) ((-1088 . -1129) T) ((-1088 . -13) T) ((-1088 . -72) T) ((-1088 . -25) T) ((-1088 . -104) T) ((-1088 . -246) 166042) ((-1088 . -201) 166021) ((-1088 . -916) 165987) ((-1088 . -1115) 165953) ((-1088 . -1118) 165919) ((-1088 . -433) 165885) ((-1088 . -239) 165851) ((-1088 . -66) 165817) ((-1088 . -35) 165783) ((-1088 . -1158) 165753) ((-1088 . -47) 165723) ((-1088 . -120) 165702) ((-1088 . -118) 165681) ((-1088 . -887) 165644) ((-1088 . -812) 165550) ((-1088 . -807) 165431) ((-1088 . -810) 165337) ((-1088 . -241) 165295) ((-1088 . -189) 165247) ((-1088 . -186) 165193) ((-1088 . -190) 165145) ((-1088 . -1162) 165129) ((-1088 . -951) 165064) ((-1085 . -1155) 165048) ((-1085 . -1066) 165026) ((-1085 . -554) NIL) ((-1085 . -260) 165013) ((-1085 . -456) 164961) ((-1085 . -277) 164938) ((-1085 . -951) 164821) ((-1085 . -355) 164805) ((-1085 . -38) 164637) ((-1085 . -82) 164442) ((-1085 . -964) 164268) ((-1085 . -969) 164094) ((-1085 . -589) 164004) ((-1085 . -591) 163893) ((-1085 . -583) 163725) ((-1085 . -655) 163557) ((-1085 . -556) 163334) ((-1085 . -118) 163313) ((-1085 . -120) 163292) ((-1085 . -47) 163269) ((-1085 . -329) 163253) ((-1085 . -581) 163201) ((-1085 . -810) 163145) ((-1085 . -807) 163052) ((-1085 . -812) 162963) ((-1085 . -797) NIL) ((-1085 . -822) 162942) ((-1085 . -1134) 162921) ((-1085 . -862) 162891) ((-1085 . -833) 162870) ((-1085 . -496) 162784) ((-1085 . -246) 162698) ((-1085 . -146) 162592) ((-1085 . -392) 162526) ((-1085 . -258) 162505) ((-1085 . -241) 162432) ((-1085 . -190) T) ((-1085 . -104) T) ((-1085 . -25) T) ((-1085 . -72) T) ((-1085 . -553) 162414) ((-1085 . -1014) T) ((-1085 . -23) T) ((-1085 . -21) T) ((-1085 . -971) T) ((-1085 . -1026) T) ((-1085 . -1061) T) ((-1085 . -664) T) ((-1085 . -962) T) ((-1085 . -186) 162401) ((-1085 . -13) T) ((-1085 . -1129) T) ((-1085 . -189) T) ((-1085 . -225) 162385) ((-1085 . -184) 162369) ((-1082 . -1143) 162330) ((-1082 . -916) 162296) ((-1082 . -1115) 162262) ((-1082 . -1118) 162228) ((-1082 . -433) 162194) ((-1082 . -239) 162160) ((-1082 . -66) 162126) ((-1082 . -35) 162092) ((-1082 . -1158) 162069) ((-1082 . -47) 162046) ((-1082 . -556) 161847) ((-1082 . -655) 161649) ((-1082 . -583) 161451) ((-1082 . -591) 161306) ((-1082 . -589) 161146) ((-1082 . -969) 160942) ((-1082 . -964) 160738) ((-1082 . -82) 160490) ((-1082 . -38) 160292) ((-1082 . -887) 160262) ((-1082 . -241) 160090) ((-1082 . -1141) 160074) ((-1082 . -971) T) ((-1082 . -1026) T) ((-1082 . -1061) T) ((-1082 . -664) T) ((-1082 . -962) T) ((-1082 . -21) T) ((-1082 . -23) T) ((-1082 . -1014) T) ((-1082 . -553) 160056) ((-1082 . -1129) T) ((-1082 . -13) T) ((-1082 . -72) T) ((-1082 . -25) T) ((-1082 . -104) T) ((-1082 . -118) 159966) ((-1082 . -120) 159876) ((-1082 . -554) NIL) ((-1082 . -184) 159828) ((-1082 . -810) 159664) ((-1082 . -812) 159428) ((-1082 . -807) 159167) ((-1082 . -225) 159119) ((-1082 . -189) 158945) ((-1082 . -186) 158765) ((-1082 . -190) 158655) ((-1082 . -312) 158634) ((-1082 . -1134) 158613) ((-1082 . -833) 158592) ((-1082 . -496) 158546) ((-1082 . -146) 158480) ((-1082 . -392) 158459) ((-1082 . -258) 158438) ((-1082 . -246) 158392) ((-1082 . -201) 158371) ((-1082 . -288) 158323) ((-1082 . -456) 158057) ((-1082 . -260) 157942) ((-1082 . -329) 157894) ((-1082 . -581) 157846) ((-1082 . -343) 157798) ((-1082 . -797) NIL) ((-1082 . -741) NIL) ((-1082 . -715) NIL) ((-1082 . -717) NIL) ((-1082 . -757) NIL) ((-1082 . -760) NIL) ((-1082 . -719) NIL) ((-1082 . -722) NIL) ((-1082 . -756) NIL) ((-1082 . -795) 157750) ((-1082 . -822) NIL) ((-1082 . -934) NIL) ((-1082 . -951) 157716) ((-1082 . -1066) NIL) ((-1082 . -905) 157668) ((-1081 . -996) T) ((-1081 . -430) 157649) ((-1081 . -553) 157615) ((-1081 . -556) 157596) ((-1081 . -1014) T) ((-1081 . -1129) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1081 . -64) T) ((-1080 . -1014) T) ((-1080 . -553) 157578) ((-1080 . -1129) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1079 . -1014) T) ((-1079 . -553) 157560) ((-1079 . -1129) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1074 . -1107) 157536) ((-1074 . -183) 157481) ((-1074 . -76) 157426) ((-1074 . -124) 157371) ((-1074 . -554) NIL) ((-1074 . -193) 157316) ((-1074 . -539) 157292) ((-1074 . -260) 157081) ((-1074 . -456) 156821) ((-1074 . -429) 156753) ((-1074 . -241) 156729) ((-1074 . -243) 156705) ((-1074 . -550) 156681) ((-1074 . -1014) T) ((-1074 . -553) 156663) ((-1074 . -72) T) ((-1074 . -1129) T) ((-1074 . -13) T) ((-1074 . -34) T) ((-1074 . -318) 156608) ((-1073 . -1058) T) ((-1073 . -324) 156590) ((-1073 . -760) T) ((-1073 . -757) T) ((-1073 . -124) 156572) ((-1073 . -554) NIL) ((-1073 . -241) 156522) ((-1073 . -539) 156497) ((-1073 . -243) 156472) ((-1073 . -594) 156454) ((-1073 . -429) 156436) ((-1073 . -1014) T) ((-1073 . -456) NIL) ((-1073 . -260) NIL) ((-1073 . -553) 156418) ((-1073 . -72) T) ((-1073 . -1129) T) ((-1073 . -13) T) ((-1073 . -34) T) ((-1073 . -318) 156400) ((-1073 . -19) 156382) ((-1069 . -617) 156366) ((-1069 . -594) 156350) ((-1069 . -243) 156327) ((-1069 . -241) 156279) ((-1069 . -539) 156256) ((-1069 . -554) 156217) ((-1069 . -429) 156201) ((-1069 . -1014) 156179) ((-1069 . -456) 156112) ((-1069 . -260) 156050) ((-1069 . -553) 155985) ((-1069 . -72) 155939) ((-1069 . -1129) T) ((-1069 . -13) T) ((-1069 . -34) T) ((-1069 . -124) 155923) ((-1069 . -1168) 155907) ((-1069 . -924) 155891) ((-1069 . -1064) 155875) ((-1069 . -556) 155852) ((-1067 . -996) T) ((-1067 . -430) 155833) ((-1067 . -553) 155799) ((-1067 . -556) 155780) ((-1067 . -1014) T) ((-1067 . -1129) T) ((-1067 . -13) T) ((-1067 . -72) T) ((-1067 . -64) T) ((-1065 . -1107) 155759) ((-1065 . -183) 155707) ((-1065 . -76) 155655) ((-1065 . -124) 155603) ((-1065 . -554) NIL) ((-1065 . -193) 155551) ((-1065 . -539) 155530) ((-1065 . -260) 155328) ((-1065 . -456) 155080) ((-1065 . -429) 155015) ((-1065 . -241) 154994) ((-1065 . -243) 154973) ((-1065 . -550) 154952) ((-1065 . -1014) T) ((-1065 . -553) 154934) ((-1065 . -72) T) ((-1065 . -1129) T) ((-1065 . -13) T) ((-1065 . -34) T) ((-1065 . -318) 154882) ((-1062 . -1035) 154866) ((-1062 . -318) 154850) ((-1062 . -429) 154834) ((-1062 . -1014) 154812) ((-1062 . -456) 154745) ((-1062 . -260) 154683) ((-1062 . -553) 154618) ((-1062 . -72) 154572) ((-1062 . -1129) T) ((-1062 . -13) T) ((-1062 . -34) T) ((-1062 . -76) 154556) ((-1060 . -1021) 154525) ((-1060 . -1124) 154494) ((-1060 . -553) 154456) ((-1060 . -124) 154440) ((-1060 . -34) T) ((-1060 . -13) T) ((-1060 . -1129) T) ((-1060 . -72) T) ((-1060 . -260) 154378) ((-1060 . -456) 154311) ((-1060 . -1014) T) ((-1060 . -429) 154295) ((-1060 . -554) 154256) ((-1060 . -318) 154240) ((-1060 . -890) 154209) ((-1060 . -984) 154178) ((-1056 . -1037) 154123) ((-1056 . -318) 154107) ((-1056 . -34) T) ((-1056 . -260) 154045) ((-1056 . -456) 153978) ((-1056 . -429) 153962) ((-1056 . -966) 153902) ((-1056 . -951) 153800) ((-1056 . -556) 153719) ((-1056 . -355) 153703) ((-1056 . -581) 153651) ((-1056 . -591) 153589) ((-1056 . -329) 153573) ((-1056 . -190) 153552) ((-1056 . -186) 153500) ((-1056 . -189) 153454) ((-1056 . -225) 153438) ((-1056 . -807) 153362) ((-1056 . -812) 153288) ((-1056 . -810) 153247) ((-1056 . -184) 153231) ((-1056 . -655) 153166) ((-1056 . -583) 153101) ((-1056 . -589) 153060) ((-1056 . -104) T) ((-1056 . -25) T) ((-1056 . -72) T) ((-1056 . -13) T) ((-1056 . -1129) T) ((-1056 . -553) 153022) ((-1056 . -1014) T) ((-1056 . -23) T) ((-1056 . -21) T) ((-1056 . -969) 153006) ((-1056 . -964) 152990) ((-1056 . -82) 152969) ((-1056 . -962) T) ((-1056 . -664) T) ((-1056 . -1061) T) ((-1056 . -1026) T) ((-1056 . -971) T) ((-1056 . -38) 152929) ((-1056 . -554) 152890) ((-1055 . -924) 152861) ((-1055 . -34) T) ((-1055 . -13) T) ((-1055 . -1129) T) ((-1055 . -72) T) ((-1055 . -553) 152843) ((-1055 . -260) 152769) ((-1055 . -456) 152677) ((-1055 . -1014) T) ((-1055 . -429) 152648) ((-1055 . -318) 152619) ((-1054 . -1014) T) ((-1054 . -553) 152601) ((-1054 . -1129) T) ((-1054 . -13) T) ((-1054 . -72) T) ((-1049 . -1051) T) ((-1049 . -1175) T) ((-1049 . -64) T) ((-1049 . -72) T) ((-1049 . -13) T) ((-1049 . -1129) T) ((-1049 . -553) 152567) ((-1049 . -1014) T) ((-1049 . -556) 152548) ((-1049 . -430) 152529) ((-1049 . -996) T) ((-1047 . -1048) 152513) ((-1047 . -72) T) ((-1047 . -13) T) ((-1047 . -1129) T) ((-1047 . -553) 152495) ((-1047 . -1014) T) ((-1040 . -680) 152474) ((-1040 . -35) 152440) ((-1040 . -66) 152406) ((-1040 . -239) 152372) ((-1040 . -433) 152338) ((-1040 . -1118) 152304) ((-1040 . -1115) 152270) ((-1040 . -916) 152236) ((-1040 . -47) 152208) ((-1040 . -38) 152105) ((-1040 . -583) 152002) ((-1040 . -655) 151899) ((-1040 . -556) 151781) ((-1040 . -246) 151760) ((-1040 . -496) 151739) ((-1040 . -82) 151604) ((-1040 . -964) 151490) ((-1040 . -969) 151376) ((-1040 . -146) 151330) ((-1040 . -120) 151309) ((-1040 . -118) 151288) ((-1040 . -591) 151213) ((-1040 . -589) 151123) ((-1040 . -887) 151090) ((-1040 . -812) 151074) ((-1040 . -1129) T) ((-1040 . -13) T) ((-1040 . -807) 151056) ((-1040 . -962) T) ((-1040 . -664) T) ((-1040 . -1061) T) ((-1040 . -1026) T) ((-1040 . -971) T) ((-1040 . -21) T) ((-1040 . -23) T) ((-1040 . -1014) T) ((-1040 . -553) 151038) ((-1040 . -72) T) ((-1040 . -25) T) ((-1040 . -104) T) ((-1040 . -810) 151022) ((-1040 . -456) 150992) ((-1040 . -260) 150979) ((-1039 . -862) 150946) ((-1039 . -556) 150745) ((-1039 . -951) 150630) ((-1039 . -1134) 150609) ((-1039 . -822) 150588) ((-1039 . -797) 150447) ((-1039 . -812) 150431) ((-1039 . -807) 150413) ((-1039 . -810) 150397) ((-1039 . -456) 150349) ((-1039 . -392) 150303) ((-1039 . -581) 150251) ((-1039 . -591) 150140) ((-1039 . -329) 150124) ((-1039 . -47) 150096) ((-1039 . -38) 149948) ((-1039 . -583) 149800) ((-1039 . -655) 149652) ((-1039 . -246) 149586) ((-1039 . -496) 149520) ((-1039 . -82) 149345) ((-1039 . -964) 149191) ((-1039 . -969) 149037) ((-1039 . -146) 148951) ((-1039 . -120) 148930) ((-1039 . -118) 148909) ((-1039 . -589) 148819) ((-1039 . -104) T) ((-1039 . -25) T) ((-1039 . -72) T) ((-1039 . -13) T) ((-1039 . -1129) T) ((-1039 . -553) 148801) ((-1039 . -1014) T) ((-1039 . -23) T) ((-1039 . -21) T) ((-1039 . -962) T) ((-1039 . -664) T) ((-1039 . -1061) T) ((-1039 . -1026) T) ((-1039 . -971) T) ((-1039 . -355) 148785) ((-1039 . -277) 148757) ((-1039 . -260) 148744) ((-1039 . -554) 148492) ((-1034 . -484) T) ((-1034 . -1134) T) ((-1034 . -1066) T) ((-1034 . -951) 148474) ((-1034 . -554) 148389) ((-1034 . -934) T) ((-1034 . -797) 148371) ((-1034 . -756) T) ((-1034 . -722) T) ((-1034 . -719) T) ((-1034 . -760) T) ((-1034 . -757) T) ((-1034 . -717) T) ((-1034 . -715) T) ((-1034 . -741) T) ((-1034 . -591) 148343) ((-1034 . -581) 148325) ((-1034 . -833) T) ((-1034 . -496) T) ((-1034 . -246) T) ((-1034 . -146) T) ((-1034 . -556) 148297) ((-1034 . -655) 148284) ((-1034 . -583) 148271) ((-1034 . -969) 148258) ((-1034 . -964) 148245) ((-1034 . -82) 148230) ((-1034 . -38) 148217) ((-1034 . -392) T) ((-1034 . -258) T) ((-1034 . -189) T) ((-1034 . -186) 148204) ((-1034 . -190) T) ((-1034 . -116) T) ((-1034 . -962) T) ((-1034 . -664) T) ((-1034 . -1061) T) ((-1034 . -1026) T) ((-1034 . -971) T) ((-1034 . -21) T) ((-1034 . -589) 148176) ((-1034 . -23) T) ((-1034 . -1014) T) ((-1034 . -553) 148158) ((-1034 . -1129) T) ((-1034 . -13) T) ((-1034 . -72) T) ((-1034 . -25) T) ((-1034 . -104) T) ((-1034 . -120) T) ((-1034 . -753) T) ((-1034 . -320) T) ((-1034 . -84) T) ((-1034 . -605) T) ((-1030 . -996) T) ((-1030 . -430) 148139) ((-1030 . -553) 148105) ((-1030 . -556) 148086) ((-1030 . -1014) T) ((-1030 . -1129) T) ((-1030 . -13) T) ((-1030 . -72) T) ((-1030 . -64) T) ((-1029 . -1014) T) ((-1029 . -553) 148068) ((-1029 . -1129) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1027 . -196) 148047) ((-1027 . -1187) 148017) ((-1027 . -722) 147996) ((-1027 . -719) 147975) ((-1027 . -760) 147929) ((-1027 . -757) 147883) ((-1027 . -717) 147862) ((-1027 . -718) 147841) ((-1027 . -655) 147786) ((-1027 . -583) 147711) ((-1027 . -243) 147688) ((-1027 . -241) 147665) ((-1027 . -539) 147642) ((-1027 . -951) 147471) ((-1027 . -556) 147275) ((-1027 . -355) 147244) ((-1027 . -581) 147152) ((-1027 . -591) 146991) ((-1027 . -329) 146961) ((-1027 . -429) 146945) ((-1027 . -456) 146878) ((-1027 . -260) 146816) ((-1027 . -34) T) ((-1027 . -318) 146800) ((-1027 . -320) 146779) ((-1027 . -190) 146732) ((-1027 . -589) 146520) ((-1027 . -971) 146499) ((-1027 . -1026) 146478) ((-1027 . -1061) 146457) ((-1027 . -664) 146436) ((-1027 . -962) 146415) ((-1027 . -186) 146311) ((-1027 . -189) 146213) ((-1027 . -225) 146183) ((-1027 . -807) 146055) ((-1027 . -812) 145929) ((-1027 . -810) 145862) ((-1027 . -184) 145832) ((-1027 . -553) 145529) ((-1027 . -969) 145454) ((-1027 . -964) 145359) ((-1027 . -82) 145279) ((-1027 . -104) 145154) ((-1027 . -25) 144991) ((-1027 . -72) 144728) ((-1027 . -13) T) ((-1027 . -1129) T) ((-1027 . -1014) 144484) ((-1027 . -23) 144340) ((-1027 . -21) 144255) ((-1023 . -1024) 144239) ((-1023 . |MappingCategory|) 144213) ((-1023 . -1129) T) ((-1023 . -80) 144197) ((-1023 . -1014) T) ((-1023 . -553) 144179) ((-1023 . -13) T) ((-1023 . -72) T) ((-1018 . -1017) 144143) ((-1018 . -72) T) ((-1018 . -553) 144125) ((-1018 . -1014) T) ((-1018 . -241) 144081) ((-1018 . -1129) T) ((-1018 . -13) T) ((-1018 . -558) 143996) ((-1016 . -1017) 143948) ((-1016 . -72) T) ((-1016 . -553) 143930) ((-1016 . -1014) T) ((-1016 . -241) 143886) ((-1016 . -1129) T) ((-1016 . -13) T) ((-1016 . -558) 143789) ((-1015 . -320) T) ((-1015 . -72) T) ((-1015 . -13) T) ((-1015 . -1129) T) ((-1015 . -553) 143771) ((-1015 . -1014) T) ((-1010 . -369) 143755) ((-1010 . -1012) 143739) ((-1010 . -318) 143723) ((-1010 . -320) 143702) ((-1010 . -193) 143686) ((-1010 . -554) 143647) ((-1010 . -124) 143631) ((-1010 . -429) 143615) ((-1010 . -1014) T) ((-1010 . -456) 143548) ((-1010 . -260) 143486) ((-1010 . -553) 143468) ((-1010 . -72) T) ((-1010 . -1129) T) ((-1010 . -13) T) ((-1010 . -34) T) ((-1010 . -76) 143452) ((-1010 . -183) 143436) ((-1009 . -996) T) ((-1009 . -430) 143417) ((-1009 . -553) 143383) ((-1009 . -556) 143364) ((-1009 . -1014) T) ((-1009 . -1129) T) ((-1009 . -13) T) ((-1009 . -72) T) ((-1009 . -64) T) ((-1005 . -1129) T) ((-1005 . -13) T) ((-1005 . -1014) 143334) ((-1005 . -553) 143293) ((-1005 . -72) 143263) ((-1004 . -996) T) ((-1004 . -430) 143244) ((-1004 . -553) 143210) ((-1004 . -556) 143191) ((-1004 . -1014) T) ((-1004 . -1129) T) ((-1004 . -13) T) ((-1004 . -72) T) ((-1004 . -64) T) ((-1002 . -1007) 143175) ((-1002 . -558) 143159) ((-1002 . -1014) 143137) ((-1002 . -553) 143104) ((-1002 . -1129) 143082) ((-1002 . -13) 143060) ((-1002 . -72) 143038) ((-1002 . -1008) 142996) ((-1001 . -228) 142980) ((-1001 . -556) 142964) ((-1001 . -951) 142948) ((-1001 . -760) T) ((-1001 . -72) T) ((-1001 . -1014) T) ((-1001 . -553) 142930) ((-1001 . -757) T) ((-1001 . -186) 142917) ((-1001 . -13) T) ((-1001 . -1129) T) ((-1001 . -189) T) ((-1000 . -213) 142854) ((-1000 . -556) 142597) ((-1000 . -951) 142426) ((-1000 . -554) NIL) ((-1000 . -277) 142387) ((-1000 . -355) 142371) ((-1000 . -38) 142223) ((-1000 . -82) 142048) ((-1000 . -964) 141894) ((-1000 . -969) 141740) ((-1000 . -589) 141650) ((-1000 . -591) 141539) ((-1000 . -583) 141391) ((-1000 . -655) 141243) ((-1000 . -118) 141222) ((-1000 . -120) 141201) ((-1000 . -146) 141115) ((-1000 . -496) 141049) ((-1000 . -246) 140983) ((-1000 . -47) 140944) ((-1000 . -329) 140928) ((-1000 . -581) 140876) ((-1000 . -392) 140830) ((-1000 . -456) 140693) ((-1000 . -810) 140628) ((-1000 . -807) 140526) ((-1000 . -812) 140428) ((-1000 . -797) NIL) ((-1000 . -822) 140407) ((-1000 . -1134) 140386) ((-1000 . -862) 140331) ((-1000 . -260) 140318) ((-1000 . -190) 140297) ((-1000 . -104) T) ((-1000 . -25) T) ((-1000 . -72) T) ((-1000 . -553) 140279) ((-1000 . -1014) T) ((-1000 . -23) T) ((-1000 . -21) T) ((-1000 . -971) T) ((-1000 . -1026) T) ((-1000 . -1061) T) ((-1000 . -664) T) ((-1000 . -962) T) ((-1000 . -186) 140227) ((-1000 . -13) T) ((-1000 . -1129) T) ((-1000 . -189) 140181) ((-1000 . -225) 140165) ((-1000 . -184) 140149) ((-998 . -553) 140131) ((-995 . -757) T) ((-995 . -553) 140113) ((-995 . -1014) T) ((-995 . -72) T) ((-995 . -13) T) ((-995 . -1129) T) ((-995 . -760) T) ((-995 . -554) 140094) ((-992 . -662) 140073) ((-992 . -951) 139971) ((-992 . -355) 139955) ((-992 . -581) 139903) ((-992 . -591) 139780) ((-992 . -329) 139764) ((-992 . -322) 139743) ((-992 . -120) 139722) ((-992 . -556) 139547) ((-992 . -655) 139421) ((-992 . -583) 139295) ((-992 . -589) 139193) ((-992 . -969) 139106) ((-992 . -964) 139019) ((-992 . -82) 138911) ((-992 . -38) 138785) ((-992 . -353) 138764) ((-992 . -345) 138743) ((-992 . -118) 138697) ((-992 . -1066) 138676) ((-992 . -299) 138655) ((-992 . -320) 138609) ((-992 . -201) 138563) ((-992 . -246) 138517) ((-992 . -258) 138471) ((-992 . -392) 138425) ((-992 . -496) 138379) ((-992 . -833) 138333) ((-992 . -1134) 138287) ((-992 . -312) 138241) ((-992 . -190) 138169) ((-992 . -186) 138045) ((-992 . -189) 137927) ((-992 . -225) 137897) ((-992 . -807) 137769) ((-992 . -812) 137643) ((-992 . -810) 137576) ((-992 . -184) 137546) ((-992 . -554) 137530) ((-992 . -21) T) ((-992 . -23) T) ((-992 . -1014) T) ((-992 . -553) 137512) ((-992 . -1129) T) ((-992 . -13) T) ((-992 . -72) T) ((-992 . -25) T) ((-992 . -104) T) ((-992 . -962) T) ((-992 . -664) T) ((-992 . -1061) T) ((-992 . -1026) T) ((-992 . -971) T) ((-992 . -146) T) ((-990 . -1014) T) ((-990 . -553) 137494) ((-990 . -1129) T) ((-990 . -13) T) ((-990 . -72) T) ((-990 . -241) 137473) ((-989 . -1014) T) ((-989 . -553) 137455) ((-989 . -1129) T) ((-989 . -13) T) ((-989 . -72) T) ((-988 . -1014) T) ((-988 . -553) 137437) ((-988 . -1129) T) ((-988 . -13) T) ((-988 . -72) T) ((-988 . -241) 137416) ((-988 . -951) 137393) ((-988 . -556) 137370) ((-987 . -1129) T) ((-987 . -13) T) ((-986 . -996) T) ((-986 . -430) 137351) ((-986 . -553) 137317) ((-986 . -556) 137298) ((-986 . -1014) T) ((-986 . -1129) T) ((-986 . -13) T) ((-986 . -72) T) ((-986 . -64) T) ((-979 . -996) T) ((-979 . -430) 137279) ((-979 . -553) 137245) ((-979 . -556) 137226) ((-979 . -1014) T) ((-979 . -1129) T) ((-979 . -13) T) ((-979 . -72) T) ((-979 . -64) T) ((-976 . -484) T) ((-976 . -1134) T) ((-976 . -1066) T) ((-976 . -951) 137208) ((-976 . -554) 137123) ((-976 . -934) T) ((-976 . -797) 137105) ((-976 . -756) T) ((-976 . -722) T) ((-976 . -719) T) ((-976 . -760) T) ((-976 . -757) T) ((-976 . -717) T) ((-976 . -715) T) ((-976 . -741) T) ((-976 . -591) 137077) ((-976 . -581) 137059) ((-976 . -833) T) ((-976 . -496) T) ((-976 . -246) T) ((-976 . -146) T) ((-976 . -556) 137031) ((-976 . -655) 137018) ((-976 . -583) 137005) ((-976 . -969) 136992) ((-976 . -964) 136979) ((-976 . -82) 136964) ((-976 . -38) 136951) ((-976 . -392) T) ((-976 . -258) T) ((-976 . -189) T) ((-976 . -186) 136938) ((-976 . -190) T) ((-976 . -116) T) ((-976 . -962) T) ((-976 . -664) T) ((-976 . -1061) T) ((-976 . -1026) T) ((-976 . -971) T) ((-976 . -21) T) ((-976 . -589) 136910) ((-976 . -23) T) ((-976 . -1014) T) ((-976 . -553) 136892) ((-976 . -1129) T) ((-976 . -13) T) ((-976 . -72) T) ((-976 . -25) T) ((-976 . -104) T) ((-976 . -120) T) ((-976 . -558) 136873) ((-975 . -981) 136852) ((-975 . -72) T) ((-975 . -13) T) ((-975 . -1129) T) ((-975 . -553) 136834) ((-975 . -1014) T) ((-972 . -1129) T) ((-972 . -13) T) ((-972 . -1014) 136812) ((-972 . -553) 136779) ((-972 . -72) 136757) ((-967 . -966) 136697) ((-967 . -583) 136642) ((-967 . -655) 136587) ((-967 . -429) 136571) ((-967 . -456) 136504) ((-967 . -260) 136442) ((-967 . -34) T) ((-967 . -318) 136426) ((-967 . -591) 136410) ((-967 . -589) 136379) ((-967 . -104) T) ((-967 . -25) T) ((-967 . -72) T) ((-967 . -13) T) ((-967 . -1129) T) ((-967 . -553) 136341) ((-967 . -1014) T) ((-967 . -23) T) ((-967 . -21) T) ((-967 . -969) 136325) ((-967 . -964) 136309) ((-967 . -82) 136288) ((-967 . -1187) 136258) ((-967 . -554) 136219) ((-959 . -984) 136148) ((-959 . -890) 136077) ((-959 . -318) 136042) ((-959 . -554) 135984) ((-959 . -429) 135949) ((-959 . -1014) T) ((-959 . -456) 135833) ((-959 . -260) 135741) ((-959 . -553) 135684) ((-959 . -72) T) ((-959 . -1129) T) ((-959 . -13) T) ((-959 . -34) T) ((-959 . -124) 135649) ((-959 . -1124) 135578) ((-949 . -996) T) ((-949 . -430) 135559) ((-949 . -553) 135525) ((-949 . -556) 135506) ((-949 . -1014) T) ((-949 . -1129) T) ((-949 . -13) T) ((-949 . -72) T) ((-949 . -64) T) ((-948 . -146) T) ((-948 . -556) 135475) ((-948 . -971) T) ((-948 . -1026) T) ((-948 . -1061) T) ((-948 . -664) T) ((-948 . -962) T) ((-948 . -591) 135449) ((-948 . -589) 135408) ((-948 . -104) T) ((-948 . -25) T) ((-948 . -72) T) ((-948 . -13) T) ((-948 . -1129) T) ((-948 . -553) 135390) ((-948 . -1014) T) ((-948 . -23) T) ((-948 . -21) T) ((-948 . -969) 135364) ((-948 . -964) 135338) ((-948 . -82) 135305) ((-948 . -38) 135289) ((-948 . -583) 135273) ((-948 . -655) 135257) ((-941 . -984) 135226) ((-941 . -890) 135195) ((-941 . -318) 135179) ((-941 . -554) 135140) ((-941 . -429) 135124) ((-941 . -1014) T) ((-941 . -456) 135057) ((-941 . -260) 134995) ((-941 . -553) 134957) ((-941 . -72) T) ((-941 . -1129) T) ((-941 . -13) T) ((-941 . -34) T) ((-941 . -124) 134941) ((-941 . -1124) 134910) ((-940 . -1014) T) ((-940 . -553) 134892) ((-940 . -1129) T) ((-940 . -13) T) ((-940 . -72) T) ((-938 . -926) T) ((-938 . -916) T) ((-938 . -715) T) ((-938 . -717) T) ((-938 . -757) T) ((-938 . -760) T) ((-938 . -719) T) ((-938 . -722) T) ((-938 . -756) T) ((-938 . -951) 134777) ((-938 . -355) 134739) ((-938 . -201) T) ((-938 . -246) T) ((-938 . -258) T) ((-938 . -392) T) ((-938 . -38) 134676) ((-938 . -583) 134613) ((-938 . -655) 134550) ((-938 . -556) 134487) ((-938 . -496) T) ((-938 . -833) T) ((-938 . -1134) T) ((-938 . -312) T) ((-938 . -82) 134396) ((-938 . -964) 134333) ((-938 . -969) 134270) ((-938 . -146) T) ((-938 . -120) T) ((-938 . -591) 134207) ((-938 . -589) 134144) ((-938 . -104) T) ((-938 . -25) T) ((-938 . -72) T) ((-938 . -13) T) ((-938 . -1129) T) ((-938 . -553) 134126) ((-938 . -1014) T) ((-938 . -23) T) ((-938 . -21) T) ((-938 . -962) T) ((-938 . -664) T) ((-938 . -1061) T) ((-938 . -1026) T) ((-938 . -971) T) ((-933 . -996) T) ((-933 . -430) 134107) ((-933 . -553) 134073) ((-933 . -556) 134054) ((-933 . -1014) T) ((-933 . -1129) T) ((-933 . -13) T) ((-933 . -72) T) ((-933 . -64) T) ((-918 . -905) 134036) ((-918 . -1066) T) ((-918 . -556) 133986) ((-918 . -951) 133946) ((-918 . -554) 133876) ((-918 . -934) T) ((-918 . -822) NIL) ((-918 . -795) 133858) ((-918 . -756) T) ((-918 . -722) T) ((-918 . -719) T) ((-918 . -760) T) ((-918 . -757) T) ((-918 . -717) T) ((-918 . -715) T) ((-918 . -741) T) ((-918 . -797) 133840) ((-918 . -343) 133822) ((-918 . -581) 133804) ((-918 . -329) 133786) ((-918 . -241) NIL) ((-918 . -260) NIL) ((-918 . -456) NIL) ((-918 . -288) 133768) ((-918 . -201) T) ((-918 . -82) 133695) ((-918 . -964) 133645) ((-918 . -969) 133595) ((-918 . -246) T) ((-918 . -655) 133545) ((-918 . -583) 133495) ((-918 . -591) 133445) ((-918 . -589) 133395) ((-918 . -38) 133345) ((-918 . -258) T) ((-918 . -392) T) ((-918 . -146) T) ((-918 . -496) T) ((-918 . -833) T) ((-918 . -1134) T) ((-918 . -312) T) ((-918 . -190) T) ((-918 . -186) 133332) ((-918 . -189) T) ((-918 . -225) 133314) ((-918 . -807) NIL) ((-918 . -812) NIL) ((-918 . -810) NIL) ((-918 . -184) 133296) ((-918 . -120) T) ((-918 . -118) NIL) ((-918 . -104) T) ((-918 . -25) T) ((-918 . -72) T) ((-918 . -13) T) ((-918 . -1129) T) ((-918 . -553) 133256) ((-918 . -1014) T) ((-918 . -23) T) ((-918 . -21) T) ((-918 . -962) T) ((-918 . -664) T) ((-918 . -1061) T) ((-918 . -1026) T) ((-918 . -971) T) ((-917 . -291) 133230) ((-917 . -146) T) ((-917 . -556) 133160) ((-917 . -971) T) ((-917 . -1026) T) ((-917 . -1061) T) ((-917 . -664) T) ((-917 . -962) T) ((-917 . -591) 133062) ((-917 . -589) 132992) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1129) T) ((-917 . -553) 132974) ((-917 . -1014) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -969) 132919) ((-917 . -964) 132864) ((-917 . -82) 132781) ((-917 . -554) 132765) ((-917 . -184) 132742) ((-917 . -810) 132694) ((-917 . -812) 132606) ((-917 . -807) 132516) ((-917 . -225) 132493) ((-917 . -189) 132433) ((-917 . -186) 132367) ((-917 . -190) 132339) ((-917 . -312) T) ((-917 . -1134) T) ((-917 . -833) T) ((-917 . -496) T) ((-917 . -655) 132284) ((-917 . -583) 132229) ((-917 . -38) 132174) ((-917 . -392) T) ((-917 . -258) T) ((-917 . -246) T) ((-917 . -201) T) ((-917 . -320) NIL) ((-917 . -299) NIL) ((-917 . -1066) NIL) ((-917 . -118) 132146) ((-917 . -345) NIL) ((-917 . -353) 132118) ((-917 . -120) 132090) ((-917 . -322) 132062) ((-917 . -329) 132039) ((-917 . -581) 131973) ((-917 . -355) 131950) ((-917 . -951) 131827) ((-917 . -662) 131799) ((-914 . -909) 131783) ((-914 . -318) 131767) ((-914 . -429) 131751) ((-914 . -1014) 131729) ((-914 . -456) 131662) ((-914 . -260) 131600) ((-914 . -553) 131535) ((-914 . -72) 131489) ((-914 . -1129) T) ((-914 . -13) T) ((-914 . -34) T) ((-914 . -76) 131473) ((-910 . -912) 131457) ((-910 . -760) 131436) ((-910 . -757) 131415) ((-910 . -951) 131313) ((-910 . -355) 131297) ((-910 . -581) 131245) ((-910 . -591) 131147) ((-910 . -329) 131131) ((-910 . -241) 131089) ((-910 . -260) 131054) ((-910 . -456) 130966) ((-910 . -288) 130950) ((-910 . -38) 130898) ((-910 . -82) 130776) ((-910 . -964) 130675) ((-910 . -969) 130574) ((-910 . -589) 130497) ((-910 . -583) 130445) ((-910 . -655) 130393) ((-910 . -556) 130287) ((-910 . -246) 130241) ((-910 . -201) 130220) ((-910 . -190) 130199) ((-910 . -186) 130147) ((-910 . -189) 130101) ((-910 . -225) 130085) ((-910 . -807) 130009) ((-910 . -812) 129935) ((-910 . -810) 129894) ((-910 . -184) 129878) ((-910 . -554) 129839) ((-910 . -120) 129818) ((-910 . -118) 129797) ((-910 . -104) T) ((-910 . -25) T) ((-910 . -72) T) ((-910 . -13) T) ((-910 . -1129) T) ((-910 . -553) 129779) ((-910 . -1014) T) ((-910 . -23) T) ((-910 . -21) T) ((-910 . -962) T) ((-910 . -664) T) ((-910 . -1061) T) ((-910 . -1026) T) ((-910 . -971) T) ((-908 . -996) T) ((-908 . -430) 129760) ((-908 . -553) 129726) ((-908 . -556) 129707) ((-908 . -1014) T) ((-908 . -1129) T) ((-908 . -13) T) ((-908 . -72) T) ((-908 . -64) T) ((-907 . -21) T) ((-907 . -589) 129689) ((-907 . -23) T) ((-907 . -1014) T) ((-907 . -553) 129671) ((-907 . -1129) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -25) T) ((-907 . -104) T) ((-907 . -241) 129638) ((-903 . -553) 129620) ((-900 . -1014) T) ((-900 . -553) 129602) ((-900 . -1129) T) ((-900 . -13) T) ((-900 . -72) T) ((-885 . -722) T) ((-885 . -719) T) ((-885 . -760) T) ((-885 . -757) T) ((-885 . -717) T) ((-885 . -23) T) ((-885 . -1014) T) ((-885 . -553) 129562) ((-885 . -1129) T) ((-885 . -13) T) ((-885 . -72) T) ((-885 . -25) T) ((-885 . -104) T) ((-884 . -996) T) ((-884 . -430) 129543) ((-884 . -553) 129509) ((-884 . -556) 129490) ((-884 . -1014) T) ((-884 . -1129) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -64) T) ((-878 . -881) T) ((-878 . -72) T) ((-878 . -553) 129472) ((-878 . -1014) T) ((-878 . -605) T) ((-878 . -13) T) ((-878 . -1129) T) ((-878 . -84) T) ((-878 . -556) 129456) ((-877 . -553) 129438) ((-876 . -1014) T) ((-876 . -553) 129420) ((-876 . -1129) T) ((-876 . -13) T) ((-876 . -72) T) ((-876 . -320) 129373) ((-876 . -664) 129275) ((-876 . -1026) 129177) ((-876 . -23) 128991) ((-876 . -25) 128805) ((-876 . -104) 128663) ((-876 . -413) 128616) ((-876 . -21) 128571) ((-876 . -589) 128515) ((-876 . -718) 128468) ((-876 . -717) 128421) ((-876 . -757) 128323) ((-876 . -760) 128225) ((-876 . -719) 128178) ((-876 . -722) 128131) ((-870 . -19) 128115) ((-870 . -318) 128099) ((-870 . -34) T) ((-870 . -13) T) ((-870 . -1129) T) ((-870 . -72) 128033) ((-870 . -553) 127948) ((-870 . -260) 127886) ((-870 . -456) 127819) ((-870 . -1014) 127772) ((-870 . -429) 127756) ((-870 . -594) 127740) ((-870 . -243) 127717) ((-870 . -241) 127669) ((-870 . -539) 127646) ((-870 . -554) 127607) ((-870 . -124) 127591) ((-870 . -757) 127570) ((-870 . -760) 127549) ((-870 . -324) 127533) ((-868 . -277) 127512) ((-868 . -951) 127410) ((-868 . -355) 127394) ((-868 . -38) 127291) ((-868 . -556) 127148) ((-868 . -591) 127073) ((-868 . -589) 126983) ((-868 . -971) T) ((-868 . -1026) T) ((-868 . -1061) T) ((-868 . -664) T) ((-868 . -962) T) ((-868 . -82) 126848) ((-868 . -964) 126734) ((-868 . -969) 126620) ((-868 . -21) T) ((-868 . -23) T) ((-868 . -1014) T) ((-868 . -553) 126602) ((-868 . -1129) T) ((-868 . -13) T) ((-868 . -72) T) ((-868 . -25) T) ((-868 . -104) T) ((-868 . -583) 126499) ((-868 . -655) 126396) ((-868 . -118) 126375) ((-868 . -120) 126354) ((-868 . -146) 126308) ((-868 . -496) 126287) ((-868 . -246) 126266) ((-868 . -47) 126245) ((-866 . -1014) T) ((-866 . -553) 126211) ((-866 . -1129) T) ((-866 . -13) T) ((-866 . -72) T) ((-858 . -862) 126172) ((-858 . -556) 125968) ((-858 . -951) 125850) ((-858 . -1134) 125829) ((-858 . -822) 125808) ((-858 . -797) 125733) ((-858 . -812) 125714) ((-858 . -807) 125693) ((-858 . -810) 125674) ((-858 . -456) 125620) ((-858 . -392) 125574) ((-858 . -581) 125522) ((-858 . -591) 125411) ((-858 . -329) 125395) ((-858 . -47) 125364) ((-858 . -38) 125216) ((-858 . -583) 125068) ((-858 . -655) 124920) ((-858 . -246) 124854) ((-858 . -496) 124788) ((-858 . -82) 124613) ((-858 . -964) 124459) ((-858 . -969) 124305) ((-858 . -146) 124219) ((-858 . -120) 124198) ((-858 . -118) 124177) ((-858 . -589) 124087) ((-858 . -104) T) ((-858 . -25) T) ((-858 . -72) T) ((-858 . -13) T) ((-858 . -1129) T) ((-858 . -553) 124069) ((-858 . -1014) T) ((-858 . -23) T) ((-858 . -21) T) ((-858 . -962) T) ((-858 . -664) T) ((-858 . -1061) T) ((-858 . -1026) T) ((-858 . -971) T) ((-858 . -355) 124053) ((-858 . -277) 124022) ((-858 . -260) 124009) ((-858 . -554) 123870) ((-855 . -894) 123854) ((-855 . -19) 123838) ((-855 . -318) 123822) ((-855 . -34) T) ((-855 . -13) T) ((-855 . -1129) T) ((-855 . -72) 123756) ((-855 . -553) 123671) ((-855 . -260) 123609) ((-855 . -456) 123542) ((-855 . -1014) 123495) ((-855 . -429) 123479) ((-855 . -594) 123463) ((-855 . -243) 123440) ((-855 . -241) 123392) ((-855 . -539) 123369) ((-855 . -554) 123330) ((-855 . -124) 123314) ((-855 . -757) 123293) ((-855 . -760) 123272) ((-855 . -324) 123256) ((-855 . -1178) 123240) ((-855 . -558) 123217) ((-839 . -888) T) ((-839 . -553) 123199) ((-837 . -867) T) ((-837 . -553) 123181) ((-831 . -719) T) ((-831 . -760) T) ((-831 . -757) T) ((-831 . -1014) T) ((-831 . -553) 123163) ((-831 . -1129) T) ((-831 . -13) T) ((-831 . -72) T) ((-831 . -25) T) ((-831 . -664) T) ((-831 . -1026) T) ((-826 . -312) T) ((-826 . -1134) T) ((-826 . -833) T) ((-826 . -496) T) ((-826 . -146) T) ((-826 . -556) 123100) ((-826 . -655) 123052) ((-826 . -583) 123004) ((-826 . -38) 122956) ((-826 . -392) T) ((-826 . -258) T) ((-826 . -591) 122908) ((-826 . -589) 122845) ((-826 . -971) T) ((-826 . -1026) T) ((-826 . -1061) T) ((-826 . -664) T) ((-826 . -962) T) ((-826 . -82) 122776) ((-826 . -964) 122728) ((-826 . -969) 122680) ((-826 . -21) T) ((-826 . -23) T) ((-826 . -1014) T) ((-826 . -553) 122662) ((-826 . -1129) T) ((-826 . -13) T) ((-826 . -72) T) ((-826 . -25) T) ((-826 . -104) T) ((-826 . -246) T) ((-826 . -201) T) ((-818 . -299) T) ((-818 . -1066) T) ((-818 . -320) T) ((-818 . -118) T) ((-818 . -312) T) ((-818 . -1134) T) ((-818 . -833) T) ((-818 . -496) T) ((-818 . -146) T) ((-818 . -556) 122612) ((-818 . -655) 122577) ((-818 . -583) 122542) ((-818 . -38) 122507) ((-818 . -392) T) ((-818 . -258) T) ((-818 . -82) 122456) ((-818 . -964) 122421) ((-818 . -969) 122386) ((-818 . -589) 122336) ((-818 . -591) 122301) ((-818 . -246) T) ((-818 . -201) T) ((-818 . -345) T) ((-818 . -189) T) ((-818 . -1129) T) ((-818 . -13) T) ((-818 . -186) 122288) ((-818 . -962) T) ((-818 . -664) T) ((-818 . -1061) T) ((-818 . -1026) T) ((-818 . -971) T) ((-818 . -21) T) ((-818 . -23) T) ((-818 . -1014) T) ((-818 . -553) 122270) ((-818 . -72) T) ((-818 . -25) T) ((-818 . -104) T) ((-818 . -190) T) ((-818 . -280) 122257) ((-818 . -120) 122239) ((-818 . -951) 122226) ((-818 . -1187) 122213) ((-818 . -1198) 122200) ((-818 . -554) 122182) ((-817 . -1014) T) ((-817 . -553) 122164) ((-817 . -1129) T) ((-817 . -13) T) ((-817 . -72) T) ((-814 . -816) 122148) ((-814 . -760) 122102) ((-814 . -757) 122056) ((-814 . -664) T) ((-814 . -1014) T) ((-814 . -553) 122038) ((-814 . -72) T) ((-814 . -1026) T) ((-814 . -413) T) ((-814 . -1129) T) ((-814 . -13) T) ((-814 . -241) 122017) ((-813 . -92) 122001) ((-813 . -429) 121985) ((-813 . -1014) 121963) ((-813 . -456) 121896) ((-813 . -260) 121834) ((-813 . -553) 121748) ((-813 . -72) 121702) ((-813 . -1129) T) ((-813 . -13) T) ((-813 . -34) T) ((-813 . -924) 121686) ((-804 . -757) T) ((-804 . -553) 121668) ((-804 . -1014) T) ((-804 . -72) T) ((-804 . -13) T) ((-804 . -1129) T) ((-804 . -760) T) ((-804 . -951) 121645) ((-804 . -556) 121622) ((-801 . -1014) T) ((-801 . -553) 121604) ((-801 . -1129) T) ((-801 . -13) T) ((-801 . -72) T) ((-801 . -951) 121572) ((-801 . -556) 121540) ((-799 . -1014) T) ((-799 . -553) 121522) ((-799 . -1129) T) ((-799 . -13) T) ((-799 . -72) T) ((-796 . -1014) T) ((-796 . -553) 121504) ((-796 . -1129) T) ((-796 . -13) T) ((-796 . -72) T) ((-786 . -996) T) ((-786 . -430) 121485) ((-786 . -553) 121451) ((-786 . -556) 121432) ((-786 . -1014) T) ((-786 . -1129) T) ((-786 . -13) T) ((-786 . -72) T) ((-786 . -64) T) ((-786 . -1175) T) ((-784 . -1014) T) ((-784 . -553) 121414) ((-784 . -1129) T) ((-784 . -13) T) ((-784 . -72) T) ((-784 . -556) 121396) ((-783 . -1129) T) ((-783 . -13) T) ((-783 . -553) 121271) ((-783 . -1014) 121222) ((-783 . -72) 121173) ((-782 . -905) 121157) ((-782 . -1066) 121135) ((-782 . -951) 121002) ((-782 . -556) 120901) ((-782 . -554) 120704) ((-782 . -934) 120683) ((-782 . -822) 120662) ((-782 . -795) 120646) ((-782 . -756) 120625) ((-782 . -722) 120604) ((-782 . -719) 120583) ((-782 . -760) 120537) ((-782 . -757) 120491) ((-782 . -717) 120470) ((-782 . -715) 120449) ((-782 . -741) 120428) ((-782 . -797) 120353) ((-782 . -343) 120337) ((-782 . -581) 120285) ((-782 . -591) 120201) ((-782 . -329) 120185) ((-782 . -241) 120143) ((-782 . -260) 120108) ((-782 . -456) 120020) ((-782 . -288) 120004) ((-782 . -201) T) ((-782 . -82) 119935) ((-782 . -964) 119887) ((-782 . -969) 119839) ((-782 . -246) T) ((-782 . -655) 119791) ((-782 . -583) 119743) ((-782 . -589) 119680) ((-782 . -38) 119632) ((-782 . -258) T) ((-782 . -392) T) ((-782 . -146) T) ((-782 . -496) T) ((-782 . -833) T) ((-782 . -1134) T) ((-782 . -312) T) ((-782 . -190) 119611) ((-782 . -186) 119559) ((-782 . -189) 119513) ((-782 . -225) 119497) ((-782 . -807) 119421) ((-782 . -812) 119347) ((-782 . -810) 119306) ((-782 . -184) 119290) ((-782 . -120) 119244) ((-782 . -118) 119223) ((-782 . -104) T) ((-782 . -25) T) ((-782 . -72) T) ((-782 . -13) T) ((-782 . -1129) T) ((-782 . -553) 119205) ((-782 . -1014) T) ((-782 . -23) T) ((-782 . -21) T) ((-782 . -962) T) ((-782 . -664) T) ((-782 . -1061) T) ((-782 . -1026) T) ((-782 . -971) T) ((-781 . -905) 119182) ((-781 . -1066) NIL) ((-781 . -951) 119159) ((-781 . -556) 119089) ((-781 . -554) NIL) ((-781 . -934) NIL) ((-781 . -822) NIL) ((-781 . -795) 119066) ((-781 . -756) NIL) ((-781 . -722) NIL) ((-781 . -719) NIL) ((-781 . -760) NIL) ((-781 . -757) NIL) ((-781 . -717) NIL) ((-781 . -715) NIL) ((-781 . -741) NIL) ((-781 . -797) NIL) ((-781 . -343) 119043) ((-781 . -581) 119020) ((-781 . -591) 118965) ((-781 . -329) 118942) ((-781 . -241) 118872) ((-781 . -260) 118816) ((-781 . -456) 118679) ((-781 . -288) 118656) ((-781 . -201) T) ((-781 . -82) 118573) ((-781 . -964) 118518) ((-781 . -969) 118463) ((-781 . -246) T) ((-781 . -655) 118408) ((-781 . -583) 118353) ((-781 . -589) 118283) ((-781 . -38) 118228) ((-781 . -258) T) ((-781 . -392) T) ((-781 . -146) T) ((-781 . -496) T) ((-781 . -833) T) ((-781 . -1134) T) ((-781 . -312) T) ((-781 . -190) NIL) ((-781 . -186) NIL) ((-781 . -189) NIL) ((-781 . -225) 118205) ((-781 . -807) NIL) ((-781 . -812) NIL) ((-781 . -810) NIL) ((-781 . -184) 118182) ((-781 . -120) T) ((-781 . -118) NIL) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1129) T) ((-781 . -553) 118164) ((-781 . -1014) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -962) T) ((-781 . -664) T) ((-781 . -1061) T) ((-781 . -1026) T) ((-781 . -971) T) ((-779 . -780) 118148) ((-779 . -833) T) ((-779 . -496) T) ((-779 . -246) T) ((-779 . -146) T) ((-779 . -556) 118120) ((-779 . -655) 118107) ((-779 . -583) 118094) ((-779 . -969) 118081) ((-779 . -964) 118068) ((-779 . -82) 118053) ((-779 . -38) 118040) ((-779 . -392) T) ((-779 . -258) T) ((-779 . -962) T) ((-779 . -664) T) ((-779 . -1061) T) ((-779 . -1026) T) ((-779 . -971) T) ((-779 . -21) T) ((-779 . -589) 118012) ((-779 . -23) T) ((-779 . -1014) T) ((-779 . -553) 117994) ((-779 . -1129) T) ((-779 . -13) T) ((-779 . -72) T) ((-779 . -25) T) ((-779 . -104) T) ((-779 . -591) 117981) ((-779 . -120) T) ((-776 . -962) T) ((-776 . -664) T) ((-776 . -1061) T) ((-776 . -1026) T) ((-776 . -971) T) ((-776 . -21) T) ((-776 . -589) 117926) ((-776 . -23) T) ((-776 . -1014) T) ((-776 . -553) 117888) ((-776 . -1129) T) ((-776 . -13) T) ((-776 . -72) T) ((-776 . -25) T) ((-776 . -104) T) ((-776 . -591) 117848) ((-776 . -556) 117783) ((-776 . -430) 117760) ((-776 . -38) 117730) ((-776 . -82) 117695) ((-776 . -964) 117665) ((-776 . -969) 117635) ((-776 . -583) 117605) ((-776 . -655) 117575) ((-775 . -1014) T) ((-775 . -553) 117557) ((-775 . -1129) T) ((-775 . -13) T) ((-775 . -72) T) ((-774 . -753) T) ((-774 . -760) T) ((-774 . -757) T) ((-774 . -1014) T) ((-774 . -553) 117539) ((-774 . -1129) T) ((-774 . -13) T) ((-774 . -72) T) ((-774 . -320) T) ((-774 . -554) 117461) ((-773 . -1014) T) ((-773 . -553) 117443) ((-773 . -1129) T) ((-773 . -13) T) ((-773 . -72) T) ((-772 . -771) T) ((-772 . -147) T) ((-772 . -553) 117425) ((-768 . -757) T) ((-768 . -553) 117407) ((-768 . -1014) T) ((-768 . -72) T) ((-768 . -13) T) ((-768 . -1129) T) ((-768 . -760) T) ((-765 . -762) 117391) ((-765 . -951) 117289) ((-765 . -556) 117187) ((-765 . -355) 117171) ((-765 . -655) 117141) ((-765 . -583) 117111) ((-765 . -591) 117085) ((-765 . -589) 117044) ((-765 . -104) T) ((-765 . -25) T) ((-765 . -72) T) ((-765 . -13) T) ((-765 . -1129) T) ((-765 . -553) 117026) ((-765 . -1014) T) ((-765 . -23) T) ((-765 . -21) T) ((-765 . -969) 117010) ((-765 . -964) 116994) ((-765 . -82) 116973) ((-765 . -962) T) ((-765 . -664) T) ((-765 . -1061) T) ((-765 . -1026) T) ((-765 . -971) T) ((-765 . -38) 116943) ((-764 . -762) 116927) ((-764 . -951) 116825) ((-764 . -556) 116744) ((-764 . -355) 116728) ((-764 . -655) 116698) ((-764 . -583) 116668) ((-764 . -591) 116642) ((-764 . -589) 116601) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1129) T) ((-764 . -553) 116583) ((-764 . -1014) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -969) 116567) ((-764 . -964) 116551) ((-764 . -82) 116530) ((-764 . -962) T) ((-764 . -664) T) ((-764 . -1061) T) ((-764 . -1026) T) ((-764 . -971) T) ((-764 . -38) 116500) ((-758 . -760) T) ((-758 . -1129) T) ((-758 . -13) T) ((-758 . -72) T) ((-758 . -430) 116484) ((-758 . -553) 116432) ((-758 . -556) 116416) ((-751 . -1014) T) ((-751 . -553) 116398) ((-751 . -1129) T) ((-751 . -13) T) ((-751 . -72) T) ((-751 . -355) 116382) ((-751 . -556) 116255) ((-751 . -951) 116153) ((-751 . -21) 116108) ((-751 . -589) 116028) ((-751 . -23) 115983) ((-751 . -25) 115938) ((-751 . -104) 115893) ((-751 . -756) 115872) ((-751 . -722) 115851) ((-751 . -719) 115830) ((-751 . -760) 115809) ((-751 . -757) 115788) ((-751 . -717) 115767) ((-751 . -715) 115746) ((-751 . -962) 115725) ((-751 . -664) 115704) ((-751 . -1061) 115683) ((-751 . -1026) 115662) ((-751 . -971) 115641) ((-751 . -591) 115614) ((-751 . -120) 115593) ((-750 . -748) 115575) ((-750 . -72) T) ((-750 . -13) T) ((-750 . -1129) T) ((-750 . -553) 115557) ((-750 . -1014) T) ((-746 . -962) T) ((-746 . -664) T) ((-746 . -1061) T) ((-746 . -1026) T) ((-746 . -971) T) ((-746 . -21) T) ((-746 . -589) 115502) ((-746 . -23) T) ((-746 . -1014) T) ((-746 . -553) 115484) ((-746 . -1129) T) ((-746 . -13) T) ((-746 . -72) T) ((-746 . -25) T) ((-746 . -104) T) ((-746 . -591) 115444) ((-746 . -556) 115399) ((-746 . -951) 115369) ((-746 . -241) 115348) ((-746 . -120) 115327) ((-746 . -118) 115306) ((-746 . -38) 115276) ((-746 . -82) 115241) ((-746 . -964) 115211) ((-746 . -969) 115181) ((-746 . -583) 115151) ((-746 . -655) 115121) ((-744 . -1014) T) ((-744 . -553) 115103) ((-744 . -1129) T) ((-744 . -13) T) ((-744 . -72) T) ((-744 . -355) 115087) ((-744 . -556) 114960) ((-744 . -951) 114858) ((-744 . -21) 114813) ((-744 . -589) 114733) ((-744 . -23) 114688) ((-744 . -25) 114643) ((-744 . -104) 114598) ((-744 . -756) 114577) ((-744 . -722) 114556) ((-744 . -719) 114535) ((-744 . -760) 114514) ((-744 . -757) 114493) ((-744 . -717) 114472) ((-744 . -715) 114451) ((-744 . -962) 114430) ((-744 . -664) 114409) ((-744 . -1061) 114388) ((-744 . -1026) 114367) ((-744 . -971) 114346) ((-744 . -591) 114319) ((-744 . -120) 114298) ((-742 . -646) 114282) ((-742 . -556) 114237) ((-742 . -655) 114207) ((-742 . -583) 114177) ((-742 . -591) 114151) ((-742 . -589) 114110) ((-742 . -104) T) ((-742 . -25) T) ((-742 . -72) T) ((-742 . -13) T) ((-742 . -1129) T) ((-742 . -553) 114092) ((-742 . -1014) T) ((-742 . -23) T) ((-742 . -21) T) ((-742 . -969) 114076) ((-742 . -964) 114060) ((-742 . -82) 114039) ((-742 . -962) T) ((-742 . -664) T) ((-742 . -1061) T) ((-742 . -1026) T) ((-742 . -971) T) ((-742 . -38) 114009) ((-742 . -190) 113988) ((-742 . -186) 113961) ((-742 . -189) 113940) ((-740 . -336) 113924) ((-740 . -556) 113908) ((-740 . -951) 113892) ((-740 . -760) T) ((-740 . -757) T) ((-740 . -1026) T) ((-740 . -72) T) ((-740 . -13) T) ((-740 . -1129) T) ((-740 . -553) 113874) ((-740 . -1014) T) ((-740 . -664) T) ((-740 . -755) T) ((-740 . -767) T) ((-739 . -228) 113858) ((-739 . -556) 113842) ((-739 . -951) 113826) ((-739 . -760) T) ((-739 . -72) T) ((-739 . -1014) T) ((-739 . -553) 113808) ((-739 . -757) T) ((-739 . -186) 113795) ((-739 . -13) T) ((-739 . -1129) T) ((-739 . -189) T) ((-738 . -82) 113730) ((-738 . -964) 113681) ((-738 . -969) 113632) ((-738 . -21) T) ((-738 . -589) 113568) ((-738 . -23) T) ((-738 . -1014) T) ((-738 . -553) 113537) ((-738 . -1129) T) ((-738 . -13) T) ((-738 . -72) T) ((-738 . -25) T) ((-738 . -104) T) ((-738 . -591) 113488) ((-738 . -190) T) ((-738 . -556) 113397) ((-738 . -971) T) ((-738 . -1026) T) ((-738 . -1061) T) ((-738 . -664) T) ((-738 . -962) T) ((-738 . -186) 113384) ((-738 . -189) T) ((-738 . -430) 113368) ((-738 . -312) 113347) ((-738 . -1134) 113326) ((-738 . -833) 113305) ((-738 . -496) 113284) ((-738 . -146) 113263) ((-738 . -655) 113200) ((-738 . -583) 113137) ((-738 . -38) 113074) ((-738 . -392) 113053) ((-738 . -258) 113032) ((-738 . -246) 113011) ((-738 . -201) 112990) ((-737 . -213) 112929) ((-737 . -556) 112673) ((-737 . -951) 112503) ((-737 . -554) NIL) ((-737 . -277) 112465) ((-737 . -355) 112449) ((-737 . -38) 112301) ((-737 . -82) 112126) ((-737 . -964) 111972) ((-737 . -969) 111818) ((-737 . -589) 111728) ((-737 . -591) 111617) ((-737 . -583) 111469) ((-737 . -655) 111321) ((-737 . -118) 111300) ((-737 . -120) 111279) ((-737 . -146) 111193) ((-737 . -496) 111127) ((-737 . -246) 111061) ((-737 . -47) 111023) ((-737 . -329) 111007) ((-737 . -581) 110955) ((-737 . -392) 110909) ((-737 . -456) 110774) ((-737 . -810) 110710) ((-737 . -807) 110609) ((-737 . -812) 110512) ((-737 . -797) NIL) ((-737 . -822) 110491) ((-737 . -1134) 110470) ((-737 . -862) 110417) ((-737 . -260) 110404) ((-737 . -190) 110383) ((-737 . -104) T) ((-737 . -25) T) ((-737 . -72) T) ((-737 . -553) 110365) ((-737 . -1014) T) ((-737 . -23) T) ((-737 . -21) T) ((-737 . -971) T) ((-737 . -1026) T) ((-737 . -1061) T) ((-737 . -664) T) ((-737 . -962) T) ((-737 . -186) 110313) ((-737 . -13) T) ((-737 . -1129) T) ((-737 . -189) 110267) ((-737 . -225) 110251) ((-737 . -184) 110235) ((-736 . -196) 110214) ((-736 . -1187) 110184) ((-736 . -722) 110163) ((-736 . -719) 110142) ((-736 . -760) 110096) ((-736 . -757) 110050) ((-736 . -717) 110029) ((-736 . -718) 110008) ((-736 . -655) 109953) ((-736 . -583) 109878) ((-736 . -243) 109855) ((-736 . -241) 109832) ((-736 . -539) 109809) ((-736 . -951) 109638) ((-736 . -556) 109442) ((-736 . -355) 109411) ((-736 . -581) 109319) ((-736 . -591) 109158) ((-736 . -329) 109128) ((-736 . -429) 109112) ((-736 . -456) 109045) ((-736 . -260) 108983) ((-736 . -34) T) ((-736 . -318) 108967) ((-736 . -320) 108946) ((-736 . -190) 108899) ((-736 . -589) 108687) ((-736 . -971) 108666) ((-736 . -1026) 108645) ((-736 . -1061) 108624) ((-736 . -664) 108603) ((-736 . -962) 108582) ((-736 . -186) 108478) ((-736 . -189) 108380) ((-736 . -225) 108350) ((-736 . -807) 108222) ((-736 . -812) 108096) ((-736 . -810) 108029) ((-736 . -184) 107999) ((-736 . -553) 107696) ((-736 . -969) 107621) ((-736 . -964) 107526) ((-736 . -82) 107446) ((-736 . -104) 107321) ((-736 . -25) 107158) ((-736 . -72) 106895) ((-736 . -13) T) ((-736 . -1129) T) ((-736 . -1014) 106651) ((-736 . -23) 106507) ((-736 . -21) 106422) ((-723 . -721) 106406) ((-723 . -760) 106385) ((-723 . -757) 106364) ((-723 . -951) 106157) ((-723 . -556) 106010) ((-723 . -355) 105974) ((-723 . -241) 105932) ((-723 . -260) 105897) ((-723 . -456) 105809) ((-723 . -288) 105793) ((-723 . -320) 105772) ((-723 . -554) 105733) ((-723 . -120) 105712) ((-723 . -118) 105691) ((-723 . -655) 105675) ((-723 . -583) 105659) ((-723 . -591) 105633) ((-723 . -589) 105592) ((-723 . -104) T) ((-723 . -25) T) ((-723 . -72) T) ((-723 . -13) T) ((-723 . -1129) T) ((-723 . -553) 105574) ((-723 . -1014) T) ((-723 . -23) T) ((-723 . -21) T) ((-723 . -969) 105558) ((-723 . -964) 105542) ((-723 . -82) 105521) ((-723 . -962) T) ((-723 . -664) T) ((-723 . -1061) T) ((-723 . -1026) T) ((-723 . -971) T) ((-723 . -38) 105505) ((-705 . -1155) 105489) ((-705 . -1066) 105467) ((-705 . -554) NIL) ((-705 . -260) 105454) ((-705 . -456) 105402) ((-705 . -277) 105379) ((-705 . -951) 105241) ((-705 . -355) 105225) ((-705 . -38) 105057) ((-705 . -82) 104862) ((-705 . -964) 104688) ((-705 . -969) 104514) ((-705 . -589) 104424) ((-705 . -591) 104313) ((-705 . -583) 104145) ((-705 . -655) 103977) ((-705 . -556) 103733) ((-705 . -118) 103712) ((-705 . -120) 103691) ((-705 . -47) 103668) ((-705 . -329) 103652) ((-705 . -581) 103600) ((-705 . -810) 103544) ((-705 . -807) 103451) ((-705 . -812) 103362) ((-705 . -797) NIL) ((-705 . -822) 103341) ((-705 . -1134) 103320) ((-705 . -862) 103290) ((-705 . -833) 103269) ((-705 . -496) 103183) ((-705 . -246) 103097) ((-705 . -146) 102991) ((-705 . -392) 102925) ((-705 . -258) 102904) ((-705 . -241) 102831) ((-705 . -190) T) ((-705 . -104) T) ((-705 . -25) T) ((-705 . -72) T) ((-705 . -553) 102792) ((-705 . -1014) T) ((-705 . -23) T) ((-705 . -21) T) ((-705 . -971) T) ((-705 . -1026) T) ((-705 . -1061) T) ((-705 . -664) T) ((-705 . -962) T) ((-705 . -186) 102779) ((-705 . -13) T) ((-705 . -1129) T) ((-705 . -189) T) ((-705 . -225) 102763) ((-705 . -184) 102747) ((-704 . -978) 102714) ((-704 . -554) 102349) ((-704 . -260) 102336) ((-704 . -456) 102288) ((-704 . -277) 102260) ((-704 . -951) 102119) ((-704 . -355) 102103) ((-704 . -38) 101955) ((-704 . -556) 101728) ((-704 . -591) 101617) ((-704 . -589) 101527) ((-704 . -971) T) ((-704 . -1026) T) ((-704 . -1061) T) ((-704 . -664) T) ((-704 . -962) T) ((-704 . -82) 101352) ((-704 . -964) 101198) ((-704 . -969) 101044) ((-704 . -21) T) ((-704 . -23) T) ((-704 . -1014) T) ((-704 . -553) 100958) ((-704 . -1129) T) ((-704 . -13) T) ((-704 . -72) T) ((-704 . -25) T) ((-704 . -104) T) ((-704 . -583) 100810) ((-704 . -655) 100662) ((-704 . -118) 100641) ((-704 . -120) 100620) ((-704 . -146) 100534) ((-704 . -496) 100468) ((-704 . -246) 100402) ((-704 . -47) 100374) ((-704 . -329) 100358) ((-704 . -581) 100306) ((-704 . -392) 100260) ((-704 . -810) 100244) ((-704 . -807) 100226) ((-704 . -812) 100210) ((-704 . -797) 100069) ((-704 . -822) 100048) ((-704 . -1134) 100027) ((-704 . -862) 99994) ((-697 . -1014) T) ((-697 . -553) 99976) ((-697 . -1129) T) ((-697 . -13) T) ((-697 . -72) T) ((-695 . -718) T) ((-695 . -104) T) ((-695 . -25) T) ((-695 . -72) T) ((-695 . -13) T) ((-695 . -1129) T) ((-695 . -553) 99958) ((-695 . -1014) T) ((-695 . -23) T) ((-695 . -717) T) ((-695 . -757) T) ((-695 . -760) T) ((-695 . -719) T) ((-695 . -722) T) ((-695 . -664) T) ((-695 . -1026) T) ((-676 . -677) 99942) ((-676 . -1012) 99926) ((-676 . -193) 99910) ((-676 . -554) 99871) ((-676 . -124) 99855) ((-676 . -429) 99839) ((-676 . -1014) T) ((-676 . -456) 99772) ((-676 . -260) 99710) ((-676 . -553) 99692) ((-676 . -72) T) ((-676 . -1129) T) ((-676 . -13) T) ((-676 . -34) T) ((-676 . -76) 99676) ((-676 . -635) 99660) ((-676 . -318) 99644) ((-675 . -962) T) ((-675 . -664) T) ((-675 . -1061) T) ((-675 . -1026) T) ((-675 . -971) T) ((-675 . -21) T) ((-675 . -589) 99589) ((-675 . -23) T) ((-675 . -1014) T) ((-675 . -553) 99571) ((-675 . -1129) T) ((-675 . -13) T) ((-675 . -72) T) ((-675 . -25) T) ((-675 . -104) T) ((-675 . -591) 99531) ((-675 . -556) 99487) ((-675 . -951) 99458) ((-675 . -120) 99437) ((-675 . -118) 99416) ((-675 . -38) 99386) ((-675 . -82) 99351) ((-675 . -964) 99321) ((-675 . -969) 99291) ((-675 . -583) 99261) ((-675 . -655) 99231) ((-675 . -320) 99184) ((-671 . -862) 99137) ((-671 . -556) 98929) ((-671 . -951) 98807) ((-671 . -1134) 98786) ((-671 . -822) 98765) ((-671 . -797) NIL) ((-671 . -812) 98742) ((-671 . -807) 98717) ((-671 . -810) 98694) ((-671 . -456) 98632) ((-671 . -392) 98586) ((-671 . -581) 98534) ((-671 . -591) 98423) ((-671 . -329) 98407) ((-671 . -47) 98372) ((-671 . -38) 98224) ((-671 . -583) 98076) ((-671 . -655) 97928) ((-671 . -246) 97862) ((-671 . -496) 97796) ((-671 . -82) 97621) ((-671 . -964) 97467) ((-671 . -969) 97313) ((-671 . -146) 97227) ((-671 . -120) 97206) ((-671 . -118) 97185) ((-671 . -589) 97095) ((-671 . -104) T) ((-671 . -25) T) ((-671 . -72) T) ((-671 . -13) T) ((-671 . -1129) T) ((-671 . -553) 97077) ((-671 . -1014) T) ((-671 . -23) T) ((-671 . -21) T) ((-671 . -962) T) ((-671 . -664) T) ((-671 . -1061) T) ((-671 . -1026) T) ((-671 . -971) T) ((-671 . -355) 97061) ((-671 . -277) 97026) ((-671 . -260) 97013) ((-671 . -554) 96874) ((-665 . -666) 96858) ((-665 . -80) 96842) ((-665 . -1129) T) ((-665 . |MappingCategory|) 96816) ((-665 . -1024) 96800) ((-665 . -1014) T) ((-665 . -553) 96761) ((-665 . -13) T) ((-665 . -72) T) ((-656 . -413) T) ((-656 . -1026) T) ((-656 . -72) T) ((-656 . -13) T) ((-656 . -1129) T) ((-656 . -553) 96743) ((-656 . -1014) T) ((-656 . -664) T) ((-653 . -962) T) ((-653 . -664) T) ((-653 . -1061) T) ((-653 . -1026) T) ((-653 . -971) T) ((-653 . -21) T) ((-653 . -589) 96715) ((-653 . -23) T) ((-653 . -1014) T) ((-653 . -553) 96697) ((-653 . -1129) T) ((-653 . -13) T) ((-653 . -72) T) ((-653 . -25) T) ((-653 . -104) T) ((-653 . -591) 96684) ((-653 . -556) 96666) ((-652 . -962) T) ((-652 . -664) T) ((-652 . -1061) T) ((-652 . -1026) T) ((-652 . -971) T) ((-652 . -21) T) ((-652 . -589) 96611) ((-652 . -23) T) ((-652 . -1014) T) ((-652 . -553) 96593) ((-652 . -1129) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -591) 96553) ((-652 . -556) 96508) ((-652 . -951) 96478) ((-652 . -241) 96457) ((-652 . -120) 96436) ((-652 . -118) 96415) ((-652 . -38) 96385) ((-652 . -82) 96350) ((-652 . -964) 96320) ((-652 . -969) 96290) ((-652 . -583) 96260) ((-652 . -655) 96230) ((-651 . -757) T) ((-651 . -553) 96165) ((-651 . -1014) T) ((-651 . -72) T) ((-651 . -13) T) ((-651 . -1129) T) ((-651 . -760) T) ((-651 . -430) 96115) ((-651 . -556) 96065) ((-650 . -1155) 96049) ((-650 . -1066) 96027) ((-650 . -554) NIL) ((-650 . -260) 96014) ((-650 . -456) 95962) ((-650 . -277) 95939) ((-650 . -951) 95822) ((-650 . -355) 95806) ((-650 . -38) 95638) ((-650 . -82) 95443) ((-650 . -964) 95269) ((-650 . -969) 95095) ((-650 . -589) 95005) ((-650 . -591) 94894) ((-650 . -583) 94726) ((-650 . -655) 94558) ((-650 . -556) 94322) ((-650 . -118) 94301) ((-650 . -120) 94280) ((-650 . -47) 94257) ((-650 . -329) 94241) ((-650 . -581) 94189) ((-650 . -810) 94133) ((-650 . -807) 94040) ((-650 . -812) 93951) ((-650 . -797) NIL) ((-650 . -822) 93930) ((-650 . -1134) 93909) ((-650 . -862) 93879) ((-650 . -833) 93858) ((-650 . -496) 93772) ((-650 . -246) 93686) ((-650 . -146) 93580) ((-650 . -392) 93514) ((-650 . -258) 93493) ((-650 . -241) 93420) ((-650 . -190) T) ((-650 . -104) T) ((-650 . -25) T) ((-650 . -72) T) ((-650 . -553) 93402) ((-650 . -1014) T) ((-650 . -23) T) ((-650 . -21) T) ((-650 . -971) T) ((-650 . -1026) T) ((-650 . -1061) T) ((-650 . -664) T) ((-650 . -962) T) ((-650 . -186) 93389) ((-650 . -13) T) ((-650 . -1129) T) ((-650 . -189) T) ((-650 . -225) 93373) ((-650 . -184) 93357) ((-650 . -320) 93336) ((-649 . -312) T) ((-649 . -1134) T) ((-649 . -833) T) ((-649 . -496) T) ((-649 . -146) T) ((-649 . -556) 93286) ((-649 . -655) 93251) ((-649 . -583) 93216) ((-649 . -38) 93181) ((-649 . -392) T) ((-649 . -258) T) ((-649 . -591) 93146) ((-649 . -589) 93096) ((-649 . -971) T) ((-649 . -1026) T) ((-649 . -1061) T) ((-649 . -664) T) ((-649 . -962) T) ((-649 . -82) 93045) ((-649 . -964) 93010) ((-649 . -969) 92975) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1014) T) ((-649 . -553) 92957) ((-649 . -1129) T) ((-649 . -13) T) ((-649 . -72) T) ((-649 . -25) T) ((-649 . -104) T) ((-649 . -246) T) ((-649 . -201) T) ((-648 . -1014) T) ((-648 . -553) 92939) ((-648 . -1129) T) ((-648 . -13) T) ((-648 . -72) T) ((-633 . -1175) T) ((-633 . -951) 92923) ((-633 . -556) 92907) ((-633 . -553) 92889) ((-631 . -628) 92847) ((-631 . -318) 92831) ((-631 . -34) T) ((-631 . -13) T) ((-631 . -1129) T) ((-631 . -72) 92785) ((-631 . -553) 92720) ((-631 . -260) 92658) ((-631 . -456) 92591) ((-631 . -1014) 92569) ((-631 . -429) 92553) ((-631 . -57) 92511) ((-631 . -554) 92472) ((-623 . -996) T) ((-623 . -430) 92453) ((-623 . -553) 92403) ((-623 . -556) 92384) ((-623 . -1014) T) ((-623 . -1129) T) ((-623 . -13) T) ((-623 . -72) T) ((-623 . -64) T) ((-619 . -757) T) ((-619 . -553) 92366) ((-619 . -1014) T) ((-619 . -72) T) ((-619 . -13) T) ((-619 . -1129) T) ((-619 . -760) T) ((-619 . -951) 92350) ((-619 . -556) 92334) ((-618 . -996) T) ((-618 . -430) 92315) ((-618 . -553) 92281) ((-618 . -556) 92262) ((-618 . -1014) T) ((-618 . -1129) T) ((-618 . -13) T) ((-618 . -72) T) ((-618 . -64) T) ((-615 . -757) T) ((-615 . -553) 92244) ((-615 . -1014) T) ((-615 . -72) T) ((-615 . -13) T) ((-615 . -1129) T) ((-615 . -760) T) ((-615 . -951) 92228) ((-615 . -556) 92212) ((-614 . -996) T) ((-614 . -430) 92193) ((-614 . -553) 92159) ((-614 . -556) 92140) ((-614 . -1014) T) ((-614 . -1129) T) ((-614 . -13) T) ((-614 . -72) T) ((-614 . -64) T) ((-613 . -1037) 92085) ((-613 . -318) 92069) ((-613 . -34) T) ((-613 . -260) 92007) ((-613 . -456) 91940) ((-613 . -429) 91924) ((-613 . -966) 91864) ((-613 . -951) 91762) ((-613 . -556) 91681) ((-613 . -355) 91665) ((-613 . -581) 91613) ((-613 . -591) 91551) ((-613 . -329) 91535) ((-613 . -190) 91514) ((-613 . -186) 91462) ((-613 . -189) 91416) ((-613 . -225) 91400) ((-613 . -807) 91324) ((-613 . -812) 91250) ((-613 . -810) 91209) ((-613 . -184) 91193) ((-613 . -655) 91177) ((-613 . -583) 91161) ((-613 . -589) 91120) ((-613 . -104) T) ((-613 . -25) T) ((-613 . -72) T) ((-613 . -13) T) ((-613 . -1129) T) ((-613 . -553) 91082) ((-613 . -1014) T) ((-613 . -23) T) ((-613 . -21) T) ((-613 . -969) 91066) ((-613 . -964) 91050) ((-613 . -82) 91029) ((-613 . -962) T) ((-613 . -664) T) ((-613 . -1061) T) ((-613 . -1026) T) ((-613 . -971) T) ((-613 . -38) 90989) ((-613 . -361) 90973) ((-613 . -684) 90957) ((-613 . -658) T) ((-613 . -686) T) ((-613 . -316) 90941) ((-613 . -241) 90918) ((-607 . -326) 90897) ((-607 . -655) 90881) ((-607 . -583) 90865) ((-607 . -591) 90849) ((-607 . -589) 90818) ((-607 . -104) T) ((-607 . -25) T) ((-607 . -72) T) ((-607 . -13) T) ((-607 . -1129) T) ((-607 . -553) 90800) ((-607 . -1014) T) ((-607 . -23) T) ((-607 . -21) T) ((-607 . -969) 90784) ((-607 . -964) 90768) ((-607 . -82) 90747) ((-607 . -575) 90731) ((-607 . -335) 90703) ((-607 . -556) 90680) ((-607 . -951) 90657) ((-599 . -601) 90641) ((-599 . -38) 90611) ((-599 . -556) 90530) ((-599 . -591) 90504) ((-599 . -589) 90463) ((-599 . -971) T) ((-599 . -1026) T) ((-599 . -1061) T) ((-599 . -664) T) ((-599 . -962) T) ((-599 . -82) 90442) ((-599 . -964) 90426) ((-599 . -969) 90410) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1014) T) ((-599 . -553) 90392) ((-599 . -72) T) ((-599 . -25) T) ((-599 . -104) T) ((-599 . -583) 90362) ((-599 . -655) 90332) ((-599 . -355) 90316) ((-599 . -951) 90214) ((-599 . -762) 90198) ((-599 . -1129) T) ((-599 . -13) T) ((-599 . -241) 90159) ((-598 . -601) 90143) ((-598 . -38) 90113) ((-598 . -556) 90032) ((-598 . -591) 90006) ((-598 . -589) 89965) ((-598 . -971) T) ((-598 . -1026) T) ((-598 . -1061) T) ((-598 . -664) T) ((-598 . -962) T) ((-598 . -82) 89944) ((-598 . -964) 89928) ((-598 . -969) 89912) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1014) T) ((-598 . -553) 89894) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -583) 89864) ((-598 . -655) 89834) ((-598 . -355) 89818) ((-598 . -951) 89716) ((-598 . -762) 89700) ((-598 . -1129) T) ((-598 . -13) T) ((-598 . -241) 89679) ((-597 . -601) 89663) ((-597 . -38) 89633) ((-597 . -556) 89552) ((-597 . -591) 89526) ((-597 . -589) 89485) ((-597 . -971) T) ((-597 . -1026) T) ((-597 . -1061) T) ((-597 . -664) T) ((-597 . -962) T) ((-597 . -82) 89464) ((-597 . -964) 89448) ((-597 . -969) 89432) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1014) T) ((-597 . -553) 89414) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -583) 89384) ((-597 . -655) 89354) ((-597 . -355) 89338) ((-597 . -951) 89236) ((-597 . -762) 89220) ((-597 . -1129) T) ((-597 . -13) T) ((-597 . -241) 89199) ((-595 . -655) 89183) ((-595 . -583) 89167) ((-595 . -591) 89151) ((-595 . -589) 89120) ((-595 . -104) T) ((-595 . -25) T) ((-595 . -72) T) ((-595 . -13) T) ((-595 . -1129) T) ((-595 . -553) 89102) ((-595 . -1014) T) ((-595 . -23) T) ((-595 . -21) T) ((-595 . -969) 89086) ((-595 . -964) 89070) ((-595 . -82) 89049) ((-595 . -715) 89028) ((-595 . -717) 89007) ((-595 . -757) 88986) ((-595 . -760) 88965) ((-595 . -719) 88944) ((-595 . -722) 88923) ((-592 . -1014) T) ((-592 . -553) 88905) ((-592 . -1129) T) ((-592 . -13) T) ((-592 . -72) T) ((-592 . -951) 88889) ((-592 . -556) 88873) ((-590 . -635) 88857) ((-590 . -76) 88841) ((-590 . -34) T) ((-590 . -13) T) ((-590 . -1129) T) ((-590 . -72) 88795) ((-590 . -553) 88730) ((-590 . -260) 88668) ((-590 . -456) 88601) ((-590 . -1014) 88579) ((-590 . -429) 88563) ((-590 . -124) 88547) ((-590 . -554) 88508) ((-590 . -193) 88492) ((-590 . -318) 88476) ((-588 . -996) T) ((-588 . -430) 88457) ((-588 . -553) 88410) ((-588 . -556) 88391) ((-588 . -1014) T) ((-588 . -1129) T) ((-588 . -13) T) ((-588 . -72) T) ((-588 . -64) T) ((-584 . -609) 88375) ((-584 . -1168) 88359) ((-584 . -924) 88343) ((-584 . -1064) 88327) ((-584 . -318) 88311) ((-584 . -757) 88290) ((-584 . -760) 88269) ((-584 . -324) 88253) ((-584 . -594) 88237) ((-584 . -243) 88214) ((-584 . -241) 88166) ((-584 . -539) 88143) ((-584 . -554) 88104) ((-584 . -429) 88088) ((-584 . -1014) 88041) ((-584 . -456) 87974) ((-584 . -260) 87912) ((-584 . -553) 87827) ((-584 . -72) 87761) ((-584 . -1129) T) ((-584 . -13) T) ((-584 . -34) T) ((-584 . -124) 87745) ((-584 . -237) 87729) ((-582 . -1187) 87713) ((-582 . -82) 87692) ((-582 . -964) 87676) ((-582 . -969) 87660) ((-582 . -21) T) ((-582 . -589) 87629) ((-582 . -23) T) ((-582 . -1014) T) ((-582 . -553) 87611) ((-582 . -1129) T) ((-582 . -13) T) ((-582 . -72) T) ((-582 . -25) T) ((-582 . -104) T) ((-582 . -591) 87595) ((-582 . -583) 87579) ((-582 . -655) 87563) ((-582 . -241) 87530) ((-580 . -1187) 87514) ((-580 . -82) 87493) ((-580 . -964) 87477) ((-580 . -969) 87461) ((-580 . -21) T) ((-580 . -589) 87430) ((-580 . -23) T) ((-580 . -1014) T) ((-580 . -553) 87412) ((-580 . -1129) T) ((-580 . -13) T) ((-580 . -72) T) ((-580 . -25) T) ((-580 . -104) T) ((-580 . -591) 87396) ((-580 . -583) 87380) ((-580 . -655) 87364) ((-580 . -556) 87341) ((-580 . -450) 87313) ((-580 . -558) 87271) ((-578 . -753) T) ((-578 . -760) T) ((-578 . -757) T) ((-578 . -1014) T) ((-578 . -553) 87253) ((-578 . -1129) T) ((-578 . -13) T) ((-578 . -72) T) ((-578 . -320) T) ((-578 . -556) 87230) ((-573 . -684) 87214) ((-573 . -658) T) ((-573 . -686) T) ((-573 . -82) 87193) ((-573 . -964) 87177) ((-573 . -969) 87161) ((-573 . -21) T) ((-573 . -589) 87130) ((-573 . -23) T) ((-573 . -1014) T) ((-573 . -553) 87099) ((-573 . -1129) T) ((-573 . -13) T) ((-573 . -72) T) ((-573 . -25) T) ((-573 . -104) T) ((-573 . -591) 87083) ((-573 . -583) 87067) ((-573 . -655) 87051) ((-573 . -361) 87016) ((-573 . -316) 86951) ((-573 . -241) 86909) ((-572 . -1107) 86884) ((-572 . -183) 86828) ((-572 . -76) 86772) ((-572 . -124) 86716) ((-572 . -554) NIL) ((-572 . -193) 86660) ((-572 . -539) 86635) ((-572 . -260) 86480) ((-572 . -456) 86280) ((-572 . -429) 86210) ((-572 . -241) 86163) ((-572 . -243) 86138) ((-572 . -550) 86113) ((-572 . -1014) T) ((-572 . -553) 86095) ((-572 . -72) T) ((-572 . -1129) T) ((-572 . -13) T) ((-572 . -34) T) ((-572 . -318) 86039) ((-567 . -413) T) ((-567 . -1026) T) ((-567 . -72) T) ((-567 . -13) T) ((-567 . -1129) T) ((-567 . -553) 86021) ((-567 . -1014) T) ((-567 . -664) T) ((-566 . -996) T) ((-566 . -430) 86002) ((-566 . -553) 85968) ((-566 . -556) 85949) ((-566 . -1014) T) ((-566 . -1129) T) ((-566 . -13) T) ((-566 . -72) T) ((-566 . -64) T) ((-563 . -184) 85933) ((-563 . -810) 85892) ((-563 . -812) 85818) ((-563 . -807) 85742) ((-563 . -225) 85726) ((-563 . -189) 85680) ((-563 . -1129) T) ((-563 . -13) T) ((-563 . -186) 85628) ((-563 . -962) T) ((-563 . -664) T) ((-563 . -1061) T) ((-563 . -1026) T) ((-563 . -971) T) ((-563 . -21) T) ((-563 . -589) 85600) ((-563 . -23) T) ((-563 . -1014) T) ((-563 . -553) 85582) ((-563 . -72) T) ((-563 . -25) T) ((-563 . -104) T) ((-563 . -591) 85569) ((-563 . -556) 85465) ((-563 . -190) 85444) ((-563 . -496) T) ((-563 . -246) T) ((-563 . -146) T) ((-563 . -655) 85431) ((-563 . -583) 85418) ((-563 . -969) 85405) ((-563 . -964) 85392) ((-563 . -82) 85377) ((-563 . -38) 85364) ((-563 . -554) 85341) ((-563 . -355) 85325) ((-563 . -951) 85210) ((-563 . -120) 85189) ((-563 . -118) 85168) ((-563 . -258) 85147) ((-563 . -392) 85126) ((-563 . -833) 85105) ((-559 . -38) 85089) ((-559 . -556) 85058) ((-559 . -591) 85032) ((-559 . -589) 84991) ((-559 . -971) T) ((-559 . -1026) T) ((-559 . -1061) T) ((-559 . -664) T) ((-559 . -962) T) ((-559 . -82) 84970) ((-559 . -964) 84954) ((-559 . -969) 84938) ((-559 . -21) T) ((-559 . -23) T) ((-559 . -1014) T) ((-559 . -553) 84920) ((-559 . -1129) T) ((-559 . -13) T) ((-559 . -72) T) ((-559 . -25) T) ((-559 . -104) T) ((-559 . -583) 84904) ((-559 . -655) 84888) ((-559 . -756) 84867) ((-559 . -722) 84846) ((-559 . -719) 84825) ((-559 . -760) 84804) ((-559 . -757) 84783) ((-559 . -717) 84762) ((-559 . -715) 84741) ((-559 . -120) 84720) ((-557 . -881) T) ((-557 . -72) T) ((-557 . -553) 84702) ((-557 . -1014) T) ((-557 . -605) T) ((-557 . -13) T) ((-557 . -1129) T) ((-557 . -84) T) ((-557 . -320) T) ((-551 . -105) T) ((-551 . -72) T) ((-551 . -13) T) ((-551 . -1129) T) ((-551 . -553) 84684) ((-551 . -1014) T) ((-551 . -757) T) ((-551 . -760) T) ((-551 . -795) 84668) ((-551 . -554) 84529) ((-548 . -314) 84467) ((-548 . -72) T) ((-548 . -13) T) ((-548 . -1129) T) ((-548 . -553) 84449) ((-548 . -1014) T) ((-548 . -1107) 84425) ((-548 . -183) 84370) ((-548 . -76) 84315) ((-548 . -124) 84260) ((-548 . -554) NIL) ((-548 . -193) 84205) ((-548 . -539) 84181) ((-548 . -260) 83970) ((-548 . -456) 83710) ((-548 . -429) 83642) ((-548 . -241) 83618) ((-548 . -243) 83594) ((-548 . -550) 83570) ((-548 . -34) T) ((-548 . -318) 83515) ((-547 . -1014) T) ((-547 . -553) 83467) ((-547 . -1129) T) ((-547 . -13) T) ((-547 . -72) T) ((-547 . -430) 83434) ((-547 . -556) 83401) ((-546 . -1014) T) ((-546 . -553) 83383) ((-546 . -1129) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -605) T) ((-545 . -1014) T) ((-545 . -553) 83365) ((-545 . -1129) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -605) T) ((-544 . -1014) T) ((-544 . -553) 83332) ((-544 . -1129) T) ((-544 . -13) T) ((-544 . -72) T) ((-543 . -1014) T) ((-543 . -553) 83314) ((-543 . -1129) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -605) T) ((-542 . -1014) T) ((-542 . -553) 83281) ((-542 . -1129) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -430) 83263) ((-542 . -556) 83245) ((-541 . -684) 83229) ((-541 . -658) T) ((-541 . -686) T) ((-541 . -82) 83208) ((-541 . -964) 83192) ((-541 . -969) 83176) ((-541 . -21) T) ((-541 . -589) 83145) ((-541 . -23) T) ((-541 . -1014) T) ((-541 . -553) 83114) ((-541 . -1129) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -25) T) ((-541 . -104) T) ((-541 . -591) 83098) ((-541 . -583) 83082) ((-541 . -655) 83066) ((-541 . -361) 83031) ((-541 . -316) 82966) ((-541 . -241) 82924) ((-540 . -996) T) ((-540 . -430) 82905) ((-540 . -553) 82855) ((-540 . -556) 82836) ((-540 . -1014) T) ((-540 . -1129) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -64) T) ((-537 . -553) 82818) ((-533 . -1014) T) ((-533 . -553) 82784) ((-533 . -1129) T) ((-533 . -13) T) ((-533 . -72) T) ((-533 . -430) 82765) ((-533 . -556) 82746) ((-532 . -962) T) ((-532 . -664) T) ((-532 . -1061) T) ((-532 . -1026) T) ((-532 . -971) T) ((-532 . -21) T) ((-532 . -589) 82705) ((-532 . -23) T) ((-532 . -1014) T) ((-532 . -553) 82687) ((-532 . -1129) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -25) T) ((-532 . -104) T) ((-532 . -591) 82661) ((-532 . -556) 82619) ((-532 . -82) 82572) ((-532 . -964) 82532) ((-532 . -969) 82492) ((-532 . -496) 82471) ((-532 . -246) 82450) ((-532 . -146) 82429) ((-532 . -655) 82402) ((-532 . -583) 82375) ((-532 . -38) 82348) ((-531 . -1158) 82325) ((-531 . -47) 82302) ((-531 . -38) 82199) ((-531 . -583) 82096) ((-531 . -655) 81993) ((-531 . -556) 81875) ((-531 . -246) 81854) ((-531 . -496) 81833) ((-531 . -82) 81698) ((-531 . -964) 81584) ((-531 . -969) 81470) ((-531 . -146) 81424) ((-531 . -120) 81403) ((-531 . -118) 81382) ((-531 . -591) 81307) ((-531 . -589) 81217) ((-531 . -887) 81187) ((-531 . -812) 81100) ((-531 . -807) 81011) ((-531 . -810) 80924) ((-531 . -241) 80889) ((-531 . -189) 80848) ((-531 . -1129) T) ((-531 . -13) T) ((-531 . -186) 80801) ((-531 . -962) T) ((-531 . -664) T) ((-531 . -1061) T) ((-531 . -1026) T) ((-531 . -971) T) ((-531 . -21) T) ((-531 . -23) T) ((-531 . -1014) T) ((-531 . -553) 80783) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -190) 80742) ((-529 . -996) T) ((-529 . -430) 80723) ((-529 . -553) 80689) ((-529 . -556) 80670) ((-529 . -1014) T) ((-529 . -1129) T) ((-529 . -13) T) ((-529 . -72) T) ((-529 . -64) T) ((-523 . -1014) T) ((-523 . -553) 80636) ((-523 . -1129) T) ((-523 . -13) T) ((-523 . -72) T) ((-523 . -430) 80617) ((-523 . -556) 80598) ((-520 . -655) 80573) ((-520 . -583) 80548) ((-520 . -591) 80523) ((-520 . -589) 80483) ((-520 . -104) T) ((-520 . -25) T) ((-520 . -72) T) ((-520 . -13) T) ((-520 . -1129) T) ((-520 . -553) 80465) ((-520 . -1014) T) ((-520 . -23) T) ((-520 . -21) T) ((-520 . -969) 80440) ((-520 . -964) 80415) ((-520 . -82) 80376) ((-520 . -951) 80360) ((-520 . -556) 80344) ((-518 . -299) T) ((-518 . -1066) T) ((-518 . -320) T) ((-518 . -118) T) ((-518 . -312) T) ((-518 . -1134) T) ((-518 . -833) T) ((-518 . -496) T) ((-518 . -146) T) ((-518 . -556) 80294) ((-518 . -655) 80259) ((-518 . -583) 80224) ((-518 . -38) 80189) ((-518 . -392) T) ((-518 . -258) T) ((-518 . -82) 80138) ((-518 . -964) 80103) ((-518 . -969) 80068) ((-518 . -589) 80018) ((-518 . -591) 79983) ((-518 . -246) T) ((-518 . -201) T) ((-518 . -345) T) ((-518 . -189) T) ((-518 . -1129) T) ((-518 . -13) T) ((-518 . -186) 79970) ((-518 . -962) T) ((-518 . -664) T) ((-518 . -1061) T) ((-518 . -1026) T) ((-518 . -971) T) ((-518 . -21) T) ((-518 . -23) T) ((-518 . -1014) T) ((-518 . -553) 79952) ((-518 . -72) T) ((-518 . -25) T) ((-518 . -104) T) ((-518 . -190) T) ((-518 . -280) 79939) ((-518 . -120) 79921) ((-518 . -951) 79908) ((-518 . -1187) 79895) ((-518 . -1198) 79882) ((-518 . -554) 79864) ((-517 . -780) 79848) ((-517 . -833) T) ((-517 . -496) T) ((-517 . -246) T) ((-517 . -146) T) ((-517 . -556) 79820) ((-517 . -655) 79807) ((-517 . -583) 79794) ((-517 . -969) 79781) ((-517 . -964) 79768) ((-517 . -82) 79753) ((-517 . -38) 79740) ((-517 . -392) T) ((-517 . -258) T) ((-517 . -962) T) ((-517 . -664) T) ((-517 . -1061) T) ((-517 . -1026) T) ((-517 . -971) T) ((-517 . -21) T) ((-517 . -589) 79712) ((-517 . -23) T) ((-517 . -1014) T) ((-517 . -553) 79694) ((-517 . -1129) T) ((-517 . -13) T) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -591) 79681) ((-517 . -120) T) ((-516 . -1014) T) ((-516 . -553) 79663) ((-516 . -1129) T) ((-516 . -13) T) ((-516 . -72) T) ((-515 . -1014) T) ((-515 . -553) 79645) ((-515 . -1129) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -513) T) ((-514 . -771) T) ((-514 . -147) T) ((-514 . -466) T) ((-514 . -553) 79627) ((-508 . -494) 79611) ((-508 . -35) T) ((-508 . -66) T) ((-508 . -239) T) ((-508 . -433) T) ((-508 . -1118) T) ((-508 . -1115) T) ((-508 . -951) 79593) ((-508 . -916) T) ((-508 . -760) T) ((-508 . -757) T) ((-508 . -496) T) ((-508 . -246) T) ((-508 . -146) T) ((-508 . -556) 79565) ((-508 . -655) 79552) ((-508 . -583) 79539) ((-508 . -591) 79526) ((-508 . -589) 79498) ((-508 . -104) T) ((-508 . -25) T) ((-508 . -72) T) ((-508 . -13) T) ((-508 . -1129) T) ((-508 . -553) 79480) ((-508 . -1014) T) ((-508 . -23) T) ((-508 . -21) T) ((-508 . -969) 79467) ((-508 . -964) 79454) ((-508 . -82) 79439) ((-508 . -962) T) ((-508 . -664) T) ((-508 . -1061) T) ((-508 . -1026) T) ((-508 . -971) T) ((-508 . -38) 79426) ((-508 . -392) T) ((-490 . -1107) 79405) ((-490 . -183) 79353) ((-490 . -76) 79301) ((-490 . -124) 79249) ((-490 . -554) NIL) ((-490 . -193) 79197) ((-490 . -539) 79176) ((-490 . -260) 78974) ((-490 . -456) 78726) ((-490 . -429) 78661) ((-490 . -241) 78640) ((-490 . -243) 78619) ((-490 . -550) 78598) ((-490 . -1014) T) ((-490 . -553) 78580) ((-490 . -72) T) ((-490 . -1129) T) ((-490 . -13) T) ((-490 . -34) T) ((-490 . -318) 78528) ((-489 . -753) T) ((-489 . -760) T) ((-489 . -757) T) ((-489 . -1014) T) ((-489 . -553) 78510) ((-489 . -1129) T) ((-489 . -13) T) ((-489 . -72) T) ((-489 . -320) T) ((-488 . -753) T) ((-488 . -760) T) ((-488 . -757) T) ((-488 . -1014) T) ((-488 . -553) 78492) ((-488 . -1129) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -320) T) ((-487 . -753) T) ((-487 . -760) T) ((-487 . -757) T) ((-487 . -1014) T) ((-487 . -553) 78474) ((-487 . -1129) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -320) T) ((-486 . -753) T) ((-486 . -760) T) ((-486 . -757) T) ((-486 . -1014) T) ((-486 . -553) 78456) ((-486 . -1129) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -320) T) ((-485 . -484) T) ((-485 . -1134) T) ((-485 . -1066) T) ((-485 . -951) 78438) ((-485 . -554) 78353) ((-485 . -934) T) ((-485 . -797) 78335) ((-485 . -756) T) ((-485 . -722) T) ((-485 . -719) T) ((-485 . -760) T) ((-485 . -757) T) ((-485 . -717) T) ((-485 . -715) T) ((-485 . -741) T) ((-485 . -591) 78307) ((-485 . -581) 78289) ((-485 . -833) T) ((-485 . -496) T) ((-485 . -246) T) ((-485 . -146) T) ((-485 . -556) 78261) ((-485 . -655) 78248) ((-485 . -583) 78235) ((-485 . -969) 78222) ((-485 . -964) 78209) ((-485 . -82) 78194) ((-485 . -38) 78181) ((-485 . -392) T) ((-485 . -258) T) ((-485 . -189) T) ((-485 . -186) 78168) ((-485 . -190) T) ((-485 . -116) T) ((-485 . -962) T) ((-485 . -664) T) ((-485 . -1061) T) ((-485 . -1026) T) ((-485 . -971) T) ((-485 . -21) T) ((-485 . -589) 78140) ((-485 . -23) T) ((-485 . -1014) T) ((-485 . -553) 78122) ((-485 . -1129) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -25) T) ((-485 . -104) T) ((-485 . -120) T) ((-474 . -1017) 78074) ((-474 . -72) T) ((-474 . -553) 78056) ((-474 . -1014) T) ((-474 . -241) 78012) ((-474 . -1129) T) ((-474 . -13) T) ((-474 . -558) 77915) ((-474 . -554) 77896) ((-472 . -692) 77878) ((-472 . -466) T) ((-472 . -147) T) ((-472 . -771) T) ((-472 . -513) T) ((-472 . -553) 77860) ((-470 . -718) T) ((-470 . -104) T) ((-470 . -25) T) ((-470 . -72) T) ((-470 . -13) T) ((-470 . -1129) T) ((-470 . -553) 77842) ((-470 . -1014) T) ((-470 . -23) T) ((-470 . -717) T) ((-470 . -757) T) ((-470 . -760) T) ((-470 . -719) T) ((-470 . -722) T) ((-470 . -450) 77819) ((-470 . -558) 77782) ((-468 . -466) T) ((-468 . -147) T) ((-468 . -553) 77764) ((-464 . -996) T) ((-464 . -430) 77745) ((-464 . -553) 77711) ((-464 . -556) 77692) ((-464 . -1014) T) ((-464 . -1129) T) ((-464 . -13) T) ((-464 . -72) T) ((-464 . -64) T) ((-463 . -996) T) ((-463 . -430) 77673) ((-463 . -553) 77639) ((-463 . -556) 77620) ((-463 . -1014) T) ((-463 . -1129) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-460 . -280) 77597) ((-460 . -190) T) ((-460 . -186) 77584) ((-460 . -189) T) ((-460 . -320) T) ((-460 . -1066) T) ((-460 . -299) T) ((-460 . -120) 77566) ((-460 . -556) 77496) ((-460 . -591) 77441) ((-460 . -589) 77371) ((-460 . -104) T) ((-460 . -25) T) ((-460 . -72) T) ((-460 . -13) T) ((-460 . -1129) T) ((-460 . -553) 77353) ((-460 . -1014) T) ((-460 . -23) T) ((-460 . -21) T) ((-460 . -971) T) ((-460 . -1026) T) ((-460 . -1061) T) ((-460 . -664) T) ((-460 . -962) T) ((-460 . -312) T) ((-460 . -1134) T) ((-460 . -833) T) ((-460 . -496) T) ((-460 . -146) T) ((-460 . -655) 77298) ((-460 . -583) 77243) ((-460 . -38) 77208) ((-460 . -392) T) ((-460 . -258) T) ((-460 . -82) 77125) ((-460 . -964) 77070) ((-460 . -969) 77015) ((-460 . -246) T) ((-460 . -201) T) ((-460 . -345) T) ((-460 . -118) T) ((-460 . -951) 76992) ((-460 . -1187) 76969) ((-460 . -1198) 76946) ((-459 . -996) T) ((-459 . -430) 76927) ((-459 . -553) 76893) ((-459 . -556) 76874) ((-459 . -1014) T) ((-459 . -1129) T) ((-459 . -13) T) ((-459 . -72) T) ((-459 . -64) T) ((-458 . -19) 76858) ((-458 . -318) 76842) ((-458 . -34) T) ((-458 . -13) T) ((-458 . -1129) T) ((-458 . -72) 76776) ((-458 . -553) 76691) ((-458 . -260) 76629) ((-458 . -456) 76562) ((-458 . -1014) 76515) ((-458 . -429) 76499) ((-458 . -594) 76483) ((-458 . -243) 76460) ((-458 . -241) 76412) ((-458 . -539) 76389) ((-458 . -554) 76350) ((-458 . -124) 76334) ((-458 . -757) 76313) ((-458 . -760) 76292) ((-458 . -324) 76276) ((-458 . -237) 76260) ((-457 . -274) 76239) ((-457 . -556) 76223) ((-457 . -951) 76207) ((-457 . -23) T) ((-457 . -1014) T) ((-457 . -553) 76189) ((-457 . -1129) T) ((-457 . -13) T) ((-457 . -72) T) ((-457 . -25) T) ((-457 . -104) T) ((-454 . -72) T) ((-454 . -13) T) ((-454 . -1129) T) ((-454 . -553) 76161) ((-453 . -718) T) ((-453 . -104) T) ((-453 . -25) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1129) T) ((-453 . -553) 76143) ((-453 . -1014) T) ((-453 . -23) T) ((-453 . -717) T) ((-453 . -757) T) ((-453 . -760) T) ((-453 . -719) T) ((-453 . -722) T) ((-453 . -450) 76122) ((-453 . -558) 76087) ((-452 . -717) T) ((-452 . -757) T) ((-452 . -760) T) ((-452 . -719) T) ((-452 . -25) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1129) T) ((-452 . -553) 76069) ((-452 . -1014) T) ((-452 . -23) T) ((-452 . -450) 76048) ((-452 . -558) 76013) ((-451 . -450) 75992) ((-451 . -553) 75932) ((-451 . -1014) 75883) ((-451 . -558) 75848) ((-451 . -1129) T) ((-451 . -13) T) ((-451 . -72) T) ((-449 . -23) T) ((-449 . -1014) T) ((-449 . -553) 75830) ((-449 . -1129) T) ((-449 . -13) T) ((-449 . -72) T) ((-449 . -25) T) ((-449 . -450) 75809) ((-449 . -558) 75774) ((-448 . -21) T) ((-448 . -589) 75756) ((-448 . -23) T) ((-448 . -1014) T) ((-448 . -553) 75738) ((-448 . -1129) T) ((-448 . -13) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -104) T) ((-448 . -450) 75717) ((-448 . -558) 75682) ((-447 . -1014) T) ((-447 . -553) 75664) ((-447 . -1129) T) ((-447 . -13) T) ((-447 . -72) T) ((-444 . -1014) T) ((-444 . -553) 75646) ((-444 . -1129) T) ((-444 . -13) T) ((-444 . -72) T) ((-442 . -757) T) ((-442 . -553) 75628) ((-442 . -1014) T) ((-442 . -72) T) ((-442 . -13) T) ((-442 . -1129) T) ((-442 . -760) T) ((-442 . -556) 75609) ((-440 . -96) T) ((-440 . -324) 75592) ((-440 . -760) T) ((-440 . -757) T) ((-440 . -124) 75575) ((-440 . -554) 75557) ((-440 . -241) 75508) ((-440 . -539) 75484) ((-440 . -243) 75460) ((-440 . -594) 75443) ((-440 . -429) 75426) ((-440 . -1014) T) ((-440 . -456) NIL) ((-440 . -260) NIL) ((-440 . -553) 75408) ((-440 . -72) T) ((-440 . -34) T) ((-440 . -318) 75391) ((-440 . -19) 75374) ((-440 . -605) T) ((-440 . -13) T) ((-440 . -1129) T) ((-440 . -84) T) ((-437 . -57) 75348) ((-437 . -429) 75332) ((-437 . -1014) 75310) ((-437 . -456) 75243) ((-437 . -260) 75181) ((-437 . -553) 75116) ((-437 . -72) 75070) ((-437 . -1129) T) ((-437 . -13) T) ((-437 . -34) T) ((-437 . -318) 75054) ((-436 . -19) 75038) ((-436 . -318) 75022) ((-436 . -34) T) ((-436 . -13) T) ((-436 . -1129) T) ((-436 . -72) 74956) ((-436 . -553) 74871) ((-436 . -260) 74809) ((-436 . -456) 74742) ((-436 . -1014) 74695) ((-436 . -429) 74679) ((-436 . -594) 74663) ((-436 . -243) 74640) ((-436 . -241) 74592) ((-436 . -539) 74569) ((-436 . -554) 74530) ((-436 . -124) 74514) ((-436 . -757) 74493) ((-436 . -760) 74472) ((-436 . -324) 74456) ((-435 . -254) T) ((-435 . -72) T) ((-435 . -13) T) ((-435 . -1129) T) ((-435 . -553) 74438) ((-435 . -1014) T) ((-435 . -556) 74339) ((-435 . -951) 74282) ((-435 . -456) 74248) ((-435 . -260) 74235) ((-435 . -27) T) ((-435 . -916) T) ((-435 . -201) T) ((-435 . -82) 74184) ((-435 . -964) 74149) ((-435 . -969) 74114) ((-435 . -246) T) ((-435 . -655) 74079) ((-435 . -583) 74044) ((-435 . -591) 73994) ((-435 . -589) 73944) ((-435 . -104) T) ((-435 . -25) T) ((-435 . -23) T) ((-435 . -21) T) ((-435 . -962) T) ((-435 . -664) T) ((-435 . -1061) T) ((-435 . -1026) T) ((-435 . -971) T) ((-435 . -38) 73909) ((-435 . -258) T) ((-435 . -392) T) ((-435 . -146) T) ((-435 . -496) T) ((-435 . -833) T) ((-435 . -1134) T) ((-435 . -312) T) ((-435 . -581) 73869) ((-435 . -934) T) ((-435 . -554) 73814) ((-435 . -120) T) ((-435 . -190) T) ((-435 . -186) 73801) ((-435 . -189) T) ((-431 . -1014) T) ((-431 . -553) 73767) ((-431 . -1129) T) ((-431 . -13) T) ((-431 . -72) T) ((-427 . -905) 73749) ((-427 . -1066) T) ((-427 . -556) 73699) ((-427 . -951) 73659) ((-427 . -554) 73589) ((-427 . -934) T) ((-427 . -822) NIL) ((-427 . -795) 73571) ((-427 . -756) T) ((-427 . -722) T) ((-427 . -719) T) ((-427 . -760) T) ((-427 . -757) T) ((-427 . -717) T) ((-427 . -715) T) ((-427 . -741) T) ((-427 . -797) 73553) ((-427 . -343) 73535) ((-427 . -581) 73517) ((-427 . -329) 73499) ((-427 . -241) NIL) ((-427 . -260) NIL) ((-427 . -456) NIL) ((-427 . -288) 73481) ((-427 . -201) T) ((-427 . -82) 73408) ((-427 . -964) 73358) ((-427 . -969) 73308) ((-427 . -246) T) ((-427 . -655) 73258) ((-427 . -583) 73208) ((-427 . -591) 73158) ((-427 . -589) 73108) ((-427 . -38) 73058) ((-427 . -258) T) ((-427 . -392) T) ((-427 . -146) T) ((-427 . -496) T) ((-427 . -833) T) ((-427 . -1134) T) ((-427 . -312) T) ((-427 . -190) T) ((-427 . -186) 73045) ((-427 . -189) T) ((-427 . -225) 73027) ((-427 . -807) NIL) ((-427 . -812) NIL) ((-427 . -810) NIL) ((-427 . -184) 73009) ((-427 . -120) T) ((-427 . -118) NIL) ((-427 . -104) T) ((-427 . -25) T) ((-427 . -72) T) ((-427 . -13) T) ((-427 . -1129) T) ((-427 . -553) 72951) ((-427 . -1014) T) ((-427 . -23) T) ((-427 . -21) T) ((-427 . -962) T) ((-427 . -664) T) ((-427 . -1061) T) ((-427 . -1026) T) ((-427 . -971) T) ((-425 . -286) 72920) ((-425 . -104) T) ((-425 . -25) T) ((-425 . -72) T) ((-425 . -13) T) ((-425 . -1129) T) ((-425 . -553) 72902) ((-425 . -1014) T) ((-425 . -23) T) ((-425 . -589) 72884) ((-425 . -21) T) ((-424 . -882) 72868) ((-424 . -318) 72852) ((-424 . -429) 72836) ((-424 . -1014) 72814) ((-424 . -456) 72747) ((-424 . -260) 72685) ((-424 . -553) 72620) ((-424 . -72) 72574) ((-424 . -1129) T) ((-424 . -13) T) ((-424 . -34) T) ((-424 . -76) 72558) ((-423 . -996) T) ((-423 . -430) 72539) ((-423 . -553) 72505) ((-423 . -556) 72486) ((-423 . -1014) T) ((-423 . -1129) T) ((-423 . -13) T) ((-423 . -72) T) ((-423 . -64) T) ((-422 . -196) 72465) ((-422 . -1187) 72435) ((-422 . -722) 72414) ((-422 . -719) 72393) ((-422 . -760) 72347) ((-422 . -757) 72301) ((-422 . -717) 72280) ((-422 . -718) 72259) ((-422 . -655) 72204) ((-422 . -583) 72129) ((-422 . -243) 72106) ((-422 . -241) 72083) ((-422 . -539) 72060) ((-422 . -951) 71889) ((-422 . -556) 71693) ((-422 . -355) 71662) ((-422 . -581) 71570) ((-422 . -591) 71409) ((-422 . -329) 71379) ((-422 . -429) 71363) ((-422 . -456) 71296) ((-422 . -260) 71234) ((-422 . -34) T) ((-422 . -318) 71218) ((-422 . -320) 71197) ((-422 . -190) 71150) ((-422 . -589) 70938) ((-422 . -971) 70917) ((-422 . -1026) 70896) ((-422 . -1061) 70875) ((-422 . -664) 70854) ((-422 . -962) 70833) ((-422 . -186) 70729) ((-422 . -189) 70631) ((-422 . -225) 70601) ((-422 . -807) 70473) ((-422 . -812) 70347) ((-422 . -810) 70280) ((-422 . -184) 70250) ((-422 . -553) 69947) ((-422 . -969) 69872) ((-422 . -964) 69777) ((-422 . -82) 69697) ((-422 . -104) 69572) ((-422 . -25) 69409) ((-422 . -72) 69146) ((-422 . -13) T) ((-422 . -1129) T) ((-422 . -1014) 68902) ((-422 . -23) 68758) ((-422 . -21) 68673) ((-421 . -862) 68618) ((-421 . -556) 68410) ((-421 . -951) 68288) ((-421 . -1134) 68267) ((-421 . -822) 68246) ((-421 . -797) NIL) ((-421 . -812) 68223) ((-421 . -807) 68198) ((-421 . -810) 68175) ((-421 . -456) 68113) ((-421 . -392) 68067) ((-421 . -581) 68015) ((-421 . -591) 67904) ((-421 . -329) 67888) ((-421 . -47) 67845) ((-421 . -38) 67697) ((-421 . -583) 67549) ((-421 . -655) 67401) ((-421 . -246) 67335) ((-421 . -496) 67269) ((-421 . -82) 67094) ((-421 . -964) 66940) ((-421 . -969) 66786) ((-421 . -146) 66700) ((-421 . -120) 66679) ((-421 . -118) 66658) ((-421 . -589) 66568) ((-421 . -104) T) ((-421 . -25) T) ((-421 . -72) T) ((-421 . -13) T) ((-421 . -1129) T) ((-421 . -553) 66550) ((-421 . -1014) T) ((-421 . -23) T) ((-421 . -21) T) ((-421 . -962) T) ((-421 . -664) T) ((-421 . -1061) T) ((-421 . -1026) T) ((-421 . -971) T) ((-421 . -355) 66534) ((-421 . -277) 66491) ((-421 . -260) 66478) ((-421 . -554) 66339) ((-419 . -1107) 66318) ((-419 . -183) 66266) ((-419 . -76) 66214) ((-419 . -124) 66162) ((-419 . -554) NIL) ((-419 . -193) 66110) ((-419 . -539) 66089) ((-419 . -260) 65887) ((-419 . -456) 65639) ((-419 . -429) 65574) ((-419 . -241) 65553) ((-419 . -243) 65532) ((-419 . -550) 65511) ((-419 . -1014) T) ((-419 . -553) 65493) ((-419 . -72) T) ((-419 . -1129) T) ((-419 . -13) T) ((-419 . -34) T) ((-419 . -318) 65441) ((-418 . -996) T) ((-418 . -430) 65422) ((-418 . -553) 65388) ((-418 . -556) 65369) ((-418 . -1014) T) ((-418 . -1129) T) ((-418 . -13) T) ((-418 . -72) T) ((-418 . -64) T) ((-417 . -312) T) ((-417 . -1134) T) ((-417 . -833) T) ((-417 . -496) T) ((-417 . -146) T) ((-417 . -556) 65319) ((-417 . -655) 65284) ((-417 . -583) 65249) ((-417 . -38) 65214) ((-417 . -392) T) ((-417 . -258) T) ((-417 . -591) 65179) ((-417 . -589) 65129) ((-417 . -971) T) ((-417 . -1026) T) ((-417 . -1061) T) ((-417 . -664) T) ((-417 . -962) T) ((-417 . -82) 65078) ((-417 . -964) 65043) ((-417 . -969) 65008) ((-417 . -21) T) ((-417 . -23) T) ((-417 . -1014) T) ((-417 . -553) 64960) ((-417 . -1129) T) ((-417 . -13) T) ((-417 . -72) T) ((-417 . -25) T) ((-417 . -104) T) ((-417 . -246) T) ((-417 . -201) T) ((-417 . -120) T) ((-417 . -951) 64920) ((-417 . -934) T) ((-417 . -554) 64842) ((-416 . -1124) 64811) ((-416 . -553) 64773) ((-416 . -124) 64757) ((-416 . -34) T) ((-416 . -13) T) ((-416 . -1129) T) ((-416 . -72) T) ((-416 . -260) 64695) ((-416 . -456) 64628) ((-416 . -1014) T) ((-416 . -429) 64612) ((-416 . -554) 64573) ((-416 . -318) 64557) ((-416 . -890) 64526) ((-415 . -1107) 64505) ((-415 . -183) 64453) ((-415 . -76) 64401) ((-415 . -124) 64349) ((-415 . -554) NIL) ((-415 . -193) 64297) ((-415 . -539) 64276) ((-415 . -260) 64074) ((-415 . -456) 63826) ((-415 . -429) 63761) ((-415 . -241) 63740) ((-415 . -243) 63719) ((-415 . -550) 63698) ((-415 . -1014) T) ((-415 . -553) 63680) ((-415 . -72) T) ((-415 . -1129) T) ((-415 . -13) T) ((-415 . -34) T) ((-415 . -318) 63628) ((-414 . -1162) 63612) ((-414 . -190) 63564) ((-414 . -186) 63510) ((-414 . -189) 63462) ((-414 . -241) 63420) ((-414 . -810) 63326) ((-414 . -807) 63207) ((-414 . -812) 63113) ((-414 . -887) 63076) ((-414 . -38) 62923) ((-414 . -82) 62743) ((-414 . -964) 62584) ((-414 . -969) 62425) ((-414 . -589) 62310) ((-414 . -591) 62210) ((-414 . -583) 62057) ((-414 . -655) 61904) ((-414 . -556) 61736) ((-414 . -118) 61715) ((-414 . -120) 61694) ((-414 . -47) 61664) ((-414 . -1158) 61634) ((-414 . -35) 61600) ((-414 . -66) 61566) ((-414 . -239) 61532) ((-414 . -433) 61498) ((-414 . -1118) 61464) ((-414 . -1115) 61430) ((-414 . -916) 61396) ((-414 . -201) 61375) ((-414 . -246) 61329) ((-414 . -104) T) ((-414 . -25) T) ((-414 . -72) T) ((-414 . -13) T) ((-414 . -1129) T) ((-414 . -553) 61311) ((-414 . -1014) T) ((-414 . -23) T) ((-414 . -21) T) ((-414 . -962) T) ((-414 . -664) T) ((-414 . -1061) T) ((-414 . -1026) T) ((-414 . -971) T) ((-414 . -258) 61290) ((-414 . -392) 61269) ((-414 . -146) 61203) ((-414 . -496) 61157) ((-414 . -833) 61136) ((-414 . -1134) 61115) ((-414 . -312) 61094) ((-408 . -1014) T) ((-408 . -553) 61076) ((-408 . -1129) T) ((-408 . -13) T) ((-408 . -72) T) ((-403 . -890) 61045) ((-403 . -318) 61029) ((-403 . -554) 60990) ((-403 . -429) 60974) ((-403 . -1014) T) ((-403 . -456) 60907) ((-403 . -260) 60845) ((-403 . -553) 60807) ((-403 . -72) T) ((-403 . -1129) T) ((-403 . -13) T) ((-403 . -34) T) ((-403 . -124) 60791) ((-401 . -655) 60762) ((-401 . -583) 60733) ((-401 . -591) 60704) ((-401 . -589) 60660) ((-401 . -104) T) ((-401 . -25) T) ((-401 . -72) T) ((-401 . -13) T) ((-401 . -1129) T) ((-401 . -553) 60642) ((-401 . -1014) T) ((-401 . -23) T) ((-401 . -21) T) ((-401 . -969) 60613) ((-401 . -964) 60584) ((-401 . -82) 60545) ((-394 . -862) 60512) ((-394 . -556) 60304) ((-394 . -951) 60182) ((-394 . -1134) 60161) ((-394 . -822) 60140) ((-394 . -797) NIL) ((-394 . -812) 60117) ((-394 . -807) 60092) ((-394 . -810) 60069) ((-394 . -456) 60007) ((-394 . -392) 59961) ((-394 . -581) 59909) ((-394 . -591) 59798) ((-394 . -329) 59782) ((-394 . -47) 59761) ((-394 . -38) 59613) ((-394 . -583) 59465) ((-394 . -655) 59317) ((-394 . -246) 59251) ((-394 . -496) 59185) ((-394 . -82) 59010) ((-394 . -964) 58856) ((-394 . -969) 58702) ((-394 . -146) 58616) ((-394 . -120) 58595) ((-394 . -118) 58574) ((-394 . -589) 58484) ((-394 . -104) T) ((-394 . -25) T) ((-394 . -72) T) ((-394 . -13) T) ((-394 . -1129) T) ((-394 . -553) 58466) ((-394 . -1014) T) ((-394 . -23) T) ((-394 . -21) T) ((-394 . -962) T) ((-394 . -664) T) ((-394 . -1061) T) ((-394 . -1026) T) ((-394 . -971) T) ((-394 . -355) 58450) ((-394 . -277) 58429) ((-394 . -260) 58416) ((-394 . -554) 58277) ((-393 . -361) 58247) ((-393 . -684) 58217) ((-393 . -658) T) ((-393 . -686) T) ((-393 . -82) 58168) ((-393 . -964) 58138) ((-393 . -969) 58108) ((-393 . -21) T) ((-393 . -589) 58023) ((-393 . -23) T) ((-393 . -1014) T) ((-393 . -553) 58005) ((-393 . -72) T) ((-393 . -25) T) ((-393 . -104) T) ((-393 . -591) 57935) ((-393 . -583) 57905) ((-393 . -655) 57875) ((-393 . -316) 57845) ((-393 . -1129) T) ((-393 . -13) T) ((-393 . -241) 57808) ((-381 . -1014) T) ((-381 . -553) 57790) ((-381 . -1129) T) ((-381 . -13) T) ((-381 . -72) T) ((-380 . -1014) T) ((-380 . -553) 57772) ((-380 . -1129) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1014) T) ((-379 . -553) 57754) ((-379 . -1129) T) ((-379 . -13) T) ((-379 . -72) T) ((-377 . -553) 57736) ((-372 . -38) 57720) ((-372 . -556) 57689) ((-372 . -591) 57663) ((-372 . -589) 57622) ((-372 . -971) T) ((-372 . -1026) T) ((-372 . -1061) T) ((-372 . -664) T) ((-372 . -962) T) ((-372 . -82) 57601) ((-372 . -964) 57585) ((-372 . -969) 57569) ((-372 . -21) T) ((-372 . -23) T) ((-372 . -1014) T) ((-372 . -553) 57551) ((-372 . -1129) T) ((-372 . -13) T) ((-372 . -72) T) ((-372 . -25) T) ((-372 . -104) T) ((-372 . -583) 57535) ((-372 . -655) 57519) ((-358 . -664) T) ((-358 . -1014) T) ((-358 . -553) 57501) ((-358 . -1129) T) ((-358 . -13) T) ((-358 . -72) T) ((-358 . -1026) T) ((-356 . -413) T) ((-356 . -1026) T) ((-356 . -72) T) ((-356 . -13) T) ((-356 . -1129) T) ((-356 . -553) 57483) ((-356 . -1014) T) ((-356 . -664) T) ((-350 . -905) 57467) ((-350 . -1066) 57445) ((-350 . -951) 57312) ((-350 . -556) 57211) ((-350 . -554) 57014) ((-350 . -934) 56993) ((-350 . -822) 56972) ((-350 . -795) 56956) ((-350 . -756) 56935) ((-350 . -722) 56914) ((-350 . -719) 56893) ((-350 . -760) 56847) ((-350 . -757) 56801) ((-350 . -717) 56780) ((-350 . -715) 56759) ((-350 . -741) 56738) ((-350 . -797) 56663) ((-350 . -343) 56647) ((-350 . -581) 56595) ((-350 . -591) 56511) ((-350 . -329) 56495) ((-350 . -241) 56453) ((-350 . -260) 56418) ((-350 . -456) 56330) ((-350 . -288) 56314) ((-350 . -201) T) ((-350 . -82) 56245) ((-350 . -964) 56197) ((-350 . -969) 56149) ((-350 . -246) T) ((-350 . -655) 56101) ((-350 . -583) 56053) ((-350 . -589) 55990) ((-350 . -38) 55942) ((-350 . -258) T) ((-350 . -392) T) ((-350 . -146) T) ((-350 . -496) T) ((-350 . -833) T) ((-350 . -1134) T) ((-350 . -312) T) ((-350 . -190) 55921) ((-350 . -186) 55869) ((-350 . -189) 55823) ((-350 . -225) 55807) ((-350 . -807) 55731) ((-350 . -812) 55657) ((-350 . -810) 55616) ((-350 . -184) 55600) ((-350 . -120) 55554) ((-350 . -118) 55533) ((-350 . -104) T) ((-350 . -25) T) ((-350 . -72) T) ((-350 . -13) T) ((-350 . -1129) T) ((-350 . -553) 55515) ((-350 . -1014) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -962) T) ((-350 . -664) T) ((-350 . -1061) T) ((-350 . -1026) T) ((-350 . -971) T) ((-348 . -496) T) ((-348 . -246) T) ((-348 . -146) T) ((-348 . -556) 55424) ((-348 . -655) 55398) ((-348 . -583) 55372) ((-348 . -591) 55346) ((-348 . -589) 55305) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1129) T) ((-348 . -553) 55287) ((-348 . -1014) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -969) 55261) ((-348 . -964) 55235) ((-348 . -82) 55202) ((-348 . -962) T) ((-348 . -664) T) ((-348 . -1061) T) ((-348 . -1026) T) ((-348 . -971) T) ((-348 . -38) 55176) ((-348 . -184) 55160) ((-348 . -810) 55119) ((-348 . -812) 55045) ((-348 . -807) 54969) ((-348 . -225) 54953) ((-348 . -189) 54907) ((-348 . -186) 54855) ((-348 . -190) 54834) ((-348 . -288) 54818) ((-348 . -456) 54660) ((-348 . -260) 54599) ((-348 . -241) 54527) ((-348 . -355) 54511) ((-348 . -951) 54409) ((-348 . -392) 54362) ((-348 . -934) 54341) ((-348 . -554) 54244) ((-348 . -1134) 54222) ((-342 . -1014) T) ((-342 . -553) 54204) ((-342 . -1129) T) ((-342 . -13) T) ((-342 . -72) T) ((-342 . -189) T) ((-342 . -186) 54191) ((-342 . -554) 54168) ((-340 . -684) 54152) ((-340 . -658) T) ((-340 . -686) T) ((-340 . -82) 54131) ((-340 . -964) 54115) ((-340 . -969) 54099) ((-340 . -21) T) ((-340 . -589) 54068) ((-340 . -23) T) ((-340 . -1014) T) ((-340 . -553) 54050) ((-340 . -1129) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -25) T) ((-340 . -104) T) ((-340 . -591) 54034) ((-340 . -583) 54018) ((-340 . -655) 54002) ((-338 . -339) T) ((-338 . -72) T) ((-338 . -13) T) ((-338 . -1129) T) ((-338 . -553) 53968) ((-338 . -1014) T) ((-338 . -556) 53949) ((-338 . -430) 53930) ((-337 . -336) 53914) ((-337 . -556) 53898) ((-337 . -951) 53882) ((-337 . -760) 53861) ((-337 . -757) 53840) ((-337 . -1026) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1129) T) ((-337 . -553) 53822) ((-337 . -1014) T) ((-337 . -664) T) ((-334 . -335) 53801) ((-334 . -556) 53785) ((-334 . -951) 53769) ((-334 . -583) 53739) ((-334 . -655) 53709) ((-334 . -591) 53693) ((-334 . -589) 53662) ((-334 . -104) T) ((-334 . -25) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1129) T) ((-334 . -553) 53644) ((-334 . -1014) T) ((-334 . -23) T) ((-334 . -21) T) ((-334 . -969) 53628) ((-334 . -964) 53612) ((-334 . -82) 53591) ((-333 . -82) 53570) ((-333 . -964) 53554) ((-333 . -969) 53538) ((-333 . -21) T) ((-333 . -589) 53507) ((-333 . -23) T) ((-333 . -1014) T) ((-333 . -553) 53489) ((-333 . -1129) T) ((-333 . -13) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -104) T) ((-333 . -591) 53473) ((-333 . -450) 53452) ((-333 . -558) 53417) ((-333 . -655) 53387) ((-333 . -583) 53357) ((-330 . -347) T) ((-330 . -120) T) ((-330 . -556) 53307) ((-330 . -591) 53272) ((-330 . -589) 53222) ((-330 . -104) T) ((-330 . -25) T) ((-330 . -72) T) ((-330 . -13) T) ((-330 . -1129) T) ((-330 . -553) 53189) ((-330 . -1014) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -971) T) ((-330 . -1026) T) ((-330 . -1061) T) ((-330 . -664) T) ((-330 . -962) T) ((-330 . -554) 53103) ((-330 . -312) T) ((-330 . -1134) T) ((-330 . -833) T) ((-330 . -496) T) ((-330 . -146) T) ((-330 . -655) 53068) ((-330 . -583) 53033) ((-330 . -38) 52998) ((-330 . -392) T) ((-330 . -258) T) ((-330 . -82) 52947) ((-330 . -964) 52912) ((-330 . -969) 52877) ((-330 . -246) T) ((-330 . -201) T) ((-330 . -756) T) ((-330 . -722) T) ((-330 . -719) T) ((-330 . -760) T) ((-330 . -757) T) ((-330 . -717) T) ((-330 . -715) T) ((-330 . -797) 52859) ((-330 . -916) T) ((-330 . -934) T) ((-330 . -951) 52819) ((-330 . -974) T) ((-330 . -190) T) ((-330 . -186) 52806) ((-330 . -189) T) ((-330 . -1115) T) ((-330 . -1118) T) ((-330 . -433) T) ((-330 . -239) T) ((-330 . -66) T) ((-330 . -35) T) ((-330 . -558) 52788) ((-313 . -314) 52765) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1129) T) ((-313 . -553) 52747) ((-313 . -1014) T) ((-310 . -413) T) ((-310 . -1026) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1129) T) ((-310 . -553) 52729) ((-310 . -1014) T) ((-310 . -664) T) ((-310 . -951) 52713) ((-310 . -556) 52697) ((-308 . -280) 52681) ((-308 . -190) 52660) ((-308 . -186) 52633) ((-308 . -189) 52612) ((-308 . -320) 52591) ((-308 . -1066) 52570) ((-308 . -299) 52549) ((-308 . -120) 52528) ((-308 . -556) 52465) ((-308 . -591) 52417) ((-308 . -589) 52354) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1129) T) ((-308 . -553) 52336) ((-308 . -1014) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -971) T) ((-308 . -1026) T) ((-308 . -1061) T) ((-308 . -664) T) ((-308 . -962) T) ((-308 . -312) T) ((-308 . -1134) T) ((-308 . -833) T) ((-308 . -496) T) ((-308 . -146) T) ((-308 . -655) 52288) ((-308 . -583) 52240) ((-308 . -38) 52205) ((-308 . -392) T) ((-308 . -258) T) ((-308 . -82) 52136) ((-308 . -964) 52088) ((-308 . -969) 52040) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -345) 51994) ((-308 . -118) 51948) ((-308 . -951) 51932) ((-308 . -1187) 51916) ((-308 . -1198) 51900) ((-304 . -280) 51884) ((-304 . -190) 51863) ((-304 . -186) 51836) ((-304 . -189) 51815) ((-304 . -320) 51794) ((-304 . -1066) 51773) ((-304 . -299) 51752) ((-304 . -120) 51731) ((-304 . -556) 51668) ((-304 . -591) 51620) ((-304 . -589) 51557) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1129) T) ((-304 . -553) 51539) ((-304 . -1014) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -971) T) ((-304 . -1026) T) ((-304 . -1061) T) ((-304 . -664) T) ((-304 . -962) T) ((-304 . -312) T) ((-304 . -1134) T) ((-304 . -833) T) ((-304 . -496) T) ((-304 . -146) T) ((-304 . -655) 51491) ((-304 . -583) 51443) ((-304 . -38) 51408) ((-304 . -392) T) ((-304 . -258) T) ((-304 . -82) 51339) ((-304 . -964) 51291) ((-304 . -969) 51243) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -345) 51197) ((-304 . -118) 51151) ((-304 . -951) 51135) ((-304 . -1187) 51119) ((-304 . -1198) 51103) ((-303 . -280) 51087) ((-303 . -190) 51066) ((-303 . -186) 51039) ((-303 . -189) 51018) ((-303 . -320) 50997) ((-303 . -1066) 50976) ((-303 . -299) 50955) ((-303 . -120) 50934) ((-303 . -556) 50871) ((-303 . -591) 50823) ((-303 . -589) 50760) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1129) T) ((-303 . -553) 50742) ((-303 . -1014) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -971) T) ((-303 . -1026) T) ((-303 . -1061) T) ((-303 . -664) T) ((-303 . -962) T) ((-303 . -312) T) ((-303 . -1134) T) ((-303 . -833) T) ((-303 . -496) T) ((-303 . -146) T) ((-303 . -655) 50694) ((-303 . -583) 50646) ((-303 . -38) 50611) ((-303 . -392) T) ((-303 . -258) T) ((-303 . -82) 50542) ((-303 . -964) 50494) ((-303 . -969) 50446) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -345) 50400) ((-303 . -118) 50354) ((-303 . -951) 50338) ((-303 . -1187) 50322) ((-303 . -1198) 50306) ((-302 . -280) 50290) ((-302 . -190) 50269) ((-302 . -186) 50242) ((-302 . -189) 50221) ((-302 . -320) 50200) ((-302 . -1066) 50179) ((-302 . -299) 50158) ((-302 . -120) 50137) ((-302 . -556) 50074) ((-302 . -591) 50026) ((-302 . -589) 49963) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1129) T) ((-302 . -553) 49945) ((-302 . -1014) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -971) T) ((-302 . -1026) T) ((-302 . -1061) T) ((-302 . -664) T) ((-302 . -962) T) ((-302 . -312) T) ((-302 . -1134) T) ((-302 . -833) T) ((-302 . -496) T) ((-302 . -146) T) ((-302 . -655) 49897) ((-302 . -583) 49849) ((-302 . -38) 49814) ((-302 . -392) T) ((-302 . -258) T) ((-302 . -82) 49745) ((-302 . -964) 49697) ((-302 . -969) 49649) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -345) 49603) ((-302 . -118) 49557) ((-302 . -951) 49541) ((-302 . -1187) 49525) ((-302 . -1198) 49509) ((-301 . -280) 49486) ((-301 . -190) T) ((-301 . -186) 49473) ((-301 . -189) T) ((-301 . -320) T) ((-301 . -1066) T) ((-301 . -299) T) ((-301 . -120) 49455) ((-301 . -556) 49385) ((-301 . -591) 49330) ((-301 . -589) 49260) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1129) T) ((-301 . -553) 49242) ((-301 . -1014) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -971) T) ((-301 . -1026) T) ((-301 . -1061) T) ((-301 . -664) T) ((-301 . -962) T) ((-301 . -312) T) ((-301 . -1134) T) ((-301 . -833) T) ((-301 . -496) T) ((-301 . -146) T) ((-301 . -655) 49187) ((-301 . -583) 49132) ((-301 . -38) 49097) ((-301 . -392) T) ((-301 . -258) T) ((-301 . -82) 49014) ((-301 . -964) 48959) ((-301 . -969) 48904) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -345) T) ((-301 . -118) T) ((-301 . -951) 48881) ((-301 . -1187) 48858) ((-301 . -1198) 48835) ((-295 . -280) 48819) ((-295 . -190) 48798) ((-295 . -186) 48771) ((-295 . -189) 48750) ((-295 . -320) 48729) ((-295 . -1066) 48708) ((-295 . -299) 48687) ((-295 . -120) 48666) ((-295 . -556) 48603) ((-295 . -591) 48555) ((-295 . -589) 48492) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1129) T) ((-295 . -553) 48474) ((-295 . -1014) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -971) T) ((-295 . -1026) T) ((-295 . -1061) T) ((-295 . -664) T) ((-295 . -962) T) ((-295 . -312) T) ((-295 . -1134) T) ((-295 . -833) T) ((-295 . -496) T) ((-295 . -146) T) ((-295 . -655) 48426) ((-295 . -583) 48378) ((-295 . -38) 48343) ((-295 . -392) T) ((-295 . -258) T) ((-295 . -82) 48274) ((-295 . -964) 48226) ((-295 . -969) 48178) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -345) 48132) ((-295 . -118) 48086) ((-295 . -951) 48070) ((-295 . -1187) 48054) ((-295 . -1198) 48038) ((-294 . -280) 48022) ((-294 . -190) 48001) ((-294 . -186) 47974) ((-294 . -189) 47953) ((-294 . -320) 47932) ((-294 . -1066) 47911) ((-294 . -299) 47890) ((-294 . -120) 47869) ((-294 . -556) 47806) ((-294 . -591) 47758) ((-294 . -589) 47695) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1129) T) ((-294 . -553) 47677) ((-294 . -1014) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -971) T) ((-294 . -1026) T) ((-294 . -1061) T) ((-294 . -664) T) ((-294 . -962) T) ((-294 . -312) T) ((-294 . -1134) T) ((-294 . -833) T) ((-294 . -496) T) ((-294 . -146) T) ((-294 . -655) 47629) ((-294 . -583) 47581) ((-294 . -38) 47546) ((-294 . -392) T) ((-294 . -258) T) ((-294 . -82) 47477) ((-294 . -964) 47429) ((-294 . -969) 47381) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -345) 47335) ((-294 . -118) 47289) ((-294 . -951) 47273) ((-294 . -1187) 47257) ((-294 . -1198) 47241) ((-293 . -280) 47218) ((-293 . -190) T) ((-293 . -186) 47205) ((-293 . -189) T) ((-293 . -320) T) ((-293 . -1066) T) ((-293 . -299) T) ((-293 . -120) 47187) ((-293 . -556) 47117) ((-293 . -591) 47062) ((-293 . -589) 46992) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1129) T) ((-293 . -553) 46974) ((-293 . -1014) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -971) T) ((-293 . -1026) T) ((-293 . -1061) T) ((-293 . -664) T) ((-293 . -962) T) ((-293 . -312) T) ((-293 . -1134) T) ((-293 . -833) T) ((-293 . -496) T) ((-293 . -146) T) ((-293 . -655) 46919) ((-293 . -583) 46864) ((-293 . -38) 46829) ((-293 . -392) T) ((-293 . -258) T) ((-293 . -82) 46746) ((-293 . -964) 46691) ((-293 . -969) 46636) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -345) T) ((-293 . -118) T) ((-293 . -951) 46613) ((-293 . -1187) 46590) ((-293 . -1198) 46567) ((-289 . -280) 46544) ((-289 . -190) T) ((-289 . -186) 46531) ((-289 . -189) T) ((-289 . -320) T) ((-289 . -1066) T) ((-289 . -299) T) ((-289 . -120) 46513) ((-289 . -556) 46443) ((-289 . -591) 46388) ((-289 . -589) 46318) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1129) T) ((-289 . -553) 46300) ((-289 . -1014) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -971) T) ((-289 . -1026) T) ((-289 . -1061) T) ((-289 . -664) T) ((-289 . -962) T) ((-289 . -312) T) ((-289 . -1134) T) ((-289 . -833) T) ((-289 . -496) T) ((-289 . -146) T) ((-289 . -655) 46245) ((-289 . -583) 46190) ((-289 . -38) 46155) ((-289 . -392) T) ((-289 . -258) T) ((-289 . -82) 46072) ((-289 . -964) 46017) ((-289 . -969) 45962) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -345) T) ((-289 . -118) T) ((-289 . -951) 45939) ((-289 . -1187) 45916) ((-289 . -1198) 45893) ((-283 . -286) 45862) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1129) T) ((-283 . -553) 45844) ((-283 . -1014) T) ((-283 . -23) T) ((-283 . -589) 45826) ((-283 . -21) T) ((-282 . -1014) T) ((-282 . -553) 45808) ((-282 . -1129) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -757) T) ((-281 . -553) 45790) ((-281 . -1014) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1129) T) ((-281 . -760) T) ((-278 . -19) 45774) ((-278 . -318) 45758) ((-278 . -34) T) ((-278 . -13) T) ((-278 . -1129) T) ((-278 . -72) 45692) ((-278 . -553) 45607) ((-278 . -260) 45545) ((-278 . -456) 45478) ((-278 . -1014) 45431) ((-278 . -429) 45415) ((-278 . -594) 45399) ((-278 . -243) 45376) ((-278 . -241) 45328) ((-278 . -539) 45305) ((-278 . -554) 45266) ((-278 . -124) 45250) ((-278 . -757) 45229) ((-278 . -760) 45208) ((-278 . -324) 45192) ((-278 . -237) 45176) ((-275 . -274) 45153) ((-275 . -556) 45137) ((-275 . -951) 45121) ((-275 . -23) T) ((-275 . -1014) T) ((-275 . -553) 45103) ((-275 . -1129) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -589) 45085) ((-273 . -23) T) ((-273 . -1014) T) ((-273 . -553) 45067) ((-273 . -1129) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -655) 45049) ((-273 . -583) 45031) ((-273 . -591) 45013) ((-273 . -969) 44995) ((-273 . -964) 44977) ((-273 . -82) 44952) ((-273 . -274) 44929) ((-273 . -556) 44913) ((-273 . -951) 44897) ((-273 . -757) 44876) ((-273 . -760) 44855) ((-270 . -1162) 44839) ((-270 . -190) 44791) ((-270 . -186) 44737) ((-270 . -189) 44689) ((-270 . -241) 44647) ((-270 . -810) 44553) ((-270 . -807) 44457) ((-270 . -812) 44363) ((-270 . -887) 44326) ((-270 . -38) 44173) ((-270 . -82) 43993) ((-270 . -964) 43834) ((-270 . -969) 43675) ((-270 . -589) 43560) ((-270 . -591) 43460) ((-270 . -583) 43307) ((-270 . -655) 43154) ((-270 . -556) 42986) ((-270 . -118) 42965) ((-270 . -120) 42944) ((-270 . -47) 42914) ((-270 . -1158) 42884) ((-270 . -35) 42850) ((-270 . -66) 42816) ((-270 . -239) 42782) ((-270 . -433) 42748) ((-270 . -1118) 42714) ((-270 . -1115) 42680) ((-270 . -916) 42646) ((-270 . -201) 42625) ((-270 . -246) 42579) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1129) T) ((-270 . -553) 42561) ((-270 . -1014) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -962) T) ((-270 . -664) T) ((-270 . -1061) T) ((-270 . -1026) T) ((-270 . -971) T) ((-270 . -258) 42540) ((-270 . -392) 42519) ((-270 . -146) 42453) ((-270 . -496) 42407) ((-270 . -833) 42386) ((-270 . -1134) 42365) ((-270 . -312) 42344) ((-270 . -717) T) ((-270 . -757) T) ((-270 . -760) T) ((-270 . -719) T) ((-265 . -364) 42328) ((-265 . -556) 41903) ((-265 . -951) 41574) ((-265 . -554) 41435) ((-265 . -795) 41419) ((-265 . -812) 41386) ((-265 . -807) 41351) ((-265 . -810) 41318) ((-265 . -413) 41297) ((-265 . -355) 41281) ((-265 . -797) 41206) ((-265 . -343) 41190) ((-265 . -581) 41098) ((-265 . -591) 40836) ((-265 . -329) 40806) ((-265 . -201) 40785) ((-265 . -82) 40674) ((-265 . -964) 40584) ((-265 . -969) 40494) ((-265 . -246) 40473) ((-265 . -655) 40383) ((-265 . -583) 40293) ((-265 . -589) 39960) ((-265 . -38) 39870) ((-265 . -258) 39849) ((-265 . -392) 39828) ((-265 . -146) 39807) ((-265 . -496) 39786) ((-265 . -833) 39765) ((-265 . -1134) 39744) ((-265 . -312) 39723) ((-265 . -260) 39710) ((-265 . -456) 39676) ((-265 . -254) T) ((-265 . -120) 39655) ((-265 . -118) 39634) ((-265 . -962) 39528) ((-265 . -664) 39381) ((-265 . -1061) 39275) ((-265 . -1026) 39128) ((-265 . -971) 39022) ((-265 . -104) 38897) ((-265 . -25) 38753) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1129) T) ((-265 . -553) 38735) ((-265 . -1014) T) ((-265 . -23) 38591) ((-265 . -21) 38466) ((-265 . -29) 38436) ((-265 . -916) 38415) ((-265 . -27) 38394) ((-265 . -1115) 38373) ((-265 . -1118) 38352) ((-265 . -433) 38331) ((-265 . -239) 38310) ((-265 . -66) 38289) ((-265 . -35) 38268) ((-265 . -133) 38247) ((-265 . -116) 38226) ((-265 . -570) 38205) ((-265 . -872) 38184) ((-265 . -1053) 38163) ((-264 . -905) 38124) ((-264 . -1066) NIL) ((-264 . -951) 38054) ((-264 . -556) 37937) ((-264 . -554) NIL) ((-264 . -934) NIL) ((-264 . -822) NIL) ((-264 . -795) 37898) ((-264 . -756) NIL) ((-264 . -722) NIL) ((-264 . -719) NIL) ((-264 . -760) NIL) ((-264 . -757) NIL) ((-264 . -717) NIL) ((-264 . -715) NIL) ((-264 . -741) NIL) ((-264 . -797) NIL) ((-264 . -343) 37859) ((-264 . -581) 37820) ((-264 . -591) 37749) ((-264 . -329) 37710) ((-264 . -241) 37576) ((-264 . -260) 37472) ((-264 . -456) 37223) ((-264 . -288) 37184) ((-264 . -201) T) ((-264 . -82) 37069) ((-264 . -964) 36998) ((-264 . -969) 36927) ((-264 . -246) T) ((-264 . -655) 36856) ((-264 . -583) 36785) ((-264 . -589) 36699) ((-264 . -38) 36628) ((-264 . -258) T) ((-264 . -392) T) ((-264 . -146) T) ((-264 . -496) T) ((-264 . -833) T) ((-264 . -1134) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36589) ((-264 . -807) NIL) ((-264 . -812) NIL) ((-264 . -810) NIL) ((-264 . -184) 36550) ((-264 . -120) 36506) ((-264 . -118) 36462) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1129) T) ((-264 . -553) 36444) ((-264 . -1014) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -962) T) ((-264 . -664) T) ((-264 . -1061) T) ((-264 . -1026) T) ((-264 . -971) T) ((-263 . -996) T) ((-263 . -430) 36425) ((-263 . -553) 36391) ((-263 . -556) 36372) ((-263 . -1014) T) ((-263 . -1129) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1014) T) ((-262 . -553) 36354) ((-262 . -1129) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1107) 36333) ((-251 . -183) 36281) ((-251 . -76) 36229) ((-251 . -124) 36177) ((-251 . -554) NIL) ((-251 . -193) 36125) ((-251 . -539) 36104) ((-251 . -260) 35902) ((-251 . -456) 35654) ((-251 . -429) 35589) ((-251 . -241) 35568) ((-251 . -243) 35547) ((-251 . -550) 35526) ((-251 . -1014) T) ((-251 . -553) 35508) ((-251 . -72) T) ((-251 . -1129) T) ((-251 . -13) T) ((-251 . -34) T) ((-251 . -318) 35456) ((-249 . -1129) T) ((-249 . -13) T) ((-249 . -456) 35405) ((-249 . -1014) 35191) ((-249 . -553) 34937) ((-249 . -72) 34723) ((-249 . -25) 34591) ((-249 . -21) 34478) ((-249 . -589) 34225) ((-249 . -23) 34112) ((-249 . -104) 33999) ((-249 . -1026) 33884) ((-249 . -664) 33790) ((-249 . -413) 33769) ((-249 . -962) 33715) ((-249 . -1061) 33661) ((-249 . -971) 33607) ((-249 . -591) 33475) ((-249 . -556) 33410) ((-249 . -82) 33330) ((-249 . -964) 33255) ((-249 . -969) 33180) ((-249 . -655) 33125) ((-249 . -583) 33070) ((-249 . -810) 33029) ((-249 . -807) 32986) ((-249 . -812) 32945) ((-249 . -1187) 32915) ((-247 . -553) 32897) ((-244 . -258) T) ((-244 . -392) T) ((-244 . -38) 32884) ((-244 . -556) 32856) ((-244 . -971) T) ((-244 . -1026) T) ((-244 . -1061) T) ((-244 . -664) T) ((-244 . -962) T) ((-244 . -82) 32841) ((-244 . -964) 32828) ((-244 . -969) 32815) ((-244 . -21) T) ((-244 . -589) 32787) ((-244 . -23) T) ((-244 . -1014) T) ((-244 . -553) 32769) ((-244 . -1129) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -591) 32756) ((-244 . -583) 32743) ((-244 . -655) 32730) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -496) T) ((-244 . -833) T) ((-244 . -241) 32709) ((-235 . -553) 32691) ((-234 . -553) 32673) ((-229 . -757) T) ((-229 . -553) 32655) ((-229 . -1014) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1129) T) ((-229 . -760) T) ((-226 . -213) 32617) ((-226 . -556) 32377) ((-226 . -951) 32223) ((-226 . -554) 31971) ((-226 . -277) 31943) ((-226 . -355) 31927) ((-226 . -38) 31779) ((-226 . -82) 31604) ((-226 . -964) 31450) ((-226 . -969) 31296) ((-226 . -589) 31206) ((-226 . -591) 31095) ((-226 . -583) 30947) ((-226 . -655) 30799) ((-226 . -118) 30778) ((-226 . -120) 30757) ((-226 . -146) 30671) ((-226 . -496) 30605) ((-226 . -246) 30539) ((-226 . -47) 30511) ((-226 . -329) 30495) ((-226 . -581) 30443) ((-226 . -392) 30397) ((-226 . -456) 30288) ((-226 . -810) 30234) ((-226 . -807) 30143) ((-226 . -812) 30056) ((-226 . -797) 29915) ((-226 . -822) 29894) ((-226 . -1134) 29873) ((-226 . -862) 29840) ((-226 . -260) 29827) ((-226 . -190) 29806) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -553) 29788) ((-226 . -1014) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -971) T) ((-226 . -1026) T) ((-226 . -1061) T) ((-226 . -664) T) ((-226 . -962) T) ((-226 . -186) 29736) ((-226 . -13) T) ((-226 . -1129) T) ((-226 . -189) 29690) ((-226 . -225) 29674) ((-226 . -184) 29658) ((-221 . -1014) T) ((-221 . -553) 29640) ((-221 . -1129) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29619) ((-211 . -1187) 29589) ((-211 . -722) 29568) ((-211 . -719) 29547) ((-211 . -760) 29501) ((-211 . -757) 29455) ((-211 . -717) 29434) ((-211 . -718) 29413) ((-211 . -655) 29358) ((-211 . -583) 29283) ((-211 . -243) 29260) ((-211 . -241) 29237) ((-211 . -539) 29214) ((-211 . -951) 29043) ((-211 . -556) 28847) ((-211 . -355) 28816) ((-211 . -581) 28724) ((-211 . -591) 28550) ((-211 . -329) 28520) ((-211 . -429) 28504) ((-211 . -456) 28437) ((-211 . -260) 28375) ((-211 . -34) T) ((-211 . -318) 28359) ((-211 . -320) 28338) ((-211 . -190) 28291) ((-211 . -589) 28144) ((-211 . -971) 28123) ((-211 . -1026) 28102) ((-211 . -1061) 28081) ((-211 . -664) 28060) ((-211 . -962) 28039) ((-211 . -186) 27935) ((-211 . -189) 27837) ((-211 . -225) 27807) ((-211 . -807) 27679) ((-211 . -812) 27553) ((-211 . -810) 27486) ((-211 . -184) 27456) ((-211 . -553) 27417) ((-211 . -969) 27342) ((-211 . -964) 27247) ((-211 . -82) 27167) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1129) T) ((-211 . -1014) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 27146) ((-210 . -1187) 27116) ((-210 . -722) 27095) ((-210 . -719) 27074) ((-210 . -760) 27028) ((-210 . -757) 26982) ((-210 . -717) 26961) ((-210 . -718) 26940) ((-210 . -655) 26885) ((-210 . -583) 26810) ((-210 . -243) 26787) ((-210 . -241) 26764) ((-210 . -539) 26741) ((-210 . -951) 26570) ((-210 . -556) 26374) ((-210 . -355) 26343) ((-210 . -581) 26251) ((-210 . -591) 26064) ((-210 . -329) 26034) ((-210 . -429) 26018) ((-210 . -456) 25951) ((-210 . -260) 25889) ((-210 . -34) T) ((-210 . -318) 25873) ((-210 . -320) 25852) ((-210 . -190) 25805) ((-210 . -589) 25645) ((-210 . -971) 25624) ((-210 . -1026) 25603) ((-210 . -1061) 25582) ((-210 . -664) 25561) ((-210 . -962) 25540) ((-210 . -186) 25436) ((-210 . -189) 25338) ((-210 . -225) 25308) ((-210 . -807) 25180) ((-210 . -812) 25054) ((-210 . -810) 24987) ((-210 . -184) 24957) ((-210 . -553) 24918) ((-210 . -969) 24843) ((-210 . -964) 24748) ((-210 . -82) 24668) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1129) T) ((-210 . -1014) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1014) T) ((-209 . -553) 24650) ((-209 . -1129) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24624) ((-208 . -160) T) ((-208 . -1014) T) ((-208 . -553) 24591) ((-208 . -1129) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -748) 24573) ((-207 . -1014) T) ((-207 . -553) 24555) ((-207 . -1129) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -862) 24500) ((-206 . -556) 24292) ((-206 . -951) 24170) ((-206 . -1134) 24149) ((-206 . -822) 24128) ((-206 . -797) NIL) ((-206 . -812) 24105) ((-206 . -807) 24080) ((-206 . -810) 24057) ((-206 . -456) 23995) ((-206 . -392) 23949) ((-206 . -581) 23897) ((-206 . -591) 23786) ((-206 . -329) 23770) ((-206 . -47) 23727) ((-206 . -38) 23579) ((-206 . -583) 23431) ((-206 . -655) 23283) ((-206 . -246) 23217) ((-206 . -496) 23151) ((-206 . -82) 22976) ((-206 . -964) 22822) ((-206 . -969) 22668) ((-206 . -146) 22582) ((-206 . -120) 22561) ((-206 . -118) 22540) ((-206 . -589) 22450) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1129) T) ((-206 . -553) 22432) ((-206 . -1014) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -962) T) ((-206 . -664) T) ((-206 . -1061) T) ((-206 . -1026) T) ((-206 . -971) T) ((-206 . -355) 22416) ((-206 . -277) 22373) ((-206 . -260) 22360) ((-206 . -554) 22221) ((-203 . -609) 22205) ((-203 . -1168) 22189) ((-203 . -924) 22173) ((-203 . -1064) 22157) ((-203 . -318) 22141) ((-203 . -757) 22120) ((-203 . -760) 22099) ((-203 . -324) 22083) ((-203 . -594) 22067) ((-203 . -243) 22044) ((-203 . -241) 21996) ((-203 . -539) 21973) ((-203 . -554) 21934) ((-203 . -429) 21918) ((-203 . -1014) 21871) ((-203 . -456) 21804) ((-203 . -260) 21742) ((-203 . -553) 21637) ((-203 . -72) 21571) ((-203 . -1129) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21555) ((-203 . -237) 21539) ((-203 . -430) 21516) ((-203 . -556) 21493) ((-197 . -196) 21472) ((-197 . -1187) 21442) ((-197 . -722) 21421) ((-197 . -719) 21400) ((-197 . -760) 21354) ((-197 . -757) 21308) ((-197 . -717) 21287) ((-197 . -718) 21266) ((-197 . -655) 21211) ((-197 . -583) 21136) ((-197 . -243) 21113) ((-197 . -241) 21090) ((-197 . -539) 21067) ((-197 . -951) 20896) ((-197 . -556) 20700) ((-197 . -355) 20669) ((-197 . -581) 20577) ((-197 . -591) 20416) ((-197 . -329) 20386) ((-197 . -429) 20370) ((-197 . -456) 20303) ((-197 . -260) 20241) ((-197 . -34) T) ((-197 . -318) 20225) ((-197 . -320) 20204) ((-197 . -190) 20157) ((-197 . -589) 19945) ((-197 . -971) 19924) ((-197 . -1026) 19903) ((-197 . -1061) 19882) ((-197 . -664) 19861) ((-197 . -962) 19840) ((-197 . -186) 19736) ((-197 . -189) 19638) ((-197 . -225) 19608) ((-197 . -807) 19480) ((-197 . -812) 19354) ((-197 . -810) 19287) ((-197 . -184) 19257) ((-197 . -553) 18954) ((-197 . -969) 18879) ((-197 . -964) 18784) ((-197 . -82) 18704) ((-197 . -104) 18579) ((-197 . -25) 18416) ((-197 . -72) 18153) ((-197 . -13) T) ((-197 . -1129) T) ((-197 . -1014) 17909) ((-197 . -23) 17765) ((-197 . -21) 17680) ((-181 . -628) 17638) ((-181 . -318) 17622) ((-181 . -34) T) ((-181 . -13) T) ((-181 . -1129) T) ((-181 . -72) 17576) ((-181 . -553) 17511) ((-181 . -260) 17449) ((-181 . -456) 17382) ((-181 . -1014) 17360) ((-181 . -429) 17344) ((-181 . -57) 17302) ((-179 . -347) T) ((-179 . -120) T) ((-179 . -556) 17252) ((-179 . -591) 17217) ((-179 . -589) 17167) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1129) T) ((-179 . -553) 17149) ((-179 . -1014) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -971) T) ((-179 . -1026) T) ((-179 . -1061) T) ((-179 . -664) T) ((-179 . -962) T) ((-179 . -554) 17079) ((-179 . -312) T) ((-179 . -1134) T) ((-179 . -833) T) ((-179 . -496) T) ((-179 . -146) T) ((-179 . -655) 17044) ((-179 . -583) 17009) ((-179 . -38) 16974) ((-179 . -392) T) ((-179 . -258) T) ((-179 . -82) 16923) ((-179 . -964) 16888) ((-179 . -969) 16853) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -756) T) ((-179 . -722) T) ((-179 . -719) T) ((-179 . -760) T) ((-179 . -757) T) ((-179 . -717) T) ((-179 . -715) T) ((-179 . -797) 16835) ((-179 . -916) T) ((-179 . -934) T) ((-179 . -951) 16795) ((-179 . -974) T) ((-179 . -190) T) ((-179 . -186) 16782) ((-179 . -189) T) ((-179 . -1115) T) ((-179 . -1118) T) ((-179 . -433) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -561) 16759) ((-177 . -556) 16721) ((-177 . -591) 16688) ((-177 . -589) 16640) ((-177 . -971) T) ((-177 . -1026) T) ((-177 . -1061) T) ((-177 . -664) T) ((-177 . -962) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1014) T) ((-177 . -553) 16622) ((-177 . -1129) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -951) 16599) ((-176 . -214) 16583) ((-176 . -1035) 16567) ((-176 . -76) 16551) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1129) T) ((-176 . -72) 16505) ((-176 . -553) 16440) ((-176 . -260) 16378) ((-176 . -456) 16311) ((-176 . -1014) 16289) ((-176 . -429) 16273) ((-176 . -318) 16257) ((-176 . -909) 16241) ((-172 . -996) T) ((-172 . -430) 16222) ((-172 . -553) 16188) ((-172 . -556) 16169) ((-172 . -1014) T) ((-172 . -1129) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -905) 16151) ((-171 . -1066) T) ((-171 . -556) 16101) ((-171 . -951) 16061) ((-171 . -554) 15991) ((-171 . -934) T) ((-171 . -822) NIL) ((-171 . -795) 15973) ((-171 . -756) T) ((-171 . -722) T) ((-171 . -719) T) ((-171 . -760) T) ((-171 . -757) T) ((-171 . -717) T) ((-171 . -715) T) ((-171 . -741) T) ((-171 . -797) 15955) ((-171 . -343) 15937) ((-171 . -581) 15919) ((-171 . -329) 15901) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -456) NIL) ((-171 . -288) 15883) ((-171 . -201) T) ((-171 . -82) 15810) ((-171 . -964) 15760) ((-171 . -969) 15710) ((-171 . -246) T) ((-171 . -655) 15660) ((-171 . -583) 15610) ((-171 . -591) 15560) ((-171 . -589) 15510) ((-171 . -38) 15460) ((-171 . -258) T) ((-171 . -392) T) ((-171 . -146) T) ((-171 . -496) T) ((-171 . -833) T) ((-171 . -1134) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15447) ((-171 . -189) T) ((-171 . -225) 15429) ((-171 . -807) NIL) ((-171 . -812) NIL) ((-171 . -810) NIL) ((-171 . -184) 15411) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1129) T) ((-171 . -553) 15353) ((-171 . -1014) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -962) T) ((-171 . -664) T) ((-171 . -1061) T) ((-171 . -1026) T) ((-171 . -971) T) ((-168 . -753) T) ((-168 . -760) T) ((-168 . -757) T) ((-168 . -1014) T) ((-168 . -553) 15335) ((-168 . -1129) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -320) T) ((-167 . -1014) T) ((-167 . -553) 15317) ((-167 . -1129) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -556) 15294) ((-166 . -1014) T) ((-166 . -553) 15276) ((-166 . -1129) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1014) T) ((-161 . -553) 15258) ((-161 . -1129) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1014) T) ((-158 . -553) 15240) ((-158 . -1129) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1014) T) ((-157 . -553) 15222) ((-157 . -1129) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -748) 15204) ((-154 . -996) T) ((-154 . -430) 15185) ((-154 . -553) 15151) ((-154 . -556) 15132) ((-154 . -1014) T) ((-154 . -1129) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -553) 15114) ((-148 . -38) 15046) ((-148 . -556) 14963) ((-148 . -591) 14895) ((-148 . -589) 14812) ((-148 . -971) T) ((-148 . -1026) T) ((-148 . -1061) T) ((-148 . -664) T) ((-148 . -962) T) ((-148 . -82) 14711) ((-148 . -964) 14643) ((-148 . -969) 14575) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1014) T) ((-148 . -553) 14557) ((-148 . -1129) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -583) 14489) ((-148 . -655) 14421) ((-148 . -312) T) ((-148 . -1134) T) ((-148 . -833) T) ((-148 . -496) T) ((-148 . -146) T) ((-148 . -392) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1014) T) ((-145 . -553) 14403) ((-145 . -1129) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14387) ((-142 . -35) 14365) ((-142 . -66) 14343) ((-142 . -239) 14321) ((-142 . -433) 14299) ((-142 . -1118) 14277) ((-142 . -1115) 14255) ((-142 . -916) 14207) ((-142 . -822) 14160) ((-142 . -554) 13928) ((-142 . -795) 13912) ((-142 . -320) 13866) ((-142 . -299) 13845) ((-142 . -1066) 13824) ((-142 . -345) 13803) ((-142 . -353) 13774) ((-142 . -38) 13608) ((-142 . -82) 13500) ((-142 . -964) 13413) ((-142 . -969) 13326) ((-142 . -583) 13160) ((-142 . -655) 12994) ((-142 . -322) 12965) ((-142 . -662) 12936) ((-142 . -951) 12834) ((-142 . -556) 12619) ((-142 . -355) 12603) ((-142 . -797) 12528) ((-142 . -343) 12512) ((-142 . -581) 12460) ((-142 . -591) 12337) ((-142 . -589) 12235) ((-142 . -329) 12219) ((-142 . -241) 12177) ((-142 . -260) 12142) ((-142 . -456) 12054) ((-142 . -288) 12038) ((-142 . -201) 11992) ((-142 . -1134) 11900) ((-142 . -312) 11854) ((-142 . -833) 11788) ((-142 . -496) 11702) ((-142 . -246) 11616) ((-142 . -392) 11550) ((-142 . -258) 11484) ((-142 . -190) 11438) ((-142 . -186) 11366) ((-142 . -189) 11300) ((-142 . -225) 11284) ((-142 . -807) 11208) ((-142 . -812) 11134) ((-142 . -810) 11093) ((-142 . -184) 11077) ((-142 . -146) T) ((-142 . -120) 11056) ((-142 . -962) T) ((-142 . -664) T) ((-142 . -1061) T) ((-142 . -1026) T) ((-142 . -971) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1014) T) ((-142 . -553) 11038) ((-142 . -1129) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10992) ((-135 . -996) T) ((-135 . -430) 10973) ((-135 . -553) 10939) ((-135 . -556) 10920) ((-135 . -1014) T) ((-135 . -1129) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1014) T) ((-134 . -553) 10902) ((-134 . -1129) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1129) T) ((-130 . -553) 10884) ((-130 . -1014) T) ((-129 . -996) T) ((-129 . -430) 10865) ((-129 . -553) 10831) ((-129 . -556) 10812) ((-129 . -1014) T) ((-129 . -1129) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -996) T) ((-127 . -430) 10793) ((-127 . -553) 10759) ((-127 . -556) 10740) ((-127 . -1014) T) ((-127 . -1129) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -962) T) ((-125 . -664) T) ((-125 . -1061) T) ((-125 . -1026) T) ((-125 . -971) T) ((-125 . -21) T) ((-125 . -589) 10699) ((-125 . -23) T) ((-125 . -1014) T) ((-125 . -553) 10681) ((-125 . -1129) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -591) 10655) ((-125 . -556) 10624) ((-125 . -38) 10608) ((-125 . -82) 10587) ((-125 . -964) 10571) ((-125 . -969) 10555) ((-125 . -583) 10539) ((-125 . -655) 10523) ((-125 . -1187) 10507) ((-117 . -753) T) ((-117 . -760) T) ((-117 . -757) T) ((-117 . -1014) T) ((-117 . -553) 10489) ((-117 . -1129) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -320) T) ((-114 . -1014) T) ((-114 . -553) 10471) ((-114 . -1129) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -554) 10430) ((-114 . -369) 10412) ((-114 . -1012) 10394) ((-114 . -318) 10376) ((-114 . -320) T) ((-114 . -193) 10358) ((-114 . -124) 10340) ((-114 . -429) 10322) ((-114 . -456) NIL) ((-114 . -260) NIL) ((-114 . -34) T) ((-114 . -76) 10304) ((-114 . -183) 10286) ((-113 . -553) 10268) ((-112 . -160) T) ((-112 . -1014) T) ((-112 . -553) 10235) ((-112 . -1129) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -748) 10217) ((-111 . -996) T) ((-111 . -430) 10198) ((-111 . -553) 10164) ((-111 . -556) 10145) ((-111 . -1014) T) ((-111 . -1129) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -996) T) ((-110 . -430) 10126) ((-110 . -553) 10092) ((-110 . -556) 10073) ((-110 . -1014) T) ((-110 . -1129) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -405) 10050) ((-108 . -556) 9946) ((-108 . -951) 9930) ((-108 . -1014) T) ((-108 . -553) 9912) ((-108 . -1129) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -410) 9867) ((-108 . -241) 9844) ((-107 . -757) T) ((-107 . -553) 9826) ((-107 . -1014) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1129) T) ((-107 . -760) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -664) T) ((-107 . -1026) T) ((-107 . -951) 9808) ((-107 . -556) 9790) ((-106 . -996) T) ((-106 . -430) 9771) ((-106 . -553) 9737) ((-106 . -556) 9718) ((-106 . -1014) T) ((-106 . -1129) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1014) T) ((-103 . -553) 9700) ((-103 . -1129) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9682) ((-102 . -318) 9664) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1129) T) ((-102 . -72) T) ((-102 . -553) 9608) ((-102 . -260) NIL) ((-102 . -456) NIL) ((-102 . -1014) T) ((-102 . -429) 9590) ((-102 . -594) 9572) ((-102 . -243) 9547) ((-102 . -241) 9497) ((-102 . -539) 9472) ((-102 . -554) NIL) ((-102 . -124) 9454) ((-102 . -757) T) ((-102 . -760) T) ((-102 . -324) 9436) ((-101 . -753) T) ((-101 . -760) T) ((-101 . -757) T) ((-101 . -1014) T) ((-101 . -553) 9418) ((-101 . -1129) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -320) T) ((-101 . -605) T) ((-100 . -98) 9402) ((-100 . -318) 9386) ((-100 . -924) 9370) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1129) T) ((-100 . -72) 9324) ((-100 . -553) 9259) ((-100 . -260) 9197) ((-100 . -456) 9130) ((-100 . -1014) 9108) ((-100 . -429) 9092) ((-100 . -92) 9076) ((-99 . -98) 9060) ((-99 . -318) 9044) ((-99 . -924) 9028) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1129) T) ((-99 . -72) 8982) ((-99 . -553) 8917) ((-99 . -260) 8855) ((-99 . -456) 8788) ((-99 . -1014) 8766) ((-99 . -429) 8750) ((-99 . -92) 8734) ((-94 . -98) 8718) ((-94 . -318) 8702) ((-94 . -924) 8686) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1129) T) ((-94 . -72) 8640) ((-94 . -553) 8575) ((-94 . -260) 8513) ((-94 . -456) 8446) ((-94 . -1014) 8424) ((-94 . -429) 8408) ((-94 . -92) 8392) ((-90 . -905) 8370) ((-90 . -1066) NIL) ((-90 . -951) 8348) ((-90 . -556) 8279) ((-90 . -554) NIL) ((-90 . -934) NIL) ((-90 . -822) NIL) ((-90 . -795) 8257) ((-90 . -756) NIL) ((-90 . -722) NIL) ((-90 . -719) NIL) ((-90 . -760) NIL) ((-90 . -757) NIL) ((-90 . -717) NIL) ((-90 . -715) NIL) ((-90 . -741) NIL) ((-90 . -797) NIL) ((-90 . -343) 8235) ((-90 . -581) 8213) ((-90 . -591) 8159) ((-90 . -329) 8137) ((-90 . -241) 8071) ((-90 . -260) 8018) ((-90 . -456) 7888) ((-90 . -288) 7866) ((-90 . -201) T) ((-90 . -82) 7785) ((-90 . -964) 7731) ((-90 . -969) 7677) ((-90 . -246) T) ((-90 . -655) 7623) ((-90 . -583) 7569) ((-90 . -589) 7500) ((-90 . -38) 7446) ((-90 . -258) T) ((-90 . -392) T) ((-90 . -146) T) ((-90 . -496) T) ((-90 . -833) T) ((-90 . -1134) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7424) ((-90 . -807) NIL) ((-90 . -812) NIL) ((-90 . -810) NIL) ((-90 . -184) 7402) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1129) T) ((-90 . -553) 7384) ((-90 . -1014) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -962) T) ((-90 . -664) T) ((-90 . -1061) T) ((-90 . -1026) T) ((-90 . -971) T) ((-89 . -780) 7368) ((-89 . -833) T) ((-89 . -496) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -556) 7340) ((-89 . -655) 7327) ((-89 . -583) 7314) ((-89 . -969) 7301) ((-89 . -964) 7288) ((-89 . -82) 7273) ((-89 . -38) 7260) ((-89 . -392) T) ((-89 . -258) T) ((-89 . -962) T) ((-89 . -664) T) ((-89 . -1061) T) ((-89 . -1026) T) ((-89 . -971) T) ((-89 . -21) T) ((-89 . -589) 7232) ((-89 . -23) T) ((-89 . -1014) T) ((-89 . -553) 7214) ((-89 . -1129) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -591) 7201) ((-89 . -120) T) ((-86 . -757) T) ((-86 . -553) 7183) ((-86 . -1014) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1129) T) ((-86 . -760) T) ((-86 . -748) 7164) ((-85 . -753) T) ((-85 . -760) T) ((-85 . -757) T) ((-85 . -1014) T) ((-85 . -553) 7146) ((-85 . -1129) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -320) T) ((-85 . -881) T) ((-85 . -605) T) ((-85 . -84) T) ((-85 . -554) 7128) ((-81 . -96) T) ((-81 . -324) 7111) ((-81 . -760) T) ((-81 . -757) T) ((-81 . -124) 7094) ((-81 . -554) 7076) ((-81 . -241) 7027) ((-81 . -539) 7003) ((-81 . -243) 6979) ((-81 . -594) 6962) ((-81 . -429) 6945) ((-81 . -1014) T) ((-81 . -456) NIL) ((-81 . -260) NIL) ((-81 . -553) 6927) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -318) 6910) ((-81 . -19) 6893) ((-81 . -605) T) ((-81 . -13) T) ((-81 . -1129) T) ((-81 . -84) T) ((-79 . -80) 6877) ((-79 . -1129) T) ((-79 . |MappingCategory|) 6851) ((-79 . -1014) T) ((-79 . -553) 6833) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -553) 6815) ((-77 . -905) 6797) ((-77 . -1066) T) ((-77 . -556) 6747) ((-77 . -951) 6707) ((-77 . -554) 6637) ((-77 . -934) T) ((-77 . -822) NIL) ((-77 . -795) 6619) ((-77 . -756) T) ((-77 . -722) T) ((-77 . -719) T) ((-77 . -760) T) ((-77 . -757) T) ((-77 . -717) T) ((-77 . -715) T) ((-77 . -741) T) ((-77 . -797) 6601) ((-77 . -343) 6583) ((-77 . -581) 6565) ((-77 . -329) 6547) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -456) NIL) ((-77 . -288) 6529) ((-77 . -201) T) ((-77 . -82) 6456) ((-77 . -964) 6406) ((-77 . -969) 6356) ((-77 . -246) T) ((-77 . -655) 6306) ((-77 . -583) 6256) ((-77 . -591) 6206) ((-77 . -589) 6156) ((-77 . -38) 6106) ((-77 . -258) T) ((-77 . -392) T) ((-77 . -146) T) ((-77 . -496) T) ((-77 . -833) T) ((-77 . -1134) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 6093) ((-77 . -189) T) ((-77 . -225) 6075) ((-77 . -807) NIL) ((-77 . -812) NIL) ((-77 . -810) NIL) ((-77 . -184) 6057) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1129) T) ((-77 . -553) 6000) ((-77 . -1014) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -962) T) ((-77 . -664) T) ((-77 . -1061) T) ((-77 . -1026) T) ((-77 . -971) T) ((-73 . -98) 5984) ((-73 . -318) 5968) ((-73 . -924) 5952) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1129) T) ((-73 . -72) 5906) ((-73 . -553) 5841) ((-73 . -260) 5779) ((-73 . -456) 5712) ((-73 . -1014) 5690) ((-73 . -429) 5674) ((-73 . -92) 5658) ((-69 . -413) T) ((-69 . -1026) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1129) T) ((-69 . -553) 5640) ((-69 . -1014) T) ((-69 . -664) T) ((-69 . -241) 5619) ((-67 . -996) T) ((-67 . -430) 5600) ((-67 . -553) 5566) ((-67 . -556) 5547) ((-67 . -1014) T) ((-67 . -1129) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1035) 5531) ((-62 . -318) 5515) ((-62 . -429) 5499) ((-62 . -1014) 5477) ((-62 . -456) 5410) ((-62 . -260) 5348) ((-62 . -553) 5283) ((-62 . -72) 5237) ((-62 . -1129) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5221) ((-60 . -57) 5183) ((-60 . -429) 5167) ((-60 . -1014) 5145) ((-60 . -456) 5078) ((-60 . -260) 5016) ((-60 . -553) 4951) ((-60 . -72) 4905) ((-60 . -1129) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -318) 4889) ((-58 . -19) 4873) ((-58 . -318) 4857) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1129) T) ((-58 . -72) 4791) ((-58 . -553) 4706) ((-58 . -260) 4644) ((-58 . -456) 4577) ((-58 . -1014) 4530) ((-58 . -429) 4514) ((-58 . -594) 4498) ((-58 . -243) 4475) ((-58 . -241) 4427) ((-58 . -539) 4404) ((-58 . -554) 4365) ((-58 . -124) 4349) ((-58 . -757) 4328) ((-58 . -760) 4307) ((-58 . -324) 4291) ((-55 . -1014) T) ((-55 . -553) 4273) ((-55 . -1129) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -951) 4255) ((-55 . -556) 4237) ((-51 . -1014) T) ((-51 . -553) 4219) ((-51 . -1129) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -561) 4203) ((-50 . -556) 4172) ((-50 . -591) 4146) ((-50 . -589) 4105) ((-50 . -971) T) ((-50 . -1026) T) ((-50 . -1061) T) ((-50 . -664) T) ((-50 . -962) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1014) T) ((-50 . -553) 4087) ((-50 . -1129) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -951) 4071) ((-49 . -1014) T) ((-49 . -553) 4053) ((-49 . -1129) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1129) T) ((-48 . -553) 4035) ((-48 . -1014) T) ((-48 . -556) 3936) ((-48 . -951) 3879) ((-48 . -456) 3845) ((-48 . -260) 3832) ((-48 . -27) T) ((-48 . -916) T) ((-48 . -201) T) ((-48 . -82) 3781) ((-48 . -964) 3746) ((-48 . -969) 3711) ((-48 . -246) T) ((-48 . -655) 3676) ((-48 . -583) 3641) ((-48 . -591) 3591) ((-48 . -589) 3541) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -962) T) ((-48 . -664) T) ((-48 . -1061) T) ((-48 . -1026) T) ((-48 . -971) T) ((-48 . -38) 3506) ((-48 . -258) T) ((-48 . -392) T) ((-48 . -146) T) ((-48 . -496) T) ((-48 . -833) T) ((-48 . -1134) T) ((-48 . -312) T) ((-48 . -581) 3466) ((-48 . -934) T) ((-48 . -554) 3411) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3398) ((-48 . -189) T) ((-45 . -36) 3377) ((-45 . -550) 3356) ((-45 . -243) 3279) ((-45 . -241) 3177) ((-45 . -429) 3112) ((-45 . -456) 2864) ((-45 . -260) 2662) ((-45 . -539) 2585) ((-45 . -193) 2533) ((-45 . -76) 2481) ((-45 . -183) 2429) ((-45 . -1107) 2408) ((-45 . -237) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1129) T) ((-45 . -72) T) ((-45 . -553) 2286) ((-45 . -1014) T) ((-45 . -554) NIL) ((-45 . -594) 2234) ((-45 . -324) 2182) ((-45 . -760) NIL) ((-45 . -757) NIL) ((-45 . -318) 2130) ((-45 . -1064) 2078) ((-45 . -924) 2026) ((-45 . -1168) 1974) ((-45 . -609) 1922) ((-44 . -361) 1906) ((-44 . -684) 1890) ((-44 . -658) T) ((-44 . -686) T) ((-44 . -82) 1869) ((-44 . -964) 1853) ((-44 . -969) 1837) ((-44 . -21) T) ((-44 . -589) 1780) ((-44 . -23) T) ((-44 . -1014) T) ((-44 . -553) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -591) 1720) ((-44 . -583) 1704) ((-44 . -655) 1688) ((-44 . -316) 1672) ((-44 . -1129) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -556) 1553) ((-40 . -971) T) ((-40 . -1026) T) ((-40 . -1061) T) ((-40 . -664) T) ((-40 . -962) T) ((-40 . -591) 1455) ((-40 . -589) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1129) T) ((-40 . -553) 1367) ((-40 . -1014) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -969) 1312) ((-40 . -964) 1257) ((-40 . -82) 1174) ((-40 . -554) 1158) ((-40 . -184) 1135) ((-40 . -810) 1087) ((-40 . -812) 999) ((-40 . -807) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1134) T) ((-40 . -833) T) ((-40 . -496) T) ((-40 . -655) 677) ((-40 . -583) 622) ((-40 . -38) 567) ((-40 . -392) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -320) NIL) ((-40 . -299) NIL) ((-40 . -1066) NIL) ((-40 . -118) 539) ((-40 . -345) NIL) ((-40 . -353) 511) ((-40 . -120) 483) ((-40 . -322) 455) ((-40 . -329) 432) ((-40 . -581) 366) ((-40 . -355) 343) ((-40 . -951) 220) ((-40 . -662) 192) ((-31 . -996) T) ((-31 . -430) 173) ((-31 . -553) 139) ((-31 . -556) 120) ((-31 . -1014) T) ((-31 . -1129) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -867) T) ((-30 . -553) 102) ((0 . |EnumerationCategory|) T) ((0 . -553) 84) ((0 . -1014) T) ((0 . -72) T) ((0 . -1129) T) ((-2 . |RecordCategory|) T) ((-2 . -553) 66) ((-2 . -1014) T) ((-2 . -72) T) ((-2 . -1129) T) ((-3 . |UnionCategory|) T) ((-3 . -553) 48) ((-3 . -1014) T) ((-3 . -72) T) ((-3 . -1129) T) ((-1 . -1014) T) ((-1 . -553) 30) ((-1 . -1129) T) ((-1 . -13) T) ((-1 . -72) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index a43b5d4d..8e197cca 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3577755910)
-(3997 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3577772101)
+(3998 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&|
@@ -99,8 +99,8 @@
|FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension|
|FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory|
|FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra|
- |FiniteAggregate| |Finite&| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra|
- |FiniteLinearAggregate&| |FiniteLinearAggregate|
+ |FiniteAggregate&| |FiniteAggregate| |Finite&| |Finite| |FiniteRankAlgebra&|
+ |FiniteRankAlgebra| |FiniteLinearAggregate&| |FiniteLinearAggregate|
|FiniteLinearAggregateFunctions2| |FreeLieAlgebra| |FiniteLinearAggregateSort|
|FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |Float|
|FloatingComplexPackage| |FloatingRealPackage| |FreeModule| |FreeModule1|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 76c5656d..9e1dd434 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4044 +1,4047 @@
-(2825047 . 3577755920)
-((-1731 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1729 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3787 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-1145 (-484)) |#2|) 44 T ELT)) (-2297 (($ $) 80 T ELT)) (-3841 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3418 (((-484) (-1 (-85) |#2|) $) 27 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) |#2| $ (-484)) 96 T ELT)) (-2889 (((-583 |#2|) $) 13 T ELT)) (-3517 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1948 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2304 (($ |#2| $ (-484)) NIL T ELT) (($ $ $ (-484)) 67 T ELT)) (-1353 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3799 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) 66 T ELT)) (-2305 (($ $ (-484)) 76 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-1945 (((-694) |#2| $) NIL T ELT) (((-694) (-1 (-85) |#2|) $) 34 T ELT)) (-1730 (($ $ $ (-484)) 69 T ELT)) (-3399 (($ $) 68 T ELT)) (-3529 (($ (-583 |#2|)) 73 T ELT)) (-3801 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-583 $)) 85 T ELT)) (-3945 (((-772) $) 92 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3056 (((-85) $ $) 95 T ELT)) (-2685 (((-85) $ $) 99 T ELT)))
-(((-18 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -1729 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -1730 (|#1| |#1| |#1| (-484))) (-15 -1731 ((-85) |#1|)) (-15 -3517 (|#1| |#1| |#1|)) (-15 -3418 ((-484) |#2| |#1| (-484))) (-15 -3418 ((-484) |#2| |#1|)) (-15 -3418 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3517 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-694) |#2| |#1|)) (-15 -3787 (|#2| |#1| (-1145 (-484)) |#2|)) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1145 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3801 (|#1| (-583 |#1|))) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#2|)) (-15 -3799 (|#1| |#1| (-1145 (-484)))) (-15 -3529 (|#1| (-583 |#2|))) (-15 -1353 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3799 (|#2| |#1| (-484))) (-15 -3799 (|#2| |#1| (-484) |#2|)) (-15 -3787 (|#2| |#1| (-484) |#2|)) (-15 -2889 ((-583 |#2|) |#1|)) (-15 -1948 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3399 (|#1| |#1|))) (-19 |#2|) (-1128)) (T -18))
+(2824583 . 3577772109)
+((-1732 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1730 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3788 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-1146 (-485)) |#2|) 44 T ELT)) (-2298 (($ $) 80 T ELT)) (-3842 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3419 (((-485) (-1 (-85) |#2|) $) 27 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) |#2| $ (-485)) 96 T ELT)) (-2890 (((-584 |#2|) $) 13 T ELT)) (-3518 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1949 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2305 (($ |#2| $ (-485)) NIL T ELT) (($ $ $ (-485)) 67 T ELT)) (-1354 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3800 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) 66 T ELT)) (-2306 (($ $ (-485)) 76 T ELT) (($ $ (-1146 (-485))) 75 T ELT)) (-1946 (((-695) |#2| $) NIL T ELT) (((-695) (-1 (-85) |#2|) $) 34 T ELT)) (-1731 (($ $ $ (-485)) 69 T ELT)) (-3400 (($ $) 68 T ELT)) (-3530 (($ (-584 |#2|)) 73 T ELT)) (-3802 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-584 $)) 85 T ELT)) (-3946 (((-773) $) 92 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3057 (((-85) $ $) 95 T ELT)) (-2686 (((-85) $ $) 99 T ELT)))
+(((-18 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -1730 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -1731 (|#1| |#1| |#1| (-485))) (-15 -1732 ((-85) |#1|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -3419 ((-485) |#2| |#1| (-485))) (-15 -3419 ((-485) |#2| |#1|)) (-15 -3419 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3518 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-695) |#2| |#1|)) (-15 -3788 (|#2| |#1| (-1146 (-485)) |#2|)) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1146 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -3958 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3802 (|#1| (-584 |#1|))) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#2|)) (-15 -3800 (|#1| |#1| (-1146 (-485)))) (-15 -3530 (|#1| (-584 |#2|))) (-15 -1354 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3800 (|#2| |#1| (-485))) (-15 -3800 (|#2| |#1| (-485) |#2|)) (-15 -3788 (|#2| |#1| (-485) |#2|)) (-15 -2890 ((-584 |#2|) |#1|)) (-15 -1949 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3400 (|#1| |#1|))) (-19 |#2|) (-1129)) (T -18))
NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3995)) ELT) (($ $) 98 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 100 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 110 T ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) 107 T ELT) (((-484) |#1| $) 106 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 105 (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-1730 (($ $ $ (-484)) 101 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-19 |#1|) (-113) (-1128)) (T -19))
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) 44 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3996))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-757)) ELT)) (-3788 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2298 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) 110 T ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) 107 T ELT) (((-485) |#1| $) 106 (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) 105 (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1146 (-485))) 75 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1146 (-485))) 67 T ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-1731 (($ $ $ (-485)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-19 |#1|) (-113) (-1129)) (T -19))
NIL
-(-13 (-323 |t#1|) (-10 -7 (-6 -3995)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-323 |#1|) . T) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1128) . T))
-((-1311 (((-3 $ "failed") $ $) 12 T ELT)) (-1213 (((-85) $ $) 27 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 16 T ELT) (($ (-484) $) 25 T ELT)))
-(((-20 |#1|) (-10 -7 (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1213 ((-85) |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-21)) (T -20))
+(-13 (-324 |t#1|) (-10 -7 (-6 -3996)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1129) . T))
+((-1312 (((-3 $ "failed") $ $) 12 T ELT)) (-1214 (((-85) $ $) 27 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 16 T ELT) (($ (-485) $) 25 T ELT)))
+(((-20 |#1|) (-10 -7 (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1214 ((-85) |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-21)) (T -20))
NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT)))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT)))
(((-21) (-113)) (T -21))
-((-3836 (*1 *1 *1) (-4 *1 (-21))) (-3836 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-104) (-588 (-484)) (-10 -8 (-15 -3836 ($ $)) (-15 -3836 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1013) . T) ((-1128) . T))
-((-3188 (((-85) $) 10 T ELT)) (-3723 (($) 15 T CONST)) (-1213 (((-85) $ $) 22 T ELT)) (* (($ (-830) $) 14 T ELT) (($ (-694) $) 19 T ELT)))
-(((-22 |#1|) (-10 -7 (-15 -1213 ((-85) |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3188 ((-85) |#1|)) (-15 -3723 (|#1|) -3951) (-15 * (|#1| (-830) |#1|))) (-23)) (T -22))
+((-3837 (*1 *1 *1) (-4 *1 (-21))) (-3837 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-104) (-589 (-485)) (-10 -8 (-15 -3837 ($ $)) (-15 -3837 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1129) . T))
+((-3189 (((-85) $) 10 T ELT)) (-3724 (($) 15 T CONST)) (-1214 (((-85) $ $) 22 T ELT)) (* (($ (-831) $) 14 T ELT) (($ (-695) $) 19 T ELT)))
+(((-22 |#1|) (-10 -7 (-15 -1214 ((-85) |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 -3724 (|#1|) -3952) (-15 * (|#1| (-831) |#1|))) (-23)) (T -22))
NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT)))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
(((-23) (-113)) (T -23))
-((-2660 (*1 *1) (-4 *1 (-23))) (-3723 (*1 *1) (-4 *1 (-23))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694)))) (-1213 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))))
-(-13 (-25) (-10 -8 (-15 -2660 ($) -3951) (-15 -3723 ($) -3951) (-15 -3188 ((-85) $)) (-15 * ($ (-694) $)) (-15 -1213 ((-85) $ $))))
-(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((* (($ (-830) $) 10 T ELT)))
-(((-24 |#1|) (-10 -7 (-15 * (|#1| (-830) |#1|))) (-25)) (T -24))
+((-2661 (*1 *1) (-4 *1 (-23))) (-3724 (*1 *1) (-4 *1 (-23))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695)))) (-1214 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))))
+(-13 (-25) (-10 -8 (-15 -2661 ($) -3952) (-15 -3724 ($) -3952) (-15 -3189 ((-85) $)) (-15 * ($ (-695) $)) (-15 -1214 ((-85) $ $))))
+(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((* (($ (-831) $) 10 T ELT)))
+(((-24 |#1|) (-10 -7 (-15 * (|#1| (-831) |#1|))) (-25)) (T -24))
NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT)))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT)))
(((-25) (-113)) (T -25))
-((-3838 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830)))))
-(-13 (-1013) (-10 -8 (-15 -3838 ($ $ $)) (-15 * ($ (-830) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-1214 (((-583 $) (-857 $)) 32 T ELT) (((-583 $) (-1084 $)) 16 T ELT) (((-583 $) (-1084 $) (-1089)) 20 T ELT)) (-1215 (($ (-857 $)) 30 T ELT) (($ (-1084 $)) 11 T ELT) (($ (-1084 $) (-1089)) 60 T ELT)) (-1216 (((-583 $) (-857 $)) 33 T ELT) (((-583 $) (-1084 $)) 18 T ELT) (((-583 $) (-1084 $) (-1089)) 19 T ELT)) (-3183 (($ (-857 $)) 31 T ELT) (($ (-1084 $)) 13 T ELT) (($ (-1084 $) (-1089)) NIL T ELT)))
-(((-26 |#1|) (-10 -7 (-15 -1214 ((-583 |#1|) (-1084 |#1|) (-1089))) (-15 -1214 ((-583 |#1|) (-1084 |#1|))) (-15 -1214 ((-583 |#1|) (-857 |#1|))) (-15 -1215 (|#1| (-1084 |#1|) (-1089))) (-15 -1215 (|#1| (-1084 |#1|))) (-15 -1215 (|#1| (-857 |#1|))) (-15 -1216 ((-583 |#1|) (-1084 |#1|) (-1089))) (-15 -1216 ((-583 |#1|) (-1084 |#1|))) (-15 -1216 ((-583 |#1|) (-857 |#1|))) (-15 -3183 (|#1| (-1084 |#1|) (-1089))) (-15 -3183 (|#1| (-1084 |#1|))) (-15 -3183 (|#1| (-857 |#1|)))) (-27)) (T -26))
+((-3839 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831)))))
+(-13 (-1014) (-10 -8 (-15 -3839 ($ $ $)) (-15 * ($ (-831) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-1215 (((-584 $) (-858 $)) 32 T ELT) (((-584 $) (-1085 $)) 16 T ELT) (((-584 $) (-1085 $) (-1090)) 20 T ELT)) (-1216 (($ (-858 $)) 30 T ELT) (($ (-1085 $)) 11 T ELT) (($ (-1085 $) (-1090)) 60 T ELT)) (-1217 (((-584 $) (-858 $)) 33 T ELT) (((-584 $) (-1085 $)) 18 T ELT) (((-584 $) (-1085 $) (-1090)) 19 T ELT)) (-3184 (($ (-858 $)) 31 T ELT) (($ (-1085 $)) 13 T ELT) (($ (-1085 $) (-1090)) NIL T ELT)))
+(((-26 |#1|) (-10 -7 (-15 -1215 ((-584 |#1|) (-1085 |#1|) (-1090))) (-15 -1215 ((-584 |#1|) (-1085 |#1|))) (-15 -1215 ((-584 |#1|) (-858 |#1|))) (-15 -1216 (|#1| (-1085 |#1|) (-1090))) (-15 -1216 (|#1| (-1085 |#1|))) (-15 -1216 (|#1| (-858 |#1|))) (-15 -1217 ((-584 |#1|) (-1085 |#1|) (-1090))) (-15 -1217 ((-584 |#1|) (-1085 |#1|))) (-15 -1217 ((-584 |#1|) (-858 |#1|))) (-15 -3184 (|#1| (-1085 |#1|) (-1090))) (-15 -3184 (|#1| (-1085 |#1|))) (-15 -3184 (|#1| (-858 |#1|)))) (-27)) (T -26))
NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-1214 (((-583 $) (-857 $)) 98 T ELT) (((-583 $) (-1084 $)) 97 T ELT) (((-583 $) (-1084 $) (-1089)) 96 T ELT)) (-1215 (($ (-857 $)) 101 T ELT) (($ (-1084 $)) 100 T ELT) (($ (-1084 $) (-1089)) 99 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-3037 (($ $) 110 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-1216 (((-583 $) (-857 $)) 104 T ELT) (((-583 $) (-1084 $)) 103 T ELT) (((-583 $) (-1084 $) (-1089)) 102 T ELT)) (-3183 (($ (-857 $)) 107 T ELT) (($ (-1084 $)) 106 T ELT) (($ (-1084 $) (-1089)) 105 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 109 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-349 (-484))) 108 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT)))
+((-2569 (((-85) $ $) 7 T ELT)) (-1215 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1085 $)) 97 T ELT) (((-584 $) (-1085 $) (-1090)) 96 T ELT)) (-1216 (($ (-858 $)) 101 T ELT) (($ (-1085 $)) 100 T ELT) (($ (-1085 $) (-1090)) 99 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 110 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-1217 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1085 $)) 103 T ELT) (((-584 $) (-1085 $) (-1090)) 102 T ELT)) (-3184 (($ (-858 $)) 107 T ELT) (($ (-1085 $)) 106 T ELT) (($ (-1085 $) (-1090)) 105 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 109 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
(((-27) (-113)) (T -27))
-((-3183 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-3183 (*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) (-3183 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1216 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1215 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-1215 (*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) (-1215 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1214 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
-(-13 (-312) (-915) (-10 -8 (-15 -3183 ($ (-857 $))) (-15 -3183 ($ (-1084 $))) (-15 -3183 ($ (-1084 $) (-1089))) (-15 -1216 ((-583 $) (-857 $))) (-15 -1216 ((-583 $) (-1084 $))) (-15 -1216 ((-583 $) (-1084 $) (-1089))) (-15 -1215 ($ (-857 $))) (-15 -1215 ($ (-1084 $))) (-15 -1215 ($ (-1084 $) (-1089))) (-15 -1214 ((-583 $) (-857 $))) (-15 -1214 ((-583 $) (-1084 $))) (-15 -1214 ((-583 $) (-1084 $) (-1089)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-915) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
-((-1214 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-1084 $) (-1089)) 54 T ELT) (((-583 $) $) 22 T ELT) (((-583 $) $ (-1089)) 45 T ELT)) (-1215 (($ (-857 $)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-1084 $) (-1089)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1089)) 39 T ELT)) (-1216 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-1084 $) (-1089)) 52 T ELT) (((-583 $) $) 18 T ELT) (((-583 $) $ (-1089)) 47 T ELT)) (-3183 (($ (-857 $)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-1084 $) (-1089)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1089)) 41 T ELT)))
-(((-28 |#1| |#2|) (-10 -7 (-15 -1214 ((-583 |#1|) |#1| (-1089))) (-15 -1215 (|#1| |#1| (-1089))) (-15 -1214 ((-583 |#1|) |#1|)) (-15 -1215 (|#1| |#1|)) (-15 -1216 ((-583 |#1|) |#1| (-1089))) (-15 -3183 (|#1| |#1| (-1089))) (-15 -1216 ((-583 |#1|) |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -1214 ((-583 |#1|) (-1084 |#1|) (-1089))) (-15 -1214 ((-583 |#1|) (-1084 |#1|))) (-15 -1214 ((-583 |#1|) (-857 |#1|))) (-15 -1215 (|#1| (-1084 |#1|) (-1089))) (-15 -1215 (|#1| (-1084 |#1|))) (-15 -1215 (|#1| (-857 |#1|))) (-15 -1216 ((-583 |#1|) (-1084 |#1|) (-1089))) (-15 -1216 ((-583 |#1|) (-1084 |#1|))) (-15 -1216 ((-583 |#1|) (-857 |#1|))) (-15 -3183 (|#1| (-1084 |#1|) (-1089))) (-15 -3183 (|#1| (-1084 |#1|))) (-15 -3183 (|#1| (-857 |#1|)))) (-29 |#2|) (-495)) (T -28))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-1214 (((-583 $) (-857 $)) 98 T ELT) (((-583 $) (-1084 $)) 97 T ELT) (((-583 $) (-1084 $) (-1089)) 96 T ELT) (((-583 $) $) 148 T ELT) (((-583 $) $ (-1089)) 146 T ELT)) (-1215 (($ (-857 $)) 101 T ELT) (($ (-1084 $)) 100 T ELT) (($ (-1084 $) (-1089)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1089)) 147 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-1089)) $) 217 T ELT)) (-3083 (((-349 (-1084 $)) $ (-550 $)) 249 (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1599 (((-583 (-550 $)) $) 180 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-1603 (($ $ (-583 (-550 $)) (-583 $)) 170 T ELT) (($ $ (-583 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-3037 (($ $) 110 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-1216 (((-583 $) (-857 $)) 104 T ELT) (((-583 $) (-1084 $)) 103 T ELT) (((-583 $) (-1084 $) (-1089)) 102 T ELT) (((-583 $) $) 152 T ELT) (((-583 $) $ (-1089)) 150 T ELT)) (-3183 (($ (-857 $)) 107 T ELT) (($ (-1084 $)) 106 T ELT) (($ (-1084 $) (-1089)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1089)) 151 T ELT)) (-3157 (((-3 (-857 |#1|) #1="failed") $) 268 (|has| |#1| (-961)) ELT) (((-3 (-349 (-857 |#1|)) #1#) $) 251 (|has| |#1| (-495)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-484) #1#) $) 210 (|has| |#1| (-950 (-484))) ELT) (((-3 (-1089) #1#) $) 204 T ELT) (((-3 (-550 $) #1#) $) 155 T ELT) (((-3 (-349 (-484)) #1#) $) 143 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3156 (((-857 |#1|) $) 267 (|has| |#1| (-961)) ELT) (((-349 (-857 |#1|)) $) 250 (|has| |#1| (-495)) ELT) ((|#1| $) 212 T ELT) (((-484) $) 211 (|has| |#1| (-950 (-484))) ELT) (((-1089) $) 203 T ELT) (((-550 $) $) 154 T ELT) (((-349 (-484)) $) 144 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2564 (($ $ $) 71 T ELT)) (-2279 (((-630 |#1|) (-630 $)) 256 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 255 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 142 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (((-630 (-484)) (-630 $)) 141 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 209 (|has| |#1| (-796 (-329))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 208 (|has| |#1| (-796 (-484))) ELT)) (-2573 (($ (-583 $)) 174 T ELT) (($ $) 173 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-1598 (((-583 (-86)) $) 181 T ELT)) (-3594 (((-86) (-86)) 182 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2673 (((-85) $) 202 (|has| $ (-950 (-484))) ELT)) (-2996 (($ $) 234 (|has| |#1| (-961)) ELT)) (-2998 (((-1038 |#1| (-550 $)) $) 233 (|has| |#1| (-961)) ELT)) (-3011 (($ $ (-484)) 109 T ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-1596 (((-1084 $) (-550 $)) 199 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) 188 T ELT)) (-1601 (((-3 (-550 $) "failed") $) 178 T ELT)) (-2280 (((-630 |#1|) (-1178 $)) 258 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 257 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 140 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (((-630 (-484)) (-1178 $)) 139 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1600 (((-583 (-550 $)) $) 179 T ELT)) (-2235 (($ (-86) (-583 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2823 (((-3 (-583 $) #3="failed") $) 228 (|has| |#1| (-1025)) ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #3#) $) 237 (|has| |#1| (-961)) ELT)) (-2822 (((-3 (-583 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1793 (((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $ (-1089)) 236 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $ (-86)) 235 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $) 229 (|has| |#1| (-1025)) ELT)) (-2633 (((-85) $ (-1089)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2484 (($ $) 88 T ELT)) (-2603 (((-694) $) 177 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 215 T ELT)) (-1795 ((|#1| $) 216 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1597 (((-85) $ (-1089)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-2674 (((-85) $) 201 (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-1089) (-694) (-1 $ $)) 241 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ (-583 $))) 240 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 239 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $))) 238 (|has| |#1| (-961)) ELT) (($ $ (-583 (-86)) (-583 $) (-1089)) 227 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1089)) 226 (|has| |#1| (-553 (-473))) ELT) (($ $) 225 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089))) 224 (|has| |#1| (-553 (-473))) ELT) (($ $ (-1089)) 223 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-583 $))) 197 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 196 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 195 T ELT) (($ $ (-1089) (-1 $ $)) 194 T ELT) (($ $ (-1089) (-1 $ (-583 $))) 193 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) 192 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) 191 T ELT) (($ $ (-583 $) (-583 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-583 (-249 $))) 159 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 158 T ELT) (($ $ (-550 $) $) 157 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-3799 (($ (-86) (-583 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1602 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3757 (($ $ (-583 (-1089)) (-583 (-694))) 263 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) 262 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) 261 (|has| |#1| (-961)) ELT) (($ $ (-1089)) 259 (|has| |#1| (-961)) ELT)) (-2995 (($ $) 244 (|has| |#1| (-495)) ELT)) (-2997 (((-1038 |#1| (-550 $)) $) 243 (|has| |#1| (-495)) ELT)) (-3185 (($ $) 200 (|has| $ (-961)) ELT)) (-3971 (((-473) $) 272 (|has| |#1| (-553 (-473))) ELT) (($ (-347 $)) 242 (|has| |#1| (-495)) ELT) (((-800 (-329)) $) 207 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-800 (-484)) $) 206 (|has| |#1| (-553 (-800 (-484)))) ELT)) (-3009 (($ $ $) 271 (|has| |#1| (-412)) ELT)) (-2435 (($ $ $) 270 (|has| |#1| (-412)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ (-857 |#1|)) 269 (|has| |#1| (-961)) ELT) (($ (-349 (-857 |#1|))) 252 (|has| |#1| (-495)) ELT) (($ (-349 (-857 (-349 |#1|)))) 248 (|has| |#1| (-495)) ELT) (($ (-857 (-349 |#1|))) 247 (|has| |#1| (-495)) ELT) (($ (-349 |#1|)) 246 (|has| |#1| (-495)) ELT) (($ (-1038 |#1| (-550 $))) 232 (|has| |#1| (-961)) ELT) (($ |#1|) 214 T ELT) (($ (-1089)) 205 T ELT) (($ (-550 $)) 156 T ELT)) (-2702 (((-632 $) $) 254 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-2590 (($ (-583 $)) 172 T ELT) (($ $) 171 T ELT)) (-2254 (((-85) (-86)) 183 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-1794 (($ (-1089) (-583 $)) 222 T ELT) (($ (-1089) $ $ $ $) 221 T ELT) (($ (-1089) $ $ $) 220 T ELT) (($ (-1089) $ $) 219 T ELT) (($ (-1089) $) 218 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 (-1089)) (-583 (-694))) 266 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) 265 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) 264 (|has| |#1| (-961)) ELT) (($ $ (-1089)) 260 (|has| |#1| (-961)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT) (($ (-1038 |#1| (-550 $)) (-1038 |#1| (-550 $))) 245 (|has| |#1| (-495)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-349 (-484))) 108 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-961)) ELT)))
-(((-29 |#1|) (-113) (-495)) (T -29))
-((-3183 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1216 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3183 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1216 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-1215 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1214 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1215 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1214 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-363 |t#1|) (-10 -8 (-15 -3183 ($ $)) (-15 -1216 ((-583 $) $)) (-15 -3183 ($ $ (-1089))) (-15 -1216 ((-583 $) $ (-1089))) (-15 -1215 ($ $)) (-15 -1214 ((-583 $) $)) (-15 -1215 ($ $ (-1089))) (-15 -1214 ((-583 $) $ (-1089)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) . T) ((-555 (-349 (-857 |#1|))) |has| |#1| (-495)) ((-555 (-484)) . T) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1089)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-328 |#1|) |has| |#1| (-961)) ((-342 |#1|) . T) ((-354 |#1|) . T) ((-363 |#1|) . T) ((-391) . T) ((-412) |has| |#1| (-412)) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) . T) ((-580 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-349 (-484))) . T) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) . T) ((-663) . T) ((-806 $ (-1089)) |has| |#1| (-961)) ((-809 (-1089)) |has| |#1| (-961)) ((-811 (-1089)) |has| |#1| (-961)) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-832) . T) ((-915) . T) ((-950 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484))))) ((-950 (-349 (-857 |#1|))) |has| |#1| (-495)) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1089)) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) . T) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
-((-2896 (((-1001 (-179)) $) NIL T ELT)) (-2897 (((-1001 (-179)) $) NIL T ELT)) (-3134 (($ $ (-179)) 164 T ELT)) (-1217 (($ (-857 (-484)) (-1089) (-1089) (-1001 (-349 (-484))) (-1001 (-349 (-484)))) 103 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 181 T ELT)) (-3945 (((-772) $) 195 T ELT)))
-(((-30) (-13 (-866) (-10 -8 (-15 -1217 ($ (-857 (-484)) (-1089) (-1089) (-1001 (-349 (-484))) (-1001 (-349 (-484))))) (-15 -3134 ($ $ (-179)))))) (T -30))
-((-1217 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-857 (-484))) (-5 *3 (-1089)) (-5 *4 (-1001 (-349 (-484)))) (-5 *1 (-30)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (((-1048) $) 10 T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-31) (-13 (-995) (-10 -8 (-15 -2694 ((-1048) $)) (-15 -3233 ((-1048) $))))) (T -31))
-((-2694 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))))
-((-3183 ((|#2| (-1084 |#2|) (-1089)) 39 T ELT)) (-3594 (((-86) (-86)) 53 T ELT)) (-1596 (((-1084 |#2|) (-550 |#2|)) 148 (|has| |#1| (-950 (-484))) ELT)) (-1220 ((|#2| |#1| (-484)) 120 (|has| |#1| (-950 (-484))) ELT)) (-1218 ((|#2| (-1084 |#2|) |#2|) 29 T ELT)) (-1219 (((-772) (-583 |#2|)) 87 T ELT)) (-3185 ((|#2| |#2|) 143 (|has| |#1| (-950 (-484))) ELT)) (-2254 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-349 (-484))) 96 (|has| |#1| (-950 (-484))) ELT)))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3183 (|#2| (-1084 |#2|) (-1089))) (-15 -3594 ((-86) (-86))) (-15 -2254 ((-85) (-86))) (-15 -1218 (|#2| (-1084 |#2|) |#2|)) (-15 -1219 ((-772) (-583 |#2|))) (IF (|has| |#1| (-950 (-484))) (PROGN (-15 ** (|#2| |#2| (-349 (-484)))) (-15 -1596 ((-1084 |#2|) (-550 |#2|))) (-15 -3185 (|#2| |#2|)) (-15 -1220 (|#2| |#1| (-484)))) |%noBranch|)) (-495) (-363 |#1|)) (T -32))
-((-1220 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *2 (-363 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-495)))) (-3185 (*1 *2 *2) (-12 (-4 *3 (-950 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2)) (-4 *2 (-363 *3)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-550 *5)) (-4 *5 (-363 *4)) (-4 *4 (-950 (-484))) (-4 *4 (-495)) (-5 *2 (-1084 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-349 (-484))) (-4 *4 (-950 (-484))) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)) (-4 *2 (-363 *4)))) (-1219 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-363 *4)) (-4 *4 (-495)) (-5 *2 (-772)) (-5 *1 (-32 *4 *5)))) (-1218 (*1 *2 *3 *2) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-363 *4)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-363 *3)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *2)) (-5 *4 (-1089)) (-4 *2 (-363 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-495)))))
-((-3723 (($) 10 T CONST)) (-1221 (((-85) $ $) 8 T ELT)) (-3402 (((-85) $) 15 T ELT)))
-(((-33 |#1|) (-10 -7 (-15 -3723 (|#1|) -3951) (-15 -3402 ((-85) |#1|)) (-15 -1221 ((-85) |#1| |#1|))) (-34)) (T -33))
-NIL
-((-3723 (($) 7 T CONST)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3399 (($ $) 10 T ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
+((-3184 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-3184 (*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) (-3184 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1217 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1216 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-1216 (*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) (-1216 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-584 *1)))))
+(-13 (-312) (-916) (-10 -8 (-15 -3184 ($ (-858 $))) (-15 -3184 ($ (-1085 $))) (-15 -3184 ($ (-1085 $) (-1090))) (-15 -1217 ((-584 $) (-858 $))) (-15 -1217 ((-584 $) (-1085 $))) (-15 -1217 ((-584 $) (-1085 $) (-1090))) (-15 -1216 ($ (-858 $))) (-15 -1216 ($ (-1085 $))) (-15 -1216 ($ (-1085 $) (-1090))) (-15 -1215 ((-584 $) (-858 $))) (-15 -1215 ((-584 $) (-1085 $))) (-15 -1215 ((-584 $) (-1085 $) (-1090)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-916) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) . T))
+((-1215 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1085 $)) NIL T ELT) (((-584 $) (-1085 $) (-1090)) 54 T ELT) (((-584 $) $) 22 T ELT) (((-584 $) $ (-1090)) 45 T ELT)) (-1216 (($ (-858 $)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-1085 $) (-1090)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1090)) 39 T ELT)) (-1217 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1085 $)) NIL T ELT) (((-584 $) (-1085 $) (-1090)) 52 T ELT) (((-584 $) $) 18 T ELT) (((-584 $) $ (-1090)) 47 T ELT)) (-3184 (($ (-858 $)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-1085 $) (-1090)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1090)) 41 T ELT)))
+(((-28 |#1| |#2|) (-10 -7 (-15 -1215 ((-584 |#1|) |#1| (-1090))) (-15 -1216 (|#1| |#1| (-1090))) (-15 -1215 ((-584 |#1|) |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1217 ((-584 |#1|) |#1| (-1090))) (-15 -3184 (|#1| |#1| (-1090))) (-15 -1217 ((-584 |#1|) |#1|)) (-15 -3184 (|#1| |#1|)) (-15 -1215 ((-584 |#1|) (-1085 |#1|) (-1090))) (-15 -1215 ((-584 |#1|) (-1085 |#1|))) (-15 -1215 ((-584 |#1|) (-858 |#1|))) (-15 -1216 (|#1| (-1085 |#1|) (-1090))) (-15 -1216 (|#1| (-1085 |#1|))) (-15 -1216 (|#1| (-858 |#1|))) (-15 -1217 ((-584 |#1|) (-1085 |#1|) (-1090))) (-15 -1217 ((-584 |#1|) (-1085 |#1|))) (-15 -1217 ((-584 |#1|) (-858 |#1|))) (-15 -3184 (|#1| (-1085 |#1|) (-1090))) (-15 -3184 (|#1| (-1085 |#1|))) (-15 -3184 (|#1| (-858 |#1|)))) (-29 |#2|) (-496)) (T -28))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-1215 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1085 $)) 97 T ELT) (((-584 $) (-1085 $) (-1090)) 96 T ELT) (((-584 $) $) 148 T ELT) (((-584 $) $ (-1090)) 146 T ELT)) (-1216 (($ (-858 $)) 101 T ELT) (($ (-1085 $)) 100 T ELT) (($ (-1085 $) (-1090)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1090)) 147 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-1090)) $) 217 T ELT)) (-3084 (((-350 (-1085 $)) $ (-551 $)) 249 (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1600 (((-584 (-551 $)) $) 180 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-1604 (($ $ (-584 (-551 $)) (-584 $)) 170 T ELT) (($ $ (-584 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 110 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-1217 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1085 $)) 103 T ELT) (((-584 $) (-1085 $) (-1090)) 102 T ELT) (((-584 $) $) 152 T ELT) (((-584 $) $ (-1090)) 150 T ELT)) (-3184 (($ (-858 $)) 107 T ELT) (($ (-1085 $)) 106 T ELT) (($ (-1085 $) (-1090)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1090)) 151 T ELT)) (-3158 (((-3 (-858 |#1|) #1="failed") $) 268 (|has| |#1| (-962)) ELT) (((-3 (-350 (-858 |#1|)) #1#) $) 251 (|has| |#1| (-496)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-485) #1#) $) 210 (|has| |#1| (-951 (-485))) ELT) (((-3 (-1090) #1#) $) 204 T ELT) (((-3 (-551 $) #1#) $) 155 T ELT) (((-3 (-350 (-485)) #1#) $) 143 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3157 (((-858 |#1|) $) 267 (|has| |#1| (-962)) ELT) (((-350 (-858 |#1|)) $) 250 (|has| |#1| (-496)) ELT) ((|#1| $) 212 T ELT) (((-485) $) 211 (|has| |#1| (-951 (-485))) ELT) (((-1090) $) 203 T ELT) (((-551 $) $) 154 T ELT) (((-350 (-485)) $) 144 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2565 (($ $ $) 71 T ELT)) (-2280 (((-631 |#1|) (-631 $)) 256 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 255 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 142 (OR (-2563 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-631 $)) 141 (OR (-2563 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 209 (|has| |#1| (-797 (-330))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 208 (|has| |#1| (-797 (-485))) ELT)) (-2574 (($ (-584 $)) 174 T ELT) (($ $) 173 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-1599 (((-584 (-86)) $) 181 T ELT)) (-3595 (((-86) (-86)) 182 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2674 (((-85) $) 202 (|has| $ (-951 (-485))) ELT)) (-2997 (($ $) 234 (|has| |#1| (-962)) ELT)) (-2999 (((-1039 |#1| (-551 $)) $) 233 (|has| |#1| (-962)) ELT)) (-3012 (($ $ (-485)) 109 T ELT)) (-1605 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-1597 (((-1085 $) (-551 $)) 199 (|has| $ (-962)) ELT)) (-3958 (($ (-1 $ $) (-551 $)) 188 T ELT)) (-1602 (((-3 (-551 $) "failed") $) 178 T ELT)) (-2281 (((-631 |#1|) (-1179 $)) 258 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 257 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 140 (OR (-2563 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-1179 $)) 139 (OR (-2563 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1601 (((-584 (-551 $)) $) 179 T ELT)) (-2236 (($ (-86) (-584 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2824 (((-3 (-584 $) #3="failed") $) 228 (|has| |#1| (-1026)) ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #3#) $) 237 (|has| |#1| (-962)) ELT)) (-2823 (((-3 (-584 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1794 (((-3 (-2 (|:| -3954 (-485)) (|:| |var| (-551 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2825 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $ (-1090)) 236 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $ (-86)) 235 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $) 229 (|has| |#1| (-1026)) ELT)) (-2634 (((-85) $ (-1090)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2485 (($ $) 88 T ELT)) (-2604 (((-695) $) 177 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1797 (((-85) $) 215 T ELT)) (-1796 ((|#1| $) 216 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1598 (((-85) $ (-1090)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2675 (((-85) $) 201 (|has| $ (-951 (-485))) ELT)) (-3768 (($ $ (-1090) (-695) (-1 $ $)) 241 (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695) (-1 $ (-584 $))) 240 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 239 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ $))) 238 (|has| |#1| (-962)) ELT) (($ $ (-584 (-86)) (-584 $) (-1090)) 227 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1090)) 226 (|has| |#1| (-554 (-474))) ELT) (($ $) 225 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1090))) 224 (|has| |#1| (-554 (-474))) ELT) (($ $ (-1090)) 223 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-584 $))) 197 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 196 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 195 T ELT) (($ $ (-1090) (-1 $ $)) 194 T ELT) (($ $ (-1090) (-1 $ (-584 $))) 193 T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ (-584 $)))) 192 T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ $))) 191 T ELT) (($ $ (-584 $) (-584 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-584 (-249 $))) 159 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 158 T ELT) (($ $ (-551 $) $) 157 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-3800 (($ (-86) (-584 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1603 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3758 (($ $ (-584 (-1090)) (-584 (-695))) 263 (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695)) 262 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090))) 261 (|has| |#1| (-962)) ELT) (($ $ (-1090)) 259 (|has| |#1| (-962)) ELT)) (-2996 (($ $) 244 (|has| |#1| (-496)) ELT)) (-2998 (((-1039 |#1| (-551 $)) $) 243 (|has| |#1| (-496)) ELT)) (-3186 (($ $) 200 (|has| $ (-962)) ELT)) (-3972 (((-474) $) 272 (|has| |#1| (-554 (-474))) ELT) (($ (-348 $)) 242 (|has| |#1| (-496)) ELT) (((-801 (-330)) $) 207 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-801 (-485)) $) 206 (|has| |#1| (-554 (-801 (-485)))) ELT)) (-3010 (($ $ $) 271 (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) 270 (|has| |#1| (-413)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-858 |#1|)) 269 (|has| |#1| (-962)) ELT) (($ (-350 (-858 |#1|))) 252 (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) 248 (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) 247 (|has| |#1| (-496)) ELT) (($ (-350 |#1|)) 246 (|has| |#1| (-496)) ELT) (($ (-1039 |#1| (-551 $))) 232 (|has| |#1| (-962)) ELT) (($ |#1|) 214 T ELT) (($ (-1090)) 205 T ELT) (($ (-551 $)) 156 T ELT)) (-2703 (((-633 $) $) 254 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-2591 (($ (-584 $)) 172 T ELT) (($ $) 171 T ELT)) (-2255 (((-85) (-86)) 183 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-1795 (($ (-1090) (-584 $)) 222 T ELT) (($ (-1090) $ $ $ $) 221 T ELT) (($ (-1090) $ $ $) 220 T ELT) (($ (-1090) $ $) 219 T ELT) (($ (-1090) $) 218 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 (-1090)) (-584 (-695))) 266 (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695)) 265 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090))) 264 (|has| |#1| (-962)) ELT) (($ $ (-1090)) 260 (|has| |#1| (-962)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT) (($ (-1039 |#1| (-551 $)) (-1039 |#1| (-551 $))) 245 (|has| |#1| (-496)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-962)) ELT)))
+(((-29 |#1|) (-113) (-496)) (T -29))
+((-3184 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1217 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1217 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) (-1216 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1215 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-1216 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1215 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-364 |t#1|) (-10 -8 (-15 -3184 ($ $)) (-15 -1217 ((-584 $) $)) (-15 -3184 ($ $ (-1090))) (-15 -1217 ((-584 $) $ (-1090))) (-15 -1216 ($ $)) (-15 -1215 ((-584 $) $)) (-15 -1216 ($ $ (-1090))) (-15 -1215 ((-584 $) $ (-1090)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) . T) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1090)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-329 |#1|) |has| |#1| (-962)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-364 |#1|) . T) ((-392) . T) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) . T) ((-581 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-350 (-485))) . T) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) . T) ((-664) . T) ((-807 $ (-1090)) |has| |#1| (-962)) ((-810 (-1090)) |has| |#1| (-962)) ((-812 (-1090)) |has| |#1| (-962)) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) . T) ((-916) . T) ((-951 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1090)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) . T))
+((-2897 (((-1002 (-179)) $) NIL T ELT)) (-2898 (((-1002 (-179)) $) NIL T ELT)) (-3135 (($ $ (-179)) 164 T ELT)) (-1218 (($ (-858 (-485)) (-1090) (-1090) (-1002 (-350 (-485))) (-1002 (-350 (-485)))) 103 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 181 T ELT)) (-3946 (((-773) $) 195 T ELT)))
+(((-30) (-13 (-867) (-10 -8 (-15 -1218 ($ (-858 (-485)) (-1090) (-1090) (-1002 (-350 (-485))) (-1002 (-350 (-485))))) (-15 -3135 ($ $ (-179)))))) (T -30))
+((-1218 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-858 (-485))) (-5 *3 (-1090)) (-5 *4 (-1002 (-350 (-485)))) (-5 *1 (-30)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (((-1049) $) 10 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-31) (-13 (-996) (-10 -8 (-15 -2695 ((-1049) $)) (-15 -3234 ((-1049) $))))) (T -31))
+((-2695 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31)))))
+((-3184 ((|#2| (-1085 |#2|) (-1090)) 39 T ELT)) (-3595 (((-86) (-86)) 53 T ELT)) (-1597 (((-1085 |#2|) (-551 |#2|)) 148 (|has| |#1| (-951 (-485))) ELT)) (-1221 ((|#2| |#1| (-485)) 120 (|has| |#1| (-951 (-485))) ELT)) (-1219 ((|#2| (-1085 |#2|) |#2|) 29 T ELT)) (-1220 (((-773) (-584 |#2|)) 87 T ELT)) (-3186 ((|#2| |#2|) 143 (|has| |#1| (-951 (-485))) ELT)) (-2255 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-350 (-485))) 96 (|has| |#1| (-951 (-485))) ELT)))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3184 (|#2| (-1085 |#2|) (-1090))) (-15 -3595 ((-86) (-86))) (-15 -2255 ((-85) (-86))) (-15 -1219 (|#2| (-1085 |#2|) |#2|)) (-15 -1220 ((-773) (-584 |#2|))) (IF (|has| |#1| (-951 (-485))) (PROGN (-15 ** (|#2| |#2| (-350 (-485)))) (-15 -1597 ((-1085 |#2|) (-551 |#2|))) (-15 -3186 (|#2| |#2|)) (-15 -1221 (|#2| |#1| (-485)))) |%noBranch|)) (-496) (-364 |#1|)) (T -32))
+((-1221 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4)) (-4 *3 (-496)))) (-3186 (*1 *2 *2) (-12 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-551 *5)) (-4 *5 (-364 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *2 (-1085 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) (-1220 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-496)) (-5 *2 (-773)) (-5 *1 (-32 *4 *5)))) (-1219 (*1 *2 *3 *2) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) (-3184 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *2)) (-5 *4 (-1090)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-496)))))
+((-3724 (($) 10 T CONST)) (-1222 (((-85) $ $) 8 T ELT)) (-3403 (((-85) $) 15 T ELT)))
+(((-33 |#1|) (-10 -7 (-15 -3724 (|#1|) -3952) (-15 -3403 ((-85) |#1|)) (-15 -1222 ((-85) |#1| |#1|))) (-34)) (T -33))
+NIL
+((-3724 (($) 7 T CONST)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3400 (($ $) 10 T ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
(((-34) (-113)) (T -34))
-((-1221 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3399 (*1 *1 *1) (-4 *1 (-34))) (-3564 (*1 *1) (-4 *1 (-34))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3723 (*1 *1) (-4 *1 (-34))) (-3956 (*1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-34)) (-5 *2 (-694)))))
-(-13 (-1128) (-10 -8 (-15 -1221 ((-85) $ $)) (-15 -3399 ($ $)) (-15 -3564 ($)) (-15 -3402 ((-85) $)) (-15 -3723 ($) -3951) (IF (|has| $ (-6 -3994)) (-15 -3956 ((-694) $)) |%noBranch|)))
-(((-13) . T) ((-1128) . T))
-((-3497 (($ $) 11 T ELT)) (-3495 (($ $) 10 T ELT)) (-3499 (($ $) 9 T ELT)) (-3500 (($ $) 8 T ELT)) (-3498 (($ $) 7 T ELT)) (-3496 (($ $) 6 T ELT)))
+((-1222 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3400 (*1 *1 *1) (-4 *1 (-34))) (-3565 (*1 *1) (-4 *1 (-34))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3724 (*1 *1) (-4 *1 (-34))) (-3957 (*1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-34)) (-5 *2 (-695)))))
+(-13 (-1129) (-10 -8 (-15 -1222 ((-85) $ $)) (-15 -3400 ($ $)) (-15 -3565 ($)) (-15 -3403 ((-85) $)) (-15 -3724 ($) -3952) (IF (|has| $ (-6 -3995)) (-15 -3957 ((-695) $)) |%noBranch|)))
+(((-13) . T) ((-1129) . T))
+((-3498 (($ $) 11 T ELT)) (-3496 (($ $) 10 T ELT)) (-3500 (($ $) 9 T ELT)) (-3501 (($ $) 8 T ELT)) (-3499 (($ $) 7 T ELT)) (-3497 (($ $) 6 T ELT)))
(((-35) (-113)) (T -35))
-((-3497 (*1 *1 *1) (-4 *1 (-35))) (-3495 (*1 *1 *1) (-4 *1 (-35))) (-3499 (*1 *1 *1) (-4 *1 (-35))) (-3500 (*1 *1 *1) (-4 *1 (-35))) (-3498 (*1 *1 *1) (-4 *1 (-35))) (-3496 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3496 ($ $)) (-15 -3498 ($ $)) (-15 -3500 ($ $)) (-15 -3499 ($ $)) (-15 -3495 ($ $)) (-15 -3497 ($ $))))
-((-2568 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3401 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 147 T ELT)) (-3794 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 170 T ELT)) (-3796 (($ $) 168 T ELT)) (-3598 (($) 110 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 109 T ELT)) (-2198 (((-1184) $ |#1| |#1|) 98 (|has| $ (-6 -3995)) ELT) (((-1184) $ (-484) (-484)) 200 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 181 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 234 T ELT) (((-85) $) 228 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1729 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 225 (|has| $ (-6 -3995)) ELT) (($ $) 224 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 235 T ELT) (($ $) 229 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3441 (((-85) $ (-694)) 217 T ELT)) (-3025 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 156 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 177 (|has| $ (-6 -3995)) ELT)) (-3785 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 179 (|has| $ (-6 -3995)) ELT)) (-3788 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 175 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 211 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-1145 (-484)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 182 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 180 (|has| $ (-6 -3995)) ELT) (($ $ #2="rest" $) 178 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 176 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 155 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 154 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 245 T ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 197 (|has| $ (-6 -3994)) ELT)) (-3795 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 169 T ELT)) (-2231 (((-3 |#2| #5="failed") |#1| $) 68 T ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 226 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 236 T ELT)) (-3798 (($ $ (-694)) 164 T ELT) (($ $) 162 T ELT)) (-2368 (($ $) 243 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1352 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994)))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3994)) ELT) (((-3 |#2| #5#) |#1| $) 69 T ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 249 T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 244 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3994)) ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 199 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 196 (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 198 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 195 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 194 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 212 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) 87 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 210 T ELT)) (-3442 (((-85) $) 214 T ELT)) (-3418 (((-484) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 233 T ELT) (((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 232 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 231 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 77 (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 113 (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 139 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 145 T ELT)) (-3027 (((-85) $ $) 153 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3613 (($ (-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 190 T ELT)) (-3718 (((-85) $ (-694)) 216 T ELT)) (-2200 ((|#1| $) 95 (|has| |#1| (-756)) ELT) (((-484) $) 202 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 218 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2856 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) 246 T ELT) (($ $ $) 242 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3517 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) 237 T ELT) (($ $ $) 230 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 78 (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 121 T ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 241 T ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 123 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 254 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2201 ((|#1| $) 94 (|has| |#1| (-756)) ELT) (((-484) $) 203 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 219 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 112 (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 138 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 111 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 108 T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) 187 T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 137 T ELT)) (-3533 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 256 T ELT)) (-3715 (((-85) $ (-694)) 215 T ELT)) (-3030 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 150 T ELT)) (-3526 (((-85) $) 146 T ELT)) (-3242 (((-1072) $) 22 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3797 (($ $ (-694)) 167 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 165 T ELT)) (-2232 (((-583 |#1|) $) 70 T ELT)) (-2233 (((-85) |#1| $) 71 T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 248 T ELT) (($ $ $ (-484)) 247 T ELT)) (-2304 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 184 T ELT) (($ $ $ (-484)) 183 T ELT)) (-2203 (((-583 |#1|) $) 92 T ELT) (((-583 (-484)) $) 205 T ELT)) (-2204 (((-85) |#1| $) 91 T ELT) (((-85) (-484) $) 206 T ELT)) (-3243 (((-1033) $) 21 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3800 ((|#2| $) 96 (|has| |#1| (-756)) ELT) (($ $ (-694)) 161 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 159 T ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-2199 (($ $ |#2|) 97 (|has| $ (-6 -3995)) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 201 (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3443 (((-85) $) 213 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 119 T ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 239 T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 117 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 116 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 115 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 114 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 143 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 142 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 141 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 140 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 204 (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2205 (((-583 |#2|) $) 90 T ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 207 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 209 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 208 T ELT) (($ $ (-1145 (-484))) 191 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #1#) 166 T ELT) (($ $ #2#) 163 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #3#) 160 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #4#) 148 T ELT)) (-3029 (((-484) $ $) 151 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1570 (($ $ (-484)) 251 T ELT) (($ $ (-1145 (-484))) 250 T ELT)) (-2305 (($ $ (-484)) 186 T ELT) (($ $ (-1145 (-484))) 185 T ELT)) (-3632 (((-85) $) 149 T ELT)) (-3791 (($ $) 173 T ELT)) (-3789 (($ $) 174 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 172 T ELT)) (-3793 (($ $) 171 T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) |#2| $) 79 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 122 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 120 T ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 255 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 240 T ELT)) (-1730 (($ $ $ (-484)) 227 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473)))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 192 T ELT)) (-3790 (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 253 T ELT) (($ $ $) 252 T ELT)) (-3801 (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 189 T ELT) (($ (-583 $)) 188 T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 158 T ELT) (($ $ $) 157 T ELT)) (-3945 (((-772) $) 17 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-3521 (((-583 $) $) 144 T ELT)) (-3028 (((-85) $ $) 152 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1264 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1222 (((-632 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |#1| $) 136 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 118 T ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 238 T ELT)) (-2566 (((-85) $ $) 220 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2567 (((-85) $ $) 222 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3056 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2684 (((-85) $ $) 221 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2685 (((-85) $ $) 223 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-36 |#1| |#2|) (-113) (-1013) (-1013)) (T -36))
-((-1222 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-632 (-2 (|:| -3859 *3) (|:| |entry| *4)))))))
-(-13 (-1106 |t#1| |t#2|) (-608 (-2 (|:| -3859 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1222 ((-632 (-2 (|:| -3859 |t#1|) (|:| |entry| |t#2|))) |t#1| $))))
-(((-34) . T) ((-76 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1145 (-484)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-237 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-317 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-323 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-428 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-428 |#2|) . T) ((-538 (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-593 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-608 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-756) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ((-759) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ((-923 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-1013) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) (|has| |#2| (-1013))) ((-1063 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-1106 |#1| |#2|) . T) ((-1128) . T) ((-1167 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T))
-((-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-37 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-38 |#2|) (-146)) (T -37))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
+((-3498 (*1 *1 *1) (-4 *1 (-35))) (-3496 (*1 *1 *1) (-4 *1 (-35))) (-3500 (*1 *1 *1) (-4 *1 (-35))) (-3501 (*1 *1 *1) (-4 *1 (-35))) (-3499 (*1 *1 *1) (-4 *1 (-35))) (-3497 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3497 ($ $)) (-15 -3499 ($ $)) (-15 -3501 ($ $)) (-15 -3500 ($ $)) (-15 -3496 ($ $)) (-15 -3498 ($ $))))
+((-2569 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3402 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 147 T ELT)) (-3795 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 170 T ELT)) (-3797 (($ $) 168 T ELT)) (-3599 (($) 110 T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 109 T ELT)) (-2199 (((-1185) $ |#1| |#1|) 98 (|has| $ (-6 -3996)) ELT) (((-1185) $ (-485) (-485)) 200 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-485)) 181 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 234 T ELT) (((-85) $) 228 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1730 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 225 (|has| $ (-6 -3996)) ELT) (($ $) 224 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) (|has| $ (-6 -3996))) ELT)) (-2910 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 235 T ELT) (($ $) 229 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3442 (((-85) $ (-695)) 217 T ELT)) (-3026 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 156 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 177 (|has| $ (-6 -3996)) ELT)) (-3786 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 179 (|has| $ (-6 -3996)) ELT)) (-3789 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 175 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 211 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-1146 (-485)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 182 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 180 (|has| $ (-6 -3996)) ELT) (($ $ #2="rest" $) 178 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 176 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 155 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 154 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 245 T ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 197 (|has| $ (-6 -3995)) ELT)) (-3796 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 169 T ELT)) (-2232 (((-3 |#2| #5="failed") |#1| $) 68 T ELT)) (-3724 (($) 7 T CONST)) (-2298 (($ $) 226 (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) 236 T ELT)) (-3799 (($ $ (-695)) 164 T ELT) (($ $) 162 T ELT)) (-2369 (($ $) 243 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-1353 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995)))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3995)) ELT) (((-3 |#2| #5#) |#1| $) 69 T ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 249 T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 244 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3995)) ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 199 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 196 (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 198 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 195 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 194 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 212 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) 87 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) 210 T ELT)) (-3443 (((-85) $) 214 T ELT)) (-3419 (((-485) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 233 T ELT) (((-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 232 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT) (((-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) 231 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) 77 (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 113 (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 139 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 145 T ELT)) (-3028 (((-85) $ $) 153 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-3614 (($ (-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 190 T ELT)) (-3719 (((-85) $ (-695)) 216 T ELT)) (-2201 ((|#1| $) 95 (|has| |#1| (-757)) ELT) (((-485) $) 202 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 218 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2857 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) 246 T ELT) (($ $ $) 242 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3518 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) 237 T ELT) (($ $ $) 230 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) 78 (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 121 T ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 241 T ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 123 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 254 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) 94 (|has| |#1| (-757)) ELT) (((-485) $) 203 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 219 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 112 (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 138 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 111 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 108 T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) 187 T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 137 T ELT)) (-3534 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 256 T ELT)) (-3716 (((-85) $ (-695)) 215 T ELT)) (-3031 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 150 T ELT)) (-3527 (((-85) $) 146 T ELT)) (-3243 (((-1073) $) 22 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3798 (($ $ (-695)) 167 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 165 T ELT)) (-2233 (((-584 |#1|) $) 70 T ELT)) (-2234 (((-85) |#1| $) 71 T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) 248 T ELT) (($ $ $ (-485)) 247 T ELT)) (-2305 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) 184 T ELT) (($ $ $ (-485)) 183 T ELT)) (-2204 (((-584 |#1|) $) 92 T ELT) (((-584 (-485)) $) 205 T ELT)) (-2205 (((-85) |#1| $) 91 T ELT) (((-85) (-485) $) 206 T ELT)) (-3244 (((-1034) $) 21 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3801 ((|#2| $) 96 (|has| |#1| (-757)) ELT) (($ $ (-695)) 161 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 159 T ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-2200 (($ $ |#2|) 97 (|has| $ (-6 -3996)) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 201 (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3444 (((-85) $) 213 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 119 T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 239 T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 117 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 116 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 115 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 114 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 143 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 142 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 141 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 140 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 204 (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2206 (((-584 |#2|) $) 90 T ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 207 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 209 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) 208 T ELT) (($ $ (-1146 (-485))) 191 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #1#) 166 T ELT) (($ $ #2#) 163 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #3#) 160 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #4#) 148 T ELT)) (-3030 (((-485) $ $) 151 T ELT)) (-1466 (($) 53 T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1571 (($ $ (-485)) 251 T ELT) (($ $ (-1146 (-485))) 250 T ELT)) (-2306 (($ $ (-485)) 186 T ELT) (($ $ (-1146 (-485))) 185 T ELT)) (-3633 (((-85) $) 149 T ELT)) (-3792 (($ $) 173 T ELT)) (-3790 (($ $) 174 (|has| $ (-6 -3996)) ELT)) (-3793 (((-695) $) 172 T ELT)) (-3794 (($ $) 171 T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-695) |#2| $) 79 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-695) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 122 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 120 T ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 255 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 240 T ELT)) (-1731 (($ $ $ (-485)) 227 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 63 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474)))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 192 T ELT)) (-3791 (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 253 T ELT) (($ $ $) 252 T ELT)) (-3802 (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 189 T ELT) (($ (-584 $)) 188 T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 158 T ELT) (($ $ $) 157 T ELT)) (-3946 (((-773) $) 17 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-3522 (((-584 $) $) 144 T ELT)) (-3029 (((-85) $ $) 152 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-1265 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1223 (((-633 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |#1| $) 136 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 118 T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 238 T ELT)) (-2567 (((-85) $ $) 220 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2568 (((-85) $ $) 222 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3057 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2685 (((-85) $ $) 221 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2686 (((-85) $ $) 223 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-36 |#1| |#2|) (-113) (-1014) (-1014)) (T -36))
+((-1223 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-633 (-2 (|:| -3860 *3) (|:| |entry| *4)))))))
+(-13 (-1107 |t#1| |t#2|) (-609 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1223 ((-633 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))) |t#1| $))))
+(((-34) . T) ((-76 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1146 (-485)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-237 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-318 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-324 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 (-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-594 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-609 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-757) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ((-760) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ((-924 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-1014) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) (|has| |#2| (-1014))) ((-1064 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-1107 |#1| |#2|) . T) ((-1129) . T) ((-1168 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T))
+((-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((-37 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| (-485))) (-15 -3946 ((-773) |#1|))) (-38 |#2|) (-146)) (T -37))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
(((-38 |#1|) (-113) (-146)) (T -38))
NIL
-(-13 (-961) (-654 |t#1|) (-555 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3417 (((-347 |#1|) |#1|) 41 T ELT)) (-3731 (((-347 |#1|) |#1|) 30 T ELT) (((-347 |#1|) |#1| (-583 (-48))) 33 T ELT)) (-1223 (((-85) |#1|) 59 T ELT)))
-(((-39 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1| (-583 (-48)))) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3417 ((-347 |#1|) |#1|)) (-15 -1223 ((-85) |#1|))) (-1154 (-48))) (T -39))
-((-1223 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3417 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1646 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2063 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2061 (((-85) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1781 (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT) (((-630 (-349 |#2|))) NIL T ELT)) (-3329 (((-349 |#2|) $) NIL T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1607 (((-85) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3136 (((-694)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| (-349 |#2|) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-3 (-349 |#2|) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| (-349 |#2|) (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-349 |#2|) $) NIL T ELT)) (-1791 (($ (-1178 (-349 |#2|)) (-1178 $)) NIL T ELT) (($ (-1178 (-349 |#2|))) 60 T ELT) (($ (-1178 |#2|) |#2|) 130 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-349 |#2|) (-299)) ELT)) (-2564 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1780 (((-630 (-349 |#2|)) $ (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) (-630 $)) NIL T ELT)) (-1651 (((-1178 $) (-1178 $)) NIL T ELT)) (-3841 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-349 |#3|)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1638 (((-583 (-583 |#1|))) NIL (|has| |#1| (-319)) ELT)) (-1663 (((-85) |#1| |#1|) NIL T ELT)) (-3108 (((-830)) NIL T ELT)) (-2994 (($) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1658 (((-85)) NIL T ELT)) (-1657 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2563 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3502 (($ $) NIL T ELT)) (-2833 (($) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1679 (((-85) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1763 (($ $ (-694)) NIL (|has| (-349 |#2|) (-299)) ELT) (($ $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3722 (((-85) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3771 (((-830) $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-743 (-830)) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3376 (((-694)) NIL T ELT)) (-1652 (((-1178 $) (-1178 $)) 105 T ELT)) (-3132 (((-349 |#2|) $) NIL T ELT)) (-1639 (((-583 (-857 |#1|)) (-1089)) NIL (|has| |#1| (-312)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2014 ((|#3| $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2010 (((-830) $) NIL (|has| (-349 |#2|) (-319)) ELT)) (-3079 ((|#3| $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-1178 $) $) NIL T ELT) (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1224 (((-1184) (-694)) 83 T ELT)) (-1647 (((-630 (-349 |#2|))) 55 T ELT)) (-1649 (((-630 (-349 |#2|))) 48 T ELT)) (-2484 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1644 (($ (-1178 |#2|) |#2|) 131 T ELT)) (-1648 (((-630 (-349 |#2|))) 49 T ELT)) (-1650 (((-630 (-349 |#2|))) 47 T ELT)) (-1643 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1656 (((-1178 $)) 46 T ELT)) (-3917 (((-1178 $)) 45 T ELT)) (-1655 (((-85) $) NIL T ELT)) (-1654 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3445 (($) NIL (|has| (-349 |#2|) (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1641 (((-3 |#2| #1#)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1665 (((-694)) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3731 (((-347 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-349 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1606 (((-694) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3799 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1642 (((-3 |#2| #1#)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3756 (((-349 |#2|) (-1178 $)) NIL T ELT) (((-349 |#2|)) 43 T ELT)) (-1764 (((-694) $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3757 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-2408 (((-630 (-349 |#2|)) (-1178 $) (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3185 ((|#3|) 54 T ELT)) (-1673 (($) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3224 (((-1178 (-349 |#2|)) $ (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-349 |#2|)) $) 61 T ELT) (((-630 (-349 |#2|)) (-1178 $)) 106 T ELT)) (-3971 (((-1178 (-349 |#2|)) $) NIL T ELT) (($ (-1178 (-349 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1653 (((-1178 $) (-1178 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 |#2|)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2702 (($ $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-632 $) $) NIL (|has| (-349 |#2|) (-118)) ELT)) (-2449 ((|#3| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1662 (((-85)) 41 T ELT)) (-1661 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-1640 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1664 (((-85)) NIL T ELT)) (-2660 (($) 17 T CONST)) (-2666 (($) 27 T CONST)) (-2669 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| (-349 |#2|) (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 |#2|)) NIL T ELT) (($ (-349 |#2|) $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| (-349 |#2|) (-312)) ELT)))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1224 ((-1184) (-694))))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) |#3|) (T -40))
-((-1224 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-4 *5 (-1154 *4)) (-5 *2 (-1184)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1154 (-349 *5))) (-14 *7 *6))))
-((-1225 ((|#2| |#2|) 47 T ELT)) (-1230 ((|#2| |#2|) 136 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-13 (-391) (-950 (-484))))) ELT)) (-1229 ((|#2| |#2|) 100 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-13 (-391) (-950 (-484))))) ELT)) (-1228 ((|#2| |#2|) 101 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-13 (-391) (-950 (-484))))) ELT)) (-1231 ((|#2| (-86) |#2| (-694)) 80 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-13 (-391) (-950 (-484))))) ELT)) (-1227 (((-1084 |#2|) |#2|) 44 T ELT)) (-1226 ((|#2| |#2| (-583 (-550 |#2|))) 18 T ELT) ((|#2| |#2| (-583 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -1225 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -1226 (|#2| |#2| |#2|)) (-15 -1226 (|#2| |#2| (-583 |#2|))) (-15 -1226 (|#2| |#2| (-583 (-550 |#2|)))) (-15 -1227 ((-1084 |#2|) |#2|)) (IF (|has| |#1| (-13 (-391) (-950 (-484)))) (IF (|has| |#2| (-363 |#1|)) (PROGN (-15 -1228 (|#2| |#2|)) (-15 -1229 (|#2| |#2|)) (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| (-86) |#2| (-694)))) |%noBranch|) |%noBranch|)) (-495) (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 |#1| (-550 $)) $)) (-15 -2997 ((-1038 |#1| (-550 $)) $)) (-15 -3945 ($ (-1038 |#1| (-550 $))))))) (T -41))
-((-1231 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-391) (-950 (-484)))) (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-363 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *5 (-550 $)) $)) (-15 -2997 ((-1038 *5 (-550 $)) $)) (-15 -3945 ($ (-1038 *5 (-550 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-363 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-363 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-363 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1227 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1084 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $)) (-15 -2997 ((-1038 *4 (-550 $)) $)) (-15 -3945 ($ (-1038 *4 (-550 $))))))))) (-1226 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-550 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $)) (-15 -2997 ((-1038 *4 (-550 $)) $)) (-15 -3945 ($ (-1038 *4 (-550 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1226 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $)) (-15 -2997 ((-1038 *4 (-550 $)) $)) (-15 -3945 ($ (-1038 *4 (-550 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1226 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1225 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))))
-((-3731 (((-347 (-1084 |#3|)) (-1084 |#3|) (-583 (-48))) 23 T ELT) (((-347 |#3|) |#3| (-583 (-48))) 19 T ELT)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3731 ((-347 |#3|) |#3| (-583 (-48)))) (-15 -3731 ((-347 (-1084 |#3|)) (-1084 |#3|) (-583 (-48))))) (-756) (-717) (-861 (-48) |#2| |#1|)) (T -42))
-((-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-347 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5)))))
-((-1235 (((-694) |#2|) 70 T ELT)) (-1233 (((-694) |#2|) 74 T ELT)) (-1248 (((-583 |#2|)) 37 T ELT)) (-1232 (((-694) |#2|) 73 T ELT)) (-1234 (((-694) |#2|) 69 T ELT)) (-1236 (((-694) |#2|) 72 T ELT)) (-1246 (((-583 (-630 |#1|))) 65 T ELT)) (-1241 (((-583 |#2|)) 60 T ELT)) (-1239 (((-583 |#2|) |#2|) 48 T ELT)) (-1243 (((-583 |#2|)) 62 T ELT)) (-1242 (((-583 |#2|)) 61 T ELT)) (-1245 (((-583 (-630 |#1|))) 53 T ELT)) (-1240 (((-583 |#2|)) 59 T ELT)) (-1238 (((-583 |#2|) |#2|) 47 T ELT)) (-1237 (((-583 |#2|)) 55 T ELT)) (-1247 (((-583 (-630 |#1|))) 66 T ELT)) (-1244 (((-583 |#2|)) 64 T ELT)) (-2012 (((-1178 |#2|) (-1178 |#2|)) 99 (|has| |#1| (-258)) ELT)))
-(((-43 |#1| |#2|) (-10 -7 (-15 -1232 ((-694) |#2|)) (-15 -1233 ((-694) |#2|)) (-15 -1234 ((-694) |#2|)) (-15 -1235 ((-694) |#2|)) (-15 -1236 ((-694) |#2|)) (-15 -1237 ((-583 |#2|))) (-15 -1238 ((-583 |#2|) |#2|)) (-15 -1239 ((-583 |#2|) |#2|)) (-15 -1240 ((-583 |#2|))) (-15 -1241 ((-583 |#2|))) (-15 -1242 ((-583 |#2|))) (-15 -1243 ((-583 |#2|))) (-15 -1244 ((-583 |#2|))) (-15 -1245 ((-583 (-630 |#1|)))) (-15 -1246 ((-583 (-630 |#1|)))) (-15 -1247 ((-583 (-630 |#1|)))) (-15 -1248 ((-583 |#2|))) (IF (|has| |#1| (-258)) (-15 -2012 ((-1178 |#2|) (-1178 |#2|))) |%noBranch|)) (-495) (-360 |#1|)) (T -43))
-((-2012 (*1 *2 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-360 *3)) (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-43 *3 *4)))) (-1248 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1240 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1239 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1237 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 |#1|)) (-1178 $)) NIL T ELT) (((-1178 (-630 |#1|))) 24 T ELT)) (-1728 (((-1178 $)) 52 T ELT)) (-3723 (($) NIL T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1787 (((-630 |#1|) (-1178 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1785 (((-630 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1899 (((-1084 (-857 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 ((|#1| $) NIL T ELT)) (-1704 (((-1084 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1722 (((-1084 |#1|) $) NIL T ELT)) (-1716 (((-85)) 99 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 14 (|has| |#1| (-495)) ELT)) (-3108 (((-830)) 53 T ELT)) (-1713 (((-85)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1711 (((-85)) 101 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1788 (((-630 |#1|) (-1178 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1786 (((-630 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1903 (((-1084 (-857 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1705 (((-1084 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1790 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1723 (((-1084 |#1|) $) NIL T ELT)) (-1717 (((-85)) 98 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) 106 T ELT)) (-1710 (((-85)) 105 T ELT)) (-1712 (((-85)) 107 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1715 (((-85)) 100 T ELT)) (-3799 ((|#1| $ (-484)) 55 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 48 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) 28 T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-3971 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-1891 (((-583 (-857 |#1|)) (-1178 $)) NIL T ELT) (((-583 (-857 |#1|))) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) 95 T ELT)) (-3945 (((-772) $) 71 T ELT) (($ (-1178 |#1|)) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 51 T ELT)) (-1706 (((-583 (-1178 |#1|))) NIL (|has| |#1| (-495)) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) 91 T ELT)) (-2545 (($ (-630 |#1|) $) 18 T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) 97 T ELT)) (-1718 (((-85)) 92 T ELT)) (-1714 (((-85)) 90 T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1055 |#2| |#1|) $) 19 T ELT)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-360 |#1|) (-590 (-1055 |#2| |#1|)) (-10 -8 (-15 -3945 ($ (-1178 |#1|))))) (-312) (-830) (-583 (-1089)) (-1178 (-630 |#1|))) (T -44))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-312)) (-14 *6 (-1178 (-630 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))))))
-((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3401 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3794 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT) (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1729 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756))) ELT)) (-2909 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3441 (((-85) $ (-694)) NIL T ELT)) (-3025 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 34 (|has| $ (-6 -3995)) ELT)) (-3785 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-3788 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 59 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-1145 (-484)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3795 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2231 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-3798 (($ $ (-694)) NIL T ELT) (($ $) 30 T ELT)) (-2368 (($ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #5#) |#1| $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT)) (-3442 (((-85) $) NIL T ELT)) (-3418 (((-484) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3613 (($ (-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3718 (((-85) $ (-694)) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2856 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3517 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-484) $) 41 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3533 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3715 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) 50 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 (($ $ (-694)) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2232 (((-583 |#1|) $) 23 T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2304 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT) (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT) (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT) (($ $ (-694)) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3402 (((-85) $) 19 T ELT)) (-3564 (($) 15 T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-1465 (($) 14 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1570 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-3789 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3790 (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3801 (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1222 (((-632 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |#1| $) 54 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2684 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3956 (((-694) $) 26 T ELT)))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1013) (-1013)) (T -45))
-NIL
-((-3936 (((-85) $) 12 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-349 (-484)) $) 25 T ELT) (($ $ (-349 (-484))) NIL T ELT)))
-(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 -3936 ((-85) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-47 |#2| |#3|) (-961) (-716)) (T -46))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3947 ((|#2| $) 84 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-47 |#1| |#2|) (-113) (-961) (-716)) (T -47))
-((-3174 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-2893 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3676 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-312)))))
-(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (-15 -3174 (|t#1| $)) (-15 -2894 ($ $)) (-15 -3947 (|t#2| $)) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -3936 ((-85) $)) (-15 -2893 ($ |t#1| |t#2|)) (-15 -3958 ($ $)) (-15 -3676 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3948 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-495)) (-6 (-495)) |%noBranch|) (IF (|has| |t#1| (-38 (-349 (-484)))) (-6 (-38 (-349 (-484)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-1214 (((-583 $) (-1084 $) (-1089)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1215 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3188 (((-85) $) 9 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1599 (((-583 (-550 $)) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1603 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1216 (((-583 $) (-1084 $) (-1089)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3183 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3157 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3156 (((-550 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-349 (-484)))) (|:| |vec| (-1178 (-349 (-484))))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-349 (-484))) (-630 $)) NIL T ELT)) (-3841 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2573 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1598 (((-583 (-86)) $) NIL T ELT)) (-3594 (((-86) (-86)) NIL T ELT)) (-2410 (((-85) $) 11 T ELT)) (-2673 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2998 (((-1038 (-484) (-550 $)) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3132 (((-1084 $) (-1084 $) (-550 $)) NIL T ELT) (((-1084 $) (-1084 $) (-583 (-550 $))) NIL T ELT) (($ $ (-550 $)) NIL T ELT) (($ $ (-583 (-550 $))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1596 (((-1084 $) (-550 $)) NIL (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1601 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-349 (-484)))) (|:| |vec| (-1178 (-349 (-484))))) (-1178 $) $) NIL T ELT) (((-630 (-349 (-484))) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1600 (((-583 (-550 $)) $) NIL T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2633 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-2603 (((-694) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1597 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1602 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2997 (((-1038 (-484) (-550 $)) $) NIL T ELT)) (-3185 (($ $) NIL (|has| $ (-961)) ELT)) (-3971 (((-329) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-329)) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1038 (-484) (-550 $))) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-2590 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2254 (((-85) (-86)) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 6 T CONST)) (-2666 (($) 10 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) 13 T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-349 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT)))
-(((-48) (-13 (-254) (-27) (-950 (-484)) (-950 (-349 (-484))) (-580 (-484)) (-933) (-580 (-349 (-484))) (-120) (-553 (-142 (-329))) (-190) (-555 (-1038 (-484) (-550 $))) (-10 -8 (-15 -2998 ((-1038 (-484) (-550 $)) $)) (-15 -2997 ((-1038 (-484) (-550 $)) $)) (-15 -3841 ($ $)) (-15 -3132 ((-1084 $) (-1084 $) (-550 $))) (-15 -3132 ((-1084 $) (-1084 $) (-583 (-550 $)))) (-15 -3132 ($ $ (-550 $))) (-15 -3132 ($ $ (-583 (-550 $))))))) (T -48))
-((-2998 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-48)))) (-5 *1 (-48)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-48)))) (-5 *1 (-48)))) (-3841 (*1 *1 *1) (-5 *1 (-48))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1937 (((-583 (-446)) $) 17 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 7 T ELT)) (-3233 (((-1094) $) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-49) (-13 (-1013) (-10 -8 (-15 -1937 ((-583 (-446)) $)) (-15 -3233 ((-1094) $))))) (T -49))
-((-1937 (*1 *2 *1) (-12 (-5 *2 (-583 (-446))) (-5 *1 (-49)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-49)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 86 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2664 (((-85) $) 31 T ELT)) (-3157 (((-3 |#1| #1#) $) 34 T ELT)) (-3156 ((|#1| $) 35 T ELT)) (-3958 (($ $) 41 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3174 ((|#1| $) 32 T ELT)) (-1454 (($ $) 75 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1453 (((-85) $) 44 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) 73 T ELT)) (-3942 (($ (-583 (-484))) 74 T ELT)) (-3947 (((-694) $) 45 T ELT)) (-3945 (((-772) $) 92 T ELT) (($ (-484)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3676 ((|#1| $ $) 29 T ELT)) (-3126 (((-694)) 72 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 46 T CONST)) (-2666 (($) 17 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 65 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT)))
-(((-50 |#1| |#2|) (-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3174 (|#1| $)) (-15 -1454 ($ $)) (-15 -3958 ($ $)) (-15 -3676 (|#1| $ $)) (-15 -2409 ($ (-694))) (-15 -3942 ($ (-583 (-484)))) (-15 -1453 ((-85) $)) (-15 -2664 ((-85) $)) (-15 -3947 ((-694) $)) (-15 -3957 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1089))) (T -50))
-((-3174 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1089))))) (-1454 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1089))))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1089))))) (-3676 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1089))))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4)) (-14 *4 (-583 (-1089))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1249 (((-696) $) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1250 (((-1015) $) 10 T ELT)) (-3945 (((-772) $) 15 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1251 (($ (-1015) (-696)) 16 T ELT)) (-3056 (((-85) $ $) 12 T ELT)))
-(((-51) (-13 (-1013) (-10 -8 (-15 -1251 ($ (-1015) (-696))) (-15 -1250 ((-1015) $)) (-15 -1249 ((-696) $))))) (T -51))
-((-1251 (*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-696)) (-5 *1 (-51)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))) (-1249 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51)))))
-((-2664 (((-85) (-51)) 18 T ELT)) (-3157 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3156 ((|#1| (-51)) 21 T ELT)) (-3945 (((-51) |#1|) 14 T ELT)))
-(((-52 |#1|) (-10 -7 (-15 -3945 ((-51) |#1|)) (-15 -3157 ((-3 |#1| "failed") (-51))) (-15 -2664 ((-85) (-51))) (-15 -3156 (|#1| (-51)))) (-1128)) (T -52))
-((-3156 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1128)))) (-3157 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1128)))))
-((-2545 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2545 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-590 |#1|) (-761 |#1|)) (T -53))
-((-2545 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5)))))
-((-1253 ((|#3| |#3| (-583 (-1089))) 44 T ELT)) (-1252 ((|#3| (-583 (-987 |#1| |#2| |#3|)) |#3| (-830)) 32 T ELT) ((|#3| (-583 (-987 |#1| |#2| |#3|)) |#3|) 31 T ELT)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1252 (|#3| (-583 (-987 |#1| |#2| |#3|)) |#3|)) (-15 -1252 (|#3| (-583 (-987 |#1| |#2| |#3|)) |#3| (-830))) (-15 -1253 (|#3| |#3| (-583 (-1089))))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-363 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -54))
-((-1253 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))) (-1252 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-987 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1013)) (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5)))) (-4 *2 (-13 (-363 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1252 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-987 *4 *5 *2))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 13 T ELT)) (-3157 (((-3 (-694) "failed") $) 31 T ELT)) (-3156 (((-694) $) NIL T ELT)) (-2410 (((-85) $) 15 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) 17 T ELT)) (-3945 (((-772) $) 22 T ELT) (($ (-694)) 28 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1254 (($) 10 T CONST)) (-3056 (((-85) $ $) 19 T ELT)))
-(((-55) (-13 (-1013) (-950 (-694)) (-10 -8 (-15 -1254 ($) -3951) (-15 -3188 ((-85) $)) (-15 -2410 ((-85) $))))) (T -55))
-((-1254 (*1 *1) (-5 *1 (-55))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))))
-((-1256 (($ $ (-484) |#3|) 46 T ELT)) (-1255 (($ $ (-484) |#4|) 50 T ELT)) (-2889 (((-583 |#2|) $) 41 T ELT)) (-3245 (((-85) |#2| $) 55 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3799 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) 29 T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 35 T ELT) (((-694) |#2| $) 57 T ELT)) (-3945 (((-772) $) 63 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3056 (((-85) $ $) 54 T ELT)) (-3956 (((-694) $) 26 T ELT)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -1255 (|#1| |#1| (-484) |#4|)) (-15 -1256 (|#1| |#1| (-484) |#3|)) (-15 -3799 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484) (-484))) (-15 -3245 ((-85) |#2| |#1|)) (-15 -1945 ((-694) |#2| |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3956 ((-694) |#1|)) (-15 -2889 ((-583 |#2|) |#1|))) (-57 |#2| |#3| |#4|) (-1128) (-323 |#2|) (-323 |#2|)) (T -56))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) 48 T ELT)) (-1256 (($ $ (-484) |#2|) 46 T ELT)) (-1255 (($ $ (-484) |#3|) 45 T ELT)) (-3723 (($) 7 T CONST)) (-3111 ((|#2| $ (-484)) 50 T ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3112 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3114 (((-694) $) 55 T ELT)) (-3613 (($ (-694) (-694) |#1|) 61 T ELT)) (-3113 (((-694) $) 54 T ELT)) (-3118 (((-484) $) 59 T ELT)) (-3116 (((-484) $) 57 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-3117 (((-484) $) 58 T ELT)) (-3115 (((-484) $) 56 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 60 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT)) (-3399 (($ $) 10 T ELT)) (-3110 ((|#3| $ (-484)) 49 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-57 |#1| |#2| |#3|) (-113) (-1128) (-323 |t#1|) (-323 |t#1|)) (T -57))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3613 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-1128)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2199 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-484)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-694)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-694)))) (-3799 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-1128)))) (-3112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-1128)))) (-3799 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-323 *4)) (-4 *2 (-323 *4)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-323 *4)) (-4 *2 (-323 *4)))) (-3787 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)))) (-1575 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)))) (-1256 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-323 *4)) (-4 *5 (-323 *4)))) (-1255 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-323 *4)) (-4 *3 (-323 *4)))) (-1948 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3957 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))))
-(-13 (-317 |t#1|) (-10 -8 (-6 -3995) (-15 -3613 ($ (-694) (-694) |t#1|)) (-15 -2199 ($ $ |t#1|)) (-15 -3118 ((-484) $)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-694) $)) (-15 -3113 ((-694) $)) (-15 -3799 (|t#1| $ (-484) (-484))) (-15 -3112 (|t#1| $ (-484) (-484))) (-15 -3799 (|t#1| $ (-484) (-484) |t#1|)) (-15 -3111 (|t#2| $ (-484))) (-15 -3110 (|t#3| $ (-484))) (-15 -3787 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1575 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1256 ($ $ (-484) |t#2|)) (-15 -1255 ($ $ (-484) |t#3|)) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -1948 ($ (-1 |t#1| |t#1|) $)) (-15 -3957 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3957 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1257 (($ (-583 |#1|)) 11 T ELT) (($ (-694) |#1|) 14 T ELT)) (-3613 (($ (-694) |#1|) 13 T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 10 T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1257 ($ (-583 |#1|))) (-15 -1257 ($ (-694) |#1|)))) (-1128)) (T -58))
-((-1257 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-58 *3)))) (-1257 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1128)))))
-((-3840 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3841 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3957 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT)))
-(((-59 |#1| |#2|) (-10 -7 (-15 -3840 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3841 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3957 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1128) (-1128)) (T -59))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-59 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1256 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-1255 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3111 (((-58 |#1|) $ (-484)) NIL T ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3112 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3613 (($ (-694) (-694) |#1|) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-3399 (($ $) NIL T ELT)) (-3110 (((-58 |#1|) $ (-484)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1128)) (T -60))
-NIL
-((-1259 (((-1178 (-630 |#1|)) (-630 |#1|)) 61 T ELT)) (-1258 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 (-583 (-830))))) |#2| (-830)) 49 T ELT)) (-1260 (((-2 (|:| |minor| (-583 (-830))) (|:| -3266 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830)) 72 (|has| |#1| (-312)) ELT)))
-(((-61 |#1| |#2|) (-10 -7 (-15 -1258 ((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 (-583 (-830))))) |#2| (-830))) (-15 -1259 ((-1178 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-312)) (-15 -1260 ((-2 (|:| |minor| (-583 (-830))) (|:| -3266 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830))) |%noBranch|)) (-495) (-600 |#1|)) (T -61))
-((-1260 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |minor| (-583 (-830))) (|:| -3266 *3) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-630 *4)) (-4 *5 (-600 *4)))) (-1258 (*1 *2 *3 *4) (-12 (-4 *5 (-495)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1178 (-583 (-830)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3323 ((|#1| $) 42 T ELT)) (-3723 (($) NIL T CONST)) (-3325 ((|#1| |#1| $) 37 T ELT)) (-3324 ((|#1| $) 35 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) NIL T ELT)) (-3608 (($ |#1| $) 38 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 36 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 20 T ELT)) (-3564 (($) 46 T ELT)) (-3322 (((-694) $) 33 T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) 19 T ELT)) (-3945 (((-772) $) 32 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-1261 (($ (-583 |#1|)) 44 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 14 T ELT)))
-(((-62 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -1261 ($ (-583 |#1|))))) (-1013)) (T -62))
-((-1261 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3)))))
-((-3945 (((-772) $) 13 T ELT) (($ (-1094)) 9 T ELT) (((-1094) $) 8 T ELT)))
-(((-63 |#1|) (-10 -7 (-15 -3945 ((-1094) |#1|)) (-15 -3945 (|#1| (-1094))) (-15 -3945 ((-772) |#1|))) (-64)) (T -63))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
+(-13 (-962) (-655 |t#1|) (-556 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3418 (((-348 |#1|) |#1|) 41 T ELT)) (-3732 (((-348 |#1|) |#1|) 30 T ELT) (((-348 |#1|) |#1| (-584 (-48))) 33 T ELT)) (-1224 (((-85) |#1|) 59 T ELT)))
+(((-39 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1| (-584 (-48)))) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3418 ((-348 |#1|) |#1|)) (-15 -1224 ((-85) |#1|))) (-1155 (-48))) (T -39))
+((-1224 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) (-3418 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1647 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1782 (((-631 (-350 |#2|)) (-1179 $)) NIL T ELT) (((-631 (-350 |#2|))) NIL T ELT)) (-3330 (((-350 |#2|) $) NIL T ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3137 (((-695)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) NIL T ELT)) (-1660 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1792 (($ (-1179 (-350 |#2|)) (-1179 $)) NIL T ELT) (($ (-1179 (-350 |#2|))) 60 T ELT) (($ (-1179 |#2|) |#2|) 130 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1781 (((-631 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-631 (-350 |#2|)) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-350 |#2|)) (-631 $)) NIL T ELT)) (-1652 (((-1179 $) (-1179 $)) NIL T ELT)) (-3842 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1639 (((-584 (-584 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1664 (((-85) |#1| |#1|) NIL T ELT)) (-3109 (((-831)) NIL T ELT)) (-2995 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2564 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3503 (($ $) NIL T ELT)) (-2834 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1680 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1764 (($ $ (-695)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3723 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3772 (((-831) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3377 (((-695)) NIL T ELT)) (-1653 (((-1179 $) (-1179 $)) 105 T ELT)) (-3133 (((-350 |#2|) $) NIL T ELT)) (-1640 (((-584 (-858 |#1|)) (-1090)) NIL (|has| |#1| (-312)) ELT)) (-3445 (((-633 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3080 ((|#3| $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-1179 $) $) NIL T ELT) (((-631 (-350 |#2|)) (-1179 $)) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1225 (((-1185) (-695)) 83 T ELT)) (-1648 (((-631 (-350 |#2|))) 55 T ELT)) (-1650 (((-631 (-350 |#2|))) 48 T ELT)) (-2485 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1645 (($ (-1179 |#2|) |#2|) 131 T ELT)) (-1649 (((-631 (-350 |#2|))) 49 T ELT)) (-1651 (((-631 (-350 |#2|))) 47 T ELT)) (-1644 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1646 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1657 (((-1179 $)) 46 T ELT)) (-3918 (((-1179 $)) 45 T ELT)) (-1656 (((-85) $) NIL T ELT)) (-1655 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3446 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1642 (((-3 |#2| #1#)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1666 (((-695)) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3732 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-695) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3800 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1643 (((-3 |#2| #1#)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3757 (((-350 |#2|) (-1179 $)) NIL T ELT) (((-350 |#2|)) 43 T ELT)) (-1765 (((-695) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3758 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1179 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3186 ((|#3|) 54 T ELT)) (-1674 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3225 (((-1179 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-631 (-350 |#2|)) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 (-350 |#2|)) $) 61 T ELT) (((-631 (-350 |#2|)) (-1179 $)) 106 T ELT)) (-3972 (((-1179 (-350 |#2|)) $) NIL T ELT) (($ (-1179 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1654 (((-1179 $) (-1179 $)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2703 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2450 ((|#3| $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1663 (((-85)) 41 T ELT)) (-1662 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1665 (((-85)) NIL T ELT)) (-2661 (($) 17 T CONST)) (-2667 (($) 27 T CONST)) (-2670 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| (-350 |#2|) (-312)) ELT)))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1225 ((-1185) (-695))))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) |#3|) (T -40))
+((-1225 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *2 (-1185)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1155 (-350 *5))) (-14 *7 *6))))
+((-1226 ((|#2| |#2|) 47 T ELT)) (-1231 ((|#2| |#2|) 136 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1230 ((|#2| |#2|) 100 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1229 ((|#2| |#2|) 101 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1232 ((|#2| (-86) |#2| (-695)) 80 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1228 (((-1085 |#2|) |#2|) 44 T ELT)) (-1227 ((|#2| |#2| (-584 (-551 |#2|))) 18 T ELT) ((|#2| |#2| (-584 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -1226 (|#2| |#2|)) (-15 -1227 (|#2| |#2|)) (-15 -1227 (|#2| |#2| |#2|)) (-15 -1227 (|#2| |#2| (-584 |#2|))) (-15 -1227 (|#2| |#2| (-584 (-551 |#2|)))) (-15 -1228 ((-1085 |#2|) |#2|)) (IF (|has| |#1| (-13 (-392) (-951 (-485)))) (IF (|has| |#2| (-364 |#1|)) (PROGN (-15 -1229 (|#2| |#2|)) (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| |#2|)) (-15 -1232 (|#2| (-86) |#2| (-695)))) |%noBranch|) |%noBranch|)) (-496) (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 |#1| (-551 $)) $)) (-15 -2998 ((-1039 |#1| (-551 $)) $)) (-15 -3946 ($ (-1039 |#1| (-551 $))))))) (T -41))
+((-1232 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)))) (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *5 (-551 $)) $)) (-15 -2998 ((-1039 *5 (-551 $)) $)) (-15 -3946 ($ (-1039 *5 (-551 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $)) (-15 -2998 ((-1039 *3 (-551 $)) $)) (-15 -3946 ($ (-1039 *3 (-551 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $)) (-15 -2998 ((-1039 *3 (-551 $)) $)) (-15 -3946 ($ (-1039 *3 (-551 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $)) (-15 -2998 ((-1039 *3 (-551 $)) $)) (-15 -3946 ($ (-1039 *3 (-551 $))))))))) (-1228 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1085 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *4 (-551 $)) $)) (-15 -2998 ((-1039 *4 (-551 $)) $)) (-15 -3946 ($ (-1039 *4 (-551 $))))))))) (-1227 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-551 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *4 (-551 $)) $)) (-15 -2998 ((-1039 *4 (-551 $)) $)) (-15 -3946 ($ (-1039 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1227 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *4 (-551 $)) $)) (-15 -2998 ((-1039 *4 (-551 $)) $)) (-15 -3946 ($ (-1039 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1227 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $)) (-15 -2998 ((-1039 *3 (-551 $)) $)) (-15 -3946 ($ (-1039 *3 (-551 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $)) (-15 -2998 ((-1039 *3 (-551 $)) $)) (-15 -3946 ($ (-1039 *3 (-551 $))))))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $)) (-15 -2998 ((-1039 *3 (-551 $)) $)) (-15 -3946 ($ (-1039 *3 (-551 $))))))))))
+((-3732 (((-348 (-1085 |#3|)) (-1085 |#3|) (-584 (-48))) 23 T ELT) (((-348 |#3|) |#3| (-584 (-48))) 19 T ELT)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3732 ((-348 |#3|) |#3| (-584 (-48)))) (-15 -3732 ((-348 (-1085 |#3|)) (-1085 |#3|) (-584 (-48))))) (-757) (-718) (-862 (-48) |#2| |#1|)) (T -42))
+((-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5)))))
+((-1236 (((-695) |#2|) 70 T ELT)) (-1234 (((-695) |#2|) 74 T ELT)) (-1249 (((-584 |#2|)) 37 T ELT)) (-1233 (((-695) |#2|) 73 T ELT)) (-1235 (((-695) |#2|) 69 T ELT)) (-1237 (((-695) |#2|) 72 T ELT)) (-1247 (((-584 (-631 |#1|))) 65 T ELT)) (-1242 (((-584 |#2|)) 60 T ELT)) (-1240 (((-584 |#2|) |#2|) 48 T ELT)) (-1244 (((-584 |#2|)) 62 T ELT)) (-1243 (((-584 |#2|)) 61 T ELT)) (-1246 (((-584 (-631 |#1|))) 53 T ELT)) (-1241 (((-584 |#2|)) 59 T ELT)) (-1239 (((-584 |#2|) |#2|) 47 T ELT)) (-1238 (((-584 |#2|)) 55 T ELT)) (-1248 (((-584 (-631 |#1|))) 66 T ELT)) (-1245 (((-584 |#2|)) 64 T ELT)) (-2013 (((-1179 |#2|) (-1179 |#2|)) 99 (|has| |#1| (-258)) ELT)))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1233 ((-695) |#2|)) (-15 -1234 ((-695) |#2|)) (-15 -1235 ((-695) |#2|)) (-15 -1236 ((-695) |#2|)) (-15 -1237 ((-695) |#2|)) (-15 -1238 ((-584 |#2|))) (-15 -1239 ((-584 |#2|) |#2|)) (-15 -1240 ((-584 |#2|) |#2|)) (-15 -1241 ((-584 |#2|))) (-15 -1242 ((-584 |#2|))) (-15 -1243 ((-584 |#2|))) (-15 -1244 ((-584 |#2|))) (-15 -1245 ((-584 |#2|))) (-15 -1246 ((-584 (-631 |#1|)))) (-15 -1247 ((-584 (-631 |#1|)))) (-15 -1248 ((-584 (-631 |#1|)))) (-15 -1249 ((-584 |#2|))) (IF (|has| |#1| (-258)) (-15 -2013 ((-1179 |#2|) (-1179 |#2|))) |%noBranch|)) (-496) (-361 |#1|)) (T -43))
+((-2013 (*1 *2 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-43 *3 *4)))) (-1249 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1240 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1239 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1238 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-631 |#1|)) (-1179 $)) NIL T ELT) (((-1179 (-631 |#1|))) 24 T ELT)) (-1729 (((-1179 $)) 52 T ELT)) (-3724 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1788 (((-631 |#1|) (-1179 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1786 (((-631 |#1|) $ (-1179 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1900 (((-1085 (-858 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1705 (((-1085 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1790 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1723 (((-1085 |#1|) $) NIL T ELT)) (-1717 (((-85)) 99 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 14 (|has| |#1| (-496)) ELT)) (-3109 (((-831)) 53 T ELT)) (-1714 (((-85)) NIL T ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1712 (((-85)) 101 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1789 (((-631 |#1|) (-1179 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1787 (((-631 |#1|) $ (-1179 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1904 (((-1085 (-858 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1706 (((-1085 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1791 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1724 (((-1085 |#1|) $) NIL T ELT)) (-1718 (((-85)) 98 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) 106 T ELT)) (-1711 (((-85)) 105 T ELT)) (-1713 (((-85)) 107 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1716 (((-85)) 100 T ELT)) (-3800 ((|#1| $ (-485)) 55 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 48 T ELT) (((-631 |#1|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#1|) $) 28 T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-3972 (((-1179 |#1|) $) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT)) (-1892 (((-584 (-858 |#1|)) (-1179 $)) NIL T ELT) (((-584 (-858 |#1|))) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) 95 T ELT)) (-3946 (((-773) $) 71 T ELT) (($ (-1179 |#1|)) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) 51 T ELT)) (-1707 (((-584 (-1179 |#1|))) NIL (|has| |#1| (-496)) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) 91 T ELT)) (-2546 (($ (-631 |#1|) $) 18 T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) 97 T ELT)) (-1719 (((-85)) 92 T ELT)) (-1715 (((-85)) 90 T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1056 |#2| |#1|) $) 19 T ELT)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-361 |#1|) (-591 (-1056 |#2| |#1|)) (-10 -8 (-15 -3946 ($ (-1179 |#1|))))) (-312) (-831) (-584 (-1090)) (-1179 (-631 |#1|))) (T -44))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-14 *6 (-1179 (-631 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3402 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3795 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-3599 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT) (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1730 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757))) ELT)) (-2910 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3442 (((-85) $ (-695)) NIL T ELT)) (-3026 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 34 (|has| $ (-6 -3996)) ELT)) (-3786 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-3789 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 59 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-1146 (-485)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3796 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2232 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-3799 (($ $ (-695)) NIL T ELT) (($ $) 30 T ELT)) (-2369 (($ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #5#) |#1| $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-3419 (((-485) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT) (((-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-3614 (($ (-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3719 (((-85) $ (-695)) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2857 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3518 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 41 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3534 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3716 (((-85) $ (-695)) NIL T ELT)) (-3031 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) 50 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3798 (($ $ (-695)) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2233 (((-584 |#1|) $) 23 T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2305 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT) (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT) (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-757)) ELT) (($ $ (-695)) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3403 (((-85) $) 19 T ELT)) (-3565 (($) 15 T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-1466 (($) 14 T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1571 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-3792 (($ $) NIL T ELT)) (-3790 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-3793 (((-695) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3791 (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3802 (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3946 (((-773) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-3522 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1223 (((-633 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |#1| $) 54 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2685 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3957 (((-695) $) 26 T ELT)))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1014) (-1014)) (T -45))
+NIL
+((-3937 (((-85) $) 12 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-350 (-485)) $) 25 T ELT) (($ $ (-350 (-485))) NIL T ELT)))
+(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3937 ((-85) |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-47 |#2| |#3|) (-962) (-717)) (T -46))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3948 ((|#2| $) 84 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-47 |#1| |#2|) (-113) (-962) (-717)) (T -47))
+((-3175 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-2895 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-2894 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3677 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-312)))))
+(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (-15 -3175 (|t#1| $)) (-15 -2895 ($ $)) (-15 -3948 (|t#2| $)) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (-15 -3937 ((-85) $)) (-15 -2894 ($ |t#1| |t#2|)) (-15 -3959 ($ $)) (-15 -3677 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3949 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-496)) (-6 (-496)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (-6 (-38 (-350 (-485)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-1215 (((-584 $) (-1085 $) (-1090)) NIL T ELT) (((-584 $) (-1085 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1216 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3189 (((-85) $) 9 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1600 (((-584 (-551 $)) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3038 (($ $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1217 (((-584 $) (-1085 $) (-1090)) NIL T ELT) (((-584 $) (-1085 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3184 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3158 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3157 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1179 (-350 (-485))))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-350 (-485))) (-631 $)) NIL T ELT)) (-3842 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2574 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1599 (((-584 (-86)) $) NIL T ELT)) (-3595 (((-86) (-86)) NIL T ELT)) (-2411 (((-85) $) 11 T ELT)) (-2674 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-2999 (((-1039 (-485) (-551 $)) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3133 (((-1085 $) (-1085 $) (-551 $)) NIL T ELT) (((-1085 $) (-1085 $) (-584 (-551 $))) NIL T ELT) (($ $ (-551 $)) NIL T ELT) (($ $ (-584 (-551 $))) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1597 (((-1085 $) (-551 $)) NIL (|has| $ (-962)) ELT)) (-3958 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1602 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL T ELT) (((-631 (-485)) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1179 (-350 (-485))))) (-1179 $) $) NIL T ELT) (((-631 (-350 (-485))) (-1179 $)) NIL T ELT)) (-1891 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2634 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-2604 (((-695) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1598 (((-85) $ $) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3768 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1603 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2998 (((-1039 (-485) (-551 $)) $) NIL T ELT)) (-3186 (($ $) NIL (|has| $ (-962)) ELT)) (-3972 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-330)) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1039 (-485) (-551 $))) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-2591 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2255 (((-85) (-86)) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 6 T CONST)) (-2667 (($) 10 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) 13 T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
+(((-48) (-13 (-254) (-27) (-951 (-485)) (-951 (-350 (-485))) (-581 (-485)) (-934) (-581 (-350 (-485))) (-120) (-554 (-142 (-330))) (-190) (-556 (-1039 (-485) (-551 $))) (-10 -8 (-15 -2999 ((-1039 (-485) (-551 $)) $)) (-15 -2998 ((-1039 (-485) (-551 $)) $)) (-15 -3842 ($ $)) (-15 -3133 ((-1085 $) (-1085 $) (-551 $))) (-15 -3133 ((-1085 $) (-1085 $) (-584 (-551 $)))) (-15 -3133 ($ $ (-551 $))) (-15 -3133 ($ $ (-584 (-551 $))))))) (T -48))
+((-2999 (*1 *2 *1) (-12 (-5 *2 (-1039 (-485) (-551 (-48)))) (-5 *1 (-48)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1039 (-485) (-551 (-48)))) (-5 *1 (-48)))) (-3842 (*1 *1 *1) (-5 *1 (-48))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1938 (((-584 (-447)) $) 17 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 7 T ELT)) (-3234 (((-1095) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-49) (-13 (-1014) (-10 -8 (-15 -1938 ((-584 (-447)) $)) (-15 -3234 ((-1095) $))))) (T -49))
+((-1938 (*1 *2 *1) (-12 (-5 *2 (-584 (-447))) (-5 *1 (-49)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-49)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 86 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2665 (((-85) $) 31 T ELT)) (-3158 (((-3 |#1| #1#) $) 34 T ELT)) (-3157 ((|#1| $) 35 T ELT)) (-3959 (($ $) 41 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3175 ((|#1| $) 32 T ELT)) (-1455 (($ $) 75 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1454 (((-85) $) 44 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) 73 T ELT)) (-3943 (($ (-584 (-485))) 74 T ELT)) (-3948 (((-695) $) 45 T ELT)) (-3946 (((-773) $) 92 T ELT) (($ (-485)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3677 ((|#1| $ $) 29 T ELT)) (-3127 (((-695)) 72 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 46 T CONST)) (-2667 (($) 17 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 65 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT)))
+(((-50 |#1| |#2|) (-13 (-561 |#1|) (-951 |#1|) (-10 -8 (-15 -3175 (|#1| $)) (-15 -1455 ($ $)) (-15 -3959 ($ $)) (-15 -3677 (|#1| $ $)) (-15 -2410 ($ (-695))) (-15 -3943 ($ (-584 (-485)))) (-15 -1454 ((-85) $)) (-15 -2665 ((-85) $)) (-15 -3948 ((-695) $)) (-15 -3958 ($ (-1 |#1| |#1|) $)))) (-962) (-584 (-1090))) (T -50))
+((-3175 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1090))))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1090))))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1090))))) (-3677 (*1 *2 *1 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1090))))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1090))))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1090))))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1090))))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1090))))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1090))))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4)) (-14 *4 (-584 (-1090))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1250 (((-697) $) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1251 (((-1016) $) 10 T ELT)) (-3946 (((-773) $) 15 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1252 (($ (-1016) (-697)) 16 T ELT)) (-3057 (((-85) $ $) 12 T ELT)))
+(((-51) (-13 (-1014) (-10 -8 (-15 -1252 ($ (-1016) (-697))) (-15 -1251 ((-1016) $)) (-15 -1250 ((-697) $))))) (T -51))
+((-1252 (*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-51)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51)))))
+((-2665 (((-85) (-51)) 18 T ELT)) (-3158 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3157 ((|#1| (-51)) 21 T ELT)) (-3946 (((-51) |#1|) 14 T ELT)))
+(((-52 |#1|) (-10 -7 (-15 -3946 ((-51) |#1|)) (-15 -3158 ((-3 |#1| "failed") (-51))) (-15 -2665 ((-85) (-51))) (-15 -3157 (|#1| (-51)))) (-1129)) (T -52))
+((-3157 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1129)))) (-3158 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1129)))))
+((-2546 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2546 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-962) (-591 |#1|) (-762 |#1|)) (T -53))
+((-2546 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5)))))
+((-1254 ((|#3| |#3| (-584 (-1090))) 44 T ELT)) (-1253 ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831)) 32 T ELT) ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|) 31 T ELT)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1253 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|)) (-15 -1253 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831))) (-15 -1254 (|#3| |#3| (-584 (-1090))))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -54))
+((-1254 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1090))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-1253 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014)) (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5)))) (-4 *2 (-13 (-364 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1253 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 13 T ELT)) (-3158 (((-3 (-695) "failed") $) 31 T ELT)) (-3157 (((-695) $) NIL T ELT)) (-2411 (((-85) $) 15 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) 17 T ELT)) (-3946 (((-773) $) 22 T ELT) (($ (-695)) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1255 (($) 10 T CONST)) (-3057 (((-85) $ $) 19 T ELT)))
+(((-55) (-13 (-1014) (-951 (-695)) (-10 -8 (-15 -1255 ($) -3952) (-15 -3189 ((-85) $)) (-15 -2411 ((-85) $))))) (T -55))
+((-1255 (*1 *1) (-5 *1 (-55))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))))
+((-1257 (($ $ (-485) |#3|) 46 T ELT)) (-1256 (($ $ (-485) |#4|) 50 T ELT)) (-2890 (((-584 |#2|) $) 41 T ELT)) (-3246 (((-85) |#2| $) 55 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3800 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) 29 T ELT)) (-1946 (((-695) (-1 (-85) |#2|) $) 35 T ELT) (((-695) |#2| $) 57 T ELT)) (-3946 (((-773) $) 63 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3057 (((-85) $ $) 54 T ELT)) (-3957 (((-695) $) 26 T ELT)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -1256 (|#1| |#1| (-485) |#4|)) (-15 -1257 (|#1| |#1| (-485) |#3|)) (-15 -3800 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3800 (|#2| |#1| (-485) (-485))) (-15 -3246 ((-85) |#2| |#1|)) (-15 -1946 ((-695) |#2| |#1|)) (-15 -1946 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3957 ((-695) |#1|)) (-15 -2890 ((-584 |#2|) |#1|))) (-57 |#2| |#3| |#4|) (-1129) (-324 |#2|) (-324 |#2|)) (T -56))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3788 ((|#1| $ (-485) (-485) |#1|) 48 T ELT)) (-1257 (($ $ (-485) |#2|) 46 T ELT)) (-1256 (($ $ (-485) |#3|) 45 T ELT)) (-3724 (($) 7 T CONST)) (-3112 ((|#2| $ (-485)) 50 T ELT)) (-1576 ((|#1| $ (-485) (-485) |#1|) 47 T ELT)) (-3113 ((|#1| $ (-485) (-485)) 52 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3115 (((-695) $) 55 T ELT)) (-3614 (($ (-695) (-695) |#1|) 61 T ELT)) (-3114 (((-695) $) 54 T ELT)) (-3119 (((-485) $) 59 T ELT)) (-3117 (((-485) $) 57 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) 58 T ELT)) (-3116 (((-485) $) 56 T ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 60 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-485) (-485)) 53 T ELT) ((|#1| $ (-485) (-485) |#1|) 51 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 10 T ELT)) (-3111 ((|#3| $ (-485)) 49 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-57 |#1| |#2| |#3|) (-113) (-1129) (-324 |t#1|) (-324 |t#1|)) (T -57))
+((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3614 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-1129)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2200 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-695)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-695)))) (-3800 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1129)))) (-3113 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1129)))) (-3800 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3788 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1576 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1257 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4)))) (-1256 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4)))) (-1949 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3958 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3958 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))))
+(-13 (-318 |t#1|) (-10 -8 (-6 -3996) (-15 -3614 ($ (-695) (-695) |t#1|)) (-15 -2200 ($ $ |t#1|)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-485) $)) (-15 -3115 ((-695) $)) (-15 -3114 ((-695) $)) (-15 -3800 (|t#1| $ (-485) (-485))) (-15 -3113 (|t#1| $ (-485) (-485))) (-15 -3800 (|t#1| $ (-485) (-485) |t#1|)) (-15 -3112 (|t#2| $ (-485))) (-15 -3111 (|t#3| $ (-485))) (-15 -3788 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1576 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1257 ($ $ (-485) |t#2|)) (-15 -1256 ($ $ (-485) |t#3|)) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (-15 -1949 ($ (-1 |t#1| |t#1|) $)) (-15 -3958 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3958 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3788 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1258 (($ (-584 |#1|)) 11 T ELT) (($ (-695) |#1|) 14 T ELT)) (-3614 (($ (-695) |#1|) 13 T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 10 T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1258 ($ (-584 |#1|))) (-15 -1258 ($ (-695) |#1|)))) (-1129)) (T -58))
+((-1258 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-58 *3)))) (-1258 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1129)))))
+((-3841 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3842 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3958 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT)))
+(((-59 |#1| |#2|) (-10 -7 (-15 -3841 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3842 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3958 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1129) (-1129)) (T -59))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-59 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3788 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1257 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-1256 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3112 (((-58 |#1|) $ (-485)) NIL T ELT)) (-1576 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3113 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-3614 (($ (-695) (-695) |#1|) NIL T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3111 (((-58 |#1|) $ (-485)) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1129)) (T -60))
+NIL
+((-1260 (((-1179 (-631 |#1|)) (-631 |#1|)) 61 T ELT)) (-1259 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 (-584 (-831))))) |#2| (-831)) 49 T ELT)) (-1261 (((-2 (|:| |minor| (-584 (-831))) (|:| -3267 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831)) 72 (|has| |#1| (-312)) ELT)))
+(((-61 |#1| |#2|) (-10 -7 (-15 -1259 ((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 (-584 (-831))))) |#2| (-831))) (-15 -1260 ((-1179 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-312)) (-15 -1261 ((-2 (|:| |minor| (-584 (-831))) (|:| -3267 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831))) |%noBranch|)) (-496) (-601 |#1|)) (T -61))
+((-1261 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |minor| (-584 (-831))) (|:| -3267 *3) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))) (-1260 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1179 (-631 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))) (-1259 (*1 *2 *3 *4) (-12 (-4 *5 (-496)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1179 (-584 (-831)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3324 ((|#1| $) 42 T ELT)) (-3724 (($) NIL T CONST)) (-3326 ((|#1| |#1| $) 37 T ELT)) (-3325 ((|#1| $) 35 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) NIL T ELT)) (-3609 (($ |#1| $) 38 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 36 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 20 T ELT)) (-3565 (($) 46 T ELT)) (-3323 (((-695) $) 33 T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 19 T ELT)) (-3946 (((-773) $) 32 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) NIL T ELT)) (-1262 (($ (-584 |#1|)) 44 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 14 T ELT)))
+(((-62 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -1262 ($ (-584 |#1|))))) (-1014)) (T -62))
+((-1262 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-62 *3)))))
+((-3946 (((-773) $) 13 T ELT) (($ (-1095)) 9 T ELT) (((-1095) $) 8 T ELT)))
+(((-63 |#1|) (-10 -7 (-15 -3946 ((-1095) |#1|)) (-15 -3946 (|#1| (-1095))) (-15 -3946 ((-773) |#1|))) (-64)) (T -63))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-1095)) 20 T ELT) (((-1095) $) 19 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-64) (-113)) (T -64))
NIL
-(-13 (-1013) (-429 (-1094)))
-(((-72) . T) ((-555 (-1094)) . T) ((-552 (-772)) . T) ((-552 (-1094)) . T) ((-429 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-3487 (($ $) 10 T ELT)) (-3488 (($ $) 12 T ELT)))
-(((-65 |#1|) (-10 -7 (-15 -3488 (|#1| |#1|)) (-15 -3487 (|#1| |#1|))) (-66)) (T -65))
+(-13 (-1014) (-430 (-1095)))
+(((-72) . T) ((-556 (-1095)) . T) ((-553 (-773)) . T) ((-553 (-1095)) . T) ((-430 (-1095)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-3488 (($ $) 10 T ELT)) (-3489 (($ $) 12 T ELT)))
+(((-65 |#1|) (-10 -7 (-15 -3489 (|#1| |#1|)) (-15 -3488 (|#1| |#1|))) (-66)) (T -65))
NIL
-((-3485 (($ $) 11 T ELT)) (-3483 (($ $) 10 T ELT)) (-3487 (($ $) 9 T ELT)) (-3488 (($ $) 8 T ELT)) (-3486 (($ $) 7 T ELT)) (-3484 (($ $) 6 T ELT)))
+((-3486 (($ $) 11 T ELT)) (-3484 (($ $) 10 T ELT)) (-3488 (($ $) 9 T ELT)) (-3489 (($ $) 8 T ELT)) (-3487 (($ $) 7 T ELT)) (-3485 (($ $) 6 T ELT)))
(((-66) (-113)) (T -66))
-((-3485 (*1 *1 *1) (-4 *1 (-66))) (-3483 (*1 *1 *1) (-4 *1 (-66))) (-3487 (*1 *1 *1) (-4 *1 (-66))) (-3488 (*1 *1 *1) (-4 *1 (-66))) (-3486 (*1 *1 *1) (-4 *1 (-66))) (-3484 (*1 *1 *1) (-4 *1 (-66))))
-(-13 (-10 -8 (-15 -3484 ($ $)) (-15 -3486 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $)) (-15 -3483 ($ $)) (-15 -3485 ($ $))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3541 (((-1048) $) 11 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-67) (-13 (-995) (-10 -8 (-15 -3541 ((-1048) $))))) (T -67))
-((-3541 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-67)))))
+((-3486 (*1 *1 *1) (-4 *1 (-66))) (-3484 (*1 *1 *1) (-4 *1 (-66))) (-3488 (*1 *1 *1) (-4 *1 (-66))) (-3489 (*1 *1 *1) (-4 *1 (-66))) (-3487 (*1 *1 *1) (-4 *1 (-66))) (-3485 (*1 *1 *1) (-4 *1 (-66))))
+(-13 (-10 -8 (-15 -3485 ($ $)) (-15 -3487 ($ $)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3484 ($ $)) (-15 -3486 ($ $))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3542 (((-1049) $) 11 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 17 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-67) (-13 (-996) (-10 -8 (-15 -3542 ((-1049) $))))) (T -67))
+((-3542 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-67)))))
NIL
(((-68) (-113)) (T -68))
NIL
-(-13 (-10 -7 (-6 -3994) (-6 (-3996 "*")) (-6 -3995) (-6 -3991) (-6 -3989) (-6 -3988) (-6 -3987) (-6 -3992) (-6 -3986) (-6 -3985) (-6 -3984) (-6 -3983) (-6 -3982) (-6 -3990) (-6 -3993) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3981)))
-((-2568 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1262 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-484))) 24 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ |#1|) 13 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 8 T CONST)) (-3056 (((-85) $ $) 10 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 30 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ $ $) 31 T ELT)))
-(((-69 |#1|) (-13 (-412) (-241 |#1| |#1|) (-10 -8 (-15 -1262 ($ (-1 |#1| |#1|))) (-15 -1262 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1262 ($ (-1 |#1| |#1| (-484)))))) (-961)) (T -69))
-((-1262 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1262 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-69 *3)))))
-((-1263 (((-347 |#2|) |#2| (-583 |#2|)) 10 T ELT) (((-347 |#2|) |#2| |#2|) 11 T ELT)))
-(((-70 |#1| |#2|) (-10 -7 (-15 -1263 ((-347 |#2|) |#2| |#2|)) (-15 -1263 ((-347 |#2|) |#2| (-583 |#2|)))) (-13 (-391) (-120)) (-1154 |#1|)) (T -70))
-((-1263 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-13 (-391) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-70 *5 *3)))) (-1263 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-391) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1154 *4)))))
-((-2568 (((-85) $ $) 13 T ELT)) (-1264 (((-85) $ $) 14 T ELT)) (-3056 (((-85) $ $) 11 T ELT)))
-(((-71 |#1|) (-10 -7 (-15 -1264 ((-85) |#1| |#1|)) (-15 -2568 ((-85) |#1| |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-72)) (T -71))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
+(-13 (-10 -7 (-6 -3995) (-6 (-3997 "*")) (-6 -3996) (-6 -3992) (-6 -3990) (-6 -3989) (-6 -3988) (-6 -3993) (-6 -3987) (-6 -3986) (-6 -3985) (-6 -3984) (-6 -3983) (-6 -3991) (-6 -3994) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3982)))
+((-2569 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1263 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-485))) 24 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 16 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 ((|#1| $ |#1|) 13 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3946 (((-773) $) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 8 T CONST)) (-3057 (((-85) $ $) 10 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 30 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ $ $) 31 T ELT)))
+(((-69 |#1|) (-13 (-413) (-241 |#1| |#1|) (-10 -8 (-15 -1263 ($ (-1 |#1| |#1|))) (-15 -1263 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1263 ($ (-1 |#1| |#1| (-485)))))) (-962)) (T -69))
+((-1263 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1263 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1263 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-69 *3)))))
+((-1264 (((-348 |#2|) |#2| (-584 |#2|)) 10 T ELT) (((-348 |#2|) |#2| |#2|) 11 T ELT)))
+(((-70 |#1| |#2|) (-10 -7 (-15 -1264 ((-348 |#2|) |#2| |#2|)) (-15 -1264 ((-348 |#2|) |#2| (-584 |#2|)))) (-13 (-392) (-120)) (-1155 |#1|)) (T -70))
+((-1264 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))) (-1264 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) 13 T ELT)) (-1265 (((-85) $ $) 14 T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-71 |#1|) (-10 -7 (-15 -1265 ((-85) |#1| |#1|)) (-15 -2569 ((-85) |#1| |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-72)) (T -71))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-72) (-113)) (T -72))
-((-3056 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1264 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))))
-(-13 (-1128) (-10 -8 (-15 -3056 ((-85) $ $)) (-15 -2568 ((-85) $ $)) (-15 -1264 ((-85) $ $))))
-(((-13) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) NIL T ELT)) (-3025 ((|#1| $ |#1|) 24 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-1267 (($ $ (-583 |#1|)) 30 T ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 12 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) 32 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1266 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1265 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 11 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) 13 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 9 T ELT)) (-3564 (($) 31 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1268 (($ (-694) |#1|) 33 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3995) (-15 -1268 ($ (-694) |#1|)) (-15 -1267 ($ $ (-583 |#1|))) (-15 -1266 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1266 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1265 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1265 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1013)) (T -73))
-((-1268 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1013)))) (-1267 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1266 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013)))) (-1266 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1265 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))) (-1265 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))))
-((-1269 ((|#3| |#2| |#2|) 34 T ELT)) (-1271 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3996 #1="*"))) ELT)) (-1270 ((|#3| |#2| |#2|) 36 T ELT)) (-1272 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3996 #1#))) ELT)))
-(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1269 (|#3| |#2| |#2|)) (-15 -1270 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3996 "*"))) (PROGN (-15 -1271 (|#1| |#2| |#2|)) (-15 -1272 (|#1| |#2|))) |%noBranch|)) (-961) (-1154 |#1|) (-627 |#1| |#4| |#5|) (-323 |#1|) (-323 |#1|)) (T -74))
-((-1272 (*1 *2 *3) (-12 (|has| *2 (-6 (-3996 #1="*"))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1271 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3996 #1#))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1270 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1154 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))) (-1269 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1154 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))))
-((-1275 (($ (-583 |#2|)) 11 T ELT)))
-(((-75 |#1| |#2|) (-10 -7 (-15 -1275 (|#1| (-583 |#2|)))) (-76 |#2|) (-1128)) (T -75))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-76 |#1|) (-113) (-1128)) (T -76))
-((-1275 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-76 *3)))) (-1274 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) (-3608 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))))
-(-13 (-428 |t#1|) (-10 -8 (-6 -3995) (-15 -1275 ($ (-583 |t#1|))) (-15 -1274 (|t#1| $)) (-15 -3608 ($ |t#1| $)) (-15 -1273 (|t#1| $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-484) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3957 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-484) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-349 (-484)) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1089)) (-583 (-484))) NIL (|has| (-484) (-455 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-455 (-1089) (-484))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-484) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL T ELT) (((-917 2) $) 10 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2029 (($ (-349 (-484))) 9 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT)))
-(((-77) (-13 (-904 (-484)) (-552 (-349 (-484))) (-552 (-917 2)) (-10 -8 (-15 -3128 ((-349 (-484)) $)) (-15 -2029 ($ (-349 (-484))))))) (T -77))
-((-3128 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-77)))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-77)))))
-((-1287 (((-583 (-876)) $) 14 T ELT)) (-3541 (((-446) $) 12 T ELT)) (-3945 (((-772) $) 21 T ELT)) (-1276 (($ (-446) (-583 (-876))) 16 T ELT)))
-(((-78) (-13 (-552 (-772)) (-10 -8 (-15 -3541 ((-446) $)) (-15 -1287 ((-583 (-876)) $)) (-15 -1276 ($ (-446) (-583 (-876))))))) (T -78))
-((-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-78)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78)))) (-1276 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-78)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1277 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-79 |#1|) (-13 (-80 |#1|) (-1013) (-10 -8 (-15 -1277 ($ (-1 |#1| |#1| |#1|))))) (-1128)) (T -79))
-((-1277 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-79 *3)))))
-((-3799 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-80 |#1|) (-113) (-1128)) (T -80))
+((-3057 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1265 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))))
+(-13 (-1129) (-10 -8 (-15 -3057 ((-85) $ $)) (-15 -2569 ((-85) $ $)) (-15 -1265 ((-85) $ $))))
+(((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) NIL T ELT)) (-3026 ((|#1| $ |#1|) 24 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-1268 (($ $ (-584 |#1|)) 30 T ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3138 (($ $) 12 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1302 (($ $ |#1| $) 32 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1267 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1266 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 11 T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3527 (((-85) $) 13 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 9 T ELT)) (-3565 (($) 31 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1269 (($ (-695) |#1|) 33 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3996) (-15 -1269 ($ (-695) |#1|)) (-15 -1268 ($ $ (-584 |#1|))) (-15 -1267 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1267 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1266 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1266 ($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|))))) (-1014)) (T -73))
+((-1269 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1014)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) (-1267 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1014)))) (-1267 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) (-1266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))) (-1266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))))
+((-1270 ((|#3| |#2| |#2|) 34 T ELT)) (-1272 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-1271 ((|#3| |#2| |#2|) 36 T ELT)) (-1273 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3997 #1#))) ELT)))
+(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1270 (|#3| |#2| |#2|)) (-15 -1271 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3997 "*"))) (PROGN (-15 -1272 (|#1| |#2| |#2|)) (-15 -1273 (|#1| |#2|))) |%noBranch|)) (-962) (-1155 |#1|) (-628 |#1| |#4| |#5|) (-324 |#1|) (-324 |#1|)) (T -74))
+((-1273 (*1 *2 *3) (-12 (|has| *2 (-6 (-3997 #1="*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1272 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3997 #1#))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1271 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-1270 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))))
+((-1276 (($ (-584 |#2|)) 11 T ELT)))
+(((-75 |#1| |#2|) (-10 -7 (-15 -1276 (|#1| (-584 |#2|)))) (-76 |#2|) (-1129)) (T -75))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-76 |#1|) (-113) (-1129)) (T -76))
+((-1276 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-4 *1 (-76 *3)))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))) (-3609 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))) (-1274 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))))
+(-13 (-429 |t#1|) (-10 -8 (-6 -3996) (-15 -1276 ($ (-584 |t#1|))) (-15 -1275 (|t#1| $)) (-15 -3609 ($ |t#1| $)) (-15 -1274 (|t#1| $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-485) (-951 (-1090))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3157 (((-485) $) NIL T ELT) (((-1090) $) NIL (|has| (-485) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-485) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| (-485) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3958 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL T ELT) (((-631 (-485)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-485) (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3768 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1090)) (-584 (-485))) NIL (|has| (-485) (-456 (-1090) (-485))) ELT) (($ $ (-1090) (-485)) NIL (|has| (-485) (-456 (-1090) (-485))) ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-485) $) NIL T ELT)) (-3972 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1090)) NIL (|has| (-485) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 2) $) 10 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2030 (($ (-350 (-485))) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT)))
+(((-77) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 2)) (-10 -8 (-15 -3129 ((-350 (-485)) $)) (-15 -2030 ($ (-350 (-485))))))) (T -77))
+((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))))
+((-1288 (((-584 (-877)) $) 14 T ELT)) (-3542 (((-447) $) 12 T ELT)) (-3946 (((-773) $) 21 T ELT)) (-1277 (($ (-447) (-584 (-877))) 16 T ELT)))
+(((-78) (-13 (-553 (-773)) (-10 -8 (-15 -3542 ((-447) $)) (-15 -1288 ((-584 (-877)) $)) (-15 -1277 ($ (-447) (-584 (-877))))))) (T -78))
+((-3542 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-78)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78)))) (-1277 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-78)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1278 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-79 |#1|) (-13 (-80 |#1|) (-1014) (-10 -8 (-15 -1278 ($ (-1 |#1| |#1| |#1|))))) (-1129)) (T -79))
+((-1278 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-79 *3)))))
+((-3800 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-80 |#1|) (-113) (-1129)) (T -80))
NIL
(-13 (|MappingCategory| |t#1| |t#1| |t#1|))
-(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3321 (($ $ $) NIL T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1729 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3787 (((-85) $ (-1145 (-484)) (-85)) NIL (|has| $ (-6 -3995)) ELT) (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-3405 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-3841 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-1575 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-3112 (((-85) $ (-484)) NIL T ELT)) (-3418 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-1013)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2889 (((-583 (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2560 (($ $) NIL T ELT)) (-1299 (($ $ $) NIL T ELT)) (-3613 (($ (-694) (-85)) 10 T ELT)) (-1300 (($ $ $) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL T ELT)) (-3517 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2608 (((-583 (-85)) $) NIL T ELT)) (-3245 (((-85) (-85) $) NIL (|has| (-85) (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL T ELT)) (-1948 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-85) $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2199 (($ $ (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3767 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-2205 (((-583 (-85)) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 (($ $ (-1145 (-484))) NIL T ELT) (((-85) $ (-484)) NIL T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-85)) $) NIL T ELT) (((-694) (-85) $) NIL (|has| (-85) (-1013)) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-85) (-553 (-473))) ELT)) (-3529 (($ (-583 (-85))) NIL T ELT)) (-3801 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1768 (($ (-694) (-85)) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-81) (-13 (-96) (-10 -8 (-15 -1768 ($ (-694) (-85)))))) (T -81))
-((-1768 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
-(((-82 |#1| |#2|) (-113) (-961) (-961)) (T -82))
-NIL
-(-13 (-590 |t#1|) (-968 |t#2|) (-10 -7 (-6 -3989) (-6 -3988)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1013) . T) ((-1128) . T))
-((-2561 (($ $ $) 12 T ELT)) (-2560 (($ $) 8 T ELT)) (-2562 (($ $ $) 10 T ELT)))
-(((-83 |#1|) (-10 -7 (-15 -2561 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1|))) (-84)) (T -83))
-NIL
-((-2313 (($ $) 8 T ELT)) (-2561 (($ $ $) 9 T ELT)) (-2560 (($ $) 11 T ELT)) (-2562 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2312 (($ $ $) 7 T ELT)))
+(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3322 (($ $ $) NIL T ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1730 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2910 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3788 (((-85) $ (-1146 (-485)) (-85)) NIL (|has| $ (-6 -3996)) ELT) (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1014))) ELT)) (-3406 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1014))) ELT)) (-3842 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1014))) ELT)) (-1576 (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3996)) ELT)) (-3113 (((-85) $ (-485)) NIL T ELT)) (-3419 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-1014)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-1014)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2890 (((-584 (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2561 (($ $) NIL T ELT)) (-1300 (($ $ $) NIL T ELT)) (-3614 (($ (-695) (-85)) 10 T ELT)) (-1301 (($ $ $) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL T ELT)) (-3518 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2609 (((-584 (-85)) $) NIL T ELT)) (-3246 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL T ELT)) (-1949 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (((-85) $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2200 (($ $ (-85)) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3768 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1014))) ELT)) (-2206 (((-584 (-85)) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 (($ $ (-1146 (-485))) NIL T ELT) (((-85) $ (-485)) NIL T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2306 (($ $ (-1146 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-85)) $) NIL T ELT) (((-695) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-85) (-554 (-474))) ELT)) (-3530 (($ (-584 (-85))) NIL T ELT)) (-3802 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1769 (($ (-695) (-85)) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-81) (-13 (-96) (-10 -8 (-15 -1769 ($ (-695) (-85)))))) (T -81))
+((-1769 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
+(((-82 |#1| |#2|) (-113) (-962) (-962)) (T -82))
+NIL
+(-13 (-591 |t#1|) (-969 |t#2|) (-10 -7 (-6 -3990) (-6 -3989)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1129) . T))
+((-2562 (($ $ $) 12 T ELT)) (-2561 (($ $) 8 T ELT)) (-2563 (($ $ $) 10 T ELT)))
+(((-83 |#1|) (-10 -7 (-15 -2562 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1|))) (-84)) (T -83))
+NIL
+((-2314 (($ $) 8 T ELT)) (-2562 (($ $ $) 9 T ELT)) (-2561 (($ $) 11 T ELT)) (-2563 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-2313 (($ $ $) 7 T ELT)))
(((-84) (-113)) (T -84))
-((-2560 (*1 *1 *1) (-4 *1 (-84))) (-2562 (*1 *1 *1 *1) (-4 *1 (-84))) (-2561 (*1 *1 *1 *1) (-4 *1 (-84))))
-(-13 (-604) (-10 -8 (-15 -2560 ($ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $ $))))
-(((-13) . T) ((-604) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 9 T ELT)) (-3321 (($ $ $) 14 T ELT)) (-2855 (($) 6 T CONST)) (-3136 (((-694)) 23 T ELT)) (-2994 (($) 31 T ELT)) (-2561 (($ $ $) 12 T ELT)) (-2560 (($ $) 8 T ELT)) (-1299 (($ $ $) 15 T ELT)) (-1300 (($ $ $) 16 T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 27 T ELT)) (-2853 (($ $ $) 19 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2854 (($) 7 T CONST)) (-2852 (($ $ $) 20 T ELT)) (-3971 (((-473) $) 33 T ELT)) (-3945 (((-772) $) 35 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 13 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2312 (($ $ $) 11 T ELT)))
-(((-85) (-13 (-752) (-880) (-553 (-473)) (-10 -8 (-15 -3321 ($ $ $)) (-15 -1300 ($ $ $)) (-15 -1299 ($ $ $))))) (T -85))
-((-3321 (*1 *1 *1 *1) (-5 *1 (-85))) (-1300 (*1 *1 *1 *1) (-5 *1 (-85))) (-1299 (*1 *1 *1 *1) (-5 *1 (-85))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1521 (((-694) $) 92 T ELT) (($ $ (-694)) 38 T ELT)) (-1285 (((-85) $) 42 T ELT)) (-1279 (($ $ (-1072) (-696)) 59 T ELT) (($ $ (-446) (-696)) 34 T ELT)) (-1278 (($ $ (-45 (-1072) (-696))) 16 T ELT)) (-2841 (((-3 (-696) "failed") $ (-1072)) 27 T ELT) (((-632 (-696)) $ (-446)) 33 T ELT)) (-1287 (((-45 (-1072) (-696)) $) 15 T ELT)) (-3594 (($ (-1089)) 20 T ELT) (($ (-1089) (-694)) 23 T ELT) (($ (-1089) (-55)) 24 T ELT)) (-1286 (((-85) $) 40 T ELT)) (-1284 (((-85) $) 44 T ELT)) (-3541 (((-1089) $) 8 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2633 (((-85) $ (-1089)) 11 T ELT)) (-2128 (($ $ (-1 (-473) (-583 (-473)))) 65 T ELT) (((-632 (-1 (-473) (-583 (-473)))) $) 69 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1281 (((-85) $ (-446)) 37 T ELT)) (-1283 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3616 (((-632 (-1 (-772) (-583 (-772)))) $) 67 T ELT) (($ $ (-1 (-772) (-583 (-772)))) 52 T ELT) (($ $ (-1 (-772) (-772))) 54 T ELT)) (-1280 (($ $ (-1072)) 56 T ELT) (($ $ (-446)) 57 T ELT)) (-3399 (($ $) 75 T ELT)) (-1282 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3945 (((-772) $) 61 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2792 (($ $ (-446)) 35 T ELT)) (-2521 (((-55) $) 70 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 88 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 104 T ELT)))
-(((-86) (-13 (-756) (-747 (-1089)) (-10 -8 (-15 -1287 ((-45 (-1072) (-696)) $)) (-15 -3399 ($ $)) (-15 -3594 ($ (-1089))) (-15 -3594 ($ (-1089) (-694))) (-15 -3594 ($ (-1089) (-55))) (-15 -1286 ((-85) $)) (-15 -1285 ((-85) $)) (-15 -1284 ((-85) $)) (-15 -1521 ((-694) $)) (-15 -1521 ($ $ (-694))) (-15 -1283 ($ $ (-1 (-85) $ $))) (-15 -1282 ($ $ (-1 (-85) $ $))) (-15 -3616 ((-632 (-1 (-772) (-583 (-772)))) $)) (-15 -3616 ($ $ (-1 (-772) (-583 (-772))))) (-15 -3616 ($ $ (-1 (-772) (-772)))) (-15 -2128 ($ $ (-1 (-473) (-583 (-473))))) (-15 -2128 ((-632 (-1 (-473) (-583 (-473)))) $)) (-15 -1281 ((-85) $ (-446))) (-15 -2792 ($ $ (-446))) (-15 -1280 ($ $ (-1072))) (-15 -1280 ($ $ (-446))) (-15 -2841 ((-3 (-696) "failed") $ (-1072))) (-15 -2841 ((-632 (-696)) $ (-446))) (-15 -1279 ($ $ (-1072) (-696))) (-15 -1279 ($ $ (-446) (-696))) (-15 -1278 ($ $ (-45 (-1072) (-696))))))) (T -86))
-((-1287 (*1 *2 *1) (-12 (-5 *2 (-45 (-1072) (-696))) (-5 *1 (-86)))) (-3399 (*1 *1 *1) (-5 *1 (-86))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-86)))) (-3594 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *1 (-86)))) (-3594 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1521 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86)))) (-2128 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-583 (-473)))) (-5 *1 (-86)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-473) (-583 (-473))))) (-5 *1 (-86)))) (-1281 (*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2792 (*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) (-2841 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-696)) (-5 *1 (-86)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-696))) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1072) (-696))) (-5 *1 (-86)))))
-((-2518 (((-3 (-1 |#1| (-583 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-583 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-583 |#1|)) 25 T ELT)) (-1288 (((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-583 (-1 |#1| (-583 |#1|)))) 30 T ELT)) (-1289 (((-86) |#1|) 63 T ELT)) (-1290 (((-3 |#1| #1#) (-86)) 58 T ELT)))
-(((-87 |#1|) (-10 -7 (-15 -2518 ((-3 |#1| #1="failed") (-86) (-583 |#1|))) (-15 -2518 ((-86) (-86) (-1 |#1| (-583 |#1|)))) (-15 -2518 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2518 ((-3 (-1 |#1| (-583 |#1|)) #1#) (-86))) (-15 -1288 ((-86) (-86) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1288 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1288 ((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86))) (-15 -1289 ((-86) |#1|)) (-15 -1290 ((-3 |#1| #1#) (-86)))) (-1013)) (T -87))
-((-1290 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))) (-1289 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013)))) (-1288 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-1288 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-1288 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2518 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-2518 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2518 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2518 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))))
-((-1291 (((-484) |#2|) 41 T ELT)))
-(((-88 |#1| |#2|) (-10 -7 (-15 -1291 ((-484) |#2|))) (-13 (-312) (-950 (-349 (-484)))) (-1154 |#1|)) (T -88))
-((-1291 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-950 (-349 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1154 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $ (-484)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2611 (($ (-1084 (-484)) (-484)) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3771 (((-694) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 (((-484)) NIL T ELT)) (-2613 (((-484) $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3768 (($ $ (-484)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-1068 (-484)) $) NIL T ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-484) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-89 |#1|) (-779 |#1|) (-484)) (T -89))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-89 |#1|) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT)) (-3156 (((-89 |#1|) $) NIL T ELT) (((-1089) $) NIL (|has| (-89 |#1|) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT)) (-3729 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1178 (-89 |#1|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-89 |#1|)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-89 |#1|) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-89 |#1|) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-89 |#1|) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-89 |#1|) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3957 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1178 (-89 |#1|)))) (-1178 $) $) NIL T ELT) (((-630 (-89 |#1|)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-89 |#1|) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3130 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-89 |#1|)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-583 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-583 (-1089)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-455 (-1089) (-89 |#1|))) ELT) (($ $ (-1089) (-89 |#1|)) NIL (|has| (-89 |#1|) (-455 (-1089) (-89 |#1|))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-89 |#1|) $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-89 |#1|) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-89 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-933)) ELT)) (-2616 (((-148 (-349 (-484))) $) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1089)) NIL (|has| (-89 |#1|) (-950 (-1089))) ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) (|has| (-89 |#1|) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-349 (-484)) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT)))
-(((-90 |#1|) (-13 (-904 (-89 |#1|)) (-10 -8 (-15 -3769 ((-349 (-484)) $ (-484))) (-15 -2616 ((-148 (-349 (-484))) $)) (-15 -3729 ($ $)) (-15 -3729 ($ (-484) $)))) (-484)) (T -90))
-((-3769 (*1 *2 *1 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484)))) (-3729 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2))))
-((-3787 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3031 (((-583 $) $) 31 T ELT)) (-3027 (((-85) $ $) 36 T ELT)) (-3245 (((-85) |#2| $) 40 T ELT)) (-3030 (((-583 |#2|) $) 25 T ELT)) (-3526 (((-85) $) 18 T ELT)) (-3799 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3632 (((-85) $) 57 T ELT)) (-3945 (((-772) $) 47 T ELT)) (-3521 (((-583 $) $) 32 T ELT)) (-3056 (((-85) $ $) 38 T ELT)) (-3956 (((-694) $) 50 T ELT)))
-(((-91 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3787 (|#1| |#1| #1="right" |#1|)) (-15 -3787 (|#1| |#1| #2="left" |#1|)) (-15 -3799 (|#1| |#1| #1#)) (-15 -3799 (|#1| |#1| #2#)) (-15 -3787 (|#2| |#1| #3="value" |#2|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3030 ((-583 |#2|) |#1|)) (-15 -3632 ((-85) |#1|)) (-15 -3799 (|#2| |#1| #3#)) (-15 -3526 ((-85) |#1|)) (-15 -3031 ((-583 |#1|) |#1|)) (-15 -3521 ((-583 |#1|) |#1|)) (-15 -3245 ((-85) |#2| |#1|)) (-15 -3956 ((-694) |#1|))) (-92 |#2|) (-1128)) (T -91))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 58 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 60 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3995)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-3137 (($ $) 63 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3138 (($ $) 65 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-92 |#1|) (-113) (-1128)) (T -92))
-((-3138 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-3137 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-3787 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3995)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-1293 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3787 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3995)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-1292 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))))
-(-13 (-923 |t#1|) (-10 -8 (-15 -3138 ($ $)) (-15 -3799 ($ $ "left")) (-15 -3137 ($ $)) (-15 -3799 ($ $ "right")) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3787 ($ $ "left" $)) (-15 -1293 ($ $ $)) (-15 -3787 ($ $ "right" $)) (-15 -1292 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-1296 (((-85) |#1|) 29 T ELT)) (-1295 (((-694) (-694)) 28 T ELT) (((-694)) 27 T ELT)) (-1294 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT)))
-(((-93 |#1|) (-10 -7 (-15 -1294 ((-85) |#1|)) (-15 -1294 ((-85) |#1| (-85))) (-15 -1295 ((-694))) (-15 -1295 ((-694) (-694))) (-15 -1296 ((-85) |#1|))) (-1154 (-484))) (T -93))
-((-1296 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1295 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1295 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1294 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1294 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 18 T ELT)) (-3417 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 21 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 23 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 20 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) 27 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 22 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1297 (($ |#1| $) 28 T ELT)) (-3608 (($ |#1| $) 15 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 11 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1298 (($ (-583 |#1|)) 16 T ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3995) (-15 -1298 ($ (-583 |#1|))) (-15 -3608 ($ |#1| $)) (-15 -1297 ($ |#1| $)) (-15 -3417 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-756)) (T -94))
-((-1298 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-1297 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-3417 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-756)))))
-((-2313 (($ $) 13 T ELT)) (-2560 (($ $) 11 T ELT)) (-1299 (($ $ $) 23 T ELT)) (-1300 (($ $ $) 21 T ELT)) (-2311 (($ $ $) 19 T ELT)) (-2312 (($ $ $) 17 T ELT)))
-(((-95 |#1|) (-10 -7 (-15 -1299 (|#1| |#1| |#1|)) (-15 -1300 (|#1| |#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1|))) (-96)) (T -95))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-2313 (($ $) 104 T ELT)) (-3321 (($ $ $) 32 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 60 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) 99 (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 93 T ELT)) (-1729 (($ $) 103 (-12 (|has| (-85) (-756)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-85) (-85)) $) 102 (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) 98 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-3787 (((-85) $ (-1145 (-484)) (-85)) 82 (|has| $ (-6 -3995)) ELT) (((-85) $ (-484) (-85)) 48 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-85)) $) 65 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 39 T CONST)) (-2297 (($ $) 101 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 91 T ELT)) (-1352 (($ $) 62 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ (-1 (-85) (-85)) $) 66 (|has| $ (-6 -3994)) ELT) (($ (-85) $) 63 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3841 (((-85) (-1 (-85) (-85) (-85)) $) 68 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 67 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 64 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3994))) ELT)) (-1575 (((-85) $ (-484) (-85)) 47 (|has| $ (-6 -3995)) ELT)) (-3112 (((-85) $ (-484)) 49 T ELT)) (-3418 (((-484) (-85) $ (-484)) 96 (|has| (-85) (-1013)) ELT) (((-484) (-85) $) 95 (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) 94 T ELT)) (-2889 (((-583 (-85)) $) 42 (|has| $ (-6 -3994)) ELT)) (-2561 (($ $ $) 109 T ELT)) (-2560 (($ $) 107 T ELT)) (-1299 (($ $ $) 33 T ELT)) (-3613 (($ (-694) (-85)) 72 T ELT)) (-1300 (($ $ $) 34 T ELT)) (-2200 (((-484) $) 57 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 23 T ELT)) (-3517 (($ $ $) 97 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 90 T ELT)) (-2608 (((-583 (-85)) $) 85 T ELT)) (-3245 (((-85) (-85) $) 83 (|has| (-85) (-1013)) ELT)) (-2201 (((-484) $) 56 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 22 T ELT)) (-1948 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-85) (-85) (-85)) $ $) 77 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2304 (($ $ $ (-484)) 81 T ELT) (($ (-85) $ (-484)) 80 T ELT)) (-2203 (((-583 (-484)) $) 54 T ELT)) (-2204 (((-85) (-484) $) 53 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-85) $) 58 (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 69 T ELT)) (-2199 (($ $ (-85)) 59 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) 87 T ELT)) (-3767 (($ $ (-583 (-85)) (-583 (-85))) 46 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) 45 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) 44 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) 43 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1221 (((-85) $ $) 35 T ELT)) (-2202 (((-85) (-85) $) 55 (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-2205 (((-583 (-85)) $) 52 T ELT)) (-3402 (((-85) $) 38 T ELT)) (-3564 (($) 37 T ELT)) (-3799 (($ $ (-1145 (-484))) 71 T ELT) (((-85) $ (-484)) 51 T ELT) (((-85) $ (-484) (-85)) 50 T ELT)) (-2305 (($ $ (-1145 (-484))) 79 T ELT) (($ $ (-484)) 78 T ELT)) (-1945 (((-694) (-1 (-85) (-85)) $) 86 T ELT) (((-694) (-85) $) 84 (|has| (-85) (-1013)) ELT)) (-1730 (($ $ $ (-484)) 100 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 36 T ELT)) (-3971 (((-473) $) 61 (|has| (-85) (-553 (-473))) ELT)) (-3529 (($ (-583 (-85))) 70 T ELT)) (-3801 (($ (-583 $)) 76 T ELT) (($ $ $) 75 T ELT) (($ (-85) $) 74 T ELT) (($ $ (-85)) 73 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) 88 T ELT)) (-2562 (($ $ $) 108 T ELT)) (-2311 (($ $ $) 106 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-2312 (($ $ $) 105 T ELT)) (-3956 (((-694) $) 89 T ELT)))
+((-2561 (*1 *1 *1) (-4 *1 (-84))) (-2563 (*1 *1 *1 *1) (-4 *1 (-84))) (-2562 (*1 *1 *1 *1) (-4 *1 (-84))))
+(-13 (-605) (-10 -8 (-15 -2561 ($ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $))))
+(((-13) . T) ((-605) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 9 T ELT)) (-3322 (($ $ $) 14 T ELT)) (-2856 (($) 6 T CONST)) (-3137 (((-695)) 23 T ELT)) (-2995 (($) 31 T ELT)) (-2562 (($ $ $) 12 T ELT)) (-2561 (($ $) 8 T ELT)) (-1300 (($ $ $) 15 T ELT)) (-1301 (($ $ $) 16 T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) 27 T ELT)) (-2854 (($ $ $) 19 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2855 (($) 7 T CONST)) (-2853 (($ $ $) 20 T ELT)) (-3972 (((-474) $) 33 T ELT)) (-3946 (((-773) $) 35 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 13 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 21 T ELT)) (-2313 (($ $ $) 11 T ELT)))
+(((-85) (-13 (-753) (-881) (-554 (-474)) (-10 -8 (-15 -3322 ($ $ $)) (-15 -1301 ($ $ $)) (-15 -1300 ($ $ $))))) (T -85))
+((-3322 (*1 *1 *1 *1) (-5 *1 (-85))) (-1301 (*1 *1 *1 *1) (-5 *1 (-85))) (-1300 (*1 *1 *1 *1) (-5 *1 (-85))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1522 (((-695) $) 92 T ELT) (($ $ (-695)) 38 T ELT)) (-1286 (((-85) $) 42 T ELT)) (-1280 (($ $ (-1073) (-697)) 59 T ELT) (($ $ (-447) (-697)) 34 T ELT)) (-1279 (($ $ (-45 (-1073) (-697))) 16 T ELT)) (-2842 (((-3 (-697) "failed") $ (-1073)) 27 T ELT) (((-633 (-697)) $ (-447)) 33 T ELT)) (-1288 (((-45 (-1073) (-697)) $) 15 T ELT)) (-3595 (($ (-1090)) 20 T ELT) (($ (-1090) (-695)) 23 T ELT) (($ (-1090) (-55)) 24 T ELT)) (-1287 (((-85) $) 40 T ELT)) (-1285 (((-85) $) 44 T ELT)) (-3542 (((-1090) $) 8 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2634 (((-85) $ (-1090)) 11 T ELT)) (-2129 (($ $ (-1 (-474) (-584 (-474)))) 65 T ELT) (((-633 (-1 (-474) (-584 (-474)))) $) 69 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1282 (((-85) $ (-447)) 37 T ELT)) (-1284 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3617 (((-633 (-1 (-773) (-584 (-773)))) $) 67 T ELT) (($ $ (-1 (-773) (-584 (-773)))) 52 T ELT) (($ $ (-1 (-773) (-773))) 54 T ELT)) (-1281 (($ $ (-1073)) 56 T ELT) (($ $ (-447)) 57 T ELT)) (-3400 (($ $) 75 T ELT)) (-1283 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3946 (((-773) $) 61 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2793 (($ $ (-447)) 35 T ELT)) (-2522 (((-55) $) 70 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 88 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 104 T ELT)))
+(((-86) (-13 (-757) (-748 (-1090)) (-10 -8 (-15 -1288 ((-45 (-1073) (-697)) $)) (-15 -3400 ($ $)) (-15 -3595 ($ (-1090))) (-15 -3595 ($ (-1090) (-695))) (-15 -3595 ($ (-1090) (-55))) (-15 -1287 ((-85) $)) (-15 -1286 ((-85) $)) (-15 -1285 ((-85) $)) (-15 -1522 ((-695) $)) (-15 -1522 ($ $ (-695))) (-15 -1284 ($ $ (-1 (-85) $ $))) (-15 -1283 ($ $ (-1 (-85) $ $))) (-15 -3617 ((-633 (-1 (-773) (-584 (-773)))) $)) (-15 -3617 ($ $ (-1 (-773) (-584 (-773))))) (-15 -3617 ($ $ (-1 (-773) (-773)))) (-15 -2129 ($ $ (-1 (-474) (-584 (-474))))) (-15 -2129 ((-633 (-1 (-474) (-584 (-474)))) $)) (-15 -1282 ((-85) $ (-447))) (-15 -2793 ($ $ (-447))) (-15 -1281 ($ $ (-1073))) (-15 -1281 ($ $ (-447))) (-15 -2842 ((-3 (-697) "failed") $ (-1073))) (-15 -2842 ((-633 (-697)) $ (-447))) (-15 -1280 ($ $ (-1073) (-697))) (-15 -1280 ($ $ (-447) (-697))) (-15 -1279 ($ $ (-45 (-1073) (-697))))))) (T -86))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-45 (-1073) (-697))) (-5 *1 (-86)))) (-3400 (*1 *1 *1) (-5 *1 (-86))) (-3595 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-86)))) (-3595 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-695)) (-5 *1 (-86)))) (-3595 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1522 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1284 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86)))) (-3617 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86)))) (-3617 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86)))) (-2129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-86)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-86)))) (-1282 (*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2793 (*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) (-2842 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-697)) (-5 *1 (-86)))) (-2842 (*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1073) (-697))) (-5 *1 (-86)))))
+((-2519 (((-3 (-1 |#1| (-584 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-584 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-584 |#1|)) 25 T ELT)) (-1289 (((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-584 (-1 |#1| (-584 |#1|)))) 30 T ELT)) (-1290 (((-86) |#1|) 63 T ELT)) (-1291 (((-3 |#1| #1#) (-86)) 58 T ELT)))
+(((-87 |#1|) (-10 -7 (-15 -2519 ((-3 |#1| #1="failed") (-86) (-584 |#1|))) (-15 -2519 ((-86) (-86) (-1 |#1| (-584 |#1|)))) (-15 -2519 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2519 ((-3 (-1 |#1| (-584 |#1|)) #1#) (-86))) (-15 -1289 ((-86) (-86) (-584 (-1 |#1| (-584 |#1|))))) (-15 -1289 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1289 ((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86))) (-15 -1290 ((-86) |#1|)) (-15 -1291 ((-3 |#1| #1#) (-86)))) (-1014)) (T -87))
+((-1291 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1014)))) (-1290 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1014)))) (-1289 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1014)))) (-1289 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-1289 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2519 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1014)))) (-2519 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2519 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2519 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1014)))))
+((-1292 (((-485) |#2|) 41 T ELT)))
+(((-88 |#1| |#2|) (-10 -7 (-15 -1292 ((-485) |#2|))) (-13 (-312) (-951 (-350 (-485)))) (-1155 |#1|)) (T -88))
+((-1292 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-951 (-350 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $ (-485)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2612 (($ (-1085 (-485)) (-485)) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2613 (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3772 (((-695) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 (((-485)) NIL T ELT)) (-2614 (((-485) $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3769 (($ $ (-485)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-1069 (-485)) $) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3770 (((-485) $ (-485)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-89 |#1|) (-780 |#1|) (-485)) (T -89))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-89 |#1|) (-951 (-1090))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT)) (-3157 (((-89 |#1|) $) NIL T ELT) (((-1090) $) NIL (|has| (-89 |#1|) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT)) (-3730 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1179 (-89 |#1|)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-89 |#1|)) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-89 |#1|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-89 |#1|) (-797 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-89 |#1|) $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| (-89 |#1|) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3958 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1179 (-89 |#1|)))) (-1179 $) $) NIL T ELT) (((-631 (-89 |#1|)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-89 |#1|) (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3131 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3768 (($ $ (-584 (-89 |#1|)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-584 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-584 (-1090)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-456 (-1090) (-89 |#1|))) ELT) (($ $ (-1090) (-89 |#1|)) NIL (|has| (-89 |#1|) (-456 (-1090) (-89 |#1|))) ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-89 |#1|) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-89 |#1|) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-89 |#1|) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1090))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-89 |#1|) $) NIL T ELT)) (-3972 (((-801 (-485)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-89 |#1|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-89 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-934)) ELT)) (-2617 (((-148 (-350 (-485))) $) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1090)) NIL (|has| (-89 |#1|) (-951 (-1090))) ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) (|has| (-89 |#1|) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3770 (((-350 (-485)) $ (-485)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-89 |#1|) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-89 |#1|) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-89 |#1|) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1090))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT)))
+(((-90 |#1|) (-13 (-905 (-89 |#1|)) (-10 -8 (-15 -3770 ((-350 (-485)) $ (-485))) (-15 -2617 ((-148 (-350 (-485))) $)) (-15 -3730 ($ $)) (-15 -3730 ($ (-485) $)))) (-485)) (T -90))
+((-3770 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485)))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2))))
+((-3788 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3032 (((-584 $) $) 31 T ELT)) (-3028 (((-85) $ $) 36 T ELT)) (-3246 (((-85) |#2| $) 40 T ELT)) (-3031 (((-584 |#2|) $) 25 T ELT)) (-3527 (((-85) $) 18 T ELT)) (-3800 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3633 (((-85) $) 57 T ELT)) (-3946 (((-773) $) 47 T ELT)) (-3522 (((-584 $) $) 32 T ELT)) (-3057 (((-85) $ $) 38 T ELT)) (-3957 (((-695) $) 50 T ELT)))
+(((-91 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -3788 (|#1| |#1| #1="right" |#1|)) (-15 -3788 (|#1| |#1| #2="left" |#1|)) (-15 -3800 (|#1| |#1| #1#)) (-15 -3800 (|#1| |#1| #2#)) (-15 -3788 (|#2| |#1| #3="value" |#2|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3031 ((-584 |#2|) |#1|)) (-15 -3633 ((-85) |#1|)) (-15 -3800 (|#2| |#1| #3#)) (-15 -3527 ((-85) |#1|)) (-15 -3032 ((-584 |#1|) |#1|)) (-15 -3522 ((-584 |#1|) |#1|)) (-15 -3246 ((-85) |#2| |#1|)) (-15 -3957 ((-695) |#1|))) (-92 |#2|) (-1129)) (T -91))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 58 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 60 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3996)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-3138 (($ $) 63 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3139 (($ $) 65 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-92 |#1|) (-113) (-1129)) (T -92))
+((-3139 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-3788 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3996)) (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-1294 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-92 *2)) (-4 *2 (-1129)))) (-3788 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3996)) (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-1293 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-92 *2)) (-4 *2 (-1129)))))
+(-13 (-924 |t#1|) (-10 -8 (-15 -3139 ($ $)) (-15 -3800 ($ $ "left")) (-15 -3138 ($ $)) (-15 -3800 ($ $ "right")) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3788 ($ $ "left" $)) (-15 -1294 ($ $ $)) (-15 -3788 ($ $ "right" $)) (-15 -1293 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-1297 (((-85) |#1|) 29 T ELT)) (-1296 (((-695) (-695)) 28 T ELT) (((-695)) 27 T ELT)) (-1295 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT)))
+(((-93 |#1|) (-10 -7 (-15 -1295 ((-85) |#1|)) (-15 -1295 ((-85) |#1| (-85))) (-15 -1296 ((-695))) (-15 -1296 ((-695) (-695))) (-15 -1297 ((-85) |#1|))) (-1155 (-485))) (T -93))
+((-1297 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485))))) (-1296 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485))))) (-1296 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485))))) (-1295 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485))))) (-1295 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485))))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 18 T ELT)) (-3418 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 21 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 23 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3138 (($ $) 20 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1302 (($ $ |#1| $) 27 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 22 T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-1298 (($ |#1| $) 28 T ELT)) (-3609 (($ |#1| $) 15 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 11 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1299 (($ (-584 |#1|)) 16 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3996) (-15 -1299 ($ (-584 |#1|))) (-15 -3609 ($ |#1| $)) (-15 -1298 ($ |#1| $)) (-15 -3418 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-757)) (T -94))
+((-1299 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-1298 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-3418 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-757)))))
+((-2314 (($ $) 13 T ELT)) (-2561 (($ $) 11 T ELT)) (-1300 (($ $ $) 23 T ELT)) (-1301 (($ $ $) 21 T ELT)) (-2312 (($ $ $) 19 T ELT)) (-2313 (($ $ $) 17 T ELT)))
+(((-95 |#1|) (-10 -7 (-15 -1300 (|#1| |#1| |#1|)) (-15 -1301 (|#1| |#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1|))) (-96)) (T -95))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-2314 (($ $) 104 T ELT)) (-3322 (($ $ $) 32 T ELT)) (-2199 (((-1185) $ (-485) (-485)) 60 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) 99 (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 93 T ELT)) (-1730 (($ $) 103 (-12 (|has| (-85) (-757)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-85) (-85)) $) 102 (|has| $ (-6 -3996)) ELT)) (-2910 (($ $) 98 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-3788 (((-85) $ (-1146 (-485)) (-85)) 82 (|has| $ (-6 -3996)) ELT) (((-85) $ (-485) (-85)) 48 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) (-85)) $) 65 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 39 T CONST)) (-2298 (($ $) 101 (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) 91 T ELT)) (-1353 (($ $) 62 (-12 (|has| (-85) (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ (-1 (-85) (-85)) $) 66 (|has| $ (-6 -3995)) ELT) (($ (-85) $) 63 (-12 (|has| (-85) (-1014)) (|has| $ (-6 -3995))) ELT)) (-3842 (((-85) (-1 (-85) (-85) (-85)) $) 68 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 67 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 64 (-12 (|has| (-85) (-1014)) (|has| $ (-6 -3995))) ELT)) (-1576 (((-85) $ (-485) (-85)) 47 (|has| $ (-6 -3996)) ELT)) (-3113 (((-85) $ (-485)) 49 T ELT)) (-3419 (((-485) (-85) $ (-485)) 96 (|has| (-85) (-1014)) ELT) (((-485) (-85) $) 95 (|has| (-85) (-1014)) ELT) (((-485) (-1 (-85) (-85)) $) 94 T ELT)) (-2890 (((-584 (-85)) $) 42 (|has| $ (-6 -3995)) ELT)) (-2562 (($ $ $) 109 T ELT)) (-2561 (($ $) 107 T ELT)) (-1300 (($ $ $) 33 T ELT)) (-3614 (($ (-695) (-85)) 72 T ELT)) (-1301 (($ $ $) 34 T ELT)) (-2201 (((-485) $) 57 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 23 T ELT)) (-3518 (($ $ $) 97 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 90 T ELT)) (-2609 (((-584 (-85)) $) 85 T ELT)) (-3246 (((-85) (-85) $) 83 (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) 56 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 22 T ELT)) (-1949 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-85) (-85) (-85)) $ $) 77 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2305 (($ $ $ (-485)) 81 T ELT) (($ (-85) $ (-485)) 80 T ELT)) (-2204 (((-584 (-485)) $) 54 T ELT)) (-2205 (((-85) (-485) $) 53 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3801 (((-85) $) 58 (|has| (-485) (-757)) ELT)) (-1354 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 69 T ELT)) (-2200 (($ $ (-85)) 59 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) 87 T ELT)) (-3768 (($ $ (-584 (-85)) (-584 (-85))) 46 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) 45 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) 44 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) 43 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1222 (((-85) $ $) 35 T ELT)) (-2203 (((-85) (-85) $) 55 (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1014))) ELT)) (-2206 (((-584 (-85)) $) 52 T ELT)) (-3403 (((-85) $) 38 T ELT)) (-3565 (($) 37 T ELT)) (-3800 (($ $ (-1146 (-485))) 71 T ELT) (((-85) $ (-485)) 51 T ELT) (((-85) $ (-485) (-85)) 50 T ELT)) (-2306 (($ $ (-1146 (-485))) 79 T ELT) (($ $ (-485)) 78 T ELT)) (-1946 (((-695) (-1 (-85) (-85)) $) 86 T ELT) (((-695) (-85) $) 84 (|has| (-85) (-72)) ELT)) (-1731 (($ $ $ (-485)) 100 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 36 T ELT)) (-3972 (((-474) $) 61 (|has| (-85) (-554 (-474))) ELT)) (-3530 (($ (-584 (-85))) 70 T ELT)) (-3802 (($ (-584 $)) 76 T ELT) (($ $ $) 75 T ELT) (($ (-85) $) 74 T ELT) (($ $ (-85)) 73 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) 88 T ELT)) (-2563 (($ $ $) 108 T ELT)) (-2312 (($ $ $) 106 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-2313 (($ $ $) 105 T ELT)) (-3957 (((-695) $) 89 T ELT)))
(((-96) (-113)) (T -96))
-((-1300 (*1 *1 *1 *1) (-4 *1 (-96))) (-1299 (*1 *1 *1 *1) (-4 *1 (-96))) (-3321 (*1 *1 *1 *1) (-4 *1 (-96))))
-(-13 (-756) (-84) (-604) (-19 (-85)) (-10 -8 (-15 -1300 ($ $ $)) (-15 -1299 ($ $ $)) (-15 -3321 ($ $ $))))
-(((-34) . T) ((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-124 (-85)) . T) ((-553 (-473)) |has| (-85) (-553 (-473))) ((-241 (-484) (-85)) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ((-317 (-85)) . T) ((-323 (-85)) . T) ((-428 (-85)) . T) ((-538 (-484) (-85)) . T) ((-455 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ((-13) . T) ((-593 (-85)) . T) ((-604) . T) ((-19 (-85)) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T))
-((-1948 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3399 (($ $) 16 T ELT)) (-3956 (((-694) $) 25 T ELT)))
-(((-97 |#1| |#2|) (-10 -7 (-15 -3956 ((-694) |#1|)) (-15 -1948 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3399 (|#1| |#1|))) (-98 |#2|) (-1013)) (T -97))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 58 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 60 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-3137 (($ $) 63 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) 67 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3138 (($ $) 65 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-98 |#1|) (-113) (-1013)) (T -98))
-((-1301 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013)))))
-(-13 (-92 |t#1|) (-317 |t#1|) (-10 -8 (-6 -3995) (-15 -1301 ($ $ |t#1| $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 18 T ELT)) (-3025 ((|#1| $ |#1|) 22 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 23 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 21 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 24 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3608 (($ |#1| $) 15 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 11 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) 20 T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1302 (($ (-583 |#1|)) 16 T ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3995) (-15 -1302 ($ (-583 |#1|))) (-15 -3608 ($ |#1| $)))) (-756)) (T -99))
-((-1302 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 31 T ELT)) (-3025 ((|#1| $ |#1|) 33 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 37 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 35 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 24 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) 17 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 23 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) 26 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 21 T ELT)) (-3564 (($) 13 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1303 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1303 ($ |#1|)) (-15 -1303 ($ $ |#1| $)))) (-1013)) (T -100))
-((-1303 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))) (-1303 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 32 T ELT)) (-3136 (((-694)) 17 T ELT)) (-3723 (($) 9 T CONST)) (-2994 (($) 27 T ELT)) (-2531 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2857 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2010 (((-830) $) 25 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 23 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1304 (($ (-694)) 8 T ELT)) (-3724 (($ $ $) 29 T ELT)) (-3725 (($ $ $) 28 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 31 T ELT)) (-2566 (((-85) $ $) 14 T ELT)) (-2567 (((-85) $ $) 12 T ELT)) (-3056 (((-85) $ $) 10 T ELT)) (-2684 (((-85) $ $) 13 T ELT)) (-2685 (((-85) $ $) 11 T ELT)) (-2312 (($ $ $) 30 T ELT)))
-(((-101) (-13 (-752) (-604) (-10 -8 (-15 -1304 ($ (-694))) (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -101))
-((-1304 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101)))) (-3725 (*1 *1 *1 *1) (-5 *1 (-101))) (-3724 (*1 *1 *1 *1) (-5 *1 (-101))) (-3723 (*1 *1) (-5 *1 (-101))))
-((-694) (|%ilt| |#1| 256))
-((-2568 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-756)) ELT)) (-1729 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-756))) ELT)) (-2909 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-756)) ELT)) (-3787 (((-101) $ (-484) (-101)) 26 (|has| $ (-6 -3995)) ELT) (((-101) $ (-1145 (-484)) (-101)) NIL (|has| $ (-6 -3995)) ELT)) (-1305 (((-694) $ (-694)) 35 T ELT)) (-3709 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT)) (-3405 (($ (-101) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3994)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 (((-101) $ (-484) (-101)) 25 (|has| $ (-6 -3995)) ELT)) (-3112 (((-101) $ (-484)) 20 T ELT)) (-3418 (((-484) (-1 (-85) (-101)) $) NIL T ELT) (((-484) (-101) $) NIL (|has| (-101) (-1013)) ELT) (((-484) (-101) $ (-484)) NIL (|has| (-101) (-1013)) ELT)) (-2889 (((-583 (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) (-101)) 14 T ELT)) (-2200 (((-484) $) 27 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-3517 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-2608 (((-583 (-101)) $) NIL T ELT)) (-3245 (((-85) (-101) $) NIL (|has| (-101) (-1013)) ELT)) (-2201 (((-484) $) 30 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-1948 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| (-101) (-1013)) ELT)) (-2304 (($ (-101) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| (-101) (-1013)) ELT)) (-3800 (((-101) $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2199 (($ $ (-101)) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-583 (-101)) (-583 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT)) (-2205 (((-583 (-101)) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 12 T ELT)) (-3799 (((-101) $ (-484) (-101)) NIL T ELT) (((-101) $ (-484)) 23 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-101) $) NIL (|has| (-101) (-1013)) ELT) (((-694) (-1 (-85) (-101)) $) NIL T ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-101) (-553 (-473))) ELT)) (-3529 (($ (-583 (-101))) 41 T ELT)) (-3801 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-869 (-101)) $) 36 T ELT) (((-1072) $) 38 T ELT) (((-772) $) NIL (|has| (-101) (-552 (-772))) ELT)) (-1306 (((-694) $) 18 T ELT)) (-1307 (($ (-694)) 8 T ELT)) (-1264 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1947 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3056 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3956 (((-694) $) 15 T ELT)))
-(((-102) (-13 (-19 (-101)) (-552 (-869 (-101))) (-552 (-1072)) (-10 -8 (-15 -1307 ($ (-694))) (-15 -1306 ((-694) $)) (-15 -1305 ((-694) $ (-694)))))) (T -102))
-((-1307 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1305 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1308 (($) 6 T CONST)) (-1310 (($) 7 T CONST)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 14 T ELT)) (-1309 (($) 8 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 10 T ELT)))
-(((-103) (-13 (-1013) (-10 -8 (-15 -1310 ($) -3951) (-15 -1309 ($) -3951) (-15 -1308 ($) -3951)))) (T -103))
-((-1310 (*1 *1) (-5 *1 (-103))) (-1309 (*1 *1) (-5 *1 (-103))) (-1308 (*1 *1) (-5 *1 (-103))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT)))
+((-1301 (*1 *1 *1 *1) (-4 *1 (-96))) (-1300 (*1 *1 *1 *1) (-4 *1 (-96))) (-3322 (*1 *1 *1 *1) (-4 *1 (-96))))
+(-13 (-757) (-84) (-605) (-19 (-85)) (-10 -8 (-15 -1301 ($ $ $)) (-15 -1300 ($ $ $)) (-15 -3322 ($ $ $))))
+(((-34) . T) ((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-124 (-85)) . T) ((-554 (-474)) |has| (-85) (-554 (-474))) ((-241 (-485) (-85)) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ((-318 (-85)) . T) ((-324 (-85)) . T) ((-429 (-85)) . T) ((-539 (-485) (-85)) . T) ((-456 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ((-13) . T) ((-594 (-85)) . T) ((-605) . T) ((-19 (-85)) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1129) . T))
+((-1949 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3400 (($ $) 16 T ELT)) (-3957 (((-695) $) 25 T ELT)))
+(((-97 |#1| |#2|) (-10 -7 (-15 -3957 ((-695) |#1|)) (-15 -1949 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3400 (|#1| |#1|))) (-98 |#2|) (-1014)) (T -97))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 58 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 60 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-3138 (($ $) 63 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-1302 (($ $ |#1| $) 67 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3139 (($ $) 65 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-98 |#1|) (-113) (-1014)) (T -98))
+((-1302 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1014)))))
+(-13 (-92 |t#1|) (-318 |t#1|) (-10 -8 (-6 -3996) (-15 -1302 ($ $ |t#1| $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 18 T ELT)) (-3026 ((|#1| $ |#1|) 22 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 23 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 21 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3138 (($ $) 24 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1302 (($ $ |#1| $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) NIL T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3609 (($ |#1| $) 15 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 11 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 20 T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1303 (($ (-584 |#1|)) 16 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3996) (-15 -1303 ($ (-584 |#1|))) (-15 -3609 ($ |#1| $)))) (-757)) (T -99))
+((-1303 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 31 T ELT)) (-3026 ((|#1| $ |#1|) 33 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 37 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 35 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3138 (($ $) 24 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1302 (($ $ |#1| $) 17 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 23 T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3527 (((-85) $) 26 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 21 T ELT)) (-3565 (($) 13 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1304 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1304 ($ |#1|)) (-15 -1304 ($ $ |#1| $)))) (-1014)) (T -100))
+((-1304 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))) (-1304 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 32 T ELT)) (-3137 (((-695)) 17 T ELT)) (-3724 (($) 9 T CONST)) (-2995 (($) 27 T ELT)) (-2532 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2858 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2011 (((-831) $) 25 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) 23 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1305 (($ (-695)) 8 T ELT)) (-3725 (($ $ $) 29 T ELT)) (-3726 (($ $ $) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 31 T ELT)) (-2567 (((-85) $ $) 14 T ELT)) (-2568 (((-85) $ $) 12 T ELT)) (-3057 (((-85) $ $) 10 T ELT)) (-2685 (((-85) $ $) 13 T ELT)) (-2686 (((-85) $ $) 11 T ELT)) (-2313 (($ $ $) 30 T ELT)))
+(((-101) (-13 (-753) (-605) (-10 -8 (-15 -1305 ($ (-695))) (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -101))
+((-1305 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101)))) (-3726 (*1 *1 *1 *1) (-5 *1 (-101))) (-3725 (*1 *1 *1 *1) (-5 *1 (-101))) (-3724 (*1 *1) (-5 *1 (-101))))
+((-695) (|%ilt| |#1| 256))
+((-2569 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-757)) ELT)) (-1730 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-757))) ELT)) (-2910 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-757)) ELT)) (-3788 (((-101) $ (-485) (-101)) 26 (|has| $ (-6 -3996)) ELT) (((-101) $ (-1146 (-485)) (-101)) NIL (|has| $ (-6 -3996)) ELT)) (-1306 (((-695) $ (-695)) 35 T ELT)) (-3710 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-1014))) ELT)) (-3406 (($ (-101) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-1014))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-1014))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3995)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 (((-101) $ (-485) (-101)) 25 (|has| $ (-6 -3996)) ELT)) (-3113 (((-101) $ (-485)) 20 T ELT)) (-3419 (((-485) (-1 (-85) (-101)) $) NIL T ELT) (((-485) (-101) $) NIL (|has| (-101) (-1014)) ELT) (((-485) (-101) $ (-485)) NIL (|has| (-101) (-1014)) ELT)) (-2890 (((-584 (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) (-101)) 14 T ELT)) (-2201 (((-485) $) 27 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-3518 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-2609 (((-584 (-101)) $) NIL T ELT)) (-3246 (((-85) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-2202 (((-485) $) 30 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-1949 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| (-101) (-1014)) ELT)) (-2305 (($ (-101) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| (-101) (-1014)) ELT)) (-3801 (((-101) $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2200 (($ $ (-101)) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-584 (-101)) (-584 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-1014))) ELT)) (-2206 (((-584 (-101)) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 12 T ELT)) (-3800 (((-101) $ (-485) (-101)) NIL T ELT) (((-101) $ (-485)) 23 T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-1946 (((-695) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-695) (-1 (-85) (-101)) $) NIL T ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-101) (-554 (-474))) ELT)) (-3530 (($ (-584 (-101))) 41 T ELT)) (-3802 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-3946 (((-870 (-101)) $) 36 T ELT) (((-1073) $) 38 T ELT) (((-773) $) NIL (|has| (-101) (-553 (-773))) ELT)) (-1307 (((-695) $) 18 T ELT)) (-1308 (($ (-695)) 8 T ELT)) (-1265 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1948 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3057 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3957 (((-695) $) 15 T ELT)))
+(((-102) (-13 (-19 (-101)) (-553 (-870 (-101))) (-553 (-1073)) (-10 -8 (-15 -1308 ($ (-695))) (-15 -1307 ((-695) $)) (-15 -1306 ((-695) $ (-695)))))) (T -102))
+((-1308 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1306 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1309 (($) 6 T CONST)) (-1311 (($) 7 T CONST)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 14 T ELT)) (-1310 (($) 8 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 10 T ELT)))
+(((-103) (-13 (-1014) (-10 -8 (-15 -1311 ($) -3952) (-15 -1310 ($) -3952) (-15 -1309 ($) -3952)))) (T -103))
+((-1311 (*1 *1) (-5 *1 (-103))) (-1310 (*1 *1) (-5 *1 (-103))) (-1309 (*1 *1) (-5 *1 (-103))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
(((-104) (-113)) (T -104))
-((-1311 (*1 *1 *1 *1) (|partial| -4 *1 (-104))))
-(-13 (-23) (-10 -8 (-15 -1311 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-1312 (((-1184) $ (-694)) 17 T ELT)) (-3418 (((-694) $) 18 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
+((-1312 (*1 *1 *1 *1) (|partial| -4 *1 (-104))))
+(-13 (-23) (-10 -8 (-15 -1312 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-1313 (((-1185) $ (-695)) 17 T ELT)) (-3419 (((-695) $) 18 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-105) (-113)) (T -105))
-((-3418 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694)))) (-1312 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1184)))))
-(-13 (-1013) (-10 -8 (-15 -3418 ((-694) $)) (-15 -1312 ((-1184) $ (-694)))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-583 (-1048)) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-106) (-13 (-995) (-10 -8 (-15 -3233 ((-583 (-1048)) $))))) (T -106))
-((-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-106)))))
-((-2568 (((-85) $ $) 49 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-694) #1="failed") $) 60 T ELT)) (-3156 (((-694) $) 58 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) 37 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1314 (((-85)) 61 T ELT)) (-1313 (((-85) (-85)) 63 T ELT)) (-2525 (((-85) $) 30 T ELT)) (-1315 (((-85) $) 57 T ELT)) (-3945 (((-772) $) 28 T ELT) (($ (-694)) 20 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-2666 (($) 19 T CONST)) (-1316 (($ (-694)) 21 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) 40 T ELT)) (-3056 (((-85) $ $) 32 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 35 T ELT)) (-3836 (((-3 $ #1#) $ $) 42 T ELT)) (-3838 (($ $ $) 38 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-694) $) 48 T ELT) (($ (-830) $) NIL T ELT) (($ $ $) 45 T ELT)))
-(((-107) (-13 (-756) (-23) (-663) (-950 (-694)) (-10 -8 (-6 (-3996 "*")) (-15 -3836 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1316 ($ (-694))) (-15 -2525 ((-85) $)) (-15 -1315 ((-85) $)) (-15 -1314 ((-85))) (-15 -1313 ((-85) (-85)))))) (T -107))
-((-3836 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1314 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1313 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1317 (($ (-583 |#3|)) 63 T ELT)) (-3413 (($ $) 125 T ELT) (($ $ (-484) (-484)) 124 T ELT)) (-3723 (($) 17 T ELT)) (-3157 (((-3 |#3| "failed") $) 86 T ELT)) (-3156 ((|#3| $) NIL T ELT)) (-1321 (($ $ (-583 (-484))) 126 T ELT)) (-1318 (((-583 |#3|) $) 58 T ELT)) (-3108 (((-694) $) 68 T ELT)) (-3943 (($ $ $) 120 T ELT)) (-1319 (($) 67 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1320 (($) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#3| $ (-484)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-484) (-484)) 73 T ELT) ((|#3| $ (-484) (-484) (-484)) 74 T ELT) ((|#3| $ (-484) (-484) (-484) (-484)) 75 T ELT) ((|#3| $ (-583 (-484))) 76 T ELT)) (-3947 (((-694) $) 69 T ELT)) (-1981 (($ $ (-484) $ (-484)) 121 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3945 (((-772) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1055 |#2| |#3|)) 105 T ELT) (($ (-583 |#3|)) 77 T ELT) (($ (-583 $)) 83 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 96 T CONST)) (-2666 (($) 97 T CONST)) (-3056 (((-85) $ $) 107 T ELT)) (-3836 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3838 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-484)) 116 T ELT) (($ (-484) $) 115 T ELT) (($ $ $) 122 T ELT)))
-(((-108 |#1| |#2| |#3|) (-13 (-404 |#3| (-694)) (-409 (-484) (-694)) (-241 (-484) |#3|) (-555 (-197 |#2| |#3|)) (-555 (-1055 |#2| |#3|)) (-555 (-583 |#3|)) (-555 (-583 $)) (-10 -8 (-15 -3108 ((-694) $)) (-15 -3799 (|#3| $)) (-15 -3799 (|#3| $ (-484) (-484))) (-15 -3799 (|#3| $ (-484) (-484) (-484))) (-15 -3799 (|#3| $ (-484) (-484) (-484) (-484))) (-15 -3799 (|#3| $ (-583 (-484)))) (-15 -3943 ($ $ $)) (-15 * ($ $ $)) (-15 -1981 ($ $ (-484) $ (-484))) (-15 -1981 ($ $ (-484) (-484))) (-15 -3413 ($ $)) (-15 -3413 ($ $ (-484) (-484))) (-15 -1321 ($ $ (-583 (-484)))) (-15 -1320 ($)) (-15 -1319 ($)) (-15 -1318 ((-583 |#3|) $)) (-15 -1317 ($ (-583 |#3|))) (-15 -3723 ($)))) (-484) (-694) (-146)) (T -108))
-((-3943 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2) (-4 *5 (-146)))) (-3799 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-694)))) (-3799 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3799 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3799 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-484)) (-14 *5 (-694)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1981 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1981 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-3413 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3413 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1320 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1319 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)))) (-3723 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))))
-((-2415 (((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3957 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT)))
-(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2415 ((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3957 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-484) (-694) (-146) (-146)) (T -109))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1048) $) 12 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-110) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1048) $))))) (T -110))
-((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1425 (((-161) $) 11 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-583 (-1048)) $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-111) (-13 (-995) (-10 -8 (-15 -1425 ((-161) $)) (-15 -3233 ((-583 (-1048)) $))))) (T -111))
-((-1425 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-111)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1423 (((-583 (-774)) $) NIL T ELT)) (-3541 (((-446) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1425 (((-161) $) NIL T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1424 (((-583 (-85)) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-112) (-13 (-160) (-552 (-157)))) (T -112))
-NIL
-((-1323 (((-583 (-158 (-112))) $) 13 T ELT)) (-1322 (((-583 (-158 (-112))) $) 14 T ELT)) (-1324 (((-583 (-749)) $) 10 T ELT)) (-1481 (((-112) $) 7 T ELT)) (-3945 (((-772) $) 16 T ELT)))
-(((-113) (-13 (-552 (-772)) (-10 -8 (-15 -1481 ((-112) $)) (-15 -1324 ((-583 (-749)) $)) (-15 -1323 ((-583 (-158 (-112))) $)) (-15 -1322 ((-583 (-158 (-112))) $))))) (T -113))
-((-1481 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3426 (($) 17 T CONST)) (-1801 (($) NIL (|has| (-117) (-319)) ELT)) (-3234 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3236 (($ $ $) NIL T ELT)) (-3235 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-117) (-319)) ELT)) (-3239 (($) NIL T ELT) (($ (-583 (-117))) NIL T ELT)) (-1569 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-3404 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3994)) ELT)) (-3405 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-3841 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3994)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3994)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-2994 (($) NIL (|has| (-117) (-319)) ELT)) (-2889 (((-583 (-117)) $) 65 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) NIL T ELT)) (-2531 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-2608 (((-583 (-117)) $) NIL T ELT)) (-3245 (((-85) (-117) $) 29 (|has| (-117) (-1013)) ELT)) (-2857 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-1948 (($ (-1 (-117) (-117)) $) 64 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3428 (($) 18 T CONST)) (-2010 (((-830) $) NIL (|has| (-117) (-319)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3238 (($ $ $) 32 T ELT)) (-1273 (((-117) $) 57 T ELT)) (-3608 (($ (-117) $) 55 T ELT)) (-2400 (($ (-830)) NIL (|has| (-117) (-319)) ELT)) (-1327 (($) 16 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-1353 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1274 (((-117) $) 58 T ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3767 (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 53 T ELT)) (-1328 (($) 15 T CONST)) (-3237 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1465 (($ (-583 (-117))) NIL T ELT) (($) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-117)) $) NIL T ELT) (((-694) (-117) $) NIL (|has| (-117) (-1013)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-1072) $) 39 T ELT) (((-473) $) NIL (|has| (-117) (-553 (-473))) ELT) (((-583 (-117)) $) 37 T ELT)) (-3529 (($ (-583 (-117))) NIL T ELT)) (-1802 (($ $) 35 (|has| (-117) (-319)) ELT)) (-3945 (((-772) $) 51 T ELT)) (-1329 (($ (-1072)) 14 T ELT) (($ (-583 (-117))) 48 T ELT)) (-1803 (((-694) $) NIL T ELT)) (-3240 (($) 54 T ELT) (($ (-583 (-117))) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1275 (($ (-583 (-117))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1325 (($) 21 T CONST)) (-1326 (($) 20 T CONST)) (-3056 (((-85) $ $) 26 T ELT)) (-3956 (((-694) $) 52 T ELT)))
-(((-114) (-13 (-1013) (-553 (-1072)) (-368 (-117)) (-553 (-583 (-117))) (-10 -8 (-15 -1329 ($ (-1072))) (-15 -1329 ($ (-583 (-117)))) (-15 -1328 ($) -3951) (-15 -1327 ($) -3951) (-15 -3426 ($) -3951) (-15 -3428 ($) -3951) (-15 -1326 ($) -3951) (-15 -1325 ($) -3951)))) (T -114))
-((-1329 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-114)))) (-1329 (*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114)))) (-1328 (*1 *1) (-5 *1 (-114))) (-1327 (*1 *1) (-5 *1 (-114))) (-3426 (*1 *1) (-5 *1 (-114))) (-3428 (*1 *1) (-5 *1 (-114))) (-1326 (*1 *1) (-5 *1 (-114))) (-1325 (*1 *1) (-5 *1 (-114))))
-((-3740 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3738 ((|#1| |#3|) 9 T ELT)) (-3739 ((|#3| |#3|) 15 T ELT)))
-(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3738 (|#1| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3740 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-904 |#1|) (-323 |#2|)) (T -115))
-((-3740 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-323 *5)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-323 *4)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-323 *4)))))
-((-1368 (($ $ $) 8 T ELT)) (-1366 (($ $) 7 T ELT)) (-3101 (($ $ $) 6 T ELT)))
+((-3419 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695)))) (-1313 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1185)))))
+(-13 (-1014) (-10 -8 (-15 -3419 ((-695) $)) (-15 -1313 ((-1185) $ (-695)))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-584 (-1049)) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-106) (-13 (-996) (-10 -8 (-15 -3234 ((-584 (-1049)) $))))) (T -106))
+((-3234 (*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-106)))))
+((-2569 (((-85) $ $) 49 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-695) #1="failed") $) 60 T ELT)) (-3157 (((-695) $) 58 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) 37 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1315 (((-85)) 61 T ELT)) (-1314 (((-85) (-85)) 63 T ELT)) (-2526 (((-85) $) 30 T ELT)) (-1316 (((-85) $) 57 T ELT)) (-3946 (((-773) $) 28 T ELT) (($ (-695)) 20 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-2667 (($) 19 T CONST)) (-1317 (($ (-695)) 21 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) 40 T ELT)) (-3057 (((-85) $ $) 32 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 35 T ELT)) (-3837 (((-3 $ #1#) $ $) 42 T ELT)) (-3839 (($ $ $) 38 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-695) $) 48 T ELT) (($ (-831) $) NIL T ELT) (($ $ $) 45 T ELT)))
+(((-107) (-13 (-757) (-23) (-664) (-951 (-695)) (-10 -8 (-6 (-3997 "*")) (-15 -3837 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1317 ($ (-695))) (-15 -2526 ((-85) $)) (-15 -1316 ((-85) $)) (-15 -1315 ((-85))) (-15 -1314 ((-85) (-85)))))) (T -107))
+((-3837 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1315 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1318 (($ (-584 |#3|)) 63 T ELT)) (-3414 (($ $) 125 T ELT) (($ $ (-485) (-485)) 124 T ELT)) (-3724 (($) 17 T ELT)) (-3158 (((-3 |#3| "failed") $) 86 T ELT)) (-3157 ((|#3| $) NIL T ELT)) (-1322 (($ $ (-584 (-485))) 126 T ELT)) (-1319 (((-584 |#3|) $) 58 T ELT)) (-3109 (((-695) $) 68 T ELT)) (-3944 (($ $ $) 120 T ELT)) (-1320 (($) 67 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1321 (($) 16 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 ((|#3| $ (-485)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-485) (-485)) 73 T ELT) ((|#3| $ (-485) (-485) (-485)) 74 T ELT) ((|#3| $ (-485) (-485) (-485) (-485)) 75 T ELT) ((|#3| $ (-584 (-485))) 76 T ELT)) (-3948 (((-695) $) 69 T ELT)) (-1982 (($ $ (-485) $ (-485)) 121 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3946 (((-773) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1056 |#2| |#3|)) 105 T ELT) (($ (-584 |#3|)) 77 T ELT) (($ (-584 $)) 83 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 96 T CONST)) (-2667 (($) 97 T CONST)) (-3057 (((-85) $ $) 107 T ELT)) (-3837 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3839 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-485)) 116 T ELT) (($ (-485) $) 115 T ELT) (($ $ $) 122 T ELT)))
+(((-108 |#1| |#2| |#3|) (-13 (-405 |#3| (-695)) (-410 (-485) (-695)) (-241 (-485) |#3|) (-556 (-197 |#2| |#3|)) (-556 (-1056 |#2| |#3|)) (-556 (-584 |#3|)) (-556 (-584 $)) (-10 -8 (-15 -3109 ((-695) $)) (-15 -3800 (|#3| $)) (-15 -3800 (|#3| $ (-485) (-485))) (-15 -3800 (|#3| $ (-485) (-485) (-485))) (-15 -3800 (|#3| $ (-485) (-485) (-485) (-485))) (-15 -3800 (|#3| $ (-584 (-485)))) (-15 -3944 ($ $ $)) (-15 * ($ $ $)) (-15 -1982 ($ $ (-485) $ (-485))) (-15 -1982 ($ $ (-485) (-485))) (-15 -3414 ($ $)) (-15 -3414 ($ $ (-485) (-485))) (-15 -1322 ($ $ (-584 (-485)))) (-15 -1321 ($)) (-15 -1320 ($)) (-15 -1319 ((-584 |#3|) $)) (-15 -1318 ($ (-584 |#3|))) (-15 -3724 ($)))) (-485) (-695) (-146)) (T -108))
+((-3944 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2) (-4 *5 (-146)))) (-3800 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-695)))) (-3800 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3800 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3800 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-485)) (-14 *5 (-695)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1982 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1982 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3414 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1322 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1321 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1320 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)))) (-3724 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))))
+((-2416 (((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3958 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT)))
+(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3958 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-485) (-695) (-146) (-146)) (T -109))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3528 (((-1049) $) 12 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-110) (-13 (-996) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1049) $))))) (T -110))
+((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) 11 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-584 (-1049)) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-111) (-13 (-996) (-10 -8 (-15 -1426 ((-161) $)) (-15 -3234 ((-584 (-1049)) $))))) (T -111))
+((-1426 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-111)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1424 (((-584 (-775)) $) NIL T ELT)) (-3542 (((-447) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) NIL T ELT)) (-2634 (((-85) $ (-447)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1425 (((-584 (-85)) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-112) (-13 (-160) (-553 (-157)))) (T -112))
+NIL
+((-1324 (((-584 (-158 (-112))) $) 13 T ELT)) (-1323 (((-584 (-158 (-112))) $) 14 T ELT)) (-1325 (((-584 (-750)) $) 10 T ELT)) (-1482 (((-112) $) 7 T ELT)) (-3946 (((-773) $) 16 T ELT)))
+(((-113) (-13 (-553 (-773)) (-10 -8 (-15 -1482 ((-112) $)) (-15 -1325 ((-584 (-750)) $)) (-15 -1324 ((-584 (-158 (-112))) $)) (-15 -1323 ((-584 (-158 (-112))) $))))) (T -113))
+((-1482 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3427 (($) 17 T CONST)) (-1802 (($) NIL (|has| (-117) (-320)) ELT)) (-3235 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-3236 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-117) (-320)) ELT)) (-3240 (($) NIL T ELT) (($ (-584 (-117))) NIL T ELT)) (-1570 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1014))) ELT)) (-3405 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3995)) ELT)) (-3406 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1014))) ELT)) (-3842 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3995)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3995)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1014))) ELT)) (-2995 (($) NIL (|has| (-117) (-320)) ELT)) (-2890 (((-584 (-117)) $) 65 (|has| $ (-6 -3995)) ELT)) (-3242 (((-85) $ $) NIL T ELT)) (-2532 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-2609 (((-584 (-117)) $) NIL T ELT)) (-3246 (((-85) (-117) $) 29 (|has| (-117) (-72)) ELT)) (-2858 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-1949 (($ (-1 (-117) (-117)) $) 64 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3429 (($) 18 T CONST)) (-2011 (((-831) $) NIL (|has| (-117) (-320)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3239 (($ $ $) 32 T ELT)) (-1274 (((-117) $) 57 T ELT)) (-3609 (($ (-117) $) 55 T ELT)) (-2401 (($ (-831)) NIL (|has| (-117) (-320)) ELT)) (-1328 (($) 16 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-1354 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1275 (((-117) $) 58 T ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3768 (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 53 T ELT)) (-1329 (($) 15 T CONST)) (-3238 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1466 (($ (-584 (-117))) NIL T ELT) (($) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-117)) $) NIL T ELT) (((-695) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-1073) $) 39 T ELT) (((-474) $) NIL (|has| (-117) (-554 (-474))) ELT) (((-584 (-117)) $) 37 T ELT)) (-3530 (($ (-584 (-117))) NIL T ELT)) (-1803 (($ $) 35 (|has| (-117) (-320)) ELT)) (-3946 (((-773) $) 51 T ELT)) (-1330 (($ (-1073)) 14 T ELT) (($ (-584 (-117))) 48 T ELT)) (-1804 (((-695) $) NIL T ELT)) (-3241 (($) 54 T ELT) (($ (-584 (-117))) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-584 (-117))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1326 (($) 21 T CONST)) (-1327 (($) 20 T CONST)) (-3057 (((-85) $ $) 26 T ELT)) (-3957 (((-695) $) 52 T ELT)))
+(((-114) (-13 (-1014) (-554 (-1073)) (-369 (-117)) (-554 (-584 (-117))) (-10 -8 (-15 -1330 ($ (-1073))) (-15 -1330 ($ (-584 (-117)))) (-15 -1329 ($) -3952) (-15 -1328 ($) -3952) (-15 -3427 ($) -3952) (-15 -3429 ($) -3952) (-15 -1327 ($) -3952) (-15 -1326 ($) -3952)))) (T -114))
+((-1330 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-114)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114)))) (-1329 (*1 *1) (-5 *1 (-114))) (-1328 (*1 *1) (-5 *1 (-114))) (-3427 (*1 *1) (-5 *1 (-114))) (-3429 (*1 *1) (-5 *1 (-114))) (-1327 (*1 *1) (-5 *1 (-114))) (-1326 (*1 *1) (-5 *1 (-114))))
+((-3741 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3739 ((|#1| |#3|) 9 T ELT)) (-3740 ((|#3| |#3|) 15 T ELT)))
+(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3739 (|#1| |#3|)) (-15 -3740 (|#3| |#3|)) (-15 -3741 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-324 |#2|)) (T -115))
+((-3741 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) (-3740 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4)))))
+((-1369 (($ $ $) 8 T ELT)) (-1367 (($ $) 7 T ELT)) (-3102 (($ $ $) 6 T ELT)))
(((-116) (-113)) (T -116))
-((-1368 (*1 *1 *1 *1) (-4 *1 (-116))) (-1366 (*1 *1 *1) (-4 *1 (-116))) (-3101 (*1 *1 *1 *1) (-4 *1 (-116))))
-(-13 (-10 -8 (-15 -3101 ($ $ $)) (-15 -1366 ($ $)) (-15 -1368 ($ $ $))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1337 (($) 30 T CONST)) (-1332 (((-85) $) 42 T ELT)) (-3426 (($ $) 52 T ELT)) (-1344 (($) 23 T CONST)) (-1517 (($) 21 T CONST)) (-3136 (((-694)) 13 T ELT)) (-2994 (($) 20 T ELT)) (-2579 (($) 22 T CONST)) (-1346 (((-694) $) 17 T ELT)) (-1343 (($) 24 T CONST)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1331 (((-85) $) 44 T ELT)) (-3428 (($ $) 53 T ELT)) (-2010 (((-830) $) 18 T ELT)) (-1341 (($) 26 T CONST)) (-3242 (((-1072) $) 50 T ELT)) (-2400 (($ (-830)) 16 T ELT)) (-1338 (($) 29 T CONST)) (-1334 (((-85) $) 40 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1340 (($) 27 T CONST)) (-1336 (($) 31 T CONST)) (-1335 (((-85) $) 38 T ELT)) (-3945 (((-772) $) 33 T ELT)) (-1345 (($ (-694)) 14 T ELT) (($ (-1072)) 51 T ELT)) (-1342 (($) 25 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-1339 (($) 28 T CONST)) (-1330 (((-85) $) 48 T ELT)) (-1333 (((-85) $) 46 T ELT)) (-2566 (((-85) $ $) 11 T ELT)) (-2567 (((-85) $ $) 9 T ELT)) (-3056 (((-85) $ $) 7 T ELT)) (-2684 (((-85) $ $) 10 T ELT)) (-2685 (((-85) $ $) 8 T ELT)))
-(((-117) (-13 (-752) (-10 -8 (-15 -1346 ((-694) $)) (-15 -1345 ($ (-694))) (-15 -1345 ($ (-1072))) (-15 -1517 ($) -3951) (-15 -2579 ($) -3951) (-15 -1344 ($) -3951) (-15 -1343 ($) -3951) (-15 -1342 ($) -3951) (-15 -1341 ($) -3951) (-15 -1340 ($) -3951) (-15 -1339 ($) -3951) (-15 -1338 ($) -3951) (-15 -1337 ($) -3951) (-15 -1336 ($) -3951) (-15 -3426 ($ $)) (-15 -3428 ($ $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $)) (-15 -1330 ((-85) $))))) (T -117))
-((-1346 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1345 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1345 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-117)))) (-1517 (*1 *1) (-5 *1 (-117))) (-2579 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-1336 (*1 *1) (-5 *1 (-117))) (-3426 (*1 *1 *1) (-5 *1 (-117))) (-3428 (*1 *1 *1) (-5 *1 (-117))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-2702 (((-632 $) $) 47 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-1369 (*1 *1 *1 *1) (-4 *1 (-116))) (-1367 (*1 *1 *1) (-4 *1 (-116))) (-3102 (*1 *1 *1 *1) (-4 *1 (-116))))
+(-13 (-10 -8 (-15 -3102 ($ $ $)) (-15 -1367 ($ $)) (-15 -1369 ($ $ $))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1338 (($) 30 T CONST)) (-1333 (((-85) $) 42 T ELT)) (-3427 (($ $) 52 T ELT)) (-1345 (($) 23 T CONST)) (-1518 (($) 21 T CONST)) (-3137 (((-695)) 13 T ELT)) (-2995 (($) 20 T ELT)) (-2580 (($) 22 T CONST)) (-1347 (((-695) $) 17 T ELT)) (-1344 (($) 24 T CONST)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1332 (((-85) $) 44 T ELT)) (-3429 (($ $) 53 T ELT)) (-2011 (((-831) $) 18 T ELT)) (-1342 (($) 26 T CONST)) (-3243 (((-1073) $) 50 T ELT)) (-2401 (($ (-831)) 16 T ELT)) (-1339 (($) 29 T CONST)) (-1335 (((-85) $) 40 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1341 (($) 27 T CONST)) (-1337 (($) 31 T CONST)) (-1336 (((-85) $) 38 T ELT)) (-3946 (((-773) $) 33 T ELT)) (-1346 (($ (-695)) 14 T ELT) (($ (-1073)) 51 T ELT)) (-1343 (($) 25 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1340 (($) 28 T CONST)) (-1331 (((-85) $) 48 T ELT)) (-1334 (((-85) $) 46 T ELT)) (-2567 (((-85) $ $) 11 T ELT)) (-2568 (((-85) $ $) 9 T ELT)) (-3057 (((-85) $ $) 7 T ELT)) (-2685 (((-85) $ $) 10 T ELT)) (-2686 (((-85) $ $) 8 T ELT)))
+(((-117) (-13 (-753) (-10 -8 (-15 -1347 ((-695) $)) (-15 -1346 ($ (-695))) (-15 -1346 ($ (-1073))) (-15 -1518 ($) -3952) (-15 -2580 ($) -3952) (-15 -1345 ($) -3952) (-15 -1344 ($) -3952) (-15 -1343 ($) -3952) (-15 -1342 ($) -3952) (-15 -1341 ($) -3952) (-15 -1340 ($) -3952) (-15 -1339 ($) -3952) (-15 -1338 ($) -3952) (-15 -1337 ($) -3952) (-15 -3427 ($ $)) (-15 -3429 ($ $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $))))) (T -117))
+((-1347 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-117)))) (-1518 (*1 *1) (-5 *1 (-117))) (-2580 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-3427 (*1 *1 *1) (-5 *1 (-117))) (-3429 (*1 *1 *1) (-5 *1 (-117))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-2703 (((-633 $) $) 47 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-118) (-113)) (T -118))
-((-2702 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)))))
-(-13 (-961) (-10 -8 (-15 -2702 ((-632 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2449 ((|#1| (-630 |#1|) |#1|) 19 T ELT)))
-(((-119 |#1|) (-10 -7 (-15 -2449 (|#1| (-630 |#1|) |#1|))) (-146)) (T -119))
-((-2449 (*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-2703 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)))))
+(-13 (-962) (-10 -8 (-15 -2703 ((-633 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2450 ((|#1| (-631 |#1|) |#1|) 19 T ELT)))
+(((-119 |#1|) (-10 -7 (-15 -2450 (|#1| (-631 |#1|) |#1|))) (-146)) (T -119))
+((-2450 (*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-120) (-113)) (T -120))
NIL
-(-13 (-961))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-1349 (((-2 (|:| -2401 (-694)) (|:| -3953 (-349 |#2|)) (|:| |radicand| |#2|)) (-349 |#2|) (-694)) 76 T ELT)) (-1348 (((-3 (-2 (|:| |radicand| (-349 |#2|)) (|:| |deg| (-694))) "failed") |#3|) 56 T ELT)) (-1347 (((-2 (|:| -3953 (-349 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1350 ((|#1| |#3| |#3|) 44 T ELT)) (-3767 ((|#3| |#3| (-349 |#2|) (-349 |#2|)) 20 T ELT)) (-1351 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| |deg| (-694))) |#3| |#3|) 53 T ELT)))
-(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1347 ((-2 (|:| -3953 (-349 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1348 ((-3 (-2 (|:| |radicand| (-349 |#2|)) (|:| |deg| (-694))) "failed") |#3|)) (-15 -1349 ((-2 (|:| -2401 (-694)) (|:| -3953 (-349 |#2|)) (|:| |radicand| |#2|)) (-349 |#2|) (-694))) (-15 -1350 (|#1| |#3| |#3|)) (-15 -3767 (|#3| |#3| (-349 |#2|) (-349 |#2|))) (-15 -1351 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| |deg| (-694))) |#3| |#3|))) (-1133) (-1154 |#1|) (-1154 (-349 |#2|))) (T -121))
-((-1351 (*1 *2 *3 *3) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-349 *5)) (|:| |c2| (-349 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5))))) (-3767 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-349 *5)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1154 *3)))) (-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-1133)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1154 (-349 *4))))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-349 *6)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1154 *3)))) (-1348 (*1 *2 *3) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |radicand| (-349 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5))))) (-1347 (*1 *2 *3) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -3953 (-349 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5))))))
-((-2704 (((-3 (-583 (-1084 |#2|)) "failed") (-583 (-1084 |#2|)) (-1084 |#2|)) 35 T ELT)))
-(((-122 |#1| |#2|) (-10 -7 (-15 -2704 ((-3 (-583 (-1084 |#2|)) "failed") (-583 (-1084 |#2|)) (-1084 |#2|)))) (-483) (-139 |#1|)) (T -122))
-((-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-139 *4)) (-4 *4 (-483)) (-5 *1 (-122 *4 *5)))))
-((-3709 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1352 (($ $) 44 T ELT)) (-3405 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3841 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1353 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 18 T ELT) (((-694) |#2| $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3956 (((-694) $) 12 T ELT)))
-(((-123 |#1| |#2|) (-10 -7 (-15 -1352 (|#1| |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3709 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1353 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-694) |#2| |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3956 ((-694) |#1|))) (-124 |#2|) (-1128)) (T -123))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 45 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 44 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 53 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-124 |#1|) (-113) (-1128)) (T -124))
-((-3529 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-124 *3)))) (-1353 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3841 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3841 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *3)) (-4 *3 (-1128)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *3)) (-4 *3 (-1128)))) (-3841 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3405 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-1352 (*1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))))
-(-13 (-428 |t#1|) (-10 -8 (-15 -3529 ($ (-583 |t#1|))) (-15 -1353 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3994)) (PROGN (-15 -3841 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3841 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3405 ($ (-1 (-85) |t#1|) $)) (-15 -3709 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3841 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3405 ($ |t#1| $)) (-15 -1352 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) 113 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-583 (-830))) 72 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1354 (($ (-830)) 58 T ELT)) (-3910 (((-107)) 23 T ELT)) (-3945 (((-772) $) 88 T ELT) (($ (-484)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3676 ((|#2| $ (-583 (-830))) 75 T ELT)) (-3126 (((-694)) 20 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 48 T CONST)) (-2666 (($) 52 T CONST)) (-3056 (((-85) $ $) 34 T ELT)) (-3948 (($ $ |#2|) NIL T ELT)) (-3836 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3838 (($ $ $) 39 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-125 |#1| |#2| |#3|) (-13 (-961) (-38 |#2|) (-1186 |#2|) (-10 -8 (-15 -1354 ($ (-830))) (-15 -2893 ($ |#2| (-583 (-830)))) (-15 -3676 (|#2| $ (-583 (-830)))) (-15 -3466 ((-3 $ "failed") $)))) (-830) (-312) (-906 |#1| |#2|)) (T -125))
-((-3466 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-312)) (-14 *4 (-906 *2 *3)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-906 *3 *4)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-4 *2 (-312)) (-14 *5 (-906 *4 *2)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-830))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-14 *5 (-906 *4 *2)))))
-((-1356 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1355 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-349 (-484)) (-349 (-484))) 95 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836)) 96 T ELT)) (-1509 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-854 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-349 (-484)) (-349 (-484))) 89 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836)) 90 T ELT)))
-(((-126) (-10 -7 (-15 -1509 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836))) (-15 -1509 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-349 (-484)) (-349 (-484)))) (-15 -1355 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836))) (-15 -1355 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-349 (-484)) (-349 (-484)))) (-15 -1356 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1509 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-854 (-179))))) (-15 -1509 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))))))) (T -126))
-((-1509 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179))))))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179)))))) (-1356 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4)))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4)))))) (-1355 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-349 (-484))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1509 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-349 (-484))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3181 (((-583 (-1048)) $) 20 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-127) (-13 (-995) (-10 -8 (-15 -3181 ((-583 (-1048)) $)) (-15 -3233 ((-1048) $))))) (T -127))
-((-3181 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-127)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-127)))))
-((-1409 (((-583 (-142 |#2|)) |#1| |#2|) 50 T ELT)))
-(((-128 |#1| |#2|) (-10 -7 (-15 -1409 ((-583 (-142 |#2|)) |#1| |#2|))) (-1154 (-142 (-484))) (-13 (-312) (-755))) (T -128))
-((-1409 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1154 (-142 (-484)))) (-4 *4 (-13 (-312) (-755))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1129) $) 13 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-129) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1129) $))))) (T -129))
-((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-129)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-129)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1358 (($) 38 T ELT)) (-3098 (($) 37 T ELT)) (-1357 (((-830)) 43 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2956 (((-484) $) 41 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3097 (($) 39 T ELT)) (-2955 (($ (-484)) 44 T ELT)) (-3945 (((-772) $) 50 T ELT)) (-3096 (($) 40 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 35 T ELT)) (-3838 (($ $ $) 32 T ELT)) (* (($ (-830) $) 42 T ELT) (($ (-179) $) 11 T ELT)))
-(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-830) $)) (-15 * ($ (-179) $)) (-15 -3838 ($ $ $)) (-15 -3098 ($)) (-15 -1358 ($)) (-15 -3097 ($)) (-15 -3096 ($)) (-15 -2956 ((-484) $)) (-15 -1357 ((-830))) (-15 -2955 ($ (-484)))))) (T -130))
-((-3838 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3098 (*1 *1) (-5 *1 (-130))) (-1358 (*1 *1) (-5 *1 (-130))) (-3097 (*1 *1) (-5 *1 (-130))) (-3096 (*1 *1) (-5 *1 (-130))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) (-1357 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130)))))
-((-1371 ((|#2| |#2| (-1004 |#2|)) 98 T ELT) ((|#2| |#2| (-1089)) 75 T ELT)) (-3943 ((|#2| |#2| (-1004 |#2|)) 97 T ELT) ((|#2| |#2| (-1089)) 74 T ELT)) (-1368 ((|#2| |#2| |#2|) 25 T ELT)) (-3594 (((-86) (-86)) 111 T ELT)) (-1365 ((|#2| (-583 |#2|)) 130 T ELT)) (-1362 ((|#2| (-583 |#2|)) 150 T ELT)) (-1361 ((|#2| (-583 |#2|)) 138 T ELT)) (-1359 ((|#2| |#2|) 136 T ELT)) (-1363 ((|#2| (-583 |#2|)) 124 T ELT)) (-1364 ((|#2| (-583 |#2|)) 125 T ELT)) (-1360 ((|#2| (-583 |#2|)) 148 T ELT)) (-1372 ((|#2| |#2| (-1089)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1366 ((|#2| |#2|) 21 T ELT)) (-3101 ((|#2| |#2| |#2|) 24 T ELT)) (-2254 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT)))
-(((-131 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3101 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2| |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -1372 (|#2| |#2|)) (-15 -1372 (|#2| |#2| (-1089))) (-15 -1371 (|#2| |#2| (-1089))) (-15 -1371 (|#2| |#2| (-1004 |#2|))) (-15 -3943 (|#2| |#2| (-1089))) (-15 -3943 (|#2| |#2| (-1004 |#2|))) (-15 -1359 (|#2| |#2|)) (-15 -1360 (|#2| (-583 |#2|))) (-15 -1361 (|#2| (-583 |#2|))) (-15 -1362 (|#2| (-583 |#2|))) (-15 -1363 (|#2| (-583 |#2|))) (-15 -1364 (|#2| (-583 |#2|))) (-15 -1365 (|#2| (-583 |#2|)))) (-495) (-363 |#1|)) (T -131))
-((-1365 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1359 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-3943 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-3943 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4)))) (-1372 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-1366 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-1368 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-3101 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-363 *3)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-363 *4)))))
-((-1370 ((|#1| |#1| |#1|) 66 T ELT)) (-1369 ((|#1| |#1| |#1|) 63 T ELT)) (-1368 ((|#1| |#1| |#1|) 57 T ELT)) (-2890 ((|#1| |#1|) 43 T ELT)) (-1367 ((|#1| |#1| (-583 |#1|)) 55 T ELT)) (-1366 ((|#1| |#1|) 47 T ELT)) (-3101 ((|#1| |#1| |#1|) 51 T ELT)))
-(((-132 |#1|) (-10 -7 (-15 -3101 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -1367 (|#1| |#1| (-583 |#1|))) (-15 -2890 (|#1| |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|))) (-483)) (T -132))
-((-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1368 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-2890 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1367 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2)))) (-1366 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-3101 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
-((-1371 (($ $ (-1089)) 12 T ELT) (($ $ (-1004 $)) 11 T ELT)) (-3943 (($ $ (-1089)) 10 T ELT) (($ $ (-1004 $)) 9 T ELT)) (-1368 (($ $ $) 8 T ELT)) (-1372 (($ $) 14 T ELT) (($ $ (-1089)) 13 T ELT)) (-1366 (($ $) 7 T ELT)) (-3101 (($ $ $) 6 T ELT)))
+(-13 (-962))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-1350 (((-2 (|:| -2402 (-695)) (|:| -3954 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-695)) 76 T ELT)) (-1349 (((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-695))) "failed") |#3|) 56 T ELT)) (-1348 (((-2 (|:| -3954 (-350 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1351 ((|#1| |#3| |#3|) 44 T ELT)) (-3768 ((|#3| |#3| (-350 |#2|) (-350 |#2|)) 20 T ELT)) (-1352 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-695))) |#3| |#3|) 53 T ELT)))
+(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1348 ((-2 (|:| -3954 (-350 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1349 ((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-695))) "failed") |#3|)) (-15 -1350 ((-2 (|:| -2402 (-695)) (|:| -3954 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-695))) (-15 -1351 (|#1| |#3| |#3|)) (-15 -3768 (|#3| |#3| (-350 |#2|) (-350 |#2|))) (-15 -1352 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-695))) |#3| |#3|))) (-1134) (-1155 |#1|) (-1155 (-350 |#2|))) (T -121))
+((-1352 (*1 *2 *3 *3) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) (|:| |c2| (-350 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))) (-3768 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1155 *3)))) (-1351 (*1 *2 *3 *3) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-1134)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1155 (-350 *4))))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *6)) (-4 *5 (-1134)) (-4 *6 (-1155 *5)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1155 *3)))) (-1349 (*1 *2 *3) (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))) (-1348 (*1 *2 *3) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -3954 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))))
+((-2705 (((-3 (-584 (-1085 |#2|)) "failed") (-584 (-1085 |#2|)) (-1085 |#2|)) 35 T ELT)))
+(((-122 |#1| |#2|) (-10 -7 (-15 -2705 ((-3 (-584 (-1085 |#2|)) "failed") (-584 (-1085 |#2|)) (-1085 |#2|)))) (-484) (-139 |#1|)) (T -122))
+((-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-139 *4)) (-4 *4 (-484)) (-5 *1 (-122 *4 *5)))))
+((-3710 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1353 (($ $) 44 T ELT)) (-3406 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3842 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1354 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1946 (((-695) (-1 (-85) |#2|) $) 18 T ELT) (((-695) |#2| $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3957 (((-695) $) 12 T ELT)))
+(((-123 |#1| |#2|) (-10 -7 (-15 -1353 (|#1| |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3710 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1354 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-695) |#2| |#1|)) (-15 -1946 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3957 ((-695) |#1|))) (-124 |#2|) (-1129)) (T -123))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 45 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 44 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 53 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-124 |#1|) (-113) (-1129)) (T -124))
+((-3530 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-4 *1 (-124 *3)))) (-1354 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))) (-3842 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))) (-3842 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *3)) (-4 *3 (-1129)))) (-3710 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *3)) (-4 *3 (-1129)))) (-3842 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))) (-3406 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) (-4 *2 (-1014)))) (-1353 (*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) (-4 *2 (-1014)))))
+(-13 (-429 |t#1|) (-10 -8 (-15 -3530 ($ (-584 |t#1|))) (-15 -1354 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3842 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3842 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -3710 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3842 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3406 ($ |t#1| $)) (-15 -1353 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) 113 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-584 (-831))) 72 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1355 (($ (-831)) 58 T ELT)) (-3911 (((-107)) 23 T ELT)) (-3946 (((-773) $) 88 T ELT) (($ (-485)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3677 ((|#2| $ (-584 (-831))) 75 T ELT)) (-3127 (((-695)) 20 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 48 T CONST)) (-2667 (($) 52 T CONST)) (-3057 (((-85) $ $) 34 T ELT)) (-3949 (($ $ |#2|) NIL T ELT)) (-3837 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3839 (($ $ $) 39 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-125 |#1| |#2| |#3|) (-13 (-962) (-38 |#2|) (-1187 |#2|) (-10 -8 (-15 -1355 ($ (-831))) (-15 -2894 ($ |#2| (-584 (-831)))) (-15 -3677 (|#2| $ (-584 (-831)))) (-15 -3467 ((-3 $ "failed") $)))) (-831) (-312) (-907 |#1| |#2|)) (T -125))
+((-3467 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-312)) (-14 *4 (-907 *2 *3)))) (-1355 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-907 *3 *4)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-4 *2 (-312)) (-14 *5 (-907 *4 *2)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-831))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-14 *5 (-907 *4 *2)))))
+((-1357 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1356 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485))) 95 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837)) 96 T ELT)) (-1510 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-855 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485))) 89 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837)) 90 T ELT)))
+(((-126) (-10 -7 (-15 -1510 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837))) (-15 -1510 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485)))) (-15 -1356 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837))) (-15 -1356 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485)))) (-15 -1357 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1510 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-855 (-179))))) (-15 -1510 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))))))) (T -126))
+((-1510 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179))))))) (-1510 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179)))))) (-1357 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4)) (|:| |yValues| (-1002 *4)))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4)))))) (-1356 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3182 (((-584 (-1049)) $) 20 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 27 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-127) (-13 (-996) (-10 -8 (-15 -3182 ((-584 (-1049)) $)) (-15 -3234 ((-1049) $))))) (T -127))
+((-3182 (*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-127)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-127)))))
+((-1410 (((-584 (-142 |#2|)) |#1| |#2|) 50 T ELT)))
+(((-128 |#1| |#2|) (-10 -7 (-15 -1410 ((-584 (-142 |#2|)) |#1| |#2|))) (-1155 (-142 (-485))) (-13 (-312) (-756))) (T -128))
+((-1410 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1155 (-142 (-485)))) (-4 *4 (-13 (-312) (-756))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3528 (((-1130) $) 13 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-129) (-13 (-996) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1130) $))))) (T -129))
+((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-129)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-129)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1359 (($) 38 T ELT)) (-3099 (($) 37 T ELT)) (-1358 (((-831)) 43 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2957 (((-485) $) 41 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3098 (($) 39 T ELT)) (-2956 (($ (-485)) 44 T ELT)) (-3946 (((-773) $) 50 T ELT)) (-3097 (($) 40 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 35 T ELT)) (-3839 (($ $ $) 32 T ELT)) (* (($ (-831) $) 42 T ELT) (($ (-179) $) 11 T ELT)))
+(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-831) $)) (-15 * ($ (-179) $)) (-15 -3839 ($ $ $)) (-15 -3099 ($)) (-15 -1359 ($)) (-15 -3098 ($)) (-15 -3097 ($)) (-15 -2957 ((-485) $)) (-15 -1358 ((-831))) (-15 -2956 ($ (-485)))))) (T -130))
+((-3839 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3099 (*1 *1) (-5 *1 (-130))) (-1359 (*1 *1) (-5 *1 (-130))) (-3098 (*1 *1) (-5 *1 (-130))) (-3097 (*1 *1) (-5 *1 (-130))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) (-1358 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130)))))
+((-1372 ((|#2| |#2| (-1005 |#2|)) 98 T ELT) ((|#2| |#2| (-1090)) 75 T ELT)) (-3944 ((|#2| |#2| (-1005 |#2|)) 97 T ELT) ((|#2| |#2| (-1090)) 74 T ELT)) (-1369 ((|#2| |#2| |#2|) 25 T ELT)) (-3595 (((-86) (-86)) 111 T ELT)) (-1366 ((|#2| (-584 |#2|)) 130 T ELT)) (-1363 ((|#2| (-584 |#2|)) 150 T ELT)) (-1362 ((|#2| (-584 |#2|)) 138 T ELT)) (-1360 ((|#2| |#2|) 136 T ELT)) (-1364 ((|#2| (-584 |#2|)) 124 T ELT)) (-1365 ((|#2| (-584 |#2|)) 125 T ELT)) (-1361 ((|#2| (-584 |#2|)) 148 T ELT)) (-1373 ((|#2| |#2| (-1090)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1367 ((|#2| |#2|) 21 T ELT)) (-3102 ((|#2| |#2| |#2|) 24 T ELT)) (-2255 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT)))
+(((-131 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3102 (|#2| |#2| |#2|)) (-15 -1369 (|#2| |#2| |#2|)) (-15 -1367 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -1373 (|#2| |#2| (-1090))) (-15 -1372 (|#2| |#2| (-1090))) (-15 -1372 (|#2| |#2| (-1005 |#2|))) (-15 -3944 (|#2| |#2| (-1090))) (-15 -3944 (|#2| |#2| (-1005 |#2|))) (-15 -1360 (|#2| |#2|)) (-15 -1361 (|#2| (-584 |#2|))) (-15 -1362 (|#2| (-584 |#2|))) (-15 -1363 (|#2| (-584 |#2|))) (-15 -1364 (|#2| (-584 |#2|))) (-15 -1365 (|#2| (-584 |#2|))) (-15 -1366 (|#2| (-584 |#2|)))) (-496) (-364 |#1|)) (T -131))
+((-1366 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1367 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1369 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3102 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4)))))
+((-1371 ((|#1| |#1| |#1|) 66 T ELT)) (-1370 ((|#1| |#1| |#1|) 63 T ELT)) (-1369 ((|#1| |#1| |#1|) 57 T ELT)) (-2891 ((|#1| |#1|) 43 T ELT)) (-1368 ((|#1| |#1| (-584 |#1|)) 55 T ELT)) (-1367 ((|#1| |#1|) 47 T ELT)) (-3102 ((|#1| |#1| |#1|) 51 T ELT)))
+(((-132 |#1|) (-10 -7 (-15 -3102 (|#1| |#1| |#1|)) (-15 -1367 (|#1| |#1|)) (-15 -1368 (|#1| |#1| (-584 |#1|))) (-15 -2891 (|#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|))) (-484)) (T -132))
+((-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-2891 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1368 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2)))) (-1367 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-3102 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
+((-1372 (($ $ (-1090)) 12 T ELT) (($ $ (-1005 $)) 11 T ELT)) (-3944 (($ $ (-1090)) 10 T ELT) (($ $ (-1005 $)) 9 T ELT)) (-1369 (($ $ $) 8 T ELT)) (-1373 (($ $) 14 T ELT) (($ $ (-1090)) 13 T ELT)) (-1367 (($ $) 7 T ELT)) (-3102 (($ $ $) 6 T ELT)))
(((-133) (-113)) (T -133))
-((-1372 (*1 *1 *1) (-4 *1 (-133))) (-1372 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-1371 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-1371 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))))
-(-13 (-116) (-10 -8 (-15 -1372 ($ $)) (-15 -1372 ($ $ (-1089))) (-15 -1371 ($ $ (-1089))) (-15 -1371 ($ $ (-1004 $))) (-15 -3943 ($ $ (-1089))) (-15 -3943 ($ $ (-1004 $)))))
+((-1373 (*1 *1 *1) (-4 *1 (-133))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) (-1372 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))) (-3944 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))))
+(-13 (-116) (-10 -8 (-15 -1373 ($ $)) (-15 -1373 ($ $ (-1090))) (-15 -1372 ($ $ (-1090))) (-15 -1372 ($ $ (-1005 $))) (-15 -3944 ($ $ (-1090))) (-15 -3944 ($ $ (-1005 $)))))
(((-116) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-1373 (($ (-484)) 15 T ELT) (($ $ $) 16 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 19 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT)))
-(((-134) (-13 (-1013) (-10 -8 (-15 -1373 ($ (-484))) (-15 -1373 ($ $ $))))) (T -134))
-((-1373 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134)))) (-1373 (*1 *1 *1 *1) (-5 *1 (-134))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-583 (-1048)) $) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-135) (-13 (-995) (-10 -8 (-15 -3233 ((-583 (-1048)) $))))) (T -135))
-((-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-135)))))
-((-3594 (((-86) (-1089)) 103 T ELT)))
-(((-136) (-10 -7 (-15 -3594 ((-86) (-1089))))) (T -136))
-((-3594 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-86)) (-5 *1 (-136)))))
-((-1594 ((|#3| |#3|) 19 T ELT)))
-(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1594 (|#3| |#3|))) (-961) (-1154 |#1|) (-1154 |#2|)) (T -137))
-((-1594 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1154 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1154 *4)))))
-((-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 222 T ELT)) (-3329 ((|#2| $) 102 T ELT)) (-3491 (($ $) 255 T ELT)) (-3638 (($ $) 249 T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 47 T ELT)) (-3489 (($ $) 253 T ELT)) (-3637 (($ $) 247 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2564 (($ $ $) 228 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 160 T ELT) (((-630 |#2|) (-630 $)) 154 T ELT)) (-3841 (($ (-1084 |#2|)) 125 T ELT) (((-3 $ #1#) (-349 (-1084 |#2|))) NIL T ELT)) (-3466 (((-3 $ #1#) $) 213 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 203 T ELT)) (-3023 (((-85) $) 198 T ELT)) (-3022 (((-349 (-484)) $) 201 T ELT)) (-3108 (((-830)) 96 T ELT)) (-2563 (($ $ $) 230 T ELT)) (-1374 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3626 (($) 244 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 192 T ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 197 T ELT)) (-3132 ((|#2| $) 100 T ELT)) (-2014 (((-1084 |#2|) $) 127 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3941 (($ $) 246 T ELT)) (-3079 (((-1084 |#2|) $) 126 T ELT)) (-2484 (($ $) 206 T ELT)) (-1376 (($) 103 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 95 T ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 64 T ELT)) (-3465 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3942 (($ $) 245 T ELT)) (-1606 (((-694) $) 225 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 234 T ELT)) (-3756 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3185 (((-1084 |#2|)) 120 T ELT)) (-3490 (($ $) 254 T ELT)) (-3633 (($ $) 248 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) 136 T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 116 T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-3971 (((-1178 |#2|) $) NIL T ELT) (($ (-1178 |#2|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT) (($ (-1084 |#2|)) NIL T ELT) (((-800 (-484)) $) 183 T ELT) (((-800 (-329)) $) 187 T ELT) (((-142 (-329)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-473) $) 179 T ELT)) (-3009 (($ $) 104 T ELT)) (-3945 (((-772) $) 143 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-2449 (((-1084 |#2|) $) 32 T ELT)) (-3126 (((-694)) 106 T CONST)) (-1264 (((-85) $ $) 13 T ELT)) (-3497 (($ $) 258 T ELT)) (-3485 (($ $) 252 T ELT)) (-3495 (($ $) 256 T ELT)) (-3483 (($ $) 250 T ELT)) (-2236 ((|#2| $) 241 T ELT)) (-3496 (($ $) 257 T ELT)) (-3484 (($ $) 251 T ELT)) (-3382 (($ $) 162 T ELT)) (-3056 (((-85) $ $) 110 T ELT)) (-3836 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-349 (-484))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)))
-(((-138 |#1| |#2|) (-10 -7 (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3945 (|#1| |#1|)) (-15 -3465 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2064 ((-2 (|:| -1771 |#1|) (|:| -3981 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1606 ((-694) |#1|)) (-15 -2879 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3971 ((-473) |#1|)) (-15 -3971 ((-142 (-179)) |#1|)) (-15 -3971 ((-142 (-329)) |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3626 (|#1|)) (-15 ** (|#1| |#1| (-349 (-484)))) (-15 -2706 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2705 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-3 (-583 (-1084 |#1|)) #1#) (-583 (-1084 |#1|)) (-1084 |#1|))) (-15 -3024 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -1374 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -3382 (|#1| |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3009 (|#1| |#1|)) (-15 -1376 (|#1|)) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -2796 ((-798 (-329) |#1|) |#1| (-800 (-329)) (-798 (-329) |#1|))) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3841 ((-3 |#1| #1#) (-349 (-1084 |#2|)))) (-15 -3079 ((-1084 |#2|) |#1|)) (-15 -3971 (|#1| (-1084 |#2|))) (-15 -3841 (|#1| (-1084 |#2|))) (-15 -3185 ((-1084 |#2|))) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3971 ((-1084 |#2|) |#1|)) (-15 -3756 (|#2|)) (-15 -3971 (|#1| (-1178 |#2|))) (-15 -3971 ((-1178 |#2|) |#1|)) (-15 -3224 ((-630 |#2|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1|)) (-15 -2014 ((-1084 |#2|) |#1|)) (-15 -2449 ((-1084 |#2|) |#1|)) (-15 -3756 (|#2| (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -3132 (|#2| |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -3108 ((-830))) (-15 -3945 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 -3466 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -1264 ((-85) |#1| |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138))
-((-3126 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3108 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3756 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3185 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2063 (($ $) 115 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2061 (((-85) $) 117 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-1781 (((-630 |#1|) (-1178 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3329 ((|#1| $) 67 T ELT)) (-3491 (($ $) 250 (|has| |#1| (-1114)) ELT)) (-3638 (($ $) 233 (|has| |#1| (-1114)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 167 (|has| |#1| (-299)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3774 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3970 (((-347 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3037 (($ $) 263 (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT)) (-2704 (((-3 (-583 (-1084 $)) "failed") (-583 (-1084 $)) (-1084 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-1607 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3136 (((-694)) 108 (|has| |#1| (-319)) ELT)) (-3489 (($ $) 249 (|has| |#1| (-1114)) ELT)) (-3637 (($ $) 234 (|has| |#1| (-1114)) ELT)) (-3493 (($ $) 248 (|has| |#1| (-1114)) ELT)) (-3636 (($ $) 235 (|has| |#1| (-1114)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 194 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 192 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3156 (((-484) $) 193 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 191 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 190 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) 63 T ELT) (($ (-1178 |#1|)) 80 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 185 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3841 (($ (-1084 |#1|)) 178 T ELT) (((-3 $ "failed") (-349 (-1084 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3642 ((|#1| $) 275 T ELT)) (-3024 (((-3 (-349 (-484)) "failed") $) 268 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 270 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 269 (|has| |#1| (-483)) ELT)) (-3108 (((-830)) 69 T ELT)) (-2994 (($) 111 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| |#1| (-258)) ELT)) (-2833 (($) 169 (|has| |#1| (-299)) ELT)) (-1679 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1763 (($ $ (-694)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3722 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1374 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-973)) (|has| |#1| (-1114))) ELT)) (-3626 (($) 260 (|has| |#1| (-1114)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 283 (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 282 (|has| |#1| (-796 (-329))) ELT)) (-3771 (((-830) $) 172 (|has| |#1| (-299)) ELT) (((-743 (-830)) $) 158 (|has| |#1| (-299)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 262 (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT)) (-3132 ((|#1| $) 66 T ELT)) (-3444 (((-632 $) $) 162 (|has| |#1| (-299)) ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| |#1| (-258)) ELT)) (-2014 (((-1084 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2010 (((-830) $) 110 (|has| |#1| (-319)) ELT)) (-3941 (($ $) 257 (|has| |#1| (-1114)) ELT)) (-3079 (((-1084 |#1|) $) 176 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 182 T ELT) (((-630 |#1|) (-1178 $)) 181 T ELT)) (-1890 (($ (-583 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3445 (($) 163 (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| |#1| (-319)) ELT)) (-1376 (($) 279 T ELT)) (-3643 ((|#1| $) 276 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (($) 180 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3144 (($ (-583 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 166 (|has| |#1| (-299)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3731 (((-347 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 124 (|has| |#1| (-258)) ELT)) (-3942 (($ $) 258 (|has| |#1| (-1114)) ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 286 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 285 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-1606 (((-694) $) 126 (|has| |#1| (-258)) ELT)) (-3799 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3756 ((|#1| (-1178 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1764 (((-694) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 144 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 150 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) 149 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) 148 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) 146 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-694)) 156 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2408 (((-630 |#1|) (-1178 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3185 (((-1084 |#1|)) 179 T ELT)) (-3494 (($ $) 247 (|has| |#1| (-1114)) ELT)) (-3635 (($ $) 236 (|has| |#1| (-1114)) ELT)) (-1673 (($) 168 (|has| |#1| (-299)) ELT)) (-3492 (($ $) 246 (|has| |#1| (-1114)) ELT)) (-3634 (($ $) 237 (|has| |#1| (-1114)) ELT)) (-3490 (($ $) 245 (|has| |#1| (-1114)) ELT)) (-3633 (($ $) 238 (|has| |#1| (-1114)) ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 65 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 64 T ELT) (((-1178 |#1|) $) 82 T ELT) (((-630 |#1|) (-1178 $)) 81 T ELT)) (-3971 (((-1178 |#1|) $) 79 T ELT) (($ (-1178 |#1|)) 78 T ELT) (((-1084 |#1|) $) 195 T ELT) (($ (-1084 |#1|)) 177 T ELT) (((-800 (-484)) $) 281 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) 280 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-142 (-329)) $) 232 (|has| |#1| (-933)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-933)) ELT) (((-473) $) 230 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 278 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 165 (OR (-2562 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (|has| |#1| (-299))) ELT)) (-1375 (($ |#1| |#1|) 277 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-349 (-484))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) 112 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2702 (($ $) 164 (|has| |#1| (-299)) ELT) (((-632 $) $) 58 (OR (-2562 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (|has| |#1| (-118))) ELT)) (-2449 (((-1084 |#1|) $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 83 T ELT)) (-3497 (($ $) 256 (|has| |#1| (-1114)) ELT)) (-3485 (($ $) 244 (|has| |#1| (-1114)) ELT)) (-2062 (((-85) $ $) 116 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3495 (($ $) 255 (|has| |#1| (-1114)) ELT)) (-3483 (($ $) 243 (|has| |#1| (-1114)) ELT)) (-3499 (($ $) 254 (|has| |#1| (-1114)) ELT)) (-3487 (($ $) 242 (|has| |#1| (-1114)) ELT)) (-2236 ((|#1| $) 272 (|has| |#1| (-1114)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 253 (|has| |#1| (-1114)) ELT)) (-3488 (($ $) 241 (|has| |#1| (-1114)) ELT)) (-3498 (($ $) 252 (|has| |#1| (-1114)) ELT)) (-3486 (($ $) 240 (|has| |#1| (-1114)) ELT)) (-3496 (($ $) 251 (|has| |#1| (-1114)) ELT)) (-3484 (($ $) 239 (|has| |#1| (-1114)) ELT)) (-3382 (($ $) 273 (|has| |#1| (-973)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 153 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) 152 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) 151 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) 147 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-694)) 157 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-349 (-484))) 261 (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT) (($ $ $) 259 (|has| |#1| (-1114)) ELT) (($ $ (-484)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-349 (-484)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-349 (-484))) 139 (|has| |#1| (-312)) ELT)))
+((-2569 (((-85) $ $) NIL T ELT)) (-1374 (($ (-485)) 15 T ELT) (($ $ $) 16 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 19 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-134) (-13 (-1014) (-10 -8 (-15 -1374 ($ (-485))) (-15 -1374 ($ $ $))))) (T -134))
+((-1374 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134)))) (-1374 (*1 *1 *1 *1) (-5 *1 (-134))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-584 (-1049)) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-135) (-13 (-996) (-10 -8 (-15 -3234 ((-584 (-1049)) $))))) (T -135))
+((-3234 (*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-135)))))
+((-3595 (((-86) (-1090)) 103 T ELT)))
+(((-136) (-10 -7 (-15 -3595 ((-86) (-1090))))) (T -136))
+((-3595 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-86)) (-5 *1 (-136)))))
+((-1595 ((|#3| |#3|) 19 T ELT)))
+(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1595 (|#3| |#3|))) (-962) (-1155 |#1|) (-1155 |#2|)) (T -137))
+((-1595 (*1 *2 *2) (-12 (-4 *3 (-962)) (-4 *4 (-1155 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1155 *4)))))
+((-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 222 T ELT)) (-3330 ((|#2| $) 102 T ELT)) (-3492 (($ $) 255 T ELT)) (-3639 (($ $) 249 T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1="failed") (-584 (-1085 $)) (-1085 $)) 47 T ELT)) (-3490 (($ $) 253 T ELT)) (-3638 (($ $) 247 T ELT)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2565 (($ $ $) 228 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) 160 T ELT) (((-631 |#2|) (-631 $)) 154 T ELT)) (-3842 (($ (-1085 |#2|)) 125 T ELT) (((-3 $ #1#) (-350 (-1085 |#2|))) NIL T ELT)) (-3467 (((-3 $ #1#) $) 213 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 203 T ELT)) (-3024 (((-85) $) 198 T ELT)) (-3023 (((-350 (-485)) $) 201 T ELT)) (-3109 (((-831)) 96 T ELT)) (-2564 (($ $ $) 230 T ELT)) (-1375 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3627 (($) 244 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 192 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 197 T ELT)) (-3133 ((|#2| $) 100 T ELT)) (-2015 (((-1085 |#2|) $) 127 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3942 (($ $) 246 T ELT)) (-3080 (((-1085 |#2|) $) 126 T ELT)) (-2485 (($ $) 206 T ELT)) (-1377 (($) 103 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 95 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 64 T ELT)) (-3466 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3943 (($ $) 245 T ELT)) (-1607 (((-695) $) 225 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 234 T ELT)) (-3757 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3186 (((-1085 |#2|)) 120 T ELT)) (-3491 (($ $) 254 T ELT)) (-3634 (($ $) 248 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) 136 T ELT) (((-631 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) 116 T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-3972 (((-1179 |#2|) $) NIL T ELT) (($ (-1179 |#2|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT) (($ (-1085 |#2|)) NIL T ELT) (((-801 (-485)) $) 183 T ELT) (((-801 (-330)) $) 187 T ELT) (((-142 (-330)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-474) $) 179 T ELT)) (-3010 (($ $) 104 T ELT)) (-3946 (((-773) $) 143 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-2450 (((-1085 |#2|) $) 32 T ELT)) (-3127 (((-695)) 106 T CONST)) (-1265 (((-85) $ $) 13 T ELT)) (-3498 (($ $) 258 T ELT)) (-3486 (($ $) 252 T ELT)) (-3496 (($ $) 256 T ELT)) (-3484 (($ $) 250 T ELT)) (-2237 ((|#2| $) 241 T ELT)) (-3497 (($ $) 257 T ELT)) (-3485 (($ $) 251 T ELT)) (-3383 (($ $) 162 T ELT)) (-3057 (((-85) $ $) 110 T ELT)) (-3837 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-350 (-485))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)))
+(((-138 |#1| |#2|) (-10 -7 (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -3946 (|#1| |#1|)) (-15 -3466 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2065 ((-2 (|:| -1772 |#1|) (|:| -3982 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1607 ((-695) |#1|)) (-15 -2880 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3972 ((-474) |#1|)) (-15 -3972 ((-142 (-179)) |#1|)) (-15 -3972 ((-142 (-330)) |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3627 (|#1|)) (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -2707 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2706 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2705 ((-3 (-584 (-1085 |#1|)) #1#) (-584 (-1085 |#1|)) (-1085 |#1|))) (-15 -3025 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -1375 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -3383 (|#1| |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3010 (|#1| |#1|)) (-15 -1377 (|#1|)) (-15 -3972 ((-801 (-330)) |#1|)) (-15 -3972 ((-801 (-485)) |#1|)) (-15 -2797 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3842 ((-3 |#1| #1#) (-350 (-1085 |#2|)))) (-15 -3080 ((-1085 |#2|) |#1|)) (-15 -3972 (|#1| (-1085 |#2|))) (-15 -3842 (|#1| (-1085 |#2|))) (-15 -3186 ((-1085 |#2|))) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3972 ((-1085 |#2|) |#1|)) (-15 -3757 (|#2|)) (-15 -3972 (|#1| (-1179 |#2|))) (-15 -3972 ((-1179 |#2|) |#1|)) (-15 -3225 ((-631 |#2|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1|)) (-15 -2015 ((-1085 |#2|) |#1|)) (-15 -2450 ((-1085 |#2|) |#1|)) (-15 -3757 (|#2| (-1179 |#1|))) (-15 -3225 ((-631 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -3133 (|#2| |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3109 ((-831))) (-15 -3946 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3127 ((-695)) -3952) (-15 -3946 (|#1| (-485))) (-15 -3467 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -1265 ((-85) |#1| |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138))
+((-3127 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3109 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3757 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3186 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1085 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2064 (($ $) 115 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2062 (((-85) $) 117 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-1782 (((-631 |#1|) (-1179 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3330 ((|#1| $) 67 T ELT)) (-3492 (($ $) 250 (|has| |#1| (-1115)) ELT)) (-3639 (($ $) 233 (|has| |#1| (-1115)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3775 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3971 (((-348 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3038 (($ $) 263 (-12 (|has| |#1| (-916)) (|has| |#1| (-1115))) ELT)) (-2705 (((-3 (-584 (-1085 $)) "failed") (-584 (-1085 $)) (-1085 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-1608 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3137 (((-695)) 108 (|has| |#1| (-320)) ELT)) (-3490 (($ $) 249 (|has| |#1| (-1115)) ELT)) (-3638 (($ $) 234 (|has| |#1| (-1115)) ELT)) (-3494 (($ $) 248 (|has| |#1| (-1115)) ELT)) (-3637 (($ $) 235 (|has| |#1| (-1115)) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3157 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) 63 T ELT) (($ (-1179 |#1|)) 80 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1781 (((-631 |#1|) $ (-1179 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3842 (($ (-1085 |#1|)) 178 T ELT) (((-3 $ "failed") (-350 (-1085 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3643 ((|#1| $) 275 T ELT)) (-3025 (((-3 (-350 (-485)) "failed") $) 268 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 270 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 269 (|has| |#1| (-484)) ELT)) (-3109 (((-831)) 69 T ELT)) (-2995 (($) 111 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| |#1| (-258)) ELT)) (-2834 (($) 169 (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1764 (($ $ (-695)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3723 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1375 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-974)) (|has| |#1| (-1115))) ELT)) (-3627 (($) 260 (|has| |#1| (-1115)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 283 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 282 (|has| |#1| (-797 (-330))) ELT)) (-3772 (((-831) $) 172 (|has| |#1| (-299)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 262 (-12 (|has| |#1| (-916)) (|has| |#1| (-1115))) ELT)) (-3133 ((|#1| $) 66 T ELT)) (-3445 (((-633 $) $) 162 (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-258)) ELT)) (-2015 (((-1085 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2011 (((-831) $) 110 (|has| |#1| (-320)) ELT)) (-3942 (($ $) 257 (|has| |#1| (-1115)) ELT)) (-3080 (((-1085 |#1|) $) 176 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 182 T ELT) (((-631 |#1|) (-1179 $)) 181 T ELT)) (-1891 (($ (-584 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3446 (($) 163 (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| |#1| (-320)) ELT)) (-1377 (($) 279 T ELT)) (-3644 ((|#1| $) 276 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2410 (($) 180 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3145 (($ (-584 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3732 (((-348 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-258)) ELT)) (-3943 (($ $) 258 (|has| |#1| (-1115)) ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) 286 (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 285 (|has| |#1| (-456 (-1090) |#1|)) ELT)) (-1607 (((-695) $) 126 (|has| |#1| (-258)) ELT)) (-3800 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3757 ((|#1| (-1179 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1765 (((-695) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 T ELT) (($ $ (-584 (-1090)) (-584 (-695))) 150 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090) (-695)) 149 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-584 (-1090))) 148 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090)) 146 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-695)) 156 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2409 (((-631 |#1|) (-1179 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3186 (((-1085 |#1|)) 179 T ELT)) (-3495 (($ $) 247 (|has| |#1| (-1115)) ELT)) (-3636 (($ $) 236 (|has| |#1| (-1115)) ELT)) (-1674 (($) 168 (|has| |#1| (-299)) ELT)) (-3493 (($ $) 246 (|has| |#1| (-1115)) ELT)) (-3635 (($ $) 237 (|has| |#1| (-1115)) ELT)) (-3491 (($ $) 245 (|has| |#1| (-1115)) ELT)) (-3634 (($ $) 238 (|has| |#1| (-1115)) ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-631 |#1|) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 |#1|) $) 82 T ELT) (((-631 |#1|) (-1179 $)) 81 T ELT)) (-3972 (((-1179 |#1|) $) 79 T ELT) (($ (-1179 |#1|)) 78 T ELT) (((-1085 |#1|) $) 195 T ELT) (($ (-1085 |#1|)) 177 T ELT) (((-801 (-485)) $) 281 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 280 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-142 (-330)) $) 232 (|has| |#1| (-934)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-934)) ELT) (((-474) $) 230 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) 278 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-631 $)) 165 (OR (-2563 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (|has| |#1| (-299))) ELT)) (-1376 (($ |#1| |#1|) 277 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) 112 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2703 (($ $) 164 (|has| |#1| (-299)) ELT) (((-633 $) $) 58 (OR (-2563 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (|has| |#1| (-118))) ELT)) (-2450 (((-1085 |#1|) $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2013 (((-1179 $)) 83 T ELT)) (-3498 (($ $) 256 (|has| |#1| (-1115)) ELT)) (-3486 (($ $) 244 (|has| |#1| (-1115)) ELT)) (-2063 (((-85) $ $) 116 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3496 (($ $) 255 (|has| |#1| (-1115)) ELT)) (-3484 (($ $) 243 (|has| |#1| (-1115)) ELT)) (-3500 (($ $) 254 (|has| |#1| (-1115)) ELT)) (-3488 (($ $) 242 (|has| |#1| (-1115)) ELT)) (-2237 ((|#1| $) 272 (|has| |#1| (-1115)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 253 (|has| |#1| (-1115)) ELT)) (-3489 (($ $) 241 (|has| |#1| (-1115)) ELT)) (-3499 (($ $) 252 (|has| |#1| (-1115)) ELT)) (-3487 (($ $) 240 (|has| |#1| (-1115)) ELT)) (-3497 (($ $) 251 (|has| |#1| (-1115)) ELT)) (-3485 (($ $) 239 (|has| |#1| (-1115)) ELT)) (-3383 (($ $) 273 (|has| |#1| (-974)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 T ELT) (($ $ (-584 (-1090)) (-584 (-695))) 153 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090) (-695)) 152 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-584 (-1090))) 151 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090)) 147 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-695)) 157 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-350 (-485))) 261 (-12 (|has| |#1| (-916)) (|has| |#1| (-1115))) ELT) (($ $ $) 259 (|has| |#1| (-1115)) ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| |#1| (-312)) ELT)))
(((-139 |#1|) (-113) (-146)) (T -139))
-((-3132 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1376 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3009 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1375 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-3382 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1114)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1114)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))))
-(-13 (-661 |t#1| (-1084 |t#1|)) (-354 |t#1|) (-184 |t#1|) (-288 |t#1|) (-342 |t#1|) (-794 |t#1|) (-328 |t#1|) (-146) (-10 -8 (-6 -1375) (-15 -1376 ($)) (-15 -3009 ($ $)) (-15 -1375 ($ |t#1| |t#1|)) (-15 -3643 (|t#1| $)) (-15 -3642 (|t#1| $)) (-15 -3132 (|t#1| $)) (IF (|has| |t#1| (-495)) (PROGN (-6 (-495)) (-15 -3465 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#1| (-6 -3990)) (-6 -3990) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-933)) (PROGN (-6 (-553 (-142 (-179)))) (-6 (-553 (-142 (-329))))) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3382 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-1114)) (-15 -2236 (|t#1| $)) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -1374 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-821)) (IF (|has| |t#1| (-258)) (-6 (-821)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1114)) ((-66) |has| |#1| (-1114)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-552 (-772)) . T) ((-146) . T) ((-553 (-142 (-179))) |has| |#1| (-933)) ((-553 (-142 (-329))) |has| |#1| (-933)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-553 (-1084 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1114)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-344) |has| |#1| (-299)) ((-319) OR (|has| |#1| (-299)) (|has| |#1| (-319))) ((-299) |has| |#1| (-299)) ((-321 |#1| (-1084 |#1|)) . T) ((-352 |#1| (-1084 |#1|)) . T) ((-288 |#1|) . T) ((-328 |#1|) . T) ((-342 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-432) |has| |#1| (-1114)) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-661 |#1| (-1084 |#1|)) . T) ((-663) . T) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-821) -12 (|has| |#1| (-258)) (|has| |#1| (-821))) ((-832) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-915) -12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-299)) ((-1114) |has| |#1| (-1114)) ((-1117) |has| |#1| (-1114)) ((-1128) . T) ((-1133) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))))
-((-3731 (((-347 |#2|) |#2|) 67 T ELT)))
-(((-140 |#1| |#2|) (-10 -7 (-15 -3731 ((-347 |#2|) |#2|))) (-258) (-1154 (-142 |#1|))) (T -140))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1154 (-142 *4))))))
-((-1379 (((-1048) (-1048) (-247)) 8 T ELT)) (-1377 (((-583 (-632 (-235))) (-1072)) 81 T ELT)) (-1378 (((-632 (-235)) (-1048)) 76 T ELT)))
-(((-141) (-13 (-1128) (-10 -7 (-15 -1379 ((-1048) (-1048) (-247))) (-15 -1378 ((-632 (-235)) (-1048))) (-15 -1377 ((-583 (-632 (-235))) (-1072)))))) (T -141))
-((-1379 (*1 *2 *2 *3) (-12 (-5 *2 (-1048)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-1048)) (-5 *2 (-632 (-235))) (-5 *1 (-141)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 15 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-1781 (((-630 |#1|) (-1178 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-299)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3774 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3970 (((-347 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3037 (($ $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3841 (($ (-1084 |#1|)) NIL T ELT) (((-3 $ #1#) (-349 (-1084 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3642 ((|#1| $) 20 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3108 (((-830)) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-258)) ELT)) (-2833 (($) NIL (|has| |#1| (-299)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1763 (($ $ (-694)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3722 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1374 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1114))) ELT)) (-3626 (($) NIL (|has| |#1| (-1114)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| |#1| (-796 (-329))) ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-299)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-299)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 17 T ELT)) (-3011 (($ $ (-484)) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT)) (-3132 ((|#1| $) 30 T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-299)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-258)) ELT)) (-2014 (((-1084 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3079 (((-1084 |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3445 (($) NIL (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1376 (($) NIL T ELT)) (-3643 ((|#1| $) 21 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-258)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-299)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3731 (((-347 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-258)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-258)) ELT)) (-3799 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3756 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2408 (((-630 |#1|) (-1178 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3185 (((-1084 |#1|)) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-1673 (($) NIL (|has| |#1| (-299)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3634 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3633 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-3971 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT) (($ (-1084 |#1|)) NIL T ELT) (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| |#1| (-553 (-800 (-329)))) ELT) (((-142 (-329)) $) NIL (|has| |#1| (-933)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-933)) ELT) (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 29 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-299))) ELT)) (-1375 (($ |#1| |#1|) 19 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2702 (($ $) NIL (|has| |#1| (-299)) ELT) (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-2449 (((-1084 |#1|) $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-2236 ((|#1| $) NIL (|has| |#1| (-1114)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3382 (($ $) NIL (|has| |#1| (-973)) ELT)) (-2660 (($) 8 T CONST)) (-2666 (($) 10 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-349 (-484))) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT) (($ $ $) NIL (|has| |#1| (-1114)) ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-312)) ELT)))
+((-3133 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1377 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3010 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1376 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-3383 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1115)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-974)) (-4 *3 (-1115)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))))
+(-13 (-662 |t#1| (-1085 |t#1|)) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-343 |t#1|) (-795 |t#1|) (-329 |t#1|) (-146) (-10 -8 (-6 -1376) (-15 -1377 ($)) (-15 -3010 ($ $)) (-15 -1376 ($ |t#1| |t#1|)) (-15 -3644 (|t#1| $)) (-15 -3643 (|t#1| $)) (-15 -3133 (|t#1| $)) (IF (|has| |t#1| (-496)) (PROGN (-6 (-496)) (-15 -3466 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#1| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-934)) (PROGN (-6 (-554 (-142 (-179)))) (-6 (-554 (-142 (-330))))) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3383 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1115)) (PROGN (-6 (-1115)) (-15 -2237 (|t#1| $)) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -1375 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-822)) (IF (|has| |t#1| (-258)) (-6 (-822)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1115)) ((-66) |has| |#1| (-1115)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-553 (-773)) . T) ((-146) . T) ((-554 (-142 (-179))) |has| |#1| (-934)) ((-554 (-142 (-330))) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-554 (-1085 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1115)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| (-1085 |#1|)) . T) ((-353 |#1| (-1085 |#1|)) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-433) |has| |#1| (-1115)) ((-456 (-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-662 |#1| (-1085 |#1|)) . T) ((-664) . T) ((-807 $ (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-810 (-1090)) |has| |#1| (-810 (-1090))) ((-812 (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) -12 (|has| |#1| (-258)) (|has| |#1| (-822))) ((-833) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-916) -12 (|has| |#1| (-916)) (|has| |#1| (-1115))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1066) |has| |#1| (-299)) ((-1115) |has| |#1| (-1115)) ((-1118) |has| |#1| (-1115)) ((-1129) . T) ((-1134) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))))
+((-3732 (((-348 |#2|) |#2|) 67 T ELT)))
+(((-140 |#1| |#2|) (-10 -7 (-15 -3732 ((-348 |#2|) |#2|))) (-258) (-1155 (-142 |#1|))) (T -140))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1155 (-142 *4))))))
+((-1380 (((-1049) (-1049) (-247)) 8 T ELT)) (-1378 (((-584 (-633 (-235))) (-1073)) 81 T ELT)) (-1379 (((-633 (-235)) (-1049)) 76 T ELT)))
+(((-141) (-13 (-1129) (-10 -7 (-15 -1380 ((-1049) (-1049) (-247))) (-15 -1379 ((-633 (-235)) (-1049))) (-15 -1378 ((-584 (-633 (-235))) (-1073)))))) (T -141))
+((-1380 (*1 *2 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-633 (-235))) (-5 *1 (-141)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 15 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-1782 (((-631 |#1|) (-1179 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3775 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3971 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3038 (($ $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1115))) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1781 (((-631 |#1|) $ (-1179 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3842 (($ (-1085 |#1|)) NIL T ELT) (((-3 $ #1#) (-350 (-1085 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3643 ((|#1| $) 20 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3109 (((-831)) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-258)) ELT)) (-2834 (($) NIL (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1764 (($ $ (-695)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3723 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1375 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-974)) (|has| |#1| (-1115))) ELT)) (-3627 (($) NIL (|has| |#1| (-1115)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#1| (-797 (-330))) ELT)) (-3772 (((-831) $) NIL (|has| |#1| (-299)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 17 T ELT)) (-3012 (($ $ (-485)) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1115))) ELT)) (-3133 ((|#1| $) 30 T ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-258)) ELT)) (-2015 (((-1085 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3080 (((-1085 |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3446 (($) NIL (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1377 (($) NIL T ELT)) (-3644 ((|#1| $) 21 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-258)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3732 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-258)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-456 (-1090) |#1|)) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-258)) ELT)) (-3800 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3757 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1765 (((-695) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2409 (((-631 |#1|) (-1179 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-1085 |#1|)) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-1674 (($) NIL (|has| |#1| (-299)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3634 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) NIL T ELT) (((-631 |#1|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#1|) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-3972 (((-1179 |#1|) $) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT) (((-1085 |#1|) $) NIL T ELT) (($ (-1085 |#1|)) NIL T ELT) (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (((-142 (-330)) $) NIL (|has| |#1| (-934)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-934)) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) 29 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-299))) ELT)) (-1376 (($ |#1| |#1|) 19 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2703 (($ $) NIL (|has| |#1| (-299)) ELT) (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-2450 (((-1085 |#1|) $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-2237 ((|#1| $) NIL (|has| |#1| (-1115)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3383 (($ $) NIL (|has| |#1| (-974)) ELT)) (-2661 (($) 8 T CONST)) (-2667 (($) 10 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-350 (-485))) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1115))) ELT) (($ $ $) NIL (|has| |#1| (-1115)) ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT)))
(((-142 |#1|) (-139 |#1|) (-146)) (T -142))
NIL
-((-3957 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT)))
-(((-143 |#1| |#2|) (-10 -7 (-15 -3957 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))))
-((-3971 (((-800 |#1|) |#3|) 22 T ELT)))
-(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3971 ((-800 |#1|) |#3|))) (-1013) (-13 (-553 (-800 |#1|)) (-146)) (-139 |#2|)) (T -144))
-((-3971 (*1 *2 *3) (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-139 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1381 (((-85) $) 9 T ELT)) (-1380 (((-85) $ (-85)) 11 T ELT)) (-3613 (($) 13 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3399 (($ $) 14 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-3701 (((-85) $) 8 T ELT)) (-3860 (((-85) $ (-85)) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-145) (-13 (-1013) (-10 -8 (-15 -3613 ($)) (-15 -3701 ((-85) $)) (-15 -1381 ((-85) $)) (-15 -3860 ((-85) $ (-85))) (-15 -1380 ((-85) $ (-85))) (-15 -3399 ($ $))))) (T -145))
-((-3613 (*1 *1) (-5 *1 (-145))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3860 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1380 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3399 (*1 *1 *1) (-5 *1 (-145))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-3958 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT)))
+(((-143 |#1| |#2|) (-10 -7 (-15 -3958 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))))
+((-3972 (((-801 |#1|) |#3|) 22 T ELT)))
+(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-801 |#1|) |#3|))) (-1014) (-13 (-554 (-801 |#1|)) (-146)) (-139 |#2|)) (T -144))
+((-3972 (*1 *2 *3) (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1014)) (-4 *3 (-139 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1382 (((-85) $) 9 T ELT)) (-1381 (((-85) $ (-85)) 11 T ELT)) (-3614 (($) 13 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3400 (($ $) 14 T ELT)) (-3946 (((-773) $) 18 T ELT)) (-3702 (((-85) $) 8 T ELT)) (-3861 (((-85) $ (-85)) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-145) (-13 (-1014) (-10 -8 (-15 -3614 ($)) (-15 -3702 ((-85) $)) (-15 -1382 ((-85) $)) (-15 -3861 ((-85) $ (-85))) (-15 -1381 ((-85) $ (-85))) (-15 -3400 ($ $))))) (T -145))
+((-3614 (*1 *1) (-5 *1 (-145))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3861 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1381 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3400 (*1 *1 *1) (-5 *1 (-145))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-146) (-113)) (T -146))
NIL
-(-13 (-961) (-82 $ $) (-10 -7 (-6 (-3996 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-1699 (($ $) 6 T ELT)))
+(-13 (-962) (-82 $ $) (-10 -7 (-6 (-3997 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-1700 (($ $) 6 T ELT)))
(((-147) (-113)) (T -147))
-((-1699 (*1 *1 *1) (-4 *1 (-147))))
-(-13 (-10 -8 (-15 -1699 ($ $))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 ((|#1| $) 79 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-1386 (($ $) 21 T ELT)) (-1390 (($ |#1| (-1068 |#1|)) 48 T ELT)) (-3466 (((-3 $ #1#) $) 123 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-1387 (((-1068 |#1|) $) 86 T ELT)) (-1389 (((-1068 |#1|) $) 83 T ELT)) (-1388 (((-1068 |#1|) $) 84 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1383 (((-1068 |#1|) $) 93 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1890 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3768 (($ $ (-484)) 96 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1382 (((-1068 |#1|) $) 94 T ELT)) (-1384 (((-1068 (-349 |#1|)) $) 14 T ELT)) (-2616 (($ (-349 |#1|)) 17 T ELT) (($ |#1| (-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-2891 (($ $) 98 T ELT)) (-3945 (((-772) $) 139 T ELT) (($ (-484)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-349 |#1|)) 36 T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) 67 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-1385 (((-1068 (-349 |#1|)) $) 20 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 103 T CONST)) (-2666 (($) 28 T CONST)) (-3056 (((-85) $ $) 35 T ELT)) (-3948 (($ $ $) 121 T ELT)) (-3836 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3838 (($ $ $) 107 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-349 |#1|) $) 117 T ELT) (($ $ (-349 |#1|)) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)))
-(((-148 |#1|) (-13 (-38 |#1|) (-38 (-349 |#1|)) (-312) (-10 -8 (-15 -2616 ($ (-349 |#1|))) (-15 -2616 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -1390 ($ |#1| (-1068 |#1|))) (-15 -1389 ((-1068 |#1|) $)) (-15 -1388 ((-1068 |#1|) $)) (-15 -1387 ((-1068 |#1|) $)) (-15 -3129 (|#1| $)) (-15 -1386 ($ $)) (-15 -1385 ((-1068 (-349 |#1|)) $)) (-15 -1384 ((-1068 (-349 |#1|)) $)) (-15 -1383 ((-1068 |#1|) $)) (-15 -1382 ((-1068 |#1|) $)) (-15 -3768 ($ $ (-484))) (-15 -2891 ($ $)))) (-258)) (T -148))
-((-2616 (*1 *1 *2) (-12 (-5 *2 (-349 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2616 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3129 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1386 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1068 (-349 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1068 (-349 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2891 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))))
-((-1391 (($ (-78) $) 15 T ELT)) (-3221 (((-632 (-78)) (-446) $) 14 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-1392 (((-583 (-78)) $) 8 T ELT)))
-(((-149) (-13 (-552 (-772)) (-10 -8 (-15 -1392 ((-583 (-78)) $)) (-15 -1391 ($ (-78) $)) (-15 -3221 ((-632 (-78)) (-446) $))))) (T -149))
-((-1392 (*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3221 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-149)))))
-((-1405 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 38 T ELT)) (-1396 (((-854 |#1|) (-854 |#1|)) 22 T ELT)) (-1401 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 34 T ELT)) (-1394 (((-854 |#1|) (-854 |#1|)) 20 T ELT)) (-1399 (((-854 |#1|) (-854 |#1|)) 28 T ELT)) (-1398 (((-854 |#1|) (-854 |#1|)) 27 T ELT)) (-1397 (((-854 |#1|) (-854 |#1|)) 26 T ELT)) (-1402 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 35 T ELT)) (-1400 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 33 T ELT)) (-1642 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 32 T ELT)) (-1395 (((-854 |#1|) (-854 |#1|)) 21 T ELT)) (-1406 (((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|) 41 T ELT)) (-1393 (((-854 |#1|) (-854 |#1|)) 8 T ELT)) (-1404 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 37 T ELT)) (-1403 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 36 T ELT)))
-(((-150 |#1|) (-10 -7 (-15 -1393 ((-854 |#1|) (-854 |#1|))) (-15 -1394 ((-854 |#1|) (-854 |#1|))) (-15 -1395 ((-854 |#1|) (-854 |#1|))) (-15 -1396 ((-854 |#1|) (-854 |#1|))) (-15 -1397 ((-854 |#1|) (-854 |#1|))) (-15 -1398 ((-854 |#1|) (-854 |#1|))) (-15 -1399 ((-854 |#1|) (-854 |#1|))) (-15 -1642 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1400 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1401 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1402 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1403 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1404 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1405 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1406 ((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|))) (-13 (-312) (-1114) (-915))) (T -150))
-((-1406 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1642 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))))
-((-2449 ((|#2| |#3|) 28 T ELT)))
-(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2449 (|#2| |#3|))) (-146) (-1154 |#1|) (-661 |#1| |#2|)) (T -151))
-((-2449 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1154 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-661 *4 *2)))))
-((-2796 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 44 (|has| (-857 |#2|) (-796 |#1|)) ELT)))
-(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-857 |#2|) (-796 |#1|)) (-15 -2796 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) |%noBranch|)) (-1013) (-13 (-796 |#1|) (-146)) (-139 |#2|)) (T -152))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6)) (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))))
-((-1408 (((-583 |#1|) (-583 |#1|) |#1|) 41 T ELT)) (-1407 (((-583 |#1|) |#1| (-583 |#1|)) 20 T ELT)) (-2077 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 36 T ELT) ((|#1| (-583 |#1|) (-583 |#1|)) 32 T ELT)))
-(((-153 |#1|) (-10 -7 (-15 -1407 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2077 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2077 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1408 ((-583 |#1|) (-583 |#1|) |#1|))) (-258)) (T -153))
-((-1408 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2077 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2077 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1407 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1129) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-154) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $)) (-15 -3318 ((-1129) $))))) (T -154))
-((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-154)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))))
-((-1417 (((-2 (|:| |start| |#2|) (|:| -1778 (-347 |#2|))) |#2|) 66 T ELT)) (-1416 ((|#1| |#1|) 58 T ELT)) (-1415 (((-142 |#1|) |#2|) 94 T ELT)) (-1414 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1413 ((|#2| |#2|) 91 T ELT)) (-1412 (((-347 |#2|) |#2| |#1|) 119 T ELT) (((-347 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3132 ((|#1| |#2|) 118 T ELT)) (-1411 ((|#2| |#2|) 131 T ELT)) (-3731 (((-347 |#2|) |#2|) 154 T ELT) (((-347 |#2|) |#2| |#1|) 33 T ELT) (((-347 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1410 (((-583 (-2 (|:| -1778 (-583 |#2|)) (|:| -1595 |#1|))) |#2| |#2|) 152 T ELT) (((-583 (-2 (|:| -1778 (-583 |#2|)) (|:| -1595 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1409 (((-583 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-583 (-142 |#1|)) |#2|) 43 T ELT)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -1409 ((-583 (-142 |#1|)) |#2|)) (-15 -1409 ((-583 (-142 |#1|)) |#2| |#1|)) (-15 -1410 ((-583 (-2 (|:| -1778 (-583 |#2|)) (|:| -1595 |#1|))) |#2| |#2| (-85))) (-15 -1410 ((-583 (-2 (|:| -1778 (-583 |#2|)) (|:| -1595 |#1|))) |#2| |#2|)) (-15 -3731 ((-347 |#2|) |#2| |#1| (-85))) (-15 -3731 ((-347 |#2|) |#2| |#1|)) (-15 -3731 ((-347 |#2|) |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -3132 (|#1| |#2|)) (-15 -1412 ((-347 |#2|) |#2| |#1| (-85))) (-15 -1412 ((-347 |#2|) |#2| |#1|)) (-15 -1413 (|#2| |#2|)) (-15 -1414 (|#1| |#2| |#1|)) (-15 -1414 (|#1| |#2|)) (-15 -1415 ((-142 |#1|) |#2|)) (-15 -1416 (|#1| |#1|)) (-15 -1417 ((-2 (|:| |start| |#2|) (|:| -1778 (-347 |#2|))) |#2|))) (-13 (-312) (-755)) (-1154 (-142 |#1|))) (T -155))
-((-1417 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-2 (|:| |start| *3) (|:| -1778 (-347 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1416 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1415 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-755))) (-4 *3 (-1154 *2)))) (-1414 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1414 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1154 (-142 *3))))) (-1412 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1412 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3132 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1411 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1154 (-142 *3))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3731 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1410 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-2 (|:| -1778 (-583 *3)) (|:| -1595 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1410 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-755))) (-5 *2 (-583 (-2 (|:| -1778 (-583 *3)) (|:| -1595 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1154 (-142 *5))))) (-1409 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))))
-((-1418 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1419 (((-694) |#2|) 18 T ELT)) (-1420 ((|#2| |#2| |#2|) 20 T ELT)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -1418 ((-3 |#2| "failed") |#2|)) (-15 -1419 ((-694) |#2|)) (-15 -1420 (|#2| |#2| |#2|))) (-1128) (-616 |#1|)) (T -156))
-((-1420 (*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))) (-1419 (*1 *2 *3) (-12 (-4 *4 (-1128)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4)))) (-1418 (*1 *2 *2) (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1423 (((-583 (-774)) $) NIL T ELT)) (-3541 (((-446) $) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1425 (((-161) $) 10 T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1421 (((-632 $) (-446)) 17 T ELT)) (-1424 (((-583 (-85)) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) 12 T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-157) (-13 (-160) (-10 -8 (-15 -1421 ((-632 $) (-446)))))) (T -157))
-((-1421 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-157))) (-5 *1 (-157)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1481 ((|#1| $) 7 T ELT)) (-3945 (((-772) $) 14 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1422 (((-583 (-1094)) $) 10 T ELT)) (-3056 (((-85) $ $) 12 T ELT)))
-(((-158 |#1|) (-13 (-1013) (-10 -8 (-15 -1481 (|#1| $)) (-15 -1422 ((-583 (-1094)) $)))) (-160)) (T -158))
-((-1481 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
-((-1423 (((-583 (-774)) $) 16 T ELT)) (-1425 (((-161) $) 8 T ELT)) (-1424 (((-583 (-85)) $) 13 T ELT)) (-2521 (((-55) $) 10 T ELT)))
-(((-159 |#1|) (-10 -7 (-15 -1423 ((-583 (-774)) |#1|)) (-15 -1424 ((-583 (-85)) |#1|)) (-15 -1425 ((-161) |#1|)) (-15 -2521 ((-55) |#1|))) (-160)) (T -159))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-1423 (((-583 (-774)) $) 22 T ELT)) (-3541 (((-446) $) 19 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1425 (((-161) $) 24 T ELT)) (-2633 (((-85) $ (-446)) 17 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1424 (((-583 (-85)) $) 23 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2521 (((-55) $) 18 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
+((-1700 (*1 *1 *1) (-4 *1 (-147))))
+(-13 (-10 -8 (-15 -1700 ($ $))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 ((|#1| $) 79 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-1387 (($ $) 21 T ELT)) (-1391 (($ |#1| (-1069 |#1|)) 48 T ELT)) (-3467 (((-3 $ #1#) $) 123 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-1388 (((-1069 |#1|) $) 86 T ELT)) (-1390 (((-1069 |#1|) $) 83 T ELT)) (-1389 (((-1069 |#1|) $) 84 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1384 (((-1069 |#1|) $) 93 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1891 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3769 (($ $ (-485)) 96 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1383 (((-1069 |#1|) $) 94 T ELT)) (-1385 (((-1069 (-350 |#1|)) $) 14 T ELT)) (-2617 (($ (-350 |#1|)) 17 T ELT) (($ |#1| (-1069 |#1|) (-1069 |#1|)) 38 T ELT)) (-2892 (($ $) 98 T ELT)) (-3946 (((-773) $) 139 T ELT) (($ (-485)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-350 |#1|)) 36 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) 67 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-1386 (((-1069 (-350 |#1|)) $) 20 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 103 T CONST)) (-2667 (($) 28 T CONST)) (-3057 (((-85) $ $) 35 T ELT)) (-3949 (($ $ $) 121 T ELT)) (-3837 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3839 (($ $ $) 107 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-350 |#1|) $) 117 T ELT) (($ $ (-350 |#1|)) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)))
+(((-148 |#1|) (-13 (-38 |#1|) (-38 (-350 |#1|)) (-312) (-10 -8 (-15 -2617 ($ (-350 |#1|))) (-15 -2617 ($ |#1| (-1069 |#1|) (-1069 |#1|))) (-15 -1391 ($ |#1| (-1069 |#1|))) (-15 -1390 ((-1069 |#1|) $)) (-15 -1389 ((-1069 |#1|) $)) (-15 -1388 ((-1069 |#1|) $)) (-15 -3130 (|#1| $)) (-15 -1387 ($ $)) (-15 -1386 ((-1069 (-350 |#1|)) $)) (-15 -1385 ((-1069 (-350 |#1|)) $)) (-15 -1384 ((-1069 |#1|) $)) (-15 -1383 ((-1069 |#1|) $)) (-15 -3769 ($ $ (-485))) (-15 -2892 ($ $)))) (-258)) (T -148))
+((-2617 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2617 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1391 (*1 *1 *2 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3130 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1387 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2892 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))))
+((-1392 (($ (-78) $) 15 T ELT)) (-3222 (((-633 (-78)) (-447) $) 14 T ELT)) (-3946 (((-773) $) 18 T ELT)) (-1393 (((-584 (-78)) $) 8 T ELT)))
+(((-149) (-13 (-553 (-773)) (-10 -8 (-15 -1393 ((-584 (-78)) $)) (-15 -1392 ($ (-78) $)) (-15 -3222 ((-633 (-78)) (-447) $))))) (T -149))
+((-1393 (*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3222 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-149)))))
+((-1406 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 38 T ELT)) (-1397 (((-855 |#1|) (-855 |#1|)) 22 T ELT)) (-1402 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 34 T ELT)) (-1395 (((-855 |#1|) (-855 |#1|)) 20 T ELT)) (-1400 (((-855 |#1|) (-855 |#1|)) 28 T ELT)) (-1399 (((-855 |#1|) (-855 |#1|)) 27 T ELT)) (-1398 (((-855 |#1|) (-855 |#1|)) 26 T ELT)) (-1403 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 35 T ELT)) (-1401 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 33 T ELT)) (-1643 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 32 T ELT)) (-1396 (((-855 |#1|) (-855 |#1|)) 21 T ELT)) (-1407 (((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|) 41 T ELT)) (-1394 (((-855 |#1|) (-855 |#1|)) 8 T ELT)) (-1405 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 37 T ELT)) (-1404 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 36 T ELT)))
+(((-150 |#1|) (-10 -7 (-15 -1394 ((-855 |#1|) (-855 |#1|))) (-15 -1395 ((-855 |#1|) (-855 |#1|))) (-15 -1396 ((-855 |#1|) (-855 |#1|))) (-15 -1397 ((-855 |#1|) (-855 |#1|))) (-15 -1398 ((-855 |#1|) (-855 |#1|))) (-15 -1399 ((-855 |#1|) (-855 |#1|))) (-15 -1400 ((-855 |#1|) (-855 |#1|))) (-15 -1643 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1401 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1402 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1403 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1404 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1405 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1406 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1407 ((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|))) (-13 (-312) (-1115) (-916))) (T -150))
+((-1407 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-916))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-916))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-916))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-916))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-916))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-916))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-916))))) (-1643 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-916))))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916))) (-5 *1 (-150 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916))) (-5 *1 (-150 *3)))))
+((-2450 ((|#2| |#3|) 28 T ELT)))
+(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2450 (|#2| |#3|))) (-146) (-1155 |#1|) (-662 |#1| |#2|)) (T -151))
+((-2450 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1155 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-662 *4 *2)))))
+((-2797 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 44 (|has| (-858 |#2|) (-797 |#1|)) ELT)))
+(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-858 |#2|) (-797 |#1|)) (-15 -2797 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) |%noBranch|)) (-1014) (-13 (-797 |#1|) (-146)) (-139 |#2|)) (T -152))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-139 *6)) (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))))
+((-1409 (((-584 |#1|) (-584 |#1|) |#1|) 41 T ELT)) (-1408 (((-584 |#1|) |#1| (-584 |#1|)) 20 T ELT)) (-2078 (((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|)) 36 T ELT) ((|#1| (-584 |#1|) (-584 |#1|)) 32 T ELT)))
+(((-153 |#1|) (-10 -7 (-15 -1408 ((-584 |#1|) |#1| (-584 |#1|))) (-15 -2078 (|#1| (-584 |#1|) (-584 |#1|))) (-15 -2078 ((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|))) (-15 -1409 ((-584 |#1|) (-584 |#1|) |#1|))) (-258)) (T -153))
+((-1409 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2078 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2078 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1408 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1130) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1049) $) 11 T ELT)) (-3946 (((-773) $) 21 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-154) (-13 (-996) (-10 -8 (-15 -3207 ((-1049) $)) (-15 -3319 ((-1130) $))))) (T -154))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-154)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-154)))))
+((-1418 (((-2 (|:| |start| |#2|) (|:| -1779 (-348 |#2|))) |#2|) 66 T ELT)) (-1417 ((|#1| |#1|) 58 T ELT)) (-1416 (((-142 |#1|) |#2|) 94 T ELT)) (-1415 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1414 ((|#2| |#2|) 91 T ELT)) (-1413 (((-348 |#2|) |#2| |#1|) 119 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3133 ((|#1| |#2|) 118 T ELT)) (-1412 ((|#2| |#2|) 131 T ELT)) (-3732 (((-348 |#2|) |#2|) 154 T ELT) (((-348 |#2|) |#2| |#1|) 33 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1411 (((-584 (-2 (|:| -1779 (-584 |#2|)) (|:| -1596 |#1|))) |#2| |#2|) 152 T ELT) (((-584 (-2 (|:| -1779 (-584 |#2|)) (|:| -1596 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1410 (((-584 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-584 (-142 |#1|)) |#2|) 43 T ELT)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -1410 ((-584 (-142 |#1|)) |#2|)) (-15 -1410 ((-584 (-142 |#1|)) |#2| |#1|)) (-15 -1411 ((-584 (-2 (|:| -1779 (-584 |#2|)) (|:| -1596 |#1|))) |#2| |#2| (-85))) (-15 -1411 ((-584 (-2 (|:| -1779 (-584 |#2|)) (|:| -1596 |#1|))) |#2| |#2|)) (-15 -3732 ((-348 |#2|) |#2| |#1| (-85))) (-15 -3732 ((-348 |#2|) |#2| |#1|)) (-15 -3732 ((-348 |#2|) |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -3133 (|#1| |#2|)) (-15 -1413 ((-348 |#2|) |#2| |#1| (-85))) (-15 -1413 ((-348 |#2|) |#2| |#1|)) (-15 -1414 (|#2| |#2|)) (-15 -1415 (|#1| |#2| |#1|)) (-15 -1415 (|#1| |#2|)) (-15 -1416 ((-142 |#1|) |#2|)) (-15 -1417 (|#1| |#1|)) (-15 -1418 ((-2 (|:| |start| |#2|) (|:| -1779 (-348 |#2|))) |#2|))) (-13 (-312) (-756)) (-1155 (-142 |#1|))) (T -155))
+((-1418 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-2 (|:| |start| *3) (|:| -1779 (-348 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1417 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1416 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-756))) (-4 *3 (-1155 *2)))) (-1415 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1415 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1414 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1155 (-142 *3))))) (-1413 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1413 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-3133 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1155 (-142 *3))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-3732 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1411 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-2 (|:| -1779 (-584 *3)) (|:| -1596 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1411 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-756))) (-5 *2 (-584 (-2 (|:| -1779 (-584 *3)) (|:| -1596 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1155 (-142 *5))))) (-1410 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))))
+((-1419 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1420 (((-695) |#2|) 18 T ELT)) (-1421 ((|#2| |#2| |#2|) 20 T ELT)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -1419 ((-3 |#2| "failed") |#2|)) (-15 -1420 ((-695) |#2|)) (-15 -1421 (|#2| |#2| |#2|))) (-1129) (-617 |#1|)) (T -156))
+((-1421 (*1 *2 *2 *2) (-12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))) (-1420 (*1 *2 *3) (-12 (-4 *4 (-1129)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4)))) (-1419 (*1 *2 *2) (|partial| -12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1424 (((-584 (-775)) $) NIL T ELT)) (-3542 (((-447) $) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) 10 T ELT)) (-2634 (((-85) $ (-447)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1422 (((-633 $) (-447)) 17 T ELT)) (-1425 (((-584 (-85)) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) 12 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-157) (-13 (-160) (-10 -8 (-15 -1422 ((-633 $) (-447)))))) (T -157))
+((-1422 (*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-157))) (-5 *1 (-157)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1482 ((|#1| $) 7 T ELT)) (-3946 (((-773) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1423 (((-584 (-1095)) $) 10 T ELT)) (-3057 (((-85) $ $) 12 T ELT)))
+(((-158 |#1|) (-13 (-1014) (-10 -8 (-15 -1482 (|#1| $)) (-15 -1423 ((-584 (-1095)) $)))) (-160)) (T -158))
+((-1482 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-584 (-1095))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
+((-1424 (((-584 (-775)) $) 16 T ELT)) (-1426 (((-161) $) 8 T ELT)) (-1425 (((-584 (-85)) $) 13 T ELT)) (-2522 (((-55) $) 10 T ELT)))
+(((-159 |#1|) (-10 -7 (-15 -1424 ((-584 (-775)) |#1|)) (-15 -1425 ((-584 (-85)) |#1|)) (-15 -1426 ((-161) |#1|)) (-15 -2522 ((-55) |#1|))) (-160)) (T -159))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-1424 (((-584 (-775)) $) 22 T ELT)) (-3542 (((-447) $) 19 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1426 (((-161) $) 24 T ELT)) (-2634 (((-85) $ (-447)) 17 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1425 (((-584 (-85)) $) 23 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2522 (((-55) $) 18 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-160) (-113)) (T -160))
-((-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85))))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774))))))
-(-13 (-747 (-446)) (-10 -8 (-15 -1425 ((-161) $)) (-15 -1424 ((-583 (-85)) $)) (-15 -1423 ((-583 (-774)) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-747 (-446)) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3945 (((-772) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 10 T ELT)))
-(((-161) (-13 (-1013) (-10 -8 (-15 -9 ($) -3951) (-15 -8 ($) -3951) (-15 -7 ($) -3951)))) (T -161))
+((-1426 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85))))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775))))))
+(-13 (-748 (-447)) (-10 -8 (-15 -1426 ((-161) $)) (-15 -1425 ((-584 (-85)) $)) (-15 -1424 ((-584 (-775)) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-748 (-447)) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3946 (((-773) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 10 T ELT)))
+(((-161) (-13 (-1014) (-10 -8 (-15 -9 ($) -3952) (-15 -8 ($) -3952) (-15 -7 ($) -3952)))) (T -161))
((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161))))
-((-3641 ((|#2| |#2|) 28 T ELT)) (-3644 (((-85) |#2|) 19 T ELT)) (-3642 (((-265 |#1|) |#2|) 12 T ELT)) (-3643 (((-265 |#1|) |#2|) 14 T ELT)) (-3639 ((|#2| |#2| (-1089)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3645 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3640 ((|#2| |#2| (-1089)) 66 T ELT) ((|#2| |#2|) 60 T ELT)))
-(((-162 |#1| |#2|) (-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1089))) (-15 -3640 (|#2| |#2|)) (-15 -3640 (|#2| |#2| (-1089))) (-15 -3642 ((-265 |#1|) |#2|)) (-15 -3643 ((-265 |#1|) |#2|)) (-15 -3644 ((-85) |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3645 ((-142 (-265 |#1|)) |#2|))) (-13 (-495) (-950 (-484))) (-13 (-27) (-1114) (-363 (-142 |#1|)))) (T -162))
-((-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3)))))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3)))))) (-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3)))))))
-((-1429 (((-1178 (-630 (-857 |#1|))) (-1178 (-630 |#1|))) 26 T ELT)) (-3945 (((-1178 (-630 (-349 (-857 |#1|)))) (-1178 (-630 |#1|))) 37 T ELT)))
-(((-163 |#1|) (-10 -7 (-15 -1429 ((-1178 (-630 (-857 |#1|))) (-1178 (-630 |#1|)))) (-15 -3945 ((-1178 (-630 (-349 (-857 |#1|)))) (-1178 (-630 |#1|))))) (-146)) (T -163))
-((-3945 (*1 *2 *3) (-12 (-5 *3 (-1178 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1178 (-630 (-349 (-857 *4))))) (-5 *1 (-163 *4)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-1178 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1178 (-630 (-857 *4)))) (-5 *1 (-163 *4)))))
-((-1437 (((-1091 (-349 (-484))) (-1091 (-349 (-484))) (-1091 (-349 (-484)))) 93 T ELT)) (-1439 (((-1091 (-349 (-484))) (-583 (-484)) (-583 (-484))) 106 T ELT)) (-1430 (((-1091 (-349 (-484))) (-830)) 54 T ELT)) (-3853 (((-1091 (-349 (-484))) (-830)) 79 T ELT)) (-3767 (((-349 (-484)) (-1091 (-349 (-484)))) 89 T ELT)) (-1431 (((-1091 (-349 (-484))) (-830)) 37 T ELT)) (-1434 (((-1091 (-349 (-484))) (-830)) 66 T ELT)) (-1433 (((-1091 (-349 (-484))) (-830)) 61 T ELT)) (-1436 (((-1091 (-349 (-484))) (-1091 (-349 (-484))) (-1091 (-349 (-484)))) 87 T ELT)) (-2891 (((-1091 (-349 (-484))) (-830)) 29 T ELT)) (-1435 (((-349 (-484)) (-1091 (-349 (-484))) (-1091 (-349 (-484)))) 91 T ELT)) (-1432 (((-1091 (-349 (-484))) (-830)) 35 T ELT)) (-1438 (((-1091 (-349 (-484))) (-583 (-830))) 100 T ELT)))
-(((-164) (-10 -7 (-15 -2891 ((-1091 (-349 (-484))) (-830))) (-15 -1430 ((-1091 (-349 (-484))) (-830))) (-15 -1431 ((-1091 (-349 (-484))) (-830))) (-15 -1432 ((-1091 (-349 (-484))) (-830))) (-15 -1433 ((-1091 (-349 (-484))) (-830))) (-15 -1434 ((-1091 (-349 (-484))) (-830))) (-15 -3853 ((-1091 (-349 (-484))) (-830))) (-15 -1435 ((-349 (-484)) (-1091 (-349 (-484))) (-1091 (-349 (-484))))) (-15 -1436 ((-1091 (-349 (-484))) (-1091 (-349 (-484))) (-1091 (-349 (-484))))) (-15 -3767 ((-349 (-484)) (-1091 (-349 (-484))))) (-15 -1437 ((-1091 (-349 (-484))) (-1091 (-349 (-484))) (-1091 (-349 (-484))))) (-15 -1438 ((-1091 (-349 (-484))) (-583 (-830)))) (-15 -1439 ((-1091 (-349 (-484))) (-583 (-484)) (-583 (-484)))))) (T -164))
-((-1439 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-1091 (-349 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-164)))) (-1436 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3 *3) (-12 (-5 *3 (-1091 (-349 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-164)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
-((-1441 (((-347 (-1084 (-484))) (-484)) 38 T ELT)) (-1440 (((-583 (-1084 (-484))) (-484)) 33 T ELT)) (-2801 (((-1084 (-484)) (-484)) 28 T ELT)))
-(((-165) (-10 -7 (-15 -1440 ((-583 (-1084 (-484))) (-484))) (-15 -2801 ((-1084 (-484)) (-484))) (-15 -1441 ((-347 (-1084 (-484))) (-484))))) (T -165))
-((-1441 (*1 *2 *3) (-12 (-5 *2 (-347 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-165)) (-5 *3 (-484)))) (-1440 (*1 *2 *3) (-12 (-5 *2 (-583 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1442 ((|#2| $ (-694) |#2|) 11 T ELT)) (-3112 ((|#2| $ (-694)) 10 T ELT)) (-3613 (($) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 23 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 13 T ELT)))
-(((-166 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3613 ($)) (-15 -3112 (|#2| $ (-694))) (-15 -1442 (|#2| $ (-694) |#2|)))) (-830) (-1013)) (T -166))
-((-3613 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1013)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)))) (-1442 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1013)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1963 (((-1184) $) 36 T ELT) (((-1184) $ (-830) (-830)) 40 T ELT)) (-3799 (($ $ (-902)) 19 T ELT) (((-203 (-1072)) $ (-1089)) 15 T ELT)) (-3616 (((-1184) $) 34 T ELT)) (-3945 (((-772) $) 31 T ELT) (($ (-583 |#1|)) 8 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $ $) 26 T ELT)) (-3838 (($ $ $) 22 T ELT)))
-(((-167 |#1|) (-13 (-1013) (-555 (-583 |#1|)) (-10 -8 (-15 -3799 ($ $ (-902))) (-15 -3799 ((-203 (-1072)) $ (-1089))) (-15 -3838 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $)) (-15 -1963 ((-1184) $ (-830) (-830))))) (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))) (T -167))
-((-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-203 (-1072))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ *3)) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))))) (-3838 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))))) (-3836 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $)) (-15 -1963 (*2 $))))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 10 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2851 (($ (-577 |#1|)) 11 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)))
-(((-168 |#1|) (-13 (-752) (-10 -8 (-15 -2851 ($ (-577 |#1|))))) (-583 (-1089))) (T -168))
-((-2851 (*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1089))) (-5 *1 (-168 *3)))))
-((-1443 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT)))
-(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1443 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -169))
-((-1443 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1154 (-349 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6)))))
-((-1447 ((|#2| |#2| (-694) |#2|) 55 T ELT)) (-1446 ((|#2| |#2| (-694) |#2|) 51 T ELT)) (-2371 (((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|)))) 79 T ELT)) (-1445 (((-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|))) |#2|) 72 T ELT)) (-1448 (((-85) |#2|) 70 T ELT)) (-3732 (((-347 |#2|) |#2|) 92 T ELT)) (-3731 (((-347 |#2|) |#2|) 91 T ELT)) (-2372 ((|#2| |#2| (-694) |#2|) 49 T ELT)) (-1444 (((-2 (|:| |cont| |#1|) (|:| -1778 (-583 (-2 (|:| |irr| |#2|) (|:| -2395 (-484)))))) |#2| (-85)) 86 T ELT)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -3731 ((-347 |#2|) |#2|)) (-15 -3732 ((-347 |#2|) |#2|)) (-15 -1444 ((-2 (|:| |cont| |#1|) (|:| -1778 (-583 (-2 (|:| |irr| |#2|) (|:| -2395 (-484)))))) |#2| (-85))) (-15 -1445 ((-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|))) |#2|)) (-15 -2371 ((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|))))) (-15 -2372 (|#2| |#2| (-694) |#2|)) (-15 -1446 (|#2| |#2| (-694) |#2|)) (-15 -1447 (|#2| |#2| (-694) |#2|)) (-15 -1448 ((-85) |#2|))) (-299) (-1154 |#1|)) (T -170))
-((-1448 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-1447 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-1446 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-2372 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *5)))) (-4 *5 (-1154 *4)) (-4 *4 (-299)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5)))) (-1445 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1154 *5)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-484) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3957 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-484) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-349 (-484)) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1089)) (-583 (-484))) NIL (|has| (-484) (-455 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-455 (-1089) (-484))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-1449 (($ (-349 (-484))) 9 T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-484) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL T ELT) (((-917 10) $) 10 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT)))
-(((-171) (-13 (-904 (-484)) (-552 (-349 (-484))) (-552 (-917 10)) (-10 -8 (-15 -3128 ((-349 (-484)) $)) (-15 -1449 ($ (-349 (-484))))))) (T -171))
-((-3128 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-171)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-171)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3319 (((-1028) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3178 (((-422) $) 11 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-172) (-13 (-995) (-10 -8 (-15 -3178 ((-422) $)) (-15 -3319 ((-1028) $)) (-15 -3233 ((-1048) $))))) (T -172))
-((-3178 (*1 *2 *1) (-12 (-5 *2 (-422)) (-5 *1 (-172)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-172)))))
-((-3811 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-750 |#2|)) (-1072)) 29 T ELT) (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-750 |#2|))) 25 T ELT)) (-1450 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1089) (-750 |#2|) (-750 |#2|) (-85)) 17 T ELT)))
-(((-173 |#1| |#2|) (-10 -7 (-15 -3811 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-750 |#2|)))) (-15 -3811 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-750 |#2|)) (-1072))) (-15 -1450 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1089) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-871) (-29 |#1|))) (T -173))
-((-1450 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1089)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-1114) (-871) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3)))) (-3811 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-750 *3))) (-5 *5 (-1072)) (-4 *3 (-13 (-1114) (-871) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-750 *3))) (-4 *3 (-13 (-1114) (-871) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3)))))
-((-3811 (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-349 (-857 |#1|)) (-1004 (-750 (-349 (-857 |#1|)))) (-1072)) 49 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-349 (-857 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-265 |#1|))) (-1072)) 50 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-265 |#1|)))) 22 T ELT)))
-(((-174 |#1|) (-10 -7 (-15 -3811 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-349 (-857 |#1|)) (-1004 (-750 (-265 |#1|))))) (-15 -3811 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-265 |#1|))) (-1072))) (-15 -3811 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-349 (-857 |#1|)))))) (-15 -3811 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-349 (-857 |#1|)))) (-1072)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (T -174))
-((-3811 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-750 (-349 (-857 *6))))) (-5 *5 (-1072)) (-5 *3 (-349 (-857 *6))) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-750 (-349 (-857 *5))))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3811 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-349 (-857 *6))) (-5 *4 (-1004 (-750 (-265 *6)))) (-5 *5 (-1072)) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1004 (-750 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))))
-((-3841 (((-2 (|:| -2004 (-1084 |#1|)) (|:| |deg| (-830))) (-1084 |#1|)) 26 T ELT)) (-3962 (((-583 (-265 |#2|)) (-265 |#2|) (-830)) 51 T ELT)))
-(((-175 |#1| |#2|) (-10 -7 (-15 -3841 ((-2 (|:| -2004 (-1084 |#1|)) (|:| |deg| (-830))) (-1084 |#1|))) (-15 -3962 ((-583 (-265 |#2|)) (-265 |#2|) (-830)))) (-961) (-495)) (T -175))
-((-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *6 (-495)) (-5 *2 (-583 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-961)))) (-3841 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2004 (-1084 *4)) (|:| |deg| (-830)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1084 *4)) (-4 *5 (-495)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1494 ((|#1| $) NIL T ELT)) (-3323 ((|#1| $) 31 T ELT)) (-3723 (($) NIL T CONST)) (-3002 (($ $) NIL T ELT)) (-2297 (($ $) 40 T ELT)) (-3325 ((|#1| |#1| $) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3832 (((-694) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) NIL T ELT)) (-1492 ((|#1| |#1| $) 36 T ELT)) (-1491 ((|#1| |#1| $) 38 T ELT)) (-3608 (($ |#1| $) NIL T ELT)) (-2603 (((-694) $) 34 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) NIL T ELT)) (-1490 ((|#1| $) 32 T ELT)) (-1489 ((|#1| $) 30 T ELT)) (-1274 ((|#1| $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3004 ((|#1| |#1| $) NIL T ELT)) (-3402 (((-85) $) 9 T ELT)) (-3564 (($) NIL T ELT)) (-3003 ((|#1| $) NIL T ELT)) (-1495 (($) NIL T ELT) (($ (-583 |#1|)) 17 T ELT)) (-3322 (((-694) $) NIL T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1493 ((|#1| $) 14 T ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-3000 ((|#1| $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1495 ($ (-583 |#1|))))) (-1013)) (T -176))
-((-1495 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1452 (($ (-265 |#1|)) 24 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2664 (((-85) $) NIL T ELT)) (-3157 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3156 (((-265 |#1|) $) NIL T ELT)) (-3958 (($ $) 32 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3957 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3174 (((-265 |#1|) $) NIL T ELT)) (-1454 (($ $) 31 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1453 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) NIL T ELT)) (-1451 (($ $) 33 T ELT)) (-3947 (((-484) $) NIL T ELT)) (-3945 (((-772) $) 65 T ELT) (($ (-484)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3676 (((-265 |#1|) $ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 26 T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) 29 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT)))
-(((-177 |#1| |#2|) (-13 (-560 (-265 |#1|)) (-950 (-265 |#1|)) (-10 -8 (-15 -3174 ((-265 |#1|) $)) (-15 -1454 ($ $)) (-15 -3958 ($ $)) (-15 -3676 ((-265 |#1|) $ $)) (-15 -2409 ($ (-694))) (-15 -1453 ((-85) $)) (-15 -2664 ((-85) $)) (-15 -3947 ((-484) $)) (-15 -3957 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1452 ($ (-265 |#1|))) (-15 -1451 ($ $)))) (-13 (-961) (-756)) (-583 (-1089))) (T -177))
-((-3174 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-1454 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1089))))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1089))))) (-3676 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1089))))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1089))))) (-1451 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1089))))))
-((-1455 (((-85) (-1072)) 26 T ELT)) (-1456 (((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85)) 35 T ELT)) (-1457 (((-3 (-85) #1#) (-1084 |#2|) (-750 |#2|) (-750 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-857 |#1|) (-1089) (-750 |#2|) (-750 |#2|) (-85)) 84 T ELT)))
-(((-178 |#1| |#2|) (-10 -7 (-15 -1455 ((-85) (-1072))) (-15 -1456 ((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85))) (-15 -1457 ((-3 (-85) #1#) (-857 |#1|) (-1089) (-750 |#2|) (-750 |#2|) (-85))) (-15 -1457 ((-3 (-85) #1#) (-1084 |#2|) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-29 |#1|))) (T -178))
-((-1457 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1084 *6)) (-5 *4 (-750 *6)) (-4 *6 (-13 (-1114) (-29 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *5 *6)))) (-1457 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1089)) (-5 *5 (-750 *7)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1456 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1114) (-29 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *6 *4)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 86 T ELT)) (-3129 (((-484) $) 18 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-3491 (($ $) 73 T ELT)) (-3638 (($ $) 61 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) 52 T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3489 (($ $) 71 T ELT)) (-3637 (($ $) 59 T ELT)) (-3622 (((-484) $) 83 T ELT)) (-3493 (($ $) 76 T ELT)) (-3636 (($ $) 63 T ELT)) (-3723 (($) NIL T CONST)) (-3127 (($ $) NIL T ELT)) (-3157 (((-3 (-484) #1#) $) 116 T ELT) (((-3 (-349 (-484)) #1#) $) 113 T ELT)) (-3156 (((-484) $) 114 T ELT) (((-349 (-484)) $) 111 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 91 T ELT)) (-1743 (((-349 (-484)) $ (-694)) 106 T ELT) (((-349 (-484)) $ (-694) (-694)) 105 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-1767 (((-830)) 12 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3985)) ELT)) (-3186 (((-85) $) 107 T ELT)) (-3626 (($) 31 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL T ELT)) (-3771 (((-484) $) 25 T ELT)) (-1213 (((-85) $ $) 141 T ELT)) (-2410 (((-85) $) 87 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3132 (($ $) NIL T ELT)) (-3187 (((-85) $) 85 T ELT)) (-1458 (((-85) $) 140 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) 49 T ELT) (($) 21 (-12 (-2560 (|has| $ (-6 -3977))) (-2560 (|has| $ (-6 -3985)))) ELT)) (-2857 (($ $ $) 48 T ELT) (($) 20 (-12 (-2560 (|has| $ (-6 -3977))) (-2560 (|has| $ (-6 -3985)))) ELT)) (-1769 (((-484) $) 10 T ELT)) (-1742 (($ $) 16 T ELT)) (-1741 (($ $) 53 T ELT)) (-3941 (($ $) 58 T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-1766 (((-830) (-484)) NIL (|has| $ (-6 -3985)) ELT)) (-3243 (((-1033) $) 89 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL T ELT)) (-3130 (($ $) NIL T ELT)) (-3254 (($ (-484) (-484)) NIL T ELT) (($ (-484) (-484) (-830)) 98 T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2401 (((-484) $) 11 T ELT)) (-1740 (($) 30 T ELT)) (-3942 (($ $) 57 T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-830)) NIL T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3985)) ELT)) (-3757 (($ $) 92 T ELT) (($ $ (-694)) NIL T ELT)) (-1765 (((-830) (-484)) NIL (|has| $ (-6 -3985)) ELT)) (-3494 (($ $) 74 T ELT)) (-3635 (($ $) 64 T ELT)) (-3492 (($ $) 75 T ELT)) (-3634 (($ $) 62 T ELT)) (-3490 (($ $) 72 T ELT)) (-3633 (($ $) 60 T ELT)) (-3971 (((-329) $) 102 T ELT) (((-179) $) 99 T ELT) (((-800 (-329)) $) NIL T ELT) (((-473) $) 38 T ELT)) (-3945 (((-772) $) 35 T ELT) (($ (-484)) 56 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-484)) 56 T ELT) (($ (-349 (-484))) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (($ $) NIL T ELT)) (-1768 (((-830)) 19 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3985)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (((-830)) 7 T ELT)) (-3497 (($ $) 79 T ELT)) (-3485 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 77 T ELT)) (-3483 (($ $) 65 T ELT)) (-3499 (($ $) 82 T ELT)) (-3487 (($ $) 70 T ELT)) (-3125 (((-85) $ $) 143 T ELT)) (-3500 (($ $) 80 T ELT)) (-3488 (($ $) 68 T ELT)) (-3498 (($ $) 81 T ELT)) (-3486 (($ $) 69 T ELT)) (-3496 (($ $) 78 T ELT)) (-3484 (($ $) 66 T ELT)) (-3382 (($ $) 108 T ELT)) (-2660 (($) 27 T CONST)) (-2666 (($) 28 T CONST)) (-3386 (($ $) 95 T ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3383 (($ $ $) 97 T ELT)) (-2566 (((-85) $ $) 42 T ELT)) (-2567 (((-85) $ $) 40 T ELT)) (-3056 (((-85) $ $) 50 T ELT)) (-2684 (((-85) $ $) 41 T ELT)) (-2685 (((-85) $ $) 39 T ELT)) (-3948 (($ $ $) 29 T ELT) (($ $ (-484)) 51 T ELT)) (-3836 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3838 (($ $ $) 44 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 54 T ELT) (($ $ (-349 (-484))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT)))
-(((-179) (-13 (-346) (-190) (-1114) (-553 (-473)) (-10 -8 (-15 -3948 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -1740 ($)) (-15 -1742 ($ $)) (-15 -1741 ($ $)) (-15 -3485 ($ $ $)) (-15 -3386 ($ $)) (-15 -3383 ($ $ $)) (-15 -1743 ((-349 (-484)) $ (-694))) (-15 -1743 ((-349 (-484)) $ (-694) (-694))) (-15 -1458 ((-85) $))))) (T -179))
-((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179)))) (-1740 (*1 *1) (-5 *1 (-179))) (-1742 (*1 *1 *1) (-5 *1 (-179))) (-1741 (*1 *1 *1) (-5 *1 (-179))) (-3485 (*1 *1 *1 *1) (-5 *1 (-179))) (-3386 (*1 *1 *1) (-5 *1 (-179))) (-3383 (*1 *1 *1 *1) (-5 *1 (-179))) (-1743 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-179)))) (-1743 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-179)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179)))))
-((-3385 (((-142 (-179)) (-694) (-142 (-179))) 11 T ELT) (((-179) (-694) (-179)) 12 T ELT)) (-1459 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1460 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3384 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3388 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3390 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3387 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3389 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3392 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3391 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3386 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3383 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT)))
-(((-180) (-10 -7 (-15 -3386 ((-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)))) (-15 -3383 ((-179) (-179) (-179))) (-15 -3383 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1459 ((-179) (-179))) (-15 -1459 ((-142 (-179)) (-142 (-179)))) (-15 -3384 ((-179) (-179))) (-15 -3384 ((-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-694) (-179))) (-15 -3385 ((-142 (-179)) (-694) (-142 (-179)))) (-15 -3387 ((-179) (-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3388 ((-179) (-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3389 ((-179) (-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3390 ((-179) (-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3391 ((-142 (-179)) (-142 (-179)))) (-15 -3391 ((-179) (-179))) (-15 -3392 ((-179) (-179))) (-15 -3392 ((-142 (-179)) (-142 (-179)))) (-15 -1460 ((-179) (-179) (-179))) (-15 -1460 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180))
-((-1460 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1460 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3385 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180)))) (-3385 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3837 (($ (-694) (-694)) NIL T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3413 (($ (-1178 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3872 (($ |#1| |#1| |#1|) 33 T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2349 (($ $ (-484) (-484)) NIL T ELT)) (-2348 (($ $ (-484) (-484)) NIL T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2352 (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2346 (($ $ (-484) (-484) $) NIL T ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) NIL T ELT)) (-1256 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-1255 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-3846 (($ |#1| |#1| |#1|) 32 T ELT)) (-3332 (($ (-694) |#1|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3111 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-1461 (($ |#1|) 31 T ELT)) (-1462 (($ |#1|) 30 T ELT)) (-1463 (($ |#1|) 29 T ELT)) (-3108 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3112 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3107 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-3106 (((-583 (-1178 |#1|)) $) NIL (|has| |#1| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3613 (($ (-694) (-694) |#1|) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3326 ((|#1| $) NIL (|has| |#1| (-6 (-3996 #1="*"))) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#1|))) 11 T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3593 (((-583 (-583 |#1|)) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3589 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1464 (($) 12 T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-3465 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) NIL T ELT)) (-3331 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3327 ((|#1| $) NIL (|has| |#1| (-6 (-3996 #1#))) ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-3399 (($ $) NIL T ELT)) (-3110 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3945 (($ (-1178 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1178 |#1|) $ (-1178 |#1|)) 15 T ELT) (((-1178 |#1|) (-1178 |#1|) $) NIL T ELT) (((-854 |#1|) $ (-854 |#1|)) 21 T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-181 |#1|) (-13 (-627 |#1| (-1178 |#1|) (-1178 |#1|)) (-10 -8 (-15 * ((-854 |#1|) $ (-854 |#1|))) (-15 -1464 ($)) (-15 -1463 ($ |#1|)) (-15 -1462 ($ |#1|)) (-15 -1461 ($ |#1|)) (-15 -3846 ($ |#1| |#1| |#1|)) (-15 -3872 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1114))) (T -181))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114))) (-5 *1 (-181 *3)))) (-1464 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-1462 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-1461 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-3846 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-3872 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))))
-((-1569 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3404 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1465 (($) NIL T ELT) (($ (-583 |#2|)) 11 T ELT)) (-3056 (((-85) $ $) 26 T ELT)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -1569 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3404 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3404 (|#1| |#2| |#1|)) (-15 -1465 (|#1| (-583 |#2|))) (-15 -1465 (|#1|))) (-183 |#2|) (-1013)) (T -182))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-183 |#1|) (-113) (-1013)) (T -183))
+((-3642 ((|#2| |#2|) 28 T ELT)) (-3645 (((-85) |#2|) 19 T ELT)) (-3643 (((-265 |#1|) |#2|) 12 T ELT)) (-3644 (((-265 |#1|) |#2|) 14 T ELT)) (-3640 ((|#2| |#2| (-1090)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3646 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3641 ((|#2| |#2| (-1090)) 66 T ELT) ((|#2| |#2|) 60 T ELT)))
+(((-162 |#1| |#2|) (-10 -7 (-15 -3640 (|#2| |#2|)) (-15 -3640 (|#2| |#2| (-1090))) (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1090))) (-15 -3643 ((-265 |#1|) |#2|)) (-15 -3644 ((-265 |#1|) |#2|)) (-15 -3645 ((-85) |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3646 ((-142 (-265 |#1|)) |#2|))) (-13 (-496) (-951 (-485))) (-13 (-27) (-1115) (-364 (-142 |#1|)))) (T -162))
+((-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))))
+((-1430 (((-1179 (-631 (-858 |#1|))) (-1179 (-631 |#1|))) 26 T ELT)) (-3946 (((-1179 (-631 (-350 (-858 |#1|)))) (-1179 (-631 |#1|))) 37 T ELT)))
+(((-163 |#1|) (-10 -7 (-15 -1430 ((-1179 (-631 (-858 |#1|))) (-1179 (-631 |#1|)))) (-15 -3946 ((-1179 (-631 (-350 (-858 |#1|)))) (-1179 (-631 |#1|))))) (-146)) (T -163))
+((-3946 (*1 *2 *3) (-12 (-5 *3 (-1179 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1179 (-631 (-350 (-858 *4))))) (-5 *1 (-163 *4)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-1179 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1179 (-631 (-858 *4)))) (-5 *1 (-163 *4)))))
+((-1438 (((-1092 (-350 (-485))) (-1092 (-350 (-485))) (-1092 (-350 (-485)))) 93 T ELT)) (-1440 (((-1092 (-350 (-485))) (-584 (-485)) (-584 (-485))) 106 T ELT)) (-1431 (((-1092 (-350 (-485))) (-831)) 54 T ELT)) (-3854 (((-1092 (-350 (-485))) (-831)) 79 T ELT)) (-3768 (((-350 (-485)) (-1092 (-350 (-485)))) 89 T ELT)) (-1432 (((-1092 (-350 (-485))) (-831)) 37 T ELT)) (-1435 (((-1092 (-350 (-485))) (-831)) 66 T ELT)) (-1434 (((-1092 (-350 (-485))) (-831)) 61 T ELT)) (-1437 (((-1092 (-350 (-485))) (-1092 (-350 (-485))) (-1092 (-350 (-485)))) 87 T ELT)) (-2892 (((-1092 (-350 (-485))) (-831)) 29 T ELT)) (-1436 (((-350 (-485)) (-1092 (-350 (-485))) (-1092 (-350 (-485)))) 91 T ELT)) (-1433 (((-1092 (-350 (-485))) (-831)) 35 T ELT)) (-1439 (((-1092 (-350 (-485))) (-584 (-831))) 100 T ELT)))
+(((-164) (-10 -7 (-15 -2892 ((-1092 (-350 (-485))) (-831))) (-15 -1431 ((-1092 (-350 (-485))) (-831))) (-15 -1432 ((-1092 (-350 (-485))) (-831))) (-15 -1433 ((-1092 (-350 (-485))) (-831))) (-15 -1434 ((-1092 (-350 (-485))) (-831))) (-15 -1435 ((-1092 (-350 (-485))) (-831))) (-15 -3854 ((-1092 (-350 (-485))) (-831))) (-15 -1436 ((-350 (-485)) (-1092 (-350 (-485))) (-1092 (-350 (-485))))) (-15 -1437 ((-1092 (-350 (-485))) (-1092 (-350 (-485))) (-1092 (-350 (-485))))) (-15 -3768 ((-350 (-485)) (-1092 (-350 (-485))))) (-15 -1438 ((-1092 (-350 (-485))) (-1092 (-350 (-485))) (-1092 (-350 (-485))))) (-15 -1439 ((-1092 (-350 (-485))) (-584 (-831)))) (-15 -1440 ((-1092 (-350 (-485))) (-584 (-485)) (-584 (-485)))))) (T -164))
+((-1440 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-1092 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3 *3) (-12 (-5 *3 (-1092 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) (-3854 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
+((-1442 (((-348 (-1085 (-485))) (-485)) 38 T ELT)) (-1441 (((-584 (-1085 (-485))) (-485)) 33 T ELT)) (-2802 (((-1085 (-485)) (-485)) 28 T ELT)))
+(((-165) (-10 -7 (-15 -1441 ((-584 (-1085 (-485))) (-485))) (-15 -2802 ((-1085 (-485)) (-485))) (-15 -1442 ((-348 (-1085 (-485))) (-485))))) (T -165))
+((-1442 (*1 *2 *3) (-12 (-5 *2 (-348 (-1085 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-165)) (-5 *3 (-485)))) (-1441 (*1 *2 *3) (-12 (-5 *2 (-584 (-1085 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1443 ((|#2| $ (-695) |#2|) 11 T ELT)) (-3113 ((|#2| $ (-695)) 10 T ELT)) (-3614 (($) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 23 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 13 T ELT)))
+(((-166 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3614 ($)) (-15 -3113 (|#2| $ (-695))) (-15 -1443 (|#2| $ (-695) |#2|)))) (-831) (-1014)) (T -166))
+((-3614 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1014)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)))) (-1443 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1014)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1964 (((-1185) $) 36 T ELT) (((-1185) $ (-831) (-831)) 40 T ELT)) (-3800 (($ $ (-903)) 19 T ELT) (((-203 (-1073)) $ (-1090)) 15 T ELT)) (-3617 (((-1185) $) 34 T ELT)) (-3946 (((-773) $) 31 T ELT) (($ (-584 |#1|)) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $ $) 26 T ELT)) (-3839 (($ $ $) 22 T ELT)))
+(((-167 |#1|) (-13 (-1014) (-556 (-584 |#1|)) (-10 -8 (-15 -3800 ($ $ (-903))) (-15 -3800 ((-203 (-1073)) $ (-1090))) (-15 -3839 ($ $ $)) (-15 -3837 ($ $ $)) (-15 -3617 ((-1185) $)) (-15 -1964 ((-1185) $)) (-15 -1964 ((-1185) $ (-831) (-831))))) (-13 (-757) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1964 ((-1185) $))))) (T -167))
+((-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1964 ((-1185) $))))))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-203 (-1073))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3800 ((-1073) $ *3)) (-15 -3617 ((-1185) $)) (-15 -1964 ((-1185) $))))))) (-3839 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1964 ((-1185) $))))))) (-3837 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1964 ((-1185) $))))))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $)) (-15 -1964 (*2 $))))))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $)) (-15 -1964 (*2 $))))))) (-1964 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1185)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $)) (-15 -1964 (*2 $))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) 10 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2852 (($ (-578 |#1|)) 11 T ELT)) (-3946 (((-773) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-168 |#1|) (-13 (-753) (-10 -8 (-15 -2852 ($ (-578 |#1|))))) (-584 (-1090))) (T -168))
+((-2852 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1090))) (-5 *1 (-168 *3)))))
+((-1444 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT)))
+(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1444 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -169))
+((-1444 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1155 (-350 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6)))))
+((-1448 ((|#2| |#2| (-695) |#2|) 55 T ELT)) (-1447 ((|#2| |#2| (-695) |#2|) 51 T ELT)) (-2372 (((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2576 |#2|)))) 79 T ELT)) (-1446 (((-584 (-2 (|:| |deg| (-695)) (|:| -2576 |#2|))) |#2|) 72 T ELT)) (-1449 (((-85) |#2|) 70 T ELT)) (-3733 (((-348 |#2|) |#2|) 92 T ELT)) (-3732 (((-348 |#2|) |#2|) 91 T ELT)) (-2373 ((|#2| |#2| (-695) |#2|) 49 T ELT)) (-1445 (((-2 (|:| |cont| |#1|) (|:| -1779 (-584 (-2 (|:| |irr| |#2|) (|:| -2396 (-485)))))) |#2| (-85)) 86 T ELT)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -3732 ((-348 |#2|) |#2|)) (-15 -3733 ((-348 |#2|) |#2|)) (-15 -1445 ((-2 (|:| |cont| |#1|) (|:| -1779 (-584 (-2 (|:| |irr| |#2|) (|:| -2396 (-485)))))) |#2| (-85))) (-15 -1446 ((-584 (-2 (|:| |deg| (-695)) (|:| -2576 |#2|))) |#2|)) (-15 -2372 ((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2576 |#2|))))) (-15 -2373 (|#2| |#2| (-695) |#2|)) (-15 -1447 (|#2| |#2| (-695) |#2|)) (-15 -1448 (|#2| |#2| (-695) |#2|)) (-15 -1449 ((-85) |#2|))) (-299) (-1155 |#1|)) (T -170))
+((-1449 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))) (-1448 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) (-1447 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) (-2373 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2576 *5)))) (-4 *5 (-1155 *4)) (-4 *4 (-299)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5)))) (-1446 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2576 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))) (-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1779 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1155 *5)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-485) (-951 (-1090))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3157 (((-485) $) NIL T ELT) (((-1090) $) NIL (|has| (-485) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-485) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| (-485) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3958 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL T ELT) (((-631 (-485)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-485) (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3768 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1090)) (-584 (-485))) NIL (|has| (-485) (-456 (-1090) (-485))) ELT) (($ $ (-1090) (-485)) NIL (|has| (-485) (-456 (-1090) (-485))) ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-485) $) NIL T ELT)) (-1450 (($ (-350 (-485))) 9 T ELT)) (-3972 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1090)) NIL (|has| (-485) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 10) $) 10 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT)))
+(((-171) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 10)) (-10 -8 (-15 -3129 ((-350 (-485)) $)) (-15 -1450 ($ (-350 (-485))))))) (T -171))
+((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3320 (((-1029) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3179 (((-423) $) 11 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 24 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-172) (-13 (-996) (-10 -8 (-15 -3179 ((-423) $)) (-15 -3320 ((-1029) $)) (-15 -3234 ((-1049) $))))) (T -172))
+((-3179 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-172)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-172)))))
+((-3812 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)) (-1073)) 29 T ELT) (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|))) 25 T ELT)) (-1451 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1090) (-751 |#2|) (-751 |#2|) (-85)) 17 T ELT)))
+(((-173 |#1| |#2|) (-10 -7 (-15 -3812 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)))) (-15 -3812 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|)) (-1073))) (-15 -1451 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1090) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1115) (-872) (-29 |#1|))) (T -173))
+((-1451 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1090)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-1115) (-872) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3)))) (-3812 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1073)) (-4 *3 (-13 (-1115) (-872) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-13 (-1115) (-872) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3)))))
+((-3812 (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))) (-1073)) 49 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))) (-1073)) 50 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|)))) 22 T ELT)))
+(((-174 |#1|) (-10 -7 (-15 -3812 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))))) (-15 -3812 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))) (-1073))) (-15 -3812 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))))) (-15 -3812 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))) (-1073)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (T -174))
+((-3812 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-751 (-350 (-858 *6))))) (-5 *5 (-1073)) (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-751 (-350 (-858 *5))))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1005 (-751 (-265 *6)))) (-5 *5 (-1073)) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1005 (-751 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))))
+((-3842 (((-2 (|:| -2005 (-1085 |#1|)) (|:| |deg| (-831))) (-1085 |#1|)) 26 T ELT)) (-3963 (((-584 (-265 |#2|)) (-265 |#2|) (-831)) 51 T ELT)))
+(((-175 |#1| |#2|) (-10 -7 (-15 -3842 ((-2 (|:| -2005 (-1085 |#1|)) (|:| |deg| (-831))) (-1085 |#1|))) (-15 -3963 ((-584 (-265 |#2|)) (-265 |#2|) (-831)))) (-962) (-496)) (T -175))
+((-3963 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-962)))) (-3842 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2005 (-1085 *4)) (|:| |deg| (-831)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1085 *4)) (-4 *5 (-496)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1495 ((|#1| $) NIL T ELT)) (-3324 ((|#1| $) 31 T ELT)) (-3724 (($) NIL T CONST)) (-3003 (($ $) NIL T ELT)) (-2298 (($ $) 40 T ELT)) (-3326 ((|#1| |#1| $) NIL T ELT)) (-3325 ((|#1| $) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3833 (((-695) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) NIL T ELT)) (-1493 ((|#1| |#1| $) 36 T ELT)) (-1492 ((|#1| |#1| $) 38 T ELT)) (-3609 (($ |#1| $) NIL T ELT)) (-2604 (((-695) $) 34 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3002 ((|#1| $) NIL T ELT)) (-1491 ((|#1| $) 32 T ELT)) (-1490 ((|#1| $) 30 T ELT)) (-1275 ((|#1| $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3005 ((|#1| |#1| $) NIL T ELT)) (-3403 (((-85) $) 9 T ELT)) (-3565 (($) NIL T ELT)) (-3004 ((|#1| $) NIL T ELT)) (-1496 (($) NIL T ELT) (($ (-584 |#1|)) 17 T ELT)) (-3323 (((-695) $) NIL T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1494 ((|#1| $) 14 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) NIL T ELT)) (-3001 ((|#1| $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1496 ($ (-584 |#1|))))) (-1014)) (T -176))
+((-1496 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-176 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1453 (($ (-265 |#1|)) 24 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2665 (((-85) $) NIL T ELT)) (-3158 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3157 (((-265 |#1|) $) NIL T ELT)) (-3959 (($ $) 32 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3958 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3175 (((-265 |#1|) $) NIL T ELT)) (-1455 (($ $) 31 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1454 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) NIL T ELT)) (-1452 (($ $) 33 T ELT)) (-3948 (((-485) $) NIL T ELT)) (-3946 (((-773) $) 65 T ELT) (($ (-485)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3677 (((-265 |#1|) $ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 26 T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) 29 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT)))
+(((-177 |#1| |#2|) (-13 (-561 (-265 |#1|)) (-951 (-265 |#1|)) (-10 -8 (-15 -3175 ((-265 |#1|) $)) (-15 -1455 ($ $)) (-15 -3959 ($ $)) (-15 -3677 ((-265 |#1|) $ $)) (-15 -2410 ($ (-695))) (-15 -1454 ((-85) $)) (-15 -2665 ((-85) $)) (-15 -3948 ((-485) $)) (-15 -3958 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1453 ($ (-265 |#1|))) (-15 -1452 ($ $)))) (-13 (-962) (-757)) (-584 (-1090))) (T -177))
+((-3175 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1090))))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1090))))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1090))))) (-3677 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1090))))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1090))))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1090))))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1090))))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1090))))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1090))))) (-1453 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1090))))) (-1452 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1090))))))
+((-1456 (((-85) (-1073)) 26 T ELT)) (-1457 (((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85)) 35 T ELT)) (-1458 (((-3 (-85) #1#) (-1085 |#2|) (-751 |#2|) (-751 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-858 |#1|) (-1090) (-751 |#2|) (-751 |#2|) (-85)) 84 T ELT)))
+(((-178 |#1| |#2|) (-10 -7 (-15 -1456 ((-85) (-1073))) (-15 -1457 ((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85))) (-15 -1458 ((-3 (-85) #1#) (-858 |#1|) (-1090) (-751 |#2|) (-751 |#2|) (-85))) (-15 -1458 ((-3 (-85) #1#) (-1085 |#2|) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-1115) (-29 |#1|))) (T -178))
+((-1458 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1085 *6)) (-5 *4 (-751 *6)) (-4 *6 (-13 (-1115) (-29 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *5 *6)))) (-1458 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1090)) (-5 *5 (-751 *7)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *7 (-13 (-1115) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1457 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1115) (-29 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *6 *4)))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1115) (-29 *4))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 86 T ELT)) (-3130 (((-485) $) 18 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3492 (($ $) 73 T ELT)) (-3639 (($ $) 61 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3038 (($ $) 52 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 71 T ELT)) (-3638 (($ $) 59 T ELT)) (-3623 (((-485) $) 83 T ELT)) (-3494 (($ $) 76 T ELT)) (-3637 (($ $) 63 T ELT)) (-3724 (($) NIL T CONST)) (-3128 (($ $) NIL T ELT)) (-3158 (((-3 (-485) #1#) $) 116 T ELT) (((-3 (-350 (-485)) #1#) $) 113 T ELT)) (-3157 (((-485) $) 114 T ELT) (((-350 (-485)) $) 111 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 91 T ELT)) (-1744 (((-350 (-485)) $ (-695)) 106 T ELT) (((-350 (-485)) $ (-695) (-695)) 105 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-1768 (((-831)) 12 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3986)) ELT)) (-3187 (((-85) $) 107 T ELT)) (-3627 (($) 31 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL T ELT)) (-3772 (((-485) $) 25 T ELT)) (-1214 (((-85) $ $) 141 T ELT)) (-2411 (((-85) $) 87 T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3133 (($ $) NIL T ELT)) (-3188 (((-85) $) 85 T ELT)) (-1459 (((-85) $) 140 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) 49 T ELT) (($) 21 (-12 (-2561 (|has| $ (-6 -3978))) (-2561 (|has| $ (-6 -3986)))) ELT)) (-2858 (($ $ $) 48 T ELT) (($) 20 (-12 (-2561 (|has| $ (-6 -3978))) (-2561 (|has| $ (-6 -3986)))) ELT)) (-1770 (((-485) $) 10 T ELT)) (-1743 (($ $) 16 T ELT)) (-1742 (($ $) 53 T ELT)) (-3942 (($ $) 58 T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-1767 (((-831) (-485)) NIL (|has| $ (-6 -3986)) ELT)) (-3244 (((-1034) $) 89 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL T ELT)) (-3131 (($ $) NIL T ELT)) (-3255 (($ (-485) (-485)) NIL T ELT) (($ (-485) (-485) (-831)) 98 T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2402 (((-485) $) 11 T ELT)) (-1741 (($) 30 T ELT)) (-3943 (($ $) 57 T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-831)) NIL T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3986)) ELT)) (-3758 (($ $) 92 T ELT) (($ $ (-695)) NIL T ELT)) (-1766 (((-831) (-485)) NIL (|has| $ (-6 -3986)) ELT)) (-3495 (($ $) 74 T ELT)) (-3636 (($ $) 64 T ELT)) (-3493 (($ $) 75 T ELT)) (-3635 (($ $) 62 T ELT)) (-3491 (($ $) 72 T ELT)) (-3634 (($ $) 60 T ELT)) (-3972 (((-330) $) 102 T ELT) (((-179) $) 99 T ELT) (((-801 (-330)) $) NIL T ELT) (((-474) $) 38 T ELT)) (-3946 (((-773) $) 35 T ELT) (($ (-485)) 56 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) 56 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (($ $) NIL T ELT)) (-1769 (((-831)) 19 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3986)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (((-831)) 7 T ELT)) (-3498 (($ $) 79 T ELT)) (-3486 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 77 T ELT)) (-3484 (($ $) 65 T ELT)) (-3500 (($ $) 82 T ELT)) (-3488 (($ $) 70 T ELT)) (-3126 (((-85) $ $) 143 T ELT)) (-3501 (($ $) 80 T ELT)) (-3489 (($ $) 68 T ELT)) (-3499 (($ $) 81 T ELT)) (-3487 (($ $) 69 T ELT)) (-3497 (($ $) 78 T ELT)) (-3485 (($ $) 66 T ELT)) (-3383 (($ $) 108 T ELT)) (-2661 (($) 27 T CONST)) (-2667 (($) 28 T CONST)) (-3387 (($ $) 95 T ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3384 (($ $ $) 97 T ELT)) (-2567 (((-85) $ $) 42 T ELT)) (-2568 (((-85) $ $) 40 T ELT)) (-3057 (((-85) $ $) 50 T ELT)) (-2685 (((-85) $ $) 41 T ELT)) (-2686 (((-85) $ $) 39 T ELT)) (-3949 (($ $ $) 29 T ELT) (($ $ (-485)) 51 T ELT)) (-3837 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3839 (($ $ $) 44 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 54 T ELT) (($ $ (-350 (-485))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
+(((-179) (-13 (-347) (-190) (-1115) (-554 (-474)) (-10 -8 (-15 -3949 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -1741 ($)) (-15 -1743 ($ $)) (-15 -1742 ($ $)) (-15 -3486 ($ $ $)) (-15 -3387 ($ $)) (-15 -3384 ($ $ $)) (-15 -1744 ((-350 (-485)) $ (-695))) (-15 -1744 ((-350 (-485)) $ (-695) (-695))) (-15 -1459 ((-85) $))))) (T -179))
+((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179)))) (-1741 (*1 *1) (-5 *1 (-179))) (-1743 (*1 *1 *1) (-5 *1 (-179))) (-1742 (*1 *1 *1) (-5 *1 (-179))) (-3486 (*1 *1 *1 *1) (-5 *1 (-179))) (-3387 (*1 *1 *1) (-5 *1 (-179))) (-3384 (*1 *1 *1 *1) (-5 *1 (-179))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) (-1744 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179)))))
+((-3386 (((-142 (-179)) (-695) (-142 (-179))) 11 T ELT) (((-179) (-695) (-179)) 12 T ELT)) (-1460 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1461 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3385 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3389 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3391 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3388 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3390 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3393 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3392 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3387 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3384 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT)))
+(((-180) (-10 -7 (-15 -3387 ((-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)))) (-15 -3384 ((-179) (-179) (-179))) (-15 -3384 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1460 ((-179) (-179))) (-15 -1460 ((-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-695) (-179))) (-15 -3386 ((-142 (-179)) (-695) (-142 (-179)))) (-15 -3388 ((-179) (-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3389 ((-179) (-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3390 ((-179) (-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3391 ((-179) (-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3392 ((-142 (-179)) (-142 (-179)))) (-15 -3392 ((-179) (-179))) (-15 -3393 ((-179) (-179))) (-15 -3393 ((-142 (-179)) (-142 (-179)))) (-15 -1461 ((-179) (-179) (-179))) (-15 -1461 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180))
+((-1461 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1461 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180)))) (-3386 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3838 (($ (-695) (-695)) NIL T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3414 (($ (-1179 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3873 (($ |#1| |#1| |#1|) 33 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2350 (($ $ (-485) (-485)) NIL T ELT)) (-2349 (($ $ (-485) (-485)) NIL T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2353 (($ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2347 (($ $ (-485) (-485) $) NIL T ELT)) (-3788 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1257 (($ $ (-485) (-1179 |#1|)) NIL T ELT)) (-1256 (($ $ (-485) (-1179 |#1|)) NIL T ELT)) (-3847 (($ |#1| |#1| |#1|) 32 T ELT)) (-3333 (($ (-695) |#1|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3110 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3112 (((-1179 |#1|) $ (-485)) NIL T ELT)) (-1462 (($ |#1|) 31 T ELT)) (-1463 (($ |#1|) 30 T ELT)) (-1464 (($ |#1|) 29 T ELT)) (-3109 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-1576 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3113 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3108 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-3107 (((-584 (-1179 |#1|)) $) NIL (|has| |#1| (-496)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-3614 (($ (-695) (-695) |#1|) NIL T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3327 ((|#1| $) NIL (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-3124 (($ (-584 (-584 |#1|))) 11 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3594 (((-584 (-584 |#1|)) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3590 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1465 (($) 12 T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-3466 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3332 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3328 ((|#1| $) NIL (|has| |#1| (-6 (-3997 #1#))) ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3111 (((-1179 |#1|) $ (-485)) NIL T ELT)) (-3946 (($ (-1179 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1179 |#1|) $ (-1179 |#1|)) 15 T ELT) (((-1179 |#1|) (-1179 |#1|) $) NIL T ELT) (((-855 |#1|) $ (-855 |#1|)) 21 T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-181 |#1|) (-13 (-628 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 * ((-855 |#1|) $ (-855 |#1|))) (-15 -1465 ($)) (-15 -1464 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -1462 ($ |#1|)) (-15 -3847 ($ |#1| |#1| |#1|)) (-15 -3873 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1115))) (T -181))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115))) (-5 *1 (-181 *3)))) (-1465 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-1464 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-1462 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-3847 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-3873 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
+((-1570 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3405 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1466 (($) NIL T ELT) (($ (-584 |#2|)) 11 T ELT)) (-3057 (((-85) $ $) 26 T ELT)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -1570 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -1466 (|#1| (-584 |#2|))) (-15 -1466 (|#1|))) (-183 |#2|) (-1014)) (T -182))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1466 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 54 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-183 |#1|) (-113) (-1014)) (T -183))
NIL
(-13 (-193 |t#1|))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-1 |#1| |#1|) (-694)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1089)) 63 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 61 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 60 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 59 (|has| |#1| (-811 (-1089))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-694)) 53 (|has| |#1| (-189)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|) (-694)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1089)) 62 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 58 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 57 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 56 (|has| |#1| (-811 (-1089))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-694)) 52 (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-184 |#1|) (-113) (-961)) (T -184))
-NIL
-(-13 (-961) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-809 (-1089))) (-6 (-809 (-1089))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2669 ((|#2| $) 9 T ELT)))
-(((-185 |#1| |#2|) (-10 -7 (-15 -2669 (|#2| |#1|))) (-186 |#2|) (-1128)) (T -185))
-NIL
-((-3757 ((|#1| $) 7 T ELT)) (-2669 ((|#1| $) 6 T ELT)))
-(((-186 |#1|) (-113) (-1128)) (T -186))
-((-3757 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))))
-(-13 (-1128) (-10 -8 (-15 -3757 (|t#1| $)) (-15 -2669 (|t#1| $))))
-(((-13) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-694)) 43 T ELT) (($ $) 41 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2669 (($ $ (-694)) 44 T ELT) (($ $) 42 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-187 |#1|) (-113) (-961)) (T -187))
-NIL
-(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-3757 (($ $) NIL T ELT) (($ $ (-694)) 9 T ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) 11 T ELT)))
-(((-188 |#1|) (-10 -7 (-15 -2669 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-694))) (-15 -2669 (|#1| |#1|)) (-15 -3757 (|#1| |#1|))) (-189)) (T -188))
-NIL
-((-3757 (($ $) 7 T ELT) (($ $ (-694)) 10 T ELT)) (-2669 (($ $) 6 T ELT) (($ $ (-694)) 9 T ELT)))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3758 (($ $ (-1 |#1| |#1|) (-695)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1090)) 63 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 61 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 60 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 59 (|has| |#1| (-812 (-1090))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-695)) 53 (|has| |#1| (-189)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|) (-695)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1090)) 62 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 58 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 57 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 56 (|has| |#1| (-812 (-1090))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-695)) 52 (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-184 |#1|) (-113) (-962)) (T -184))
+NIL
+(-13 (-962) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-810 (-1090))) (-6 (-810 (-1090))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-810 (-1090)) |has| |#1| (-810 (-1090))) ((-812 (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2670 ((|#2| $) 9 T ELT)))
+(((-185 |#1| |#2|) (-10 -7 (-15 -2670 (|#2| |#1|))) (-186 |#2|) (-1129)) (T -185))
+NIL
+((-3758 ((|#1| $) 7 T ELT)) (-2670 ((|#1| $) 6 T ELT)))
+(((-186 |#1|) (-113) (-1129)) (T -186))
+((-3758 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129)))))
+(-13 (-1129) (-10 -8 (-15 -3758 (|t#1| $)) (-15 -2670 (|t#1| $))))
+(((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3758 (($ $ (-695)) 43 T ELT) (($ $) 41 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2670 (($ $ (-695)) 44 T ELT) (($ $) 42 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-187 |#1|) (-113) (-962)) (T -187))
+NIL
+(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-3758 (($ $) NIL T ELT) (($ $ (-695)) 9 T ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) 11 T ELT)))
+(((-188 |#1|) (-10 -7 (-15 -2670 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1| (-695))) (-15 -2670 (|#1| |#1|)) (-15 -3758 (|#1| |#1|))) (-189)) (T -188))
+NIL
+((-3758 (($ $) 7 T ELT) (($ $ (-695)) 10 T ELT)) (-2670 (($ $) 6 T ELT) (($ $ (-695)) 9 T ELT)))
(((-189) (-113)) (T -189))
-((-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) (-2669 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))))
-(-13 (-186 $) (-10 -8 (-15 -3757 ($ $ (-694))) (-15 -2669 ($ $ (-694)))))
-(((-186 $) . T) ((-13) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-694)) 50 T ELT) (($ $) 48 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-694)) 51 T ELT) (($ $) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) (-2670 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))))
+(-13 (-186 $) (-10 -8 (-15 -3758 ($ $ (-695))) (-15 -2670 ($ $ (-695)))))
+(((-186 $) . T) ((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3758 (($ $ (-695)) 50 T ELT) (($ $) 48 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-695)) 51 T ELT) (($ $) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-190) (-113)) (T -190))
NIL
-(-13 (-961) (-189))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-3723 (($) 30 T CONST)) (-3466 (((-3 $ "failed") $) 36 T ELT)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2410 (((-85) $) 38 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2666 (($) 39 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (** (($ $ (-830)) 40 T ELT) (($ $ (-694)) 37 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ $ $) 41 T ELT)))
+(-13 (-962) (-189))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-3724 (($) 30 T CONST)) (-3467 (((-3 $ "failed") $) 36 T ELT)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2411 (((-85) $) 38 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2667 (($) 39 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (** (($ $ (-831)) 40 T ELT) (($ $ (-695)) 37 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ $ $) 41 T ELT)))
(((-191) (-113)) (T -191))
NIL
-(-13 (-716) (-1060))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-1465 (($) 12 T ELT) (($ (-583 |#2|)) NIL T ELT)) (-3399 (($ $) 14 T ELT)) (-3529 (($ (-583 |#2|)) 10 T ELT)) (-3945 (((-772) $) 21 T ELT)))
-(((-192 |#1| |#2|) (-10 -7 (-15 -3945 ((-772) |#1|)) (-15 -1465 (|#1| (-583 |#2|))) (-15 -1465 (|#1|)) (-15 -3529 (|#1| (-583 |#2|))) (-15 -3399 (|#1| |#1|))) (-193 |#2|) (-1013)) (T -192))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-193 |#1|) (-113) (-1013)) (T -193))
-((-1465 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3)))) (-3404 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-3404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-193 *3)) (-4 *3 (-1013)))) (-1569 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-193 *3)) (-4 *3 (-1013)))))
-(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1465 ($)) (-15 -1465 ($ (-583 |t#1|))) (IF (|has| $ (-6 -3994)) (PROGN (-15 -3404 ($ |t#1| $)) (-15 -3404 ($ (-1 (-85) |t#1|) $)) (-15 -1569 ($ (-1 (-85) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-1466 (((-2 (|:| |varOrder| (-583 (-1089))) (|:| |inhom| (-3 (-583 (-1178 (-694))) "failed")) (|:| |hom| (-583 (-1178 (-694))))) (-249 (-857 (-484)))) 42 T ELT)))
-(((-194) (-10 -7 (-15 -1466 ((-2 (|:| |varOrder| (-583 (-1089))) (|:| |inhom| (-3 (-583 (-1178 (-694))) "failed")) (|:| |hom| (-583 (-1178 (-694))))) (-249 (-857 (-484))))))) (T -194))
-((-1466 (*1 *2 *3) (-12 (-5 *3 (-249 (-857 (-484)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1089))) (|:| |inhom| (-3 (-583 (-1178 (-694))) "failed")) (|:| |hom| (-583 (-1178 (-694)))))) (-5 *1 (-194)))))
-((-3136 (((-694)) 56 T ELT)) (-2279 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 $) (-1178 $)) 53 T ELT) (((-630 |#3|) (-630 $)) 44 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3910 (((-107)) 62 T ELT)) (-3757 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3945 (((-1178 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-772) $) NIL T ELT) (($ (-484)) 12 T ELT) (($ (-349 (-484))) NIL T ELT)) (-3126 (((-694)) 15 T CONST)) (-3948 (($ $ |#3|) 59 T ELT)))
-(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| (-484))) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3945 ((-772) |#1|)) (-15 -3126 ((-694)) -3951) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -3945 (|#1| |#3|)) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2279 ((-630 |#3|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 |#1|) (-1178 |#1|))) (-15 -3136 ((-694))) (-15 -3948 (|#1| |#1| |#3|)) (-15 -3910 ((-107))) (-15 -3945 ((-1178 |#3|) |#1|))) (-196 |#2| |#3|) (-694) (-1128)) (T -195))
-((-3910 (*1 *2) (-12 (-14 *4 (-694)) (-4 *5 (-1128)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3136 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3126 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))))
-((-2568 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) 81 (|has| |#2| (-23)) ELT)) (-3706 (($ (-830)) 137 (|has| |#2| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) 133 (|has| |#2| (-717)) ELT)) (-1311 (((-3 $ "failed") $ $) 84 (|has| |#2| (-104)) ELT)) (-3136 (((-694)) 122 (|has| |#2| (-319)) ELT)) (-3787 ((|#2| $ (-484) |#2|) 56 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 76 (-2562 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) 73 (-2562 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 70 (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) 75 (-2562 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-349 (-484)) $) 72 (-2562 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 71 (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) 119 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 118 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 117 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) 116 (|has| |#2| (-961)) ELT)) (-3466 (((-3 $ "failed") $) 96 (|has| |#2| (-961)) ELT)) (-2994 (($) 125 (|has| |#2| (-319)) ELT)) (-1575 ((|#2| $ (-484) |#2|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ (-484)) 55 T ELT)) (-3186 (((-85) $) 132 (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) 30 (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) 83 (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) 94 (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 126 (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) 29 T ELT)) (-3245 (((-85) |#2| $) 27 (|has| |#2| (-1013)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 127 (|has| |#2| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2010 (((-830) $) 124 (|has| |#2| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) 121 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 120 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 115 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1178 $)) 114 (|has| |#2| (-961)) ELT)) (-3242 (((-1072) $) 22 (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-2400 (($ (-830)) 123 (|has| |#2| (-319)) ELT)) (-3243 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) 46 (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#2| $ (-484) |#2|) 54 T ELT) ((|#2| $ (-484)) 53 T ELT)) (-3835 ((|#2| $ $) 136 (|has| |#2| (-961)) ELT)) (-1467 (($ (-1178 |#2|)) 138 T ELT)) (-3910 (((-107)) 135 (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-694)) 112 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 110 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 106 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) 105 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) 104 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) 102 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 101 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 100 (|has| |#2| (-961)) ELT)) (-1945 (((-694) |#2| $) 28 (|has| |#2| (-1013)) ELT) (((-694) (-1 (-85) |#2|) $) 31 T ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-1178 |#2|) $) 139 T ELT) (($ (-484)) 77 (OR (-2562 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-349 (-484))) 74 (-2562 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 69 (|has| |#2| (-1013)) ELT) (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) 97 (|has| |#2| (-961)) CONST)) (-1264 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 33 T ELT)) (-3125 (((-85) $ $) 92 (|has| |#2| (-961)) ELT)) (-2660 (($) 80 (|has| |#2| (-23)) CONST)) (-2666 (($) 93 (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) 113 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 111 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 109 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) 108 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) 107 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) 103 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 99 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 98 (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) 128 (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) 130 (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) 129 (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 131 (|has| |#2| (-756)) ELT)) (-3948 (($ $ |#2|) 134 (|has| |#2| (-312)) ELT)) (-3836 (($ $ $) 87 (|has| |#2| (-21)) ELT) (($ $) 86 (|has| |#2| (-21)) ELT)) (-3838 (($ $ $) 78 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) 95 (|has| |#2| (-961)) ELT) (($ $ (-830)) 90 (|has| |#2| (-961)) ELT)) (* (($ $ $) 91 (|has| |#2| (-961)) ELT) (($ $ |#2|) 89 (|has| |#2| (-663)) ELT) (($ |#2| $) 88 (|has| |#2| (-663)) ELT) (($ (-484) $) 85 (|has| |#2| (-21)) ELT) (($ (-694) $) 82 (|has| |#2| (-23)) ELT) (($ (-830) $) 79 (|has| |#2| (-25)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-196 |#1| |#2|) (-113) (-694) (-1128)) (T -196))
-((-1467 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1128)) (-4 *1 (-196 *3 *4)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1128)))) (-3835 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-961)))))
-(-13 (-538 (-484) |t#2|) (-317 |t#2|) (-552 (-1178 |t#2|)) (-10 -8 (-15 -1467 ($ (-1178 |t#2|))) (IF (|has| |t#2| (-1013)) (-6 (-354 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-328 |t#2|)) (-15 -3706 ($ (-830))) (-15 -3835 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-663)) (-6 (-582 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |t#2| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#2| (-717)) (-6 (-717)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1186 |t#2|)) |%noBranch|)))
-(((-21) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-319)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-555 (-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ((-555 (-484)) OR (|has| |#2| (-961)) (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013)))) ((-555 |#2|) |has| |#2| (-1013)) ((-552 (-772)) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-319)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-552 (-772))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-552 (-1178 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-184 |#2|) |has| |#2| (-961)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-961))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-225 |#2|) |has| |#2| (-961)) ((-241 (-484) |#2|) . T) ((-243 (-484) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-319) |has| |#2| (-319)) ((-317 |#2|) . T) ((-328 |#2|) |has| |#2| (-961)) ((-354 |#2|) |has| |#2| (-1013)) ((-428 |#2|) . T) ((-538 (-484) |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-588 (-484)) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-588 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-588 $) |has| |#2| (-961)) ((-590 (-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ((-590 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-590 $) |has| |#2| (-961)) ((-582 |#2|) OR (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-580 (-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ((-580 |#2|) |has| |#2| (-961)) ((-654 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-663) |has| |#2| (-961)) ((-716) |has| |#2| (-717)) ((-717) |has| |#2| (-717)) ((-718) |has| |#2| (-717)) ((-721) |has| |#2| (-717)) ((-756) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-759) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-806 $ (-1089)) OR (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961)))) ((-809 (-1089)) -12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) ((-811 (-1089)) OR (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961)))) ((-950 (-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ((-950 (-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ((-950 |#2|) |has| |#2| (-1013)) ((-963 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-968 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-961) |has| |#2| (-961)) ((-970) |has| |#2| (-961)) ((-1025) |has| |#2| (-961)) ((-1060) |has| |#2| (-961)) ((-1013) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-319)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1128) . T) ((-1186 |#2|) |has| |#2| (-312)))
-((-2568 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3706 (($ (-830)) 63 (|has| |#2| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) 69 (|has| |#2| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#2| (-319)) ELT)) (-3787 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 29 (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3466 (((-3 $ #1#) $) 59 (|has| |#2| (-961)) ELT)) (-2994 (($) NIL (|has| |#2| (-319)) ELT)) (-1575 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ (-484)) 57 T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) 14 (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) 20 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1178 $)) NIL (|has| |#2| (-961)) ELT)) (-3242 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-319)) ELT)) (-3243 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) 21 T ELT)) (-3835 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1467 (($ (-1178 |#2|)) 18 T ELT)) (-3910 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1945 (((-694) |#2| $) NIL (|has| |#2| (-1013)) ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#2|) $) 9 T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 12 (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2660 (($) 37 (|has| |#2| (-23)) CONST)) (-2666 (($) 41 (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 67 (|has| |#2| (-756)) ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3838 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) 47 (|has| |#2| (-961)) ELT) (($ $ |#2|) 45 (|has| |#2| (-663)) ELT) (($ |#2| $) 46 (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-197 |#1| |#2|) (-196 |#1| |#2|) (-694) (-1128)) (T -197))
-NIL
-((-3840 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3841 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3957 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT)))
-(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3840 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3841 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3957 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-694) (-1128) (-1128)) (T -198))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-198 *5 *6 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694)) (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))))
-((-1471 (((-484) (-583 (-1072))) 36 T ELT) (((-484) (-1072)) 29 T ELT)) (-1470 (((-1184) (-583 (-1072))) 40 T ELT) (((-1184) (-1072)) 39 T ELT)) (-1468 (((-1072)) 16 T ELT)) (-1469 (((-1072) (-484) (-1072)) 23 T ELT)) (-3772 (((-583 (-1072)) (-583 (-1072)) (-484) (-1072)) 37 T ELT) (((-1072) (-1072) (-484) (-1072)) 35 T ELT)) (-2620 (((-583 (-1072)) (-583 (-1072))) 15 T ELT) (((-583 (-1072)) (-1072)) 11 T ELT)))
-(((-199) (-10 -7 (-15 -2620 ((-583 (-1072)) (-1072))) (-15 -2620 ((-583 (-1072)) (-583 (-1072)))) (-15 -1468 ((-1072))) (-15 -1469 ((-1072) (-484) (-1072))) (-15 -3772 ((-1072) (-1072) (-484) (-1072))) (-15 -3772 ((-583 (-1072)) (-583 (-1072)) (-484) (-1072))) (-15 -1470 ((-1184) (-1072))) (-15 -1470 ((-1184) (-583 (-1072)))) (-15 -1471 ((-484) (-1072))) (-15 -1471 ((-484) (-583 (-1072)))))) (T -199))
-((-1471 (*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-484)) (-5 *1 (-199)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-199)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1184)) (-5 *1 (-199)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-199)))) (-3772 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1072))) (-5 *3 (-484)) (-5 *4 (-1072)) (-5 *1 (-199)))) (-3772 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1469 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1468 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-199)))) (-2620 (*1 *2 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-199)))) (-2620 (*1 *2 *3) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-199)) (-5 *3 (-1072)))))
-((** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-349 (-484)) $) 25 T ELT) (($ $ (-349 (-484))) NIL T ELT)))
-(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-201)) (T -200))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 55 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 59 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 56 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-349 (-484)) $) 58 T ELT) (($ $ (-349 (-484))) 57 T ELT)))
+(-13 (-717) (-1061))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-1466 (($) 12 T ELT) (($ (-584 |#2|)) NIL T ELT)) (-3400 (($ $) 14 T ELT)) (-3530 (($ (-584 |#2|)) 10 T ELT)) (-3946 (((-773) $) 21 T ELT)))
+(((-192 |#1| |#2|) (-10 -7 (-15 -3946 ((-773) |#1|)) (-15 -1466 (|#1| (-584 |#2|))) (-15 -1466 (|#1|)) (-15 -3530 (|#1| (-584 |#2|))) (-15 -3400 (|#1| |#1|))) (-193 |#2|) (-1014)) (T -192))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1466 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 54 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-193 |#1|) (-113) (-1014)) (T -193))
+((-1466 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1014)))) (-1466 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-193 *3)))) (-3405 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-193 *2)) (-4 *2 (-1014)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-193 *3)) (-4 *3 (-1014)))) (-1570 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-193 *3)) (-4 *3 (-1014)))))
+(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1466 ($)) (-15 -1466 ($ (-584 |t#1|))) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3405 ($ |t#1| $)) (-15 -3405 ($ (-1 (-85) |t#1|) $)) (-15 -1570 ($ (-1 (-85) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-1467 (((-2 (|:| |varOrder| (-584 (-1090))) (|:| |inhom| (-3 (-584 (-1179 (-695))) "failed")) (|:| |hom| (-584 (-1179 (-695))))) (-249 (-858 (-485)))) 42 T ELT)))
+(((-194) (-10 -7 (-15 -1467 ((-2 (|:| |varOrder| (-584 (-1090))) (|:| |inhom| (-3 (-584 (-1179 (-695))) "failed")) (|:| |hom| (-584 (-1179 (-695))))) (-249 (-858 (-485))))))) (T -194))
+((-1467 (*1 *2 *3) (-12 (-5 *3 (-249 (-858 (-485)))) (-5 *2 (-2 (|:| |varOrder| (-584 (-1090))) (|:| |inhom| (-3 (-584 (-1179 (-695))) "failed")) (|:| |hom| (-584 (-1179 (-695)))))) (-5 *1 (-194)))))
+((-3137 (((-695)) 56 T ELT)) (-2280 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1179 |#3|))) (-631 $) (-1179 $)) 53 T ELT) (((-631 |#3|) (-631 $)) 44 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3911 (((-107)) 62 T ELT)) (-3758 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3946 (((-1179 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-773) $) NIL T ELT) (($ (-485)) 12 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3127 (((-695)) 15 T CONST)) (-3949 (($ $ |#3|) 59 T ELT)))
+(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3946 (|#1| (-350 (-485)))) (-15 -3946 (|#1| (-485))) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -3946 ((-773) |#1|)) (-15 -3127 ((-695)) -3952) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 |#1|) (-1179 |#1|))) (-15 -3946 (|#1| |#3|)) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2280 ((-631 |#3|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1179 |#3|))) (-631 |#1|) (-1179 |#1|))) (-15 -3137 ((-695))) (-15 -3949 (|#1| |#1| |#3|)) (-15 -3911 ((-107))) (-15 -3946 ((-1179 |#3|) |#1|))) (-196 |#2| |#3|) (-695) (-1129)) (T -195))
+((-3911 (*1 *2) (-12 (-14 *4 (-695)) (-4 *5 (-1129)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3137 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3127 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))))
+((-2569 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) 81 (|has| |#2| (-23)) ELT)) (-3707 (($ (-831)) 137 (|has| |#2| (-962)) ELT)) (-2199 (((-1185) $ (-485) (-485)) 44 (|has| $ (-6 -3996)) ELT)) (-2484 (($ $ $) 133 (|has| |#2| (-718)) ELT)) (-1312 (((-3 $ "failed") $ $) 84 (|has| |#2| (-104)) ELT)) (-3137 (((-695)) 122 (|has| |#2| (-320)) ELT)) (-3788 ((|#2| $ (-485) |#2|) 56 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 76 (-2563 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) 73 (-2563 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 70 (|has| |#2| (-1014)) ELT)) (-3157 (((-485) $) 75 (-2563 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) 72 (-2563 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 71 (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) 119 (-2563 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 118 (-2563 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) 117 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) 116 (|has| |#2| (-962)) ELT)) (-3467 (((-3 $ "failed") $) 96 (|has| |#2| (-962)) ELT)) (-2995 (($) 125 (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-485) |#2|) 57 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ (-485)) 55 T ELT)) (-3187 (((-85) $) 132 (|has| |#2| (-718)) ELT)) (-2890 (((-584 |#2|) $) 30 (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) 83 (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) 94 (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 126 (|has| |#2| (-757)) ELT)) (-2609 (((-584 |#2|) $) 29 T ELT)) (-3246 (((-85) |#2| $) 27 (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 127 (|has| |#2| (-757)) ELT)) (-1949 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2011 (((-831) $) 124 (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1179 $)) 121 (-2563 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 120 (-2563 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) 115 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1179 $)) 114 (|has| |#2| (-962)) ELT)) (-3243 (((-1073) $) 22 (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-2401 (($ (-831)) 123 (|has| |#2| (-320)) ELT)) (-3244 (((-1034) $) 21 (|has| |#2| (-1014)) ELT)) (-3801 ((|#2| $) 46 (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ (-485) |#2|) 54 T ELT) ((|#2| $ (-485)) 53 T ELT)) (-3836 ((|#2| $ $) 136 (|has| |#2| (-962)) ELT)) (-1468 (($ (-1179 |#2|)) 138 T ELT)) (-3911 (((-107)) 135 (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-695)) 112 (-2563 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 110 (-2563 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 106 (-2563 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090) (-695)) 105 (-2563 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090))) 104 (-2563 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090)) 102 (-2563 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 101 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 100 (|has| |#2| (-962)) ELT)) (-1946 (((-695) |#2| $) 28 (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-1179 |#2|) $) 139 T ELT) (($ (-485)) 77 (OR (-2563 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) 74 (-2563 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 69 (|has| |#2| (-1014)) ELT) (((-773) $) 17 (|has| |#2| (-553 (-773))) ELT)) (-3127 (((-695)) 97 (|has| |#2| (-962)) CONST)) (-1265 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 33 T ELT)) (-3126 (((-85) $ $) 92 (|has| |#2| (-962)) ELT)) (-2661 (($) 80 (|has| |#2| (-23)) CONST)) (-2667 (($) 93 (|has| |#2| (-962)) CONST)) (-2670 (($ $ (-695)) 113 (-2563 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 111 (-2563 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 109 (-2563 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090) (-695)) 108 (-2563 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090))) 107 (-2563 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090)) 103 (-2563 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 99 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 98 (|has| |#2| (-962)) ELT)) (-2567 (((-85) $ $) 128 (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) 130 (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) 129 (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) 131 (|has| |#2| (-757)) ELT)) (-3949 (($ $ |#2|) 134 (|has| |#2| (-312)) ELT)) (-3837 (($ $ $) 87 (|has| |#2| (-21)) ELT) (($ $) 86 (|has| |#2| (-21)) ELT)) (-3839 (($ $ $) 78 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) 95 (|has| |#2| (-962)) ELT) (($ $ (-831)) 90 (|has| |#2| (-962)) ELT)) (* (($ $ $) 91 (|has| |#2| (-962)) ELT) (($ $ |#2|) 89 (|has| |#2| (-664)) ELT) (($ |#2| $) 88 (|has| |#2| (-664)) ELT) (($ (-485) $) 85 (|has| |#2| (-21)) ELT) (($ (-695) $) 82 (|has| |#2| (-23)) ELT) (($ (-831) $) 79 (|has| |#2| (-25)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-196 |#1| |#2|) (-113) (-695) (-1129)) (T -196))
+((-1468 (*1 *1 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1129)) (-4 *1 (-196 *3 *4)))) (-3707 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1129)))) (-3836 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1129)) (-4 *2 (-962)))))
+(-13 (-539 (-485) |t#2|) (-318 |t#2|) (-553 (-1179 |t#2|)) (-10 -8 (-15 -1468 ($ (-1179 |t#2|))) (IF (|has| |t#2| (-1014)) (-6 (-355 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-962)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-329 |t#2|)) (-15 -3707 ($ (-831))) (-15 -3836 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-664)) (-6 (-583 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |t#2| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#2| (-718)) (-6 (-718)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1187 |t#2|)) |%noBranch|)))
+(((-21) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-556 (-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ((-556 (-485)) OR (|has| |#2| (-962)) (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014)))) ((-556 |#2|) |has| |#2| (-1014)) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-553 (-773))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-553 (-1179 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-184 |#2|) |has| |#2| (-962)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-962))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-225 |#2|) |has| |#2| (-962)) ((-241 (-485) |#2|) . T) ((-243 (-485) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-320) |has| |#2| (-320)) ((-318 |#2|) . T) ((-329 |#2|) |has| |#2| (-962)) ((-355 |#2|) |has| |#2| (-1014)) ((-429 |#2|) . T) ((-539 (-485) |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-589 (-485)) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-589 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-589 $) |has| |#2| (-962)) ((-591 (-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-591 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-591 $) |has| |#2| (-962)) ((-583 |#2|) OR (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-581 (-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-581 |#2|) |has| |#2| (-962)) ((-655 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-664) |has| |#2| (-962)) ((-717) |has| |#2| (-718)) ((-718) |has| |#2| (-718)) ((-719) |has| |#2| (-718)) ((-722) |has| |#2| (-718)) ((-757) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-760) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-807 $ (-1090)) OR (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962)))) ((-810 (-1090)) -12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962))) ((-812 (-1090)) OR (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1090))) (|has| |#2| (-962)))) ((-951 (-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ((-951 (-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ((-951 |#2|) |has| |#2| (-1014)) ((-964 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-969 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-962) |has| |#2| (-962)) ((-971) |has| |#2| (-962)) ((-1026) |has| |#2| (-962)) ((-1061) |has| |#2| (-962)) ((-1014) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1129) . T) ((-1187 |#2|) |has| |#2| (-312)))
+((-2569 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3707 (($ (-831)) 63 (|has| |#2| (-962)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-2484 (($ $ $) 69 (|has| |#2| (-718)) ELT)) (-1312 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3137 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3788 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1014)) ELT)) (-3157 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 29 (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3467 (((-3 $ #1#) $) 59 (|has| |#2| (-962)) ELT)) (-2995 (($) NIL (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ (-485)) 57 T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2890 (((-584 |#2|) $) 14 (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) 20 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-1949 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1179 $)) NIL (|has| |#2| (-962)) ELT)) (-3243 (((-1073) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3244 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3801 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3768 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) 21 T ELT)) (-3836 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1468 (($ (-1179 |#2|)) 18 T ELT)) (-3911 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1946 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#2|) $) 9 T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 12 (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3127 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2661 (($) 37 (|has| |#2| (-23)) CONST)) (-2667 (($) 41 (|has| |#2| (-962)) CONST)) (-2670 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) 67 (|has| |#2| (-757)) ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3839 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) 47 (|has| |#2| (-962)) ELT) (($ $ |#2|) 45 (|has| |#2| (-664)) ELT) (($ |#2| $) 46 (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-197 |#1| |#2|) (-196 |#1| |#2|) (-695) (-1129)) (T -197))
+NIL
+((-3841 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3842 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3958 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT)))
+(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3842 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3958 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-695) (-1129) (-1129)) (T -198))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1129)) (-4 *2 (-1129)) (-5 *1 (-198 *5 *6 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695)) (-4 *7 (-1129)) (-4 *5 (-1129)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))))
+((-1472 (((-485) (-584 (-1073))) 36 T ELT) (((-485) (-1073)) 29 T ELT)) (-1471 (((-1185) (-584 (-1073))) 40 T ELT) (((-1185) (-1073)) 39 T ELT)) (-1469 (((-1073)) 16 T ELT)) (-1470 (((-1073) (-485) (-1073)) 23 T ELT)) (-3773 (((-584 (-1073)) (-584 (-1073)) (-485) (-1073)) 37 T ELT) (((-1073) (-1073) (-485) (-1073)) 35 T ELT)) (-2621 (((-584 (-1073)) (-584 (-1073))) 15 T ELT) (((-584 (-1073)) (-1073)) 11 T ELT)))
+(((-199) (-10 -7 (-15 -2621 ((-584 (-1073)) (-1073))) (-15 -2621 ((-584 (-1073)) (-584 (-1073)))) (-15 -1469 ((-1073))) (-15 -1470 ((-1073) (-485) (-1073))) (-15 -3773 ((-1073) (-1073) (-485) (-1073))) (-15 -3773 ((-584 (-1073)) (-584 (-1073)) (-485) (-1073))) (-15 -1471 ((-1185) (-1073))) (-15 -1471 ((-1185) (-584 (-1073)))) (-15 -1472 ((-485) (-1073))) (-15 -1472 ((-485) (-584 (-1073)))))) (T -199))
+((-1472 (*1 *2 *3) (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-485)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-485)) (-5 *1 (-199)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-1185)) (-5 *1 (-199)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-199)))) (-3773 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 (-1073))) (-5 *3 (-485)) (-5 *4 (-1073)) (-5 *1 (-199)))) (-3773 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1470 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1469 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-199)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-199)))) (-2621 (*1 *2 *3) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-199)) (-5 *3 (-1073)))))
+((** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-485)) $) 25 T ELT) (($ $ (-350 (-485))) NIL T ELT)))
+(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-201)) (T -200))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 55 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 59 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 56 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-485)) $) 58 T ELT) (($ $ (-350 (-485))) 57 T ELT)))
(((-201) (-113)) (T -201))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484)))) (-2484 (*1 *1 *1) (-4 *1 (-201))))
-(-13 (-246) (-38 (-349 (-484))) (-10 -8 (-15 ** ($ $ (-484))) (-15 -2484 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-246) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-654 (-349 (-484))) . T) ((-663) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3796 (($ $) 63 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-1473 (($ $ $) 59 (|has| $ (-6 -3995)) ELT)) (-1472 (($ $ $) 58 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-1475 (($ $) 62 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1474 (($ $) 61 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 65 T ELT)) (-3178 (($ $) 64 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3790 (($ $ $) 60 (|has| $ (-6 -3995)) ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-202 |#1|) (-113) (-1128)) (T -202))
-((-3797 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1475 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1474 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3790 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1473 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1472 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
-(-13 (-923 |t#1|) (-10 -8 (-15 -3797 (|t#1| $)) (-15 -3178 ($ $)) (-15 -3796 ($ $)) (-15 -1475 ($ $)) (-15 -1474 ($ $)) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3790 ($ $ $)) (-15 -1473 ($ $ $)) (-15 -1472 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) NIL T ELT)) (-3794 ((|#1| $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1729 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) 10 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3441 (((-85) $ (-694)) NIL T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-3798 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2368 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1352 (($ $) 7 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3405 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3442 (((-85) $) NIL T ELT)) (-3418 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-3718 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3517 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3533 (($ |#1|) NIL T ELT)) (-3715 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3608 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3443 (((-85) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) ((|#1| $ (-484) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-694) $ "count") 16 T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-1570 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1476 (($ (-583 |#1|)) 22 T ELT)) (-3632 (((-85) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-3789 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3790 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3801 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3945 (($ (-583 |#1|)) 17 T ELT) (((-583 |#1|) $) 18 T ELT) (((-772) $) 21 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 14 T ELT)))
-(((-203 |#1|) (-13 (-608 |#1|) (-429 (-583 |#1|)) (-10 -8 (-15 -1476 ($ (-583 |#1|))) (-15 -3799 ($ $ "unique")) (-15 -3799 ($ $ "sort")) (-15 -3799 ((-694) $ "count")))) (-756)) (T -203))
-((-1476 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756)))))
-((-1477 (((-3 (-694) "failed") |#1| |#1| (-694)) 40 T ELT)))
-(((-204 |#1|) (-10 -7 (-15 -1477 ((-3 (-694) "failed") |#1| |#1| (-694)))) (-13 (-663) (-319) (-10 -7 (-15 ** (|#1| |#1| (-484)))))) (T -204))
-((-1477 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-694)) (-4 *3 (-13 (-663) (-319) (-10 -7 (-15 ** (*3 *3 (-484)))))) (-5 *1 (-204 *3)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-694)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 56 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 54 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 53 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 52 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2669 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-694)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 55 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 51 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 50 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 49 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-205 |#1|) (-113) (-961)) (T -205))
-NIL
-(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-811 (-1089))) (-6 (-808 |t#1| (-1089))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1089)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-654 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1089)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-806 $ (-1089)) |has| |#1| (-811 (-1089))) ((-808 |#1| (-1089)) |has| |#1| (-811 (-1089))) ((-811 (-1089)) |has| |#1| (-811 (-1089))) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3083 (((-1084 $) $ (-773 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1936 (($ $ (-583 (-484))) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| (-197 (-3956 |#1|) (-694)) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1084 $) (-773 |#1|)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-197 (-3956 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 (((-197 (-3956 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1624 (($ (-1 (-197 (-3956 |#1|) (-694)) (-197 (-3956 |#1|) (-694))) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#2| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3756 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3947 (((-197 (-3956 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-197 (-3956 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-206 |#1| |#2|) (-13 (-861 |#2| (-197 (-3956 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1936 ($ $ (-583 (-484)))))) (-583 (-1089)) (-961)) (T -206))
-((-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1089))) (-4 *4 (-961)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1478 (((-1184) $) 17 T ELT)) (-1480 (((-158 (-208)) $) 11 T ELT)) (-1479 (($ (-158 (-208))) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1481 (((-208) $) 7 T ELT)) (-3945 (((-772) $) 9 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 15 T ELT)))
-(((-207) (-13 (-1013) (-10 -8 (-15 -1481 ((-208) $)) (-15 -1480 ((-158 (-208)) $)) (-15 -1479 ($ (-158 (-208)))) (-15 -1478 ((-1184) $))))) (T -207))
-((-1481 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1479 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-207)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1423 (((-583 (-774)) $) NIL T ELT)) (-3541 (((-446) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1425 (((-161) $) NIL T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1482 (((-282) $) 7 T ELT)) (-1424 (((-583 (-85)) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-208) (-13 (-160) (-552 (-157)) (-10 -8 (-15 -1482 ((-282) $))))) (T -208))
-((-1482 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 (((-1094) $ (-694)) 14 T ELT)) (-3945 (((-772) $) 20 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT)) (-3956 (((-694) $) 11 T ELT)))
-(((-209) (-13 (-1013) (-241 (-694) (-1094)) (-10 -8 (-15 -3956 ((-694) $))))) (T -209))
-((-3956 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3706 (($ (-830)) NIL (|has| |#4| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#4| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#4| (-319)) ELT)) (-3787 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013))) ELT)) (-3156 ((|#4| $) NIL (|has| |#4| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013))) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1178 |#4|))) (-630 $) (-1178 $)) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-630 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#4| (-961)) ELT)) (-2994 (($) NIL (|has| |#4| (-319)) ELT)) (-1575 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#4| $ (-484)) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#4| (-717)) ELT)) (-2889 (((-583 |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL (|has| |#4| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-2608 (((-583 |#4|) $) NIL T ELT)) (-3245 (((-85) |#4| $) NIL (|has| |#4| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#4| (-319)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1178 |#4|))) (-1178 $) $) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-1178 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#4| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#4| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#4|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-2205 (((-583 |#4|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#4| $ (-484) |#4|) NIL T ELT) ((|#4| $ (-484)) 12 T ELT)) (-3835 ((|#4| $ $) NIL (|has| |#4| (-961)) ELT)) (-1467 (($ (-1178 |#4|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3757 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-1945 (((-694) |#4| $) NIL (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1013)) ELT) (((-772) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013))) ELT)) (-3126 (((-694)) NIL (|has| |#4| (-961)) CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#4| (-961)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL (|has| |#4| (-961)) CONST)) (-2669 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-2566 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3948 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-830)) NIL (|has| |#4| (-961)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-663)) ELT) (($ |#4| $) NIL (|has| |#4| (-663)) ELT) (($ $ $) NIL (|has| |#4| (-961)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-590 |#2|) (-590 |#3|)) (-830) (-961) (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-590 |#2|)) (T -210))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3706 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#3| (-319)) ELT)) (-3787 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT)) (-3156 ((|#3| $) NIL (|has| |#3| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 $) (-1178 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2994 (($) NIL (|has| |#3| (-319)) ELT)) (-1575 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#3| $ (-484)) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2889 (((-583 |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2608 (((-583 |#3|) $) NIL T ELT)) (-3245 (((-85) |#3| $) NIL (|has| |#3| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-1948 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#3| (-319)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-1178 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1178 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#3| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#3| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT)) (-2205 (((-583 |#3|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) 11 T ELT)) (-3835 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1467 (($ (-1178 |#3|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3757 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-1945 (((-694) |#3| $) NIL (|has| |#3| (-1013)) ELT) (((-694) (-1 (-85) |#3|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-772) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT)) (-3126 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#3| (-961)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL (|has| |#3| (-961)) CONST)) (-2669 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3948 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ $ $) NIL (|has| |#3| (-961)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-590 |#2|)) (-694) (-961) (-590 |#2|)) (T -211))
-NIL
-((-1487 (((-583 (-694)) $) 56 T ELT) (((-583 (-694)) $ |#3|) 59 T ELT)) (-1521 (((-694) $) 58 T ELT) (((-694) $ |#3|) 61 T ELT)) (-1483 (($ $) 76 T ELT)) (-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3771 (((-694) $ |#3|) 43 T ELT) (((-694) $) 38 T ELT)) (-1522 (((-1 $ (-694)) |#3|) 15 T ELT) (((-1 $ (-694)) $) 88 T ELT)) (-1485 ((|#4| $) 69 T ELT)) (-1486 (((-85) $) 67 T ELT)) (-1484 (($ $) 75 T ELT)) (-3767 (($ $ (-583 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 97 T ELT)) (-3757 (($ $ (-583 |#4|) (-583 (-694))) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1488 (((-583 |#3|) $) 86 T ELT)) (-3947 ((|#5| $) NIL T ELT) (((-694) $ |#4|) NIL T ELT) (((-583 (-694)) $ (-583 |#4|)) NIL T ELT) (((-694) $ |#3|) 49 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT)))
-(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3945 (|#1| |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3767 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#3| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#3| |#1|)) (-15 -1522 ((-1 |#1| (-694)) |#1|)) (-15 -1483 (|#1| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1485 (|#4| |#1|)) (-15 -1486 ((-85) |#1|)) (-15 -1521 ((-694) |#1| |#3|)) (-15 -1487 ((-583 (-694)) |#1| |#3|)) (-15 -1521 ((-694) |#1|)) (-15 -1487 ((-583 (-694)) |#1|)) (-15 -3947 ((-694) |#1| |#3|)) (-15 -3771 ((-694) |#1|)) (-15 -3771 ((-694) |#1| |#3|)) (-15 -1488 ((-583 |#3|) |#1|)) (-15 -1522 ((-1 |#1| (-694)) |#3|)) (-15 -3945 (|#1| |#3|)) (-15 -3157 ((-3 |#3| #1="failed") |#1|)) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3947 ((-583 (-694)) |#1| (-583 |#4|))) (-15 -3947 ((-694) |#1| |#4|)) (-15 -3945 (|#1| |#4|)) (-15 -3157 ((-3 |#4| #1#) |#1|)) (-15 -3767 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#4| |#1|)) (-15 -3767 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#4| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3947 (|#5| |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3757 (|#1| |#1| |#4|)) (-15 -3757 (|#1| |#1| (-583 |#4|))) (-15 -3757 (|#1| |#1| |#4| (-694))) (-15 -3757 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-961) (-756) (-228 |#3|) (-717)) (T -212))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1487 (((-583 (-694)) $) 251 T ELT) (((-583 (-694)) $ |#2|) 249 T ELT)) (-1521 (((-694) $) 250 T ELT) (((-694) $ |#2|) 248 T ELT)) (-3081 (((-583 |#3|) $) 123 T ELT)) (-3083 (((-1084 $) $ |#3|) 138 T ELT) (((-1084 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 111 (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) 110 (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 116 (|has| |#1| (-821)) ELT)) (-1483 (($ $) 244 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-349 (-484)) #2#) $) 178 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3156 ((|#1| $) 180 T ELT) (((-349 (-484)) $) 179 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3755 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3958 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 193 (|has| |#1| (-391)) ELT) (($ $ |#3|) 118 (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3722 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| |#4| $) 189 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 97 (-12 (|has| |#3| (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ |#2|) 254 T ELT) (((-694) $) 253 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3084 (($ (-1084 |#1|) |#3|) 130 T ELT) (($ (-1084 $) |#3|) 129 T ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3936 (((-85) $) 169 T ELT)) (-2893 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 133 T ELT)) (-2820 ((|#4| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-1624 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1522 (((-1 $ (-694)) |#2|) 256 T ELT) (((-1 $ (-694)) $) 243 (|has| |#1| (-190)) ELT)) (-3082 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 145 T ELT) (((-630 |#1|) (-1178 $)) 144 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT)) (-1485 ((|#3| $) 246 T ELT)) (-1890 (($ (-583 $)) 107 (|has| |#1| (-391)) ELT) (($ $ $) 106 (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1486 (((-85) $) 247 T ELT)) (-2823 (((-3 (-583 $) #3#) $) 127 T ELT)) (-2822 (((-3 (-583 $) #3#) $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #3#) $) 126 T ELT)) (-1484 (($ $) 245 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 183 T ELT)) (-1795 ((|#1| $) 184 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 108 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) 105 (|has| |#1| (-391)) ELT) (($ $ $) 104 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 112 (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3756 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-694)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 234 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 232 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 231 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 230 (|has| |#1| (-811 (-1089))) ELT)) (-1488 (((-583 |#2|) $) 255 T ELT)) (-3947 ((|#4| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT) (((-694) $ |#2|) 252 T ELT)) (-3971 (((-800 (-329)) $) 95 (-12 (|has| |#3| (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-391)) ELT) (($ $ |#3|) 119 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-349 (-484))) 91 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) 185 T ELT)) (-3676 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-694)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 233 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 229 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 228 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 227 (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
-(((-213 |#1| |#2| |#3| |#4|) (-113) (-961) (-756) (-228 |t#2|) (-717)) (T -213))
-((-1522 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3947 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1487 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1521 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717)) (-4 *2 (-228 *4)))) (-1484 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1483 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1522 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6)))))
-(-13 (-861 |t#1| |t#4| |t#3|) (-184 |t#1|) (-950 |t#2|) (-10 -8 (-15 -1522 ((-1 $ (-694)) |t#2|)) (-15 -1488 ((-583 |t#2|) $)) (-15 -3771 ((-694) $ |t#2|)) (-15 -3771 ((-694) $)) (-15 -3947 ((-694) $ |t#2|)) (-15 -1487 ((-583 (-694)) $)) (-15 -1521 ((-694) $)) (-15 -1487 ((-583 (-694)) $ |t#2|)) (-15 -1521 ((-694) $ |t#2|)) (-15 -1486 ((-85) $)) (-15 -1485 (|t#3| $)) (-15 -1484 ($ $)) (-15 -1483 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-455 |t#2| |t#1|)) (-6 (-455 |t#2| $)) (-6 (-260 $)) (-15 -1522 ((-1 $ (-694)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#2|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-821)) (|has| |#1| (-391))) ((-455 |#2| |#1|) |has| |#1| (-190)) ((-455 |#2| $) |has| |#1| (-190)) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-663) . T) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-806 $ |#3|) . T) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-809 |#3|) . T) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-811 |#3|) . T) ((-796 (-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-861 |#1| |#4| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#2|) . T) ((-950 |#3|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-821)))
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1494 ((|#1| $) 59 T ELT)) (-3323 ((|#1| $) 49 T ELT)) (-3723 (($) 7 T CONST)) (-3002 (($ $) 65 T ELT)) (-2297 (($ $) 53 T ELT)) (-3325 ((|#1| |#1| $) 51 T ELT)) (-3324 ((|#1| $) 50 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3832 (((-694) $) 66 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-1492 ((|#1| |#1| $) 57 T ELT)) (-1491 ((|#1| |#1| $) 56 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-2603 (((-694) $) 60 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) 67 T ELT)) (-1490 ((|#1| $) 55 T ELT)) (-1489 ((|#1| $) 54 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3004 ((|#1| |#1| $) 63 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3003 ((|#1| $) 64 T ELT)) (-1495 (($) 62 T ELT) (($ (-583 |#1|)) 61 T ELT)) (-3322 (((-694) $) 48 T ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1493 ((|#1| $) 58 T ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-3000 ((|#1| $) 68 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-214 |#1|) (-113) (-1128)) (T -214))
-((-1495 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-214 *3)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1492 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1491 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-2297 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
-(-13 (-1034 |t#1|) (-908 |t#1|) (-10 -8 (-15 -1495 ($)) (-15 -1495 ($ (-583 |t#1|))) (-15 -2603 ((-694) $)) (-15 -1494 (|t#1| $)) (-15 -1493 (|t#1| $)) (-15 -1492 (|t#1| |t#1| $)) (-15 -1491 (|t#1| |t#1| $)) (-15 -1490 (|t#1| $)) (-15 -1489 (|t#1| $)) (-15 -2297 ($ $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-908 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1034 |#1|) . T) ((-1128) . T))
-((-1496 (((-1046 (-179)) (-792 |#1|) (-1004 (-329)) (-1004 (-329))) 75 T ELT) (((-1046 (-179)) (-792 |#1|) (-1004 (-329)) (-1004 (-329)) (-583 (-221))) 74 T ELT) (((-1046 (-179)) |#1| (-1004 (-329)) (-1004 (-329))) 65 T ELT) (((-1046 (-179)) |#1| (-1004 (-329)) (-1004 (-329)) (-583 (-221))) 64 T ELT) (((-1046 (-179)) (-789 |#1|) (-1004 (-329))) 56 T ELT) (((-1046 (-179)) (-789 |#1|) (-1004 (-329)) (-583 (-221))) 55 T ELT)) (-1503 (((-1182) (-792 |#1|) (-1004 (-329)) (-1004 (-329))) 78 T ELT) (((-1182) (-792 |#1|) (-1004 (-329)) (-1004 (-329)) (-583 (-221))) 77 T ELT) (((-1182) |#1| (-1004 (-329)) (-1004 (-329))) 68 T ELT) (((-1182) |#1| (-1004 (-329)) (-1004 (-329)) (-583 (-221))) 67 T ELT) (((-1182) (-789 |#1|) (-1004 (-329))) 60 T ELT) (((-1182) (-789 |#1|) (-1004 (-329)) (-583 (-221))) 59 T ELT) (((-1181) (-787 |#1|) (-1004 (-329))) 47 T ELT) (((-1181) (-787 |#1|) (-1004 (-329)) (-583 (-221))) 46 T ELT) (((-1181) |#1| (-1004 (-329))) 38 T ELT) (((-1181) |#1| (-1004 (-329)) (-583 (-221))) 36 T ELT)))
-(((-215 |#1|) (-10 -7 (-15 -1503 ((-1181) |#1| (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1181) |#1| (-1004 (-329)))) (-15 -1503 ((-1181) (-787 |#1|) (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1181) (-787 |#1|) (-1004 (-329)))) (-15 -1503 ((-1182) (-789 |#1|) (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-789 |#1|) (-1004 (-329)))) (-15 -1496 ((-1046 (-179)) (-789 |#1|) (-1004 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-789 |#1|) (-1004 (-329)))) (-15 -1503 ((-1182) |#1| (-1004 (-329)) (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) |#1| (-1004 (-329)) (-1004 (-329)))) (-15 -1496 ((-1046 (-179)) |#1| (-1004 (-329)) (-1004 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) |#1| (-1004 (-329)) (-1004 (-329)))) (-15 -1503 ((-1182) (-792 |#1|) (-1004 (-329)) (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-792 |#1|) (-1004 (-329)) (-1004 (-329)))) (-15 -1496 ((-1046 (-179)) (-792 |#1|) (-1004 (-329)) (-1004 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-792 |#1|) (-1004 (-329)) (-1004 (-329))))) (-13 (-553 (-473)) (-1013))) (T -215))
-((-1496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1496 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-787 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))))
-((-1497 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1496 (((-1046 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329))) 178 T ELT) (((-1046 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 176 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329))) 181 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 177 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329))) 169 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 168 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-329))) 150 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-329)) (-583 (-221))) 148 T ELT) (((-1046 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-329))) 149 T ELT) (((-1046 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221))) 146 T ELT)) (-1503 (((-1182) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329))) 180 T ELT) (((-1182) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 179 T ELT) (((-1182) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329))) 183 T ELT) (((-1182) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 182 T ELT) (((-1182) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329))) 171 T ELT) (((-1182) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 170 T ELT) (((-1182) (-1 (-854 (-179)) (-179)) (-1001 (-329))) 156 T ELT) (((-1182) (-1 (-854 (-179)) (-179)) (-1001 (-329)) (-583 (-221))) 155 T ELT) (((-1182) (-789 (-1 (-179) (-179))) (-1001 (-329))) 154 T ELT) (((-1182) (-789 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221))) 153 T ELT) (((-1181) (-787 (-1 (-179) (-179))) (-1001 (-329))) 118 T ELT) (((-1181) (-787 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221))) 117 T ELT) (((-1181) (-1 (-179) (-179)) (-1001 (-329))) 112 T ELT) (((-1181) (-1 (-179) (-179)) (-1001 (-329)) (-583 (-221))) 110 T ELT)))
-(((-216) (-10 -7 (-15 -1503 ((-1181) (-1 (-179) (-179)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1181) (-1 (-179) (-179)) (-1001 (-329)))) (-15 -1503 ((-1181) (-787 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1181) (-787 (-1 (-179) (-179))) (-1001 (-329)))) (-15 -1503 ((-1182) (-789 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-789 (-1 (-179) (-179))) (-1001 (-329)))) (-15 -1503 ((-1182) (-1 (-854 (-179)) (-179)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-1 (-854 (-179)) (-179)) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-329)))) (-15 -1503 ((-1182) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)))) (-15 -1503 ((-1182) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)))) (-15 -1503 ((-1182) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)))) (-15 -1497 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216))
-((-1497 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))))
-((-1503 (((-1181) (-249 |#2|) (-1089) (-1089) (-583 (-221))) 102 T ELT)))
-(((-217 |#1| |#2|) (-10 -7 (-15 -1503 ((-1181) (-249 |#2|) (-1089) (-1089) (-583 (-221))))) (-13 (-495) (-756) (-950 (-484))) (-363 |#1|)) (T -217))
-((-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1089)) (-5 *5 (-583 (-221))) (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-756) (-950 (-484)))) (-5 *2 (-1181)) (-5 *1 (-217 *6 *7)))))
-((-1500 (((-484) (-484)) 71 T ELT)) (-1501 (((-484) (-484)) 72 T ELT)) (-1502 (((-179) (-179)) 73 T ELT)) (-1499 (((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179))) 70 T ELT)) (-1498 (((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85)) 68 T ELT)))
-(((-218) (-10 -7 (-15 -1498 ((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85))) (-15 -1499 ((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -1500 ((-484) (-484))) (-15 -1501 ((-484) (-484))) (-15 -1502 ((-179) (-179))))) (T -218))
-((-1502 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *2 (-1182)) (-5 *1 (-218)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *5 (-85)) (-5 *2 (-1182)) (-5 *1 (-218)))))
-((-3945 (((-1004 (-329)) (-1004 (-265 |#1|))) 16 T ELT)))
-(((-219 |#1|) (-10 -7 (-15 -3945 ((-1004 (-329)) (-1004 (-265 |#1|))))) (-13 (-756) (-495) (-553 (-329)))) (T -219))
-((-3945 (*1 *2 *3) (-12 (-5 *3 (-1004 (-265 *4))) (-4 *4 (-13 (-756) (-495) (-553 (-329)))) (-5 *2 (-1004 (-329))) (-5 *1 (-219 *4)))))
-((-1503 (((-1182) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221))) 23 T ELT) (((-1182) (-583 (-179)) (-583 (-179)) (-583 (-179))) 24 T ELT) (((-1181) (-583 (-854 (-179))) (-583 (-221))) 16 T ELT) (((-1181) (-583 (-854 (-179)))) 17 T ELT) (((-1181) (-583 (-179)) (-583 (-179)) (-583 (-221))) 20 T ELT) (((-1181) (-583 (-179)) (-583 (-179))) 21 T ELT)))
-(((-220) (-10 -7 (-15 -1503 ((-1181) (-583 (-179)) (-583 (-179)))) (-15 -1503 ((-1181) (-583 (-179)) (-583 (-179)) (-583 (-221)))) (-15 -1503 ((-1181) (-583 (-854 (-179))))) (-15 -1503 ((-1181) (-583 (-854 (-179))) (-583 (-221)))) (-15 -1503 ((-1182) (-583 (-179)) (-583 (-179)) (-583 (-179)))) (-15 -1503 ((-1182) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221)))))) (T -220))
-((-1503 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1181)) (-5 *1 (-220)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3880 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1516 (($ (-830)) 81 T ELT)) (-1515 (($ (-830)) 80 T ELT)) (-1771 (($ (-583 (-329))) 87 T ELT)) (-1519 (($ (-329)) 66 T ELT)) (-1518 (($ (-830)) 82 T ELT)) (-1512 (($ (-85)) 33 T ELT)) (-3882 (($ (-1072)) 28 T ELT)) (-1511 (($ (-1072)) 29 T ELT)) (-1517 (($ (-1046 (-179))) 76 T ELT)) (-1927 (($ (-583 (-1001 (-329)))) 72 T ELT)) (-1505 (($ (-583 (-1001 (-329)))) 68 T ELT) (($ (-583 (-1001 (-349 (-484))))) 71 T ELT)) (-1508 (($ (-329)) 38 T ELT) (($ (-783)) 42 T ELT)) (-1504 (((-85) (-583 $) (-1089)) 100 T ELT)) (-1520 (((-3 (-51) "failed") (-583 $) (-1089)) 102 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1507 (($ (-329)) 43 T ELT) (($ (-783)) 44 T ELT)) (-3224 (($ (-1 (-854 (-179)) (-854 (-179)))) 65 T ELT)) (-2266 (($ (-1 (-854 (-179)) (-854 (-179)))) 83 T ELT)) (-1506 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3945 (((-772) $) 93 T ELT)) (-1509 (($ (-85)) 34 T ELT) (($ (-583 (-1001 (-329)))) 60 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1922 (($ (-85)) 35 T ELT)) (-3056 (((-85) $ $) 97 T ELT)))
-(((-221) (-13 (-1013) (-10 -8 (-15 -1922 ($ (-85))) (-15 -1509 ($ (-85))) (-15 -3880 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3882 ($ (-1072))) (-15 -1511 ($ (-1072))) (-15 -1512 ($ (-85))) (-15 -1509 ($ (-583 (-1001 (-329))))) (-15 -3224 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1508 ($ (-329))) (-15 -1508 ($ (-783))) (-15 -1507 ($ (-329))) (-15 -1507 ($ (-783))) (-15 -1506 ($ (-1 (-179) (-179)))) (-15 -1506 ($ (-1 (-179) (-179) (-179)))) (-15 -1506 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1519 ($ (-329))) (-15 -1505 ($ (-583 (-1001 (-329))))) (-15 -1505 ($ (-583 (-1001 (-349 (-484)))))) (-15 -1927 ($ (-583 (-1001 (-329))))) (-15 -1517 ($ (-1046 (-179)))) (-15 -1515 ($ (-830))) (-15 -1516 ($ (-830))) (-15 -1518 ($ (-830))) (-15 -2266 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1771 ($ (-583 (-329)))) (-15 -1520 ((-3 (-51) "failed") (-583 $) (-1089))) (-15 -1504 ((-85) (-583 $) (-1089)))))) (T -221))
-((-1922 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349 (-484))))) (-5 *1 (-221)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-221)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-2266 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1771 (*1 *1 *2) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-221)))) (-1520 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *2 (-85)) (-5 *1 (-221)))))
-((-3880 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1516 (((-830) (-583 (-221)) (-830)) 52 T ELT)) (-1515 (((-830) (-583 (-221)) (-830)) 51 T ELT)) (-3850 (((-583 (-329)) (-583 (-221)) (-583 (-329))) 68 T ELT)) (-1519 (((-329) (-583 (-221)) (-329)) 57 T ELT)) (-1518 (((-830) (-583 (-221)) (-830)) 53 T ELT)) (-1512 (((-85) (-583 (-221)) (-85)) 27 T ELT)) (-3882 (((-1072) (-583 (-221)) (-1072)) 19 T ELT)) (-1511 (((-1072) (-583 (-221)) (-1072)) 26 T ELT)) (-1517 (((-1046 (-179)) (-583 (-221))) 46 T ELT)) (-1927 (((-583 (-1001 (-329))) (-583 (-221)) (-583 (-1001 (-329)))) 40 T ELT)) (-1513 (((-783) (-583 (-221)) (-783)) 32 T ELT)) (-1514 (((-783) (-583 (-221)) (-783)) 33 T ELT)) (-2266 (((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179)))) 63 T ELT)) (-1510 (((-85) (-583 (-221)) (-85)) 14 T ELT)) (-1922 (((-85) (-583 (-221)) (-85)) 13 T ELT)))
-(((-222) (-10 -7 (-15 -1922 ((-85) (-583 (-221)) (-85))) (-15 -1510 ((-85) (-583 (-221)) (-85))) (-15 -3880 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3882 ((-1072) (-583 (-221)) (-1072))) (-15 -1511 ((-1072) (-583 (-221)) (-1072))) (-15 -1512 ((-85) (-583 (-221)) (-85))) (-15 -1513 ((-783) (-583 (-221)) (-783))) (-15 -1514 ((-783) (-583 (-221)) (-783))) (-15 -1927 ((-583 (-1001 (-329))) (-583 (-221)) (-583 (-1001 (-329))))) (-15 -1515 ((-830) (-583 (-221)) (-830))) (-15 -1516 ((-830) (-583 (-221)) (-830))) (-15 -1517 ((-1046 (-179)) (-583 (-221)))) (-15 -1518 ((-830) (-583 (-221)) (-830))) (-15 -1519 ((-329) (-583 (-221)) (-329))) (-15 -2266 ((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179))))) (-15 -3850 ((-583 (-329)) (-583 (-221)) (-583 (-329)))))) (T -222))
-((-3850 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-329))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-2266 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3 *2) (-12 (-5 *2 (-329)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1927 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3882 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3880 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1922 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-((-1520 (((-3 |#1| "failed") (-583 (-221)) (-1089)) 17 T ELT)))
-(((-223 |#1|) (-10 -7 (-15 -1520 ((-3 |#1| "failed") (-583 (-221)) (-1089)))) (-1128)) (T -223))
-((-1520 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *1 (-223 *2)) (-4 *2 (-1128)))))
-((-3757 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) 11 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) 19 T ELT) (($ $ (-694)) NIL T ELT) (($ $) 16 T ELT)) (-2669 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-694)) 14 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)))
-(((-224 |#1| |#2|) (-10 -7 (-15 -3757 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -2669 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -2669 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -2669 (|#1| |#1| (-583 (-1089)))) (-15 -2669 (|#1| |#1| (-1089) (-694))) (-15 -2669 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -2669 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -2669 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1128)) (T -224))
-NIL
-((-3757 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 22 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 16 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 15 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 14 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089)) 12 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-694)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2669 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 20 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 19 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 18 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 17 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089)) 13 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-694)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT)))
-(((-225 |#1|) (-113) (-1128)) (T -225))
-((-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) (-3757 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))))
-(-13 (-1128) (-10 -8 (-15 -3757 ($ $ (-1 |t#1| |t#1|))) (-15 -3757 ($ $ (-1 |t#1| |t#1|) (-694))) (-15 -2669 ($ $ (-1 |t#1| |t#1|))) (-15 -2669 ($ $ (-1 |t#1| |t#1|) (-694))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-811 (-1089))) (-6 (-811 (-1089))) |%noBranch|)))
-(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-806 $ (-1089)) |has| |#1| (-811 (-1089))) ((-811 (-1089)) |has| |#1| (-811 (-1089))) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1487 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ |#2|) NIL T ELT)) (-1521 (((-694) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-3083 (((-1084 $) $ |#3|) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 |#3|)) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1483 (($ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1038 |#1| |#2|) #1#) $) 23 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1038 |#1| |#2|) $) NIL T ELT)) (-3755 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ |#3|) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 |#3|) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ELT)) (-3771 (((-694) $ |#2|) NIL T ELT) (((-694) $) 10 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#1|) |#3|) NIL T ELT) (($ (-1084 $) |#3|) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) NIL T ELT)) (-2820 (((-469 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT)) (-1624 (($ (-1 (-469 |#3|) (-469 |#3|)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1522 (((-1 $ (-694)) |#2|) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3082 (((-3 |#3| #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1485 ((|#3| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1486 (((-85) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3756 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1488 (((-583 |#2|) $) NIL T ELT)) (-3947 (((-469 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ |#3|) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1038 |#1| |#2|)) 32 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-469 |#3|)) (-950 (-1038 |#1| |#2|))) (-961) (-756) (-228 |#2|)) (T -226))
-NIL
-((-1521 (((-694) $) 37 T ELT)) (-3157 (((-3 |#2| "failed") $) 22 T ELT)) (-3156 ((|#2| $) 33 T ELT)) (-3757 (($ $ (-694)) 18 T ELT) (($ $) 14 T ELT)) (-3945 (((-772) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3056 (((-85) $ $) 26 T ELT)) (-2685 (((-85) $ $) 36 T ELT)))
-(((-227 |#1| |#2|) (-10 -7 (-15 -1521 ((-694) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3157 ((-3 |#2| "failed") |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -2685 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-228 |#2|) (-756)) (T -227))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-1521 (((-694) $) 26 T ELT)) (-3830 ((|#1| $) 27 T ELT)) (-3157 (((-3 |#1| "failed") $) 31 T ELT)) (-3156 ((|#1| $) 32 T ELT)) (-3771 (((-694) $) 28 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-1522 (($ |#1| (-694)) 29 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-694)) 35 T ELT) (($ $) 33 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2669 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)))
-(((-228 |#1|) (-113) (-756)) (T -228))
-((-1522 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))))
-(-13 (-756) (-189) (-950 |t#1|) (-10 -8 (-15 -1522 ($ |t#1| (-694))) (-15 -3771 ((-694) $)) (-15 -3830 (|t#1| $)) (-15 -1521 ((-694) $))))
-(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1524 (((-583 (-484)) $) 28 T ELT)) (-3947 (((-694) $) 26 T ELT)) (-3945 (((-772) $) 32 T ELT) (($ (-583 (-484))) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1523 (($ (-694)) 29 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 18 T ELT)))
-(((-229) (-13 (-756) (-10 -8 (-15 -3945 ($ (-583 (-484)))) (-15 -3947 ((-694) $)) (-15 -1524 ((-583 (-484)) $)) (-15 -1523 ($ (-694)))))) (T -229))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229)))))
-((-3491 ((|#2| |#2|) 77 T ELT)) (-3638 ((|#2| |#2|) 65 T ELT)) (-1553 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3489 ((|#2| |#2|) 75 T ELT)) (-3637 ((|#2| |#2|) 63 T ELT)) (-3493 ((|#2| |#2|) 79 T ELT)) (-3636 ((|#2| |#2|) 67 T ELT)) (-3626 ((|#2|) 46 T ELT)) (-3594 (((-86) (-86)) 97 T ELT)) (-3941 ((|#2| |#2|) 61 T ELT)) (-1554 (((-85) |#2|) 146 T ELT)) (-1543 ((|#2| |#2|) 193 T ELT)) (-1531 ((|#2| |#2|) 169 T ELT)) (-1526 ((|#2|) 59 T ELT)) (-1525 ((|#2|) 58 T ELT)) (-1541 ((|#2| |#2|) 189 T ELT)) (-1529 ((|#2| |#2|) 165 T ELT)) (-1545 ((|#2| |#2|) 197 T ELT)) (-1533 ((|#2| |#2|) 173 T ELT)) (-1528 ((|#2| |#2|) 161 T ELT)) (-1527 ((|#2| |#2|) 163 T ELT)) (-1546 ((|#2| |#2|) 199 T ELT)) (-1534 ((|#2| |#2|) 175 T ELT)) (-1544 ((|#2| |#2|) 195 T ELT)) (-1532 ((|#2| |#2|) 171 T ELT)) (-1542 ((|#2| |#2|) 191 T ELT)) (-1530 ((|#2| |#2|) 167 T ELT)) (-1549 ((|#2| |#2|) 205 T ELT)) (-1537 ((|#2| |#2|) 181 T ELT)) (-1547 ((|#2| |#2|) 201 T ELT)) (-1535 ((|#2| |#2|) 177 T ELT)) (-1551 ((|#2| |#2|) 209 T ELT)) (-1539 ((|#2| |#2|) 185 T ELT)) (-1552 ((|#2| |#2|) 211 T ELT)) (-1540 ((|#2| |#2|) 187 T ELT)) (-1550 ((|#2| |#2|) 207 T ELT)) (-1538 ((|#2| |#2|) 183 T ELT)) (-1548 ((|#2| |#2|) 203 T ELT)) (-1536 ((|#2| |#2|) 179 T ELT)) (-3942 ((|#2| |#2|) 62 T ELT)) (-3494 ((|#2| |#2|) 80 T ELT)) (-3635 ((|#2| |#2|) 68 T ELT)) (-3492 ((|#2| |#2|) 78 T ELT)) (-3634 ((|#2| |#2|) 66 T ELT)) (-3490 ((|#2| |#2|) 76 T ELT)) (-3633 ((|#2| |#2|) 64 T ELT)) (-2254 (((-85) (-86)) 95 T ELT)) (-3497 ((|#2| |#2|) 83 T ELT)) (-3485 ((|#2| |#2|) 71 T ELT)) (-3495 ((|#2| |#2|) 81 T ELT)) (-3483 ((|#2| |#2|) 69 T ELT)) (-3499 ((|#2| |#2|) 85 T ELT)) (-3487 ((|#2| |#2|) 73 T ELT)) (-3500 ((|#2| |#2|) 86 T ELT)) (-3488 ((|#2| |#2|) 74 T ELT)) (-3498 ((|#2| |#2|) 84 T ELT)) (-3486 ((|#2| |#2|) 72 T ELT)) (-3496 ((|#2| |#2|) 82 T ELT)) (-3484 ((|#2| |#2|) 70 T ELT)))
-(((-230 |#1| |#2|) (-10 -7 (-15 -3942 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3626 (|#2|)) (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -1525 (|#2|)) (-15 -1526 (|#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1554 ((-85) |#2|))) (-495) (-13 (-363 |#1|) (-915))) (T -230))
-((-1554 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-363 *4) (-915))))) (-1553 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-363 *4) (-915))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2)))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1526 (*1 *2) (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-1525 (*1 *2) (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-363 *3) (-915))))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-363 *4) (-915))))) (-3626 (*1 *2) (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
-((-1557 (((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1089)) 151 T ELT)) (-1559 ((|#2| (-349 (-484)) |#2|) 49 T ELT)) (-1558 ((|#2| |#2| (-550 |#2|)) 144 T ELT)) (-1555 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1089)) 143 T ELT)) (-1556 ((|#2| |#2| (-1089)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2443 ((|#2| |#2| (-1089)) 157 T ELT) ((|#2| |#2|) 155 T ELT)))
-(((-231 |#1| |#2|) (-10 -7 (-15 -2443 (|#2| |#2|)) (-15 -2443 (|#2| |#2| (-1089))) (-15 -1555 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1089))) (-15 -1556 (|#2| |#2|)) (-15 -1556 (|#2| |#2| (-1089))) (-15 -1557 ((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1089))) (-15 -1558 (|#2| |#2| (-550 |#2|))) (-15 -1559 (|#2| (-349 (-484)) |#2|))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -231))
-((-1559 (*1 *2 *3 *2) (-12 (-5 *3 (-349 (-484))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)))) (-1557 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1089)) (-4 *2 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *5 *2)))) (-1556 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-1556 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-1555 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2443 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))))
-((-2975 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3491 ((|#3| |#3|) 142 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3638 ((|#3| |#3|) 132 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3489 ((|#3| |#3|) 140 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3637 ((|#3| |#3|) 130 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3493 ((|#3| |#3|) 144 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3636 ((|#3| |#3|) 134 T ELT)) (-2958 (((-3 |#3| #1#) |#3| (-694)) 41 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3941 ((|#3| |#3|) 129 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3942 ((|#3| |#3|) 128 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3494 ((|#3| |#3|) 145 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3635 ((|#3| |#3|) 135 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3492 ((|#3| |#3|) 143 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3634 ((|#3| |#3|) 133 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3490 ((|#3| |#3|) 141 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3633 ((|#3| |#3|) 131 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3497 ((|#3| |#3|) 148 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3485 ((|#3| |#3|) 152 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3495 ((|#3| |#3|) 146 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3483 ((|#3| |#3|) 136 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3499 ((|#3| |#3|) 150 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3487 ((|#3| |#3|) 138 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3500 ((|#3| |#3|) 151 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3488 ((|#3| |#3|) 139 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3498 ((|#3| |#3|) 149 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3486 ((|#3| |#3|) 153 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3496 ((|#3| |#3|) 147 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3484 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-349 (-484))) 47 (|has| |#1| (-312)) ELT)))
-(((-232 |#1| |#2| |#3|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-349 (-484)))) |%noBranch|) (-15 -3942 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)))) (-38 (-349 (-484))) (-1171 |#1|) (-1142 |#1| |#2|)) (T -232))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-349 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1171 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1142 *4 *5)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))))
-((-2975 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3491 ((|#3| |#3|) 137 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3638 ((|#3| |#3|) 125 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3489 ((|#3| |#3|) 135 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3637 ((|#3| |#3|) 123 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3493 ((|#3| |#3|) 139 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3636 ((|#3| |#3|) 127 T ELT)) (-2958 (((-3 |#3| #1#) |#3| (-694)) 38 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3941 ((|#3| |#3|) 111 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3942 ((|#3| |#3|) 122 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3494 ((|#3| |#3|) 140 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3635 ((|#3| |#3|) 128 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3492 ((|#3| |#3|) 138 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3634 ((|#3| |#3|) 126 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3490 ((|#3| |#3|) 136 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3633 ((|#3| |#3|) 124 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3497 ((|#3| |#3|) 143 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3485 ((|#3| |#3|) 131 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3495 ((|#3| |#3|) 141 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3483 ((|#3| |#3|) 129 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3499 ((|#3| |#3|) 145 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3487 ((|#3| |#3|) 133 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3500 ((|#3| |#3|) 146 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3488 ((|#3| |#3|) 134 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3498 ((|#3| |#3|) 144 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3486 ((|#3| |#3|) 132 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3496 ((|#3| |#3|) 142 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3484 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-349 (-484))) 44 (|has| |#1| (-312)) ELT)))
-(((-233 |#1| |#2| |#3| |#4|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-349 (-484)))) |%noBranch|) (-15 -3942 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)))) (-38 (-349 (-484))) (-1140 |#1|) (-1163 |#1| |#2|) (-896 |#2|)) (T -233))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-349 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1140 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1163 *4 *5)) (-4 *6 (-896 *5)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))))
-((-1562 (((-85) $) 20 T ELT)) (-1564 (((-1094) $) 9 T ELT)) (-3568 (((-3 (-446) #1="failed") $) 15 T ELT)) (-3567 (((-3 (-583 $) #1#) $) NIL T ELT)) (-1561 (((-3 (-446) #1#) $) 21 T ELT)) (-1563 (((-3 (-1015) #1#) $) 19 T ELT)) (-3952 (((-85) $) 17 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1560 (((-85) $) 10 T ELT)))
-(((-234) (-13 (-552 (-772)) (-10 -8 (-15 -1564 ((-1094) $)) (-15 -3952 ((-85) $)) (-15 -1563 ((-3 (-1015) #1="failed") $)) (-15 -1562 ((-85) $)) (-15 -1561 ((-3 (-446) #1#) $)) (-15 -1560 ((-85) $)) (-15 -3568 ((-3 (-446) #1#) $)) (-15 -3567 ((-3 (-583 $) #1#) $))))) (T -234))
-((-1564 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-234)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3568 (*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) (-3567 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234)))))
-((-1566 (((-532) $) 10 T ELT)) (-1567 (((-522) $) 8 T ELT)) (-1565 (((-247) $) 12 T ELT)) (-1568 (($ (-522) (-532) (-247)) NIL T ELT)) (-3945 (((-772) $) 19 T ELT)))
-(((-235) (-13 (-552 (-772)) (-10 -8 (-15 -1568 ($ (-522) (-532) (-247))) (-15 -1567 ((-522) $)) (-15 -1566 ((-532) $)) (-15 -1565 ((-247) $))))) (T -235))
-((-1568 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235)))))
-((-3709 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1352 (($ $) 38 T ELT)) (-3404 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3405 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2856 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2304 (($ |#2| $ (-484)) 20 T ELT) (($ $ $ (-484)) 22 T ELT)) (-2305 (($ $ (-484)) 11 T ELT) (($ $ (-1145 (-484))) 14 T ELT)) (-3790 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3801 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-583 $)) NIL T ELT)))
-(((-236 |#1| |#2|) (-10 -7 (-15 -2856 (|#1| |#1| |#1|)) (-15 -3404 (|#1| |#2| |#1|)) (-15 -2856 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3404 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1| |#2|)) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1145 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -3801 (|#1| (-583 |#1|))) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#2|)) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3709 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -1352 (|#1| |#1|))) (-237 |#2|) (-1128)) (T -236))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2368 (($ $) 92 (|has| |#1| (-1013)) ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1013)) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2856 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3608 (($ |#1| $ (-484)) 97 T ELT) (($ $ $ (-484)) 96 T ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-1570 (($ $ (-484)) 100 T ELT) (($ $ (-1145 (-484))) 99 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3790 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-237 |#1|) (-113) (-1128)) (T -237))
-((-3790 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3608 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-3608 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-2856 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-1569 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3404 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-2856 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))))
-(-13 (-593 |t#1|) (-10 -8 (-6 -3995) (-15 -3790 ($ $ |t#1|)) (-15 -3790 ($ $ $)) (-15 -1570 ($ $ (-484))) (-15 -1570 ($ $ (-1145 (-484)))) (-15 -3404 ($ (-1 (-85) |t#1|) $)) (-15 -3608 ($ |t#1| $ (-484))) (-15 -3608 ($ $ $ (-484))) (-15 -2856 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1569 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3404 ($ |t#1| $)) (-15 -2368 ($ $))) |%noBranch|) (IF (|has| |t#1| (-756)) (-15 -2856 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485)))) (-2485 (*1 *1 *1) (-4 *1 (-201))))
+(-13 (-246) (-38 (-350 (-485))) (-10 -8 (-15 ** ($ $ (-485))) (-15 -2485 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-246) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-655 (-350 (-485))) . T) ((-664) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3797 (($ $) 63 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-1474 (($ $ $) 59 (|has| $ (-6 -3996)) ELT)) (-1473 (($ $ $) 58 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-1476 (($ $) 62 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-1475 (($ $) 61 T ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3798 ((|#1| $) 65 T ELT)) (-3179 (($ $) 64 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3791 (($ $ $) 60 (|has| $ (-6 -3996)) ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-202 |#1|) (-113) (-1129)) (T -202))
+((-3798 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1475 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-3791 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1474 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1473 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(-13 (-924 |t#1|) (-10 -8 (-15 -3798 (|t#1| $)) (-15 -3179 ($ $)) (-15 -3797 ($ $)) (-15 -1476 ($ $)) (-15 -1475 ($ $)) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3791 ($ $ $)) (-15 -1474 ($ $ $)) (-15 -1473 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) NIL T ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1730 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2910 (($ $) 10 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3442 (((-85) $ (-695)) NIL T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-3799 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2369 (($ $) NIL (|has| |#1| (-1014)) ELT)) (-1353 (($ $) 7 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3405 (($ |#1| $) NIL (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-1576 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-3419 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3614 (($ (-695) |#1|) NIL T ELT)) (-3719 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3518 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3534 (($ |#1|) NIL T ELT)) (-3716 (((-85) $ (-695)) NIL T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3798 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3609 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3444 (((-85) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) ((|#1| $ (-485) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-695) $ "count") 16 T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-1571 (($ $ (-1146 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-1146 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1477 (($ (-584 |#1|)) 22 T ELT)) (-3633 (((-85) $) NIL T ELT)) (-3792 (($ $) NIL T ELT)) (-3790 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-3793 (((-695) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) NIL T ELT)) (-3791 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3802 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3946 (($ (-584 |#1|)) 17 T ELT) (((-584 |#1|) $) 18 T ELT) (((-773) $) 21 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) 14 T ELT)))
+(((-203 |#1|) (-13 (-609 |#1|) (-430 (-584 |#1|)) (-10 -8 (-15 -1477 ($ (-584 |#1|))) (-15 -3800 ($ $ "unique")) (-15 -3800 ($ $ "sort")) (-15 -3800 ((-695) $ "count")))) (-757)) (T -203))
+((-1477 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757)))))
+((-1478 (((-3 (-695) "failed") |#1| |#1| (-695)) 40 T ELT)))
+(((-204 |#1|) (-10 -7 (-15 -1478 ((-3 (-695) "failed") |#1| |#1| (-695)))) (-13 (-664) (-320) (-10 -7 (-15 ** (|#1| |#1| (-485)))))) (T -204))
+((-1478 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-695)) (-4 *3 (-13 (-664) (-320) (-10 -7 (-15 ** (*3 *3 (-485)))))) (-5 *1 (-204 *3)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3758 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-695)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 56 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 54 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 53 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 52 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2670 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-695)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 55 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 51 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 50 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 49 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-205 |#1|) (-113) (-962)) (T -205))
+NIL
+(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-812 (-1090))) (-6 (-809 |t#1| (-1090))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1090)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-655 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1090)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-807 $ (-1090)) |has| |#1| (-812 (-1090))) ((-809 |#1| (-1090)) |has| |#1| (-812 (-1090))) ((-812 (-1090)) |has| |#1| (-812 (-1090))) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3084 (((-1085 $) $ (-774 |#1|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1937 (($ $ (-584 (-485))) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1624 (($ $ |#2| (-197 (-3957 |#1|) (-695)) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1085 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1085 $) (-774 |#1|)) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-197 (-3957 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2821 (((-197 (-3957 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1625 (($ (-1 (-197 (-3957 |#1|) (-695)) (-197 (-3957 |#1|) (-695))) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#2| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3757 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3948 (((-197 (-3957 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3817 (((-584 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-197 (-3957 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-206 |#1| |#2|) (-13 (-862 |#2| (-197 (-3957 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1937 ($ $ (-584 (-485)))))) (-584 (-1090)) (-962)) (T -206))
+((-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1090))) (-4 *4 (-962)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1479 (((-1185) $) 17 T ELT)) (-1481 (((-158 (-208)) $) 11 T ELT)) (-1480 (($ (-158 (-208))) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1482 (((-208) $) 7 T ELT)) (-3946 (((-773) $) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 15 T ELT)))
+(((-207) (-13 (-1014) (-10 -8 (-15 -1482 ((-208) $)) (-15 -1481 ((-158 (-208)) $)) (-15 -1480 ($ (-158 (-208)))) (-15 -1479 ((-1185) $))))) (T -207))
+((-1482 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-207)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1424 (((-584 (-775)) $) NIL T ELT)) (-3542 (((-447) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) NIL T ELT)) (-2634 (((-85) $ (-447)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1483 (((-282) $) 7 T ELT)) (-1425 (((-584 (-85)) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-208) (-13 (-160) (-553 (-157)) (-10 -8 (-15 -1483 ((-282) $))))) (T -208))
+((-1483 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 (((-1095) $ (-695)) 14 T ELT)) (-3946 (((-773) $) 20 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT)) (-3957 (((-695) $) 11 T ELT)))
+(((-209) (-13 (-1014) (-241 (-695) (-1095)) (-10 -8 (-15 -3957 ((-695) $))))) (T -209))
+((-3957 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3707 (($ (-831)) NIL (|has| |#4| (-962)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-2484 (($ $ $) NIL (|has| |#4| (-718)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#4| (-320)) ELT)) (-3788 ((|#4| $ (-485) |#4|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-3157 ((|#4| $) NIL (|has| |#4| (-1014)) ELT) (((-485) $) NIL (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1179 |#4|))) (-631 $) (-1179 $)) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-631 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#4| (-962)) ELT)) (-2995 (($) NIL (|has| |#4| (-320)) ELT)) (-1576 ((|#4| $ (-485) |#4|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#4| $ (-485)) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#4| (-718)) ELT)) (-2890 (((-584 |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL (|has| |#4| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-2609 (((-584 |#4|) $) NIL T ELT)) (-3246 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#4| (-320)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1179 |#4|))) (-1179 $) $) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-1179 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-1179 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#4| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#4| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#4|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT)) (-2206 (((-584 |#4|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#4| $ (-485) |#4|) NIL T ELT) ((|#4| $ (-485)) 12 T ELT)) (-3836 ((|#4| $ $) NIL (|has| |#4| (-962)) ELT)) (-1468 (($ (-1179 |#4|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3758 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-1946 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-3127 (((-695)) NIL (|has| |#4| (-962)) CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#4| (-962)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL (|has| |#4| (-962)) CONST)) (-2670 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#4| (-810 (-1090))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1090))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-2567 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3949 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-831)) NIL (|has| |#4| (-962)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-664)) ELT) (($ |#4| $) NIL (|has| |#4| (-664)) ELT) (($ $ $) NIL (|has| |#4| (-962)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-591 |#2|) (-591 |#3|)) (-831) (-962) (-1037 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-591 |#2|)) (T -210))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3707 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-2484 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#3| (-320)) ELT)) (-3788 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-3157 ((|#3| $) NIL (|has| |#3| (-1014)) ELT) (((-485) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1179 |#3|))) (-631 $) (-1179 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2995 (($) NIL (|has| |#3| (-320)) ELT)) (-1576 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#3| $ (-485)) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-2890 (((-584 |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2609 (((-584 |#3|) $) NIL T ELT)) (-3246 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-1949 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#3| (-320)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1179 |#3|))) (-1179 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1179 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-1179 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#3| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#3| (-1014))) ELT)) (-2206 (((-584 |#3|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) 11 T ELT)) (-3836 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1468 (($ (-1179 |#3|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3758 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-1946 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-3127 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#3| (-962)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL (|has| |#3| (-962)) CONST)) (-2670 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#3| (-810 (-1090))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3949 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ $ $) NIL (|has| |#3| (-962)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-591 |#2|)) (-695) (-962) (-591 |#2|)) (T -211))
+NIL
+((-1488 (((-584 (-695)) $) 56 T ELT) (((-584 (-695)) $ |#3|) 59 T ELT)) (-1522 (((-695) $) 58 T ELT) (((-695) $ |#3|) 61 T ELT)) (-1484 (($ $) 76 T ELT)) (-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3772 (((-695) $ |#3|) 43 T ELT) (((-695) $) 38 T ELT)) (-1523 (((-1 $ (-695)) |#3|) 15 T ELT) (((-1 $ (-695)) $) 88 T ELT)) (-1486 ((|#4| $) 69 T ELT)) (-1487 (((-85) $) 67 T ELT)) (-1485 (($ $) 75 T ELT)) (-3768 (($ $ (-584 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 97 T ELT)) (-3758 (($ $ (-584 |#4|) (-584 (-695))) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1489 (((-584 |#3|) $) 86 T ELT)) (-3948 ((|#5| $) NIL T ELT) (((-695) $ |#4|) NIL T ELT) (((-584 (-695)) $ (-584 |#4|)) NIL T ELT) (((-695) $ |#3|) 49 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)))
+(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3946 (|#1| |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3768 (|#1| |#1| (-584 |#3|) (-584 |#2|))) (-15 -3768 (|#1| |#1| |#3| |#2|)) (-15 -3768 (|#1| |#1| (-584 |#3|) (-584 |#1|))) (-15 -3768 (|#1| |#1| |#3| |#1|)) (-15 -1523 ((-1 |#1| (-695)) |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 (|#4| |#1|)) (-15 -1487 ((-85) |#1|)) (-15 -1522 ((-695) |#1| |#3|)) (-15 -1488 ((-584 (-695)) |#1| |#3|)) (-15 -1522 ((-695) |#1|)) (-15 -1488 ((-584 (-695)) |#1|)) (-15 -3948 ((-695) |#1| |#3|)) (-15 -3772 ((-695) |#1|)) (-15 -3772 ((-695) |#1| |#3|)) (-15 -1489 ((-584 |#3|) |#1|)) (-15 -1523 ((-1 |#1| (-695)) |#3|)) (-15 -3946 (|#1| |#3|)) (-15 -3158 ((-3 |#3| #1="failed") |#1|)) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3948 ((-584 (-695)) |#1| (-584 |#4|))) (-15 -3948 ((-695) |#1| |#4|)) (-15 -3946 (|#1| |#4|)) (-15 -3158 ((-3 |#4| #1#) |#1|)) (-15 -3768 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3768 (|#1| |#1| |#4| |#1|)) (-15 -3768 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3768 (|#1| |#1| |#4| |#2|)) (-15 -3768 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3948 (|#5| |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3758 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| (-584 |#4|))) (-15 -3758 (|#1| |#1| |#4| (-695))) (-15 -3758 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3946 (|#1| (-485))) (-15 -3946 ((-773) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-962) (-757) (-228 |#3|) (-718)) (T -212))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1488 (((-584 (-695)) $) 251 T ELT) (((-584 (-695)) $ |#2|) 249 T ELT)) (-1522 (((-695) $) 250 T ELT) (((-695) $ |#2|) 248 T ELT)) (-3082 (((-584 |#3|) $) 123 T ELT)) (-3084 (((-1085 $) $ |#3|) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-822)) ELT)) (-3775 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1="failed") (-584 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-822)) ELT)) (-1484 (($ $) 244 T ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3756 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3959 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) 122 T ELT)) (-3723 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| |#4| $) 189 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3772 (((-695) $ |#2|) 254 T ELT) (((-695) $) 253 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3085 (($ (-1085 |#1|) |#3|) 130 T ELT) (($ (-1085 $) |#3|) 129 T ELT)) (-2822 (((-584 $) $) 139 T ELT)) (-3937 (((-85) $) 169 T ELT)) (-2894 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) 133 T ELT)) (-2821 ((|#4| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-1625 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1523 (((-1 $ (-695)) |#2|) 256 T ELT) (((-1 $ (-695)) $) 243 (|has| |#1| (-190)) ELT)) (-3083 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-631 |#1|) (-1179 $)) 144 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT)) (-1486 ((|#3| $) 246 T ELT)) (-1891 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1487 (((-85) $) 247 T ELT)) (-2824 (((-3 (-584 $) #3#) $) 127 T ELT)) (-2823 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #3#) $) 126 T ELT)) (-1485 (($ $) 245 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1797 (((-85) $) 183 T ELT)) (-1796 ((|#1| $) 184 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3757 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-695)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 234 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 232 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 231 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 230 (|has| |#1| (-812 (-1090))) ELT)) (-1489 (((-584 |#2|) $) 255 T ELT)) (-3948 ((|#4| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT) (((-695) $ |#2|) 252 T ELT)) (-3972 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) 185 T ELT)) (-3677 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2703 (((-633 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1623 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-695)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 233 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 229 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 228 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 227 (|has| |#1| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
+(((-213 |#1| |#2| |#3| |#4|) (-113) (-962) (-757) (-228 |t#2|) (-718)) (T -213))
+((-1523 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))) (-3772 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3948 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1488 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1522 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) (-4 *2 (-228 *4)))) (-1485 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1484 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1523 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6)))))
+(-13 (-862 |t#1| |t#4| |t#3|) (-184 |t#1|) (-951 |t#2|) (-10 -8 (-15 -1523 ((-1 $ (-695)) |t#2|)) (-15 -1489 ((-584 |t#2|) $)) (-15 -3772 ((-695) $ |t#2|)) (-15 -3772 ((-695) $)) (-15 -3948 ((-695) $ |t#2|)) (-15 -1488 ((-584 (-695)) $)) (-15 -1522 ((-695) $)) (-15 -1488 ((-584 (-695)) $ |t#2|)) (-15 -1522 ((-695) $ |t#2|)) (-15 -1487 ((-85) $)) (-15 -1486 (|t#3| $)) (-15 -1485 ($ $)) (-15 -1484 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-456 |t#2| |t#1|)) (-6 (-456 |t#2| $)) (-6 (-260 $)) (-15 -1523 ((-1 $ (-695)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#2|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#2| |#1|) |has| |#1| (-190)) ((-456 |#2| $) |has| |#1| (-190)) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-807 $ |#3|) . T) ((-810 (-1090)) |has| |#1| (-810 (-1090))) ((-810 |#3|) . T) ((-812 (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#4| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#2|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) |has| |#1| (-822)))
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1495 ((|#1| $) 59 T ELT)) (-3324 ((|#1| $) 49 T ELT)) (-3724 (($) 7 T CONST)) (-3003 (($ $) 65 T ELT)) (-2298 (($ $) 53 T ELT)) (-3326 ((|#1| |#1| $) 51 T ELT)) (-3325 ((|#1| $) 50 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3833 (((-695) $) 66 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-1493 ((|#1| |#1| $) 57 T ELT)) (-1492 ((|#1| |#1| $) 56 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-2604 (((-695) $) 60 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3002 ((|#1| $) 67 T ELT)) (-1491 ((|#1| $) 55 T ELT)) (-1490 ((|#1| $) 54 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3005 ((|#1| |#1| $) 63 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3004 ((|#1| $) 64 T ELT)) (-1496 (($) 62 T ELT) (($ (-584 |#1|)) 61 T ELT)) (-3323 (((-695) $) 48 T ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1494 ((|#1| $) 58 T ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-3001 ((|#1| $) 68 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-214 |#1|) (-113) (-1129)) (T -214))
+((-1496 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-4 *1 (-214 *3)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1129)) (-5 *2 (-695)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1493 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1492 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(-13 (-1035 |t#1|) (-909 |t#1|) (-10 -8 (-15 -1496 ($)) (-15 -1496 ($ (-584 |t#1|))) (-15 -2604 ((-695) $)) (-15 -1495 (|t#1| $)) (-15 -1494 (|t#1| $)) (-15 -1493 (|t#1| |t#1| $)) (-15 -1492 (|t#1| |t#1| $)) (-15 -1491 (|t#1| $)) (-15 -1490 (|t#1| $)) (-15 -2298 ($ $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-909 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1035 |#1|) . T) ((-1129) . T))
+((-1497 (((-1047 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330))) 75 T ELT) (((-1047 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 74 T ELT) (((-1047 (-179)) |#1| (-1005 (-330)) (-1005 (-330))) 65 T ELT) (((-1047 (-179)) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 64 T ELT) (((-1047 (-179)) (-790 |#1|) (-1005 (-330))) 56 T ELT) (((-1047 (-179)) (-790 |#1|) (-1005 (-330)) (-584 (-221))) 55 T ELT)) (-1504 (((-1183) (-793 |#1|) (-1005 (-330)) (-1005 (-330))) 78 T ELT) (((-1183) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 77 T ELT) (((-1183) |#1| (-1005 (-330)) (-1005 (-330))) 68 T ELT) (((-1183) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 67 T ELT) (((-1183) (-790 |#1|) (-1005 (-330))) 60 T ELT) (((-1183) (-790 |#1|) (-1005 (-330)) (-584 (-221))) 59 T ELT) (((-1182) (-788 |#1|) (-1005 (-330))) 47 T ELT) (((-1182) (-788 |#1|) (-1005 (-330)) (-584 (-221))) 46 T ELT) (((-1182) |#1| (-1005 (-330))) 38 T ELT) (((-1182) |#1| (-1005 (-330)) (-584 (-221))) 36 T ELT)))
+(((-215 |#1|) (-10 -7 (-15 -1504 ((-1182) |#1| (-1005 (-330)) (-584 (-221)))) (-15 -1504 ((-1182) |#1| (-1005 (-330)))) (-15 -1504 ((-1182) (-788 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1504 ((-1182) (-788 |#1|) (-1005 (-330)))) (-15 -1504 ((-1183) (-790 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1504 ((-1183) (-790 |#1|) (-1005 (-330)))) (-15 -1497 ((-1047 (-179)) (-790 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1497 ((-1047 (-179)) (-790 |#1|) (-1005 (-330)))) (-15 -1504 ((-1183) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1504 ((-1183) |#1| (-1005 (-330)) (-1005 (-330)))) (-15 -1497 ((-1047 (-179)) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1497 ((-1047 (-179)) |#1| (-1005 (-330)) (-1005 (-330)))) (-15 -1504 ((-1183) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1504 ((-1183) (-793 |#1|) (-1005 (-330)) (-1005 (-330)))) (-15 -1497 ((-1047 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1497 ((-1047 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330))))) (-13 (-554 (-474)) (-1014))) (T -215))
+((-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *5)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *5)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))))
+((-1498 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1497 (((-1047 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330))) 178 T ELT) (((-1047 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 176 T ELT) (((-1047 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 181 T ELT) (((-1047 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 177 T ELT) (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 169 T ELT) (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 168 T ELT) (((-1047 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330))) 150 T ELT) (((-1047 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221))) 148 T ELT) (((-1047 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330))) 149 T ELT) (((-1047 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 146 T ELT)) (-1504 (((-1183) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330))) 180 T ELT) (((-1183) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 179 T ELT) (((-1183) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 183 T ELT) (((-1183) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 182 T ELT) (((-1183) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 171 T ELT) (((-1183) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 170 T ELT) (((-1183) (-1 (-855 (-179)) (-179)) (-1002 (-330))) 156 T ELT) (((-1183) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221))) 155 T ELT) (((-1183) (-790 (-1 (-179) (-179))) (-1002 (-330))) 154 T ELT) (((-1183) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 153 T ELT) (((-1182) (-788 (-1 (-179) (-179))) (-1002 (-330))) 118 T ELT) (((-1182) (-788 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 117 T ELT) (((-1182) (-1 (-179) (-179)) (-1002 (-330))) 112 T ELT) (((-1182) (-1 (-179) (-179)) (-1002 (-330)) (-584 (-221))) 110 T ELT)))
+(((-216) (-10 -7 (-15 -1504 ((-1182) (-1 (-179) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1504 ((-1182) (-1 (-179) (-179)) (-1002 (-330)))) (-15 -1504 ((-1182) (-788 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1504 ((-1182) (-788 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1504 ((-1183) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1504 ((-1183) (-790 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1504 ((-1183) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1504 ((-1183) (-1 (-855 (-179)) (-179)) (-1002 (-330)))) (-15 -1497 ((-1047 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1497 ((-1047 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1497 ((-1047 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1497 ((-1047 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)))) (-15 -1504 ((-1183) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1504 ((-1183) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1497 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1497 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1504 ((-1183) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1504 ((-1183) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1497 ((-1047 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1497 ((-1047 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1504 ((-1183) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1504 ((-1183) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)))) (-15 -1497 ((-1047 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1497 ((-1047 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216))
+((-1498 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))))
+((-1504 (((-1182) (-249 |#2|) (-1090) (-1090) (-584 (-221))) 102 T ELT)))
+(((-217 |#1| |#2|) (-10 -7 (-15 -1504 ((-1182) (-249 |#2|) (-1090) (-1090) (-584 (-221))))) (-13 (-496) (-757) (-951 (-485))) (-364 |#1|)) (T -217))
+((-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1090)) (-5 *5 (-584 (-221))) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-757) (-951 (-485)))) (-5 *2 (-1182)) (-5 *1 (-217 *6 *7)))))
+((-1501 (((-485) (-485)) 71 T ELT)) (-1502 (((-485) (-485)) 72 T ELT)) (-1503 (((-179) (-179)) 73 T ELT)) (-1500 (((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179))) 70 T ELT)) (-1499 (((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)) (-85)) 68 T ELT)))
+(((-218) (-10 -7 (-15 -1499 ((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)) (-85))) (-15 -1500 ((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)))) (-15 -1501 ((-485) (-485))) (-15 -1502 ((-485) (-485))) (-15 -1503 ((-179) (-179))))) (T -218))
+((-1503 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1500 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) (-5 *2 (-1183)) (-5 *1 (-218)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) (-5 *5 (-85)) (-5 *2 (-1183)) (-5 *1 (-218)))))
+((-3946 (((-1005 (-330)) (-1005 (-265 |#1|))) 16 T ELT)))
+(((-219 |#1|) (-10 -7 (-15 -3946 ((-1005 (-330)) (-1005 (-265 |#1|))))) (-13 (-757) (-496) (-554 (-330)))) (T -219))
+((-3946 (*1 *2 *3) (-12 (-5 *3 (-1005 (-265 *4))) (-4 *4 (-13 (-757) (-496) (-554 (-330)))) (-5 *2 (-1005 (-330))) (-5 *1 (-219 *4)))))
+((-1504 (((-1183) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221))) 23 T ELT) (((-1183) (-584 (-179)) (-584 (-179)) (-584 (-179))) 24 T ELT) (((-1182) (-584 (-855 (-179))) (-584 (-221))) 16 T ELT) (((-1182) (-584 (-855 (-179)))) 17 T ELT) (((-1182) (-584 (-179)) (-584 (-179)) (-584 (-221))) 20 T ELT) (((-1182) (-584 (-179)) (-584 (-179))) 21 T ELT)))
+(((-220) (-10 -7 (-15 -1504 ((-1182) (-584 (-179)) (-584 (-179)))) (-15 -1504 ((-1182) (-584 (-179)) (-584 (-179)) (-584 (-221)))) (-15 -1504 ((-1182) (-584 (-855 (-179))))) (-15 -1504 ((-1182) (-584 (-855 (-179))) (-584 (-221)))) (-15 -1504 ((-1183) (-584 (-179)) (-584 (-179)) (-584 (-179)))) (-15 -1504 ((-1183) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221)))))) (T -220))
+((-1504 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1182)) (-5 *1 (-220)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3881 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1517 (($ (-831)) 81 T ELT)) (-1516 (($ (-831)) 80 T ELT)) (-1772 (($ (-584 (-330))) 87 T ELT)) (-1520 (($ (-330)) 66 T ELT)) (-1519 (($ (-831)) 82 T ELT)) (-1513 (($ (-85)) 33 T ELT)) (-3883 (($ (-1073)) 28 T ELT)) (-1512 (($ (-1073)) 29 T ELT)) (-1518 (($ (-1047 (-179))) 76 T ELT)) (-1928 (($ (-584 (-1002 (-330)))) 72 T ELT)) (-1506 (($ (-584 (-1002 (-330)))) 68 T ELT) (($ (-584 (-1002 (-350 (-485))))) 71 T ELT)) (-1509 (($ (-330)) 38 T ELT) (($ (-784)) 42 T ELT)) (-1505 (((-85) (-584 $) (-1090)) 100 T ELT)) (-1521 (((-3 (-51) "failed") (-584 $) (-1090)) 102 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1508 (($ (-330)) 43 T ELT) (($ (-784)) 44 T ELT)) (-3225 (($ (-1 (-855 (-179)) (-855 (-179)))) 65 T ELT)) (-2267 (($ (-1 (-855 (-179)) (-855 (-179)))) 83 T ELT)) (-1507 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3946 (((-773) $) 93 T ELT)) (-1510 (($ (-85)) 34 T ELT) (($ (-584 (-1002 (-330)))) 60 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1923 (($ (-85)) 35 T ELT)) (-3057 (((-85) $ $) 97 T ELT)))
+(((-221) (-13 (-1014) (-10 -8 (-15 -1923 ($ (-85))) (-15 -1510 ($ (-85))) (-15 -3881 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3883 ($ (-1073))) (-15 -1512 ($ (-1073))) (-15 -1513 ($ (-85))) (-15 -1510 ($ (-584 (-1002 (-330))))) (-15 -3225 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1509 ($ (-330))) (-15 -1509 ($ (-784))) (-15 -1508 ($ (-330))) (-15 -1508 ($ (-784))) (-15 -1507 ($ (-1 (-179) (-179)))) (-15 -1507 ($ (-1 (-179) (-179) (-179)))) (-15 -1507 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1520 ($ (-330))) (-15 -1506 ($ (-584 (-1002 (-330))))) (-15 -1506 ($ (-584 (-1002 (-350 (-485)))))) (-15 -1928 ($ (-584 (-1002 (-330))))) (-15 -1518 ($ (-1047 (-179)))) (-15 -1516 ($ (-831))) (-15 -1517 ($ (-831))) (-15 -1519 ($ (-831))) (-15 -2267 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1772 ($ (-584 (-330)))) (-15 -1521 ((-3 (-51) "failed") (-584 $) (-1090))) (-15 -1505 ((-85) (-584 $) (-1090)))))) (T -221))
+((-1923 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3881 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-350 (-485))))) (-5 *1 (-221)))) (-1928 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1772 (*1 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-221)))) (-1521 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1090)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1090)) (-5 *2 (-85)) (-5 *1 (-221)))))
+((-3881 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1517 (((-831) (-584 (-221)) (-831)) 52 T ELT)) (-1516 (((-831) (-584 (-221)) (-831)) 51 T ELT)) (-3851 (((-584 (-330)) (-584 (-221)) (-584 (-330))) 68 T ELT)) (-1520 (((-330) (-584 (-221)) (-330)) 57 T ELT)) (-1519 (((-831) (-584 (-221)) (-831)) 53 T ELT)) (-1513 (((-85) (-584 (-221)) (-85)) 27 T ELT)) (-3883 (((-1073) (-584 (-221)) (-1073)) 19 T ELT)) (-1512 (((-1073) (-584 (-221)) (-1073)) 26 T ELT)) (-1518 (((-1047 (-179)) (-584 (-221))) 46 T ELT)) (-1928 (((-584 (-1002 (-330))) (-584 (-221)) (-584 (-1002 (-330)))) 40 T ELT)) (-1514 (((-784) (-584 (-221)) (-784)) 32 T ELT)) (-1515 (((-784) (-584 (-221)) (-784)) 33 T ELT)) (-2267 (((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179)))) 63 T ELT)) (-1511 (((-85) (-584 (-221)) (-85)) 14 T ELT)) (-1923 (((-85) (-584 (-221)) (-85)) 13 T ELT)))
+(((-222) (-10 -7 (-15 -1923 ((-85) (-584 (-221)) (-85))) (-15 -1511 ((-85) (-584 (-221)) (-85))) (-15 -3881 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3883 ((-1073) (-584 (-221)) (-1073))) (-15 -1512 ((-1073) (-584 (-221)) (-1073))) (-15 -1513 ((-85) (-584 (-221)) (-85))) (-15 -1514 ((-784) (-584 (-221)) (-784))) (-15 -1515 ((-784) (-584 (-221)) (-784))) (-15 -1928 ((-584 (-1002 (-330))) (-584 (-221)) (-584 (-1002 (-330))))) (-15 -1516 ((-831) (-584 (-221)) (-831))) (-15 -1517 ((-831) (-584 (-221)) (-831))) (-15 -1518 ((-1047 (-179)) (-584 (-221)))) (-15 -1519 ((-831) (-584 (-221)) (-831))) (-15 -1520 ((-330) (-584 (-221)) (-330))) (-15 -2267 ((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179))))) (-15 -3851 ((-584 (-330)) (-584 (-221)) (-584 (-330)))))) (T -222))
+((-3851 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-330))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-2267 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1928 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3883 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3881 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1923 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+((-1521 (((-3 |#1| "failed") (-584 (-221)) (-1090)) 17 T ELT)))
+(((-223 |#1|) (-10 -7 (-15 -1521 ((-3 |#1| "failed") (-584 (-221)) (-1090)))) (-1129)) (T -223))
+((-1521 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1090)) (-5 *1 (-223 *2)) (-4 *2 (-1129)))))
+((-3758 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) 11 T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) 19 T ELT) (($ $ (-695)) NIL T ELT) (($ $) 16 T ELT)) (-2670 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-695)) 14 T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)))
+(((-224 |#1| |#2|) (-10 -7 (-15 -3758 (|#1| |#1|)) (-15 -2670 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-695))) (-15 -2670 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -2670 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -2670 (|#1| |#1| (-584 (-1090)))) (-15 -2670 (|#1| |#1| (-1090) (-695))) (-15 -2670 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -2670 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -2670 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1129)) (T -224))
+NIL
+((-3758 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 22 T ELT) (($ $ (-584 (-1090)) (-584 (-695))) 16 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 15 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 14 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090)) 12 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-695)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2670 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 20 T ELT) (($ $ (-584 (-1090)) (-584 (-695))) 19 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 18 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 17 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090)) 13 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-695)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT)))
+(((-225 |#1|) (-113) (-1129)) (T -225))
+((-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129)))) (-3758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1129)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1129)))))
+(-13 (-1129) (-10 -8 (-15 -3758 ($ $ (-1 |t#1| |t#1|))) (-15 -3758 ($ $ (-1 |t#1| |t#1|) (-695))) (-15 -2670 ($ $ (-1 |t#1| |t#1|))) (-15 -2670 ($ $ (-1 |t#1| |t#1|) (-695))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-812 (-1090))) (-6 (-812 (-1090))) |%noBranch|)))
+(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-807 $ (-1090)) |has| |#1| (-812 (-1090))) ((-812 (-1090)) |has| |#1| (-812 (-1090))) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1488 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ |#2|) NIL T ELT)) (-1522 (((-695) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-3084 (((-1085 $) $ |#3|) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 |#3|)) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-1484 (($ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1039 |#1| |#2|) #1#) $) 23 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1039 |#1| |#2|) $) NIL T ELT)) (-3756 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| (-470 |#3|) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ELT)) (-3772 (((-695) $ |#2|) NIL T ELT) (((-695) $) 10 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1085 |#1|) |#3|) NIL T ELT) (($ (-1085 $) |#3|) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) NIL T ELT)) (-2821 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT)) (-1625 (($ (-1 (-470 |#3|) (-470 |#3|)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1523 (((-1 $ (-695)) |#2|) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3083 (((-3 |#3| #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1486 ((|#3| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3757 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1489 (((-584 |#2|) $) NIL T ELT)) (-3948 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1039 |#1| |#2|)) 32 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-470 |#3|)) (-951 (-1039 |#1| |#2|))) (-962) (-757) (-228 |#2|)) (T -226))
+NIL
+((-1522 (((-695) $) 37 T ELT)) (-3158 (((-3 |#2| "failed") $) 22 T ELT)) (-3157 ((|#2| $) 33 T ELT)) (-3758 (($ $ (-695)) 18 T ELT) (($ $) 14 T ELT)) (-3946 (((-773) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3057 (((-85) $ $) 26 T ELT)) (-2686 (((-85) $ $) 36 T ELT)))
+(((-227 |#1| |#2|) (-10 -7 (-15 -1522 ((-695) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3158 ((-3 |#2| "failed") |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-695))) (-15 -2686 ((-85) |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-228 |#2|) (-757)) (T -227))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-1522 (((-695) $) 26 T ELT)) (-3831 ((|#1| $) 27 T ELT)) (-3158 (((-3 |#1| "failed") $) 31 T ELT)) (-3157 ((|#1| $) 32 T ELT)) (-3772 (((-695) $) 28 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-1523 (($ |#1| (-695)) 29 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3758 (($ $ (-695)) 35 T ELT) (($ $) 33 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2670 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)))
+(((-228 |#1|) (-113) (-757)) (T -228))
+((-1523 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))))
+(-13 (-757) (-189) (-951 |t#1|) (-10 -8 (-15 -1523 ($ |t#1| (-695))) (-15 -3772 ((-695) $)) (-15 -3831 (|t#1| $)) (-15 -1522 ((-695) $))))
+(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1525 (((-584 (-485)) $) 28 T ELT)) (-3948 (((-695) $) 26 T ELT)) (-3946 (((-773) $) 32 T ELT) (($ (-584 (-485))) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1524 (($ (-695)) 29 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 18 T ELT)))
+(((-229) (-13 (-757) (-10 -8 (-15 -3946 ($ (-584 (-485)))) (-15 -3948 ((-695) $)) (-15 -1525 ((-584 (-485)) $)) (-15 -1524 ($ (-695)))))) (T -229))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229)))))
+((-3492 ((|#2| |#2|) 77 T ELT)) (-3639 ((|#2| |#2|) 65 T ELT)) (-1554 (((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3490 ((|#2| |#2|) 75 T ELT)) (-3638 ((|#2| |#2|) 63 T ELT)) (-3494 ((|#2| |#2|) 79 T ELT)) (-3637 ((|#2| |#2|) 67 T ELT)) (-3627 ((|#2|) 46 T ELT)) (-3595 (((-86) (-86)) 97 T ELT)) (-3942 ((|#2| |#2|) 61 T ELT)) (-1555 (((-85) |#2|) 146 T ELT)) (-1544 ((|#2| |#2|) 193 T ELT)) (-1532 ((|#2| |#2|) 169 T ELT)) (-1527 ((|#2|) 59 T ELT)) (-1526 ((|#2|) 58 T ELT)) (-1542 ((|#2| |#2|) 189 T ELT)) (-1530 ((|#2| |#2|) 165 T ELT)) (-1546 ((|#2| |#2|) 197 T ELT)) (-1534 ((|#2| |#2|) 173 T ELT)) (-1529 ((|#2| |#2|) 161 T ELT)) (-1528 ((|#2| |#2|) 163 T ELT)) (-1547 ((|#2| |#2|) 199 T ELT)) (-1535 ((|#2| |#2|) 175 T ELT)) (-1545 ((|#2| |#2|) 195 T ELT)) (-1533 ((|#2| |#2|) 171 T ELT)) (-1543 ((|#2| |#2|) 191 T ELT)) (-1531 ((|#2| |#2|) 167 T ELT)) (-1550 ((|#2| |#2|) 205 T ELT)) (-1538 ((|#2| |#2|) 181 T ELT)) (-1548 ((|#2| |#2|) 201 T ELT)) (-1536 ((|#2| |#2|) 177 T ELT)) (-1552 ((|#2| |#2|) 209 T ELT)) (-1540 ((|#2| |#2|) 185 T ELT)) (-1553 ((|#2| |#2|) 211 T ELT)) (-1541 ((|#2| |#2|) 187 T ELT)) (-1551 ((|#2| |#2|) 207 T ELT)) (-1539 ((|#2| |#2|) 183 T ELT)) (-1549 ((|#2| |#2|) 203 T ELT)) (-1537 ((|#2| |#2|) 179 T ELT)) (-3943 ((|#2| |#2|) 62 T ELT)) (-3495 ((|#2| |#2|) 80 T ELT)) (-3636 ((|#2| |#2|) 68 T ELT)) (-3493 ((|#2| |#2|) 78 T ELT)) (-3635 ((|#2| |#2|) 66 T ELT)) (-3491 ((|#2| |#2|) 76 T ELT)) (-3634 ((|#2| |#2|) 64 T ELT)) (-2255 (((-85) (-86)) 95 T ELT)) (-3498 ((|#2| |#2|) 83 T ELT)) (-3486 ((|#2| |#2|) 71 T ELT)) (-3496 ((|#2| |#2|) 81 T ELT)) (-3484 ((|#2| |#2|) 69 T ELT)) (-3500 ((|#2| |#2|) 85 T ELT)) (-3488 ((|#2| |#2|) 73 T ELT)) (-3501 ((|#2| |#2|) 86 T ELT)) (-3489 ((|#2| |#2|) 74 T ELT)) (-3499 ((|#2| |#2|) 84 T ELT)) (-3487 ((|#2| |#2|) 72 T ELT)) (-3497 ((|#2| |#2|) 82 T ELT)) (-3485 ((|#2| |#2|) 70 T ELT)))
+(((-230 |#1| |#2|) (-10 -7 (-15 -3943 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3627 (|#2|)) (-15 -2255 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -1526 (|#2|)) (-15 -1527 (|#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 ((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1555 ((-85) |#2|))) (-496) (-13 (-364 |#1|) (-916))) (T -230))
+((-1555 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-364 *4) (-916))))) (-1554 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-364 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2)))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1527 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-1526 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-364 *3) (-916))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-364 *4) (-916))))) (-3627 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+((-1558 (((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1090)) 151 T ELT)) (-1560 ((|#2| (-350 (-485)) |#2|) 49 T ELT)) (-1559 ((|#2| |#2| (-551 |#2|)) 144 T ELT)) (-1556 (((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1090)) 143 T ELT)) (-1557 ((|#2| |#2| (-1090)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2444 ((|#2| |#2| (-1090)) 157 T ELT) ((|#2| |#2|) 155 T ELT)))
+(((-231 |#1| |#2|) (-10 -7 (-15 -2444 (|#2| |#2|)) (-15 -2444 (|#2| |#2| (-1090))) (-15 -1556 ((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1090))) (-15 -1557 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-1090))) (-15 -1558 ((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1090))) (-15 -1559 (|#2| |#2| (-551 |#2|))) (-15 -1560 (|#2| (-350 (-485)) |#2|))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1115) (-364 |#1|))) (T -231))
+((-1560 (*1 *2 *3 *2) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-1559 (*1 *2 *2 *3) (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)))) (-1558 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1090)) (-4 *2 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *5 *2)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-1556 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2444 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
+((-2976 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3492 ((|#3| |#3|) 142 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3639 ((|#3| |#3|) 132 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3490 ((|#3| |#3|) 140 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3638 ((|#3| |#3|) 130 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3494 ((|#3| |#3|) 144 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3637 ((|#3| |#3|) 134 T ELT)) (-2959 (((-3 |#3| #1#) |#3| (-695)) 41 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3942 ((|#3| |#3|) 129 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3943 ((|#3| |#3|) 128 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3495 ((|#3| |#3|) 145 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3636 ((|#3| |#3|) 135 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3493 ((|#3| |#3|) 143 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3635 ((|#3| |#3|) 133 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3491 ((|#3| |#3|) 141 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3634 ((|#3| |#3|) 131 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3498 ((|#3| |#3|) 148 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3486 ((|#3| |#3|) 152 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3496 ((|#3| |#3|) 146 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3484 ((|#3| |#3|) 136 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3500 ((|#3| |#3|) 150 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3488 ((|#3| |#3|) 138 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3501 ((|#3| |#3|) 151 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3489 ((|#3| |#3|) 139 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3499 ((|#3| |#3|) 149 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3487 ((|#3| |#3|) 153 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3497 ((|#3| |#3|) 147 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3485 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-350 (-485))) 47 (|has| |#1| (-312)) ELT)))
+(((-232 |#1| |#2| |#3|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-485)))) |%noBranch|) (-15 -3943 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)))) (-38 (-350 (-485))) (-1172 |#1|) (-1143 |#1| |#2|)) (T -232))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1172 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1143 *4 *5)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))))
+((-2976 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3492 ((|#3| |#3|) 137 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3639 ((|#3| |#3|) 125 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3490 ((|#3| |#3|) 135 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3638 ((|#3| |#3|) 123 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3494 ((|#3| |#3|) 139 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3637 ((|#3| |#3|) 127 T ELT)) (-2959 (((-3 |#3| #1#) |#3| (-695)) 38 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3942 ((|#3| |#3|) 111 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3943 ((|#3| |#3|) 122 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3495 ((|#3| |#3|) 140 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3636 ((|#3| |#3|) 128 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3493 ((|#3| |#3|) 138 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3635 ((|#3| |#3|) 126 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3491 ((|#3| |#3|) 136 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3634 ((|#3| |#3|) 124 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3498 ((|#3| |#3|) 143 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3486 ((|#3| |#3|) 131 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3496 ((|#3| |#3|) 141 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3484 ((|#3| |#3|) 129 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3500 ((|#3| |#3|) 145 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3488 ((|#3| |#3|) 133 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3501 ((|#3| |#3|) 146 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3489 ((|#3| |#3|) 134 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3499 ((|#3| |#3|) 144 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3487 ((|#3| |#3|) 132 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3497 ((|#3| |#3|) 142 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3485 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-350 (-485))) 44 (|has| |#1| (-312)) ELT)))
+(((-233 |#1| |#2| |#3| |#4|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-485)))) |%noBranch|) (-15 -3943 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)))) (-38 (-350 (-485))) (-1141 |#1|) (-1164 |#1| |#2|) (-897 |#2|)) (T -233))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1141 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-897 *5)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4)))))
+((-1563 (((-85) $) 20 T ELT)) (-1565 (((-1095) $) 9 T ELT)) (-3569 (((-3 (-447) #1="failed") $) 15 T ELT)) (-3568 (((-3 (-584 $) #1#) $) NIL T ELT)) (-1562 (((-3 (-447) #1#) $) 21 T ELT)) (-1564 (((-3 (-1016) #1#) $) 19 T ELT)) (-3953 (((-85) $) 17 T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1561 (((-85) $) 10 T ELT)))
+(((-234) (-13 (-553 (-773)) (-10 -8 (-15 -1565 ((-1095) $)) (-15 -3953 ((-85) $)) (-15 -1564 ((-3 (-1016) #1="failed") $)) (-15 -1563 ((-85) $)) (-15 -1562 ((-3 (-447) #1#) $)) (-15 -1561 ((-85) $)) (-15 -3569 ((-3 (-447) #1#) $)) (-15 -3568 ((-3 (-584 $) #1#) $))))) (T -234))
+((-1565 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-234)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1564 (*1 *2 *1) (|partial| -12 (-5 *2 (-1016)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3569 (*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) (-3568 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234)))))
+((-1567 (((-533) $) 10 T ELT)) (-1568 (((-523) $) 8 T ELT)) (-1566 (((-247) $) 12 T ELT)) (-1569 (($ (-523) (-533) (-247)) NIL T ELT)) (-3946 (((-773) $) 19 T ELT)))
+(((-235) (-13 (-553 (-773)) (-10 -8 (-15 -1569 ($ (-523) (-533) (-247))) (-15 -1568 ((-523) $)) (-15 -1567 ((-533) $)) (-15 -1566 ((-247) $))))) (T -235))
+((-1569 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235)))))
+((-3710 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1353 (($ $) 38 T ELT)) (-3405 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3406 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2857 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2305 (($ |#2| $ (-485)) 20 T ELT) (($ $ $ (-485)) 22 T ELT)) (-2306 (($ $ (-485)) 11 T ELT) (($ $ (-1146 (-485))) 14 T ELT)) (-3791 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3802 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-584 $)) NIL T ELT)))
+(((-236 |#1| |#2|) (-10 -7 (-15 -2857 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -2857 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3791 (|#1| |#1| |#1|)) (-15 -3791 (|#1| |#1| |#2|)) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1146 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -3802 (|#1| (-584 |#1|))) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#2|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3710 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -1353 (|#1| |#1|))) (-237 |#2|) (-1129)) (T -236))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) 44 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2369 (($ $) 92 (|has| |#1| (-1014)) ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1014)) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2857 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3609 (($ |#1| $ (-485)) 97 T ELT) (($ $ $ (-485)) 96 T ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1146 (-485))) 75 T ELT)) (-1571 (($ $ (-485)) 100 T ELT) (($ $ (-1146 (-485))) 99 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1146 (-485))) 67 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 76 T ELT)) (-3791 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-237 |#1|) (-113) (-1129)) (T -237))
+((-3791 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)))) (-3791 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-3609 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1129)))) (-3609 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-2857 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-1570 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-3405 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-1014)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-1014)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-757)))))
+(-13 (-594 |t#1|) (-10 -8 (-6 -3996) (-15 -3791 ($ $ |t#1|)) (-15 -3791 ($ $ $)) (-15 -1571 ($ $ (-485))) (-15 -1571 ($ $ (-1146 (-485)))) (-15 -3405 ($ (-1 (-85) |t#1|) $)) (-15 -3609 ($ |t#1| $ (-485))) (-15 -3609 ($ $ $ (-485))) (-15 -2857 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1570 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3405 ($ |t#1| $)) (-15 -2369 ($ $))) |%noBranch|) (IF (|has| |t#1| (-757)) (-15 -2857 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
((** (($ $ $) 10 T ELT)))
(((-238 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-239)) (T -238))
NIL
-((-3941 (($ $) 6 T ELT)) (-3942 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
+((-3942 (($ $) 6 T ELT)) (-3943 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
(((-239) (-113)) (T -239))
-((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3942 (*1 *1 *1) (-4 *1 (-239))) (-3941 (*1 *1 *1) (-4 *1 (-239))))
-(-13 (-10 -8 (-15 -3941 ($ $)) (-15 -3942 ($ $)) (-15 ** ($ $ $))))
-((-1574 (((-583 (-1068 |#1|)) (-1068 |#1|) |#1|) 35 T ELT)) (-1571 ((|#2| |#2| |#1|) 39 T ELT)) (-1573 ((|#2| |#2| |#1|) 41 T ELT)) (-1572 ((|#2| |#2| |#1|) 40 T ELT)))
-(((-240 |#1| |#2|) (-10 -7 (-15 -1571 (|#2| |#2| |#1|)) (-15 -1572 (|#2| |#2| |#1|)) (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 ((-583 (-1068 |#1|)) (-1068 |#1|) |#1|))) (-312) (-1171 |#1|)) (T -240))
-((-1574 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-583 (-1068 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1068 *4)) (-4 *5 (-1171 *4)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))) (-1572 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))) (-1571 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))))
-((-3799 ((|#2| $ |#1|) 6 T ELT)))
-(((-241 |#1| |#2|) (-113) (-1128) (-1128)) (T -241))
-((-3799 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1128)) (-4 *2 (-1128)))))
-(-13 (-1128) (-10 -8 (-15 -3799 (|t#2| $ |t#1|))))
-(((-13) . T) ((-1128) . T))
-((-1575 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3112 ((|#3| $ |#2|) 10 T ELT)))
-(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1575 (|#3| |#1| |#2| |#3|)) (-15 -3112 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1013) (-1128)) (T -242))
-NIL
-((-3787 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3995)) ELT)) (-1575 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) 11 T ELT)) (-3799 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
-(((-243 |#1| |#2|) (-113) (-1013) (-1128)) (T -243))
-((-3799 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-3112 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-1575 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))))
-(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3799 (|t#2| $ |t#1| |t#2|)) (-15 -3112 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3787 (|t#2| $ |t#1| |t#2|)) (-15 -1575 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-241 |#1| |#2|) . T) ((-13) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 37 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 44 T ELT)) (-2063 (($ $) 41 T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) 35 T ELT)) (-3841 (($ |#2| |#3|) 18 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 ((|#3| $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 19 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) NIL T ELT)) (-1606 (((-694) $) 36 T ELT)) (-3799 ((|#2| $ |#2|) 46 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 23 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 31 T CONST)) (-2666 (($) 39 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT)))
-(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2614 (|#3| $)) (-15 -3945 (|#2| $)) (-15 -3841 ($ |#2| |#3|)) (-15 -2402 ((-3 $ #1="failed") $ $)) (-15 -3466 ((-3 $ #1#) $)) (-15 -2484 ($ $)))) (-146) (-1154 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244))
-((-3466 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2614 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1154 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3945 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3841 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1154 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2484 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))))
-((-3125 (((-85) $ $) 10 T ELT)))
-(((-245 |#1|) (-10 -7 (-15 -3125 ((-85) |#1| |#1|))) (-246)) (T -245))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3943 (*1 *1 *1) (-4 *1 (-239))) (-3942 (*1 *1 *1) (-4 *1 (-239))))
+(-13 (-10 -8 (-15 -3942 ($ $)) (-15 -3943 ($ $)) (-15 ** ($ $ $))))
+((-1575 (((-584 (-1069 |#1|)) (-1069 |#1|) |#1|) 35 T ELT)) (-1572 ((|#2| |#2| |#1|) 39 T ELT)) (-1574 ((|#2| |#2| |#1|) 41 T ELT)) (-1573 ((|#2| |#2| |#1|) 40 T ELT)))
+(((-240 |#1| |#2|) (-10 -7 (-15 -1572 (|#2| |#2| |#1|)) (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 (|#2| |#2| |#1|)) (-15 -1575 ((-584 (-1069 |#1|)) (-1069 |#1|) |#1|))) (-312) (-1172 |#1|)) (T -240))
+((-1575 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-584 (-1069 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1069 *4)) (-4 *5 (-1172 *4)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))) (-1572 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))))
+((-3800 ((|#2| $ |#1|) 6 T ELT)))
+(((-241 |#1| |#2|) (-113) (-1129) (-1129)) (T -241))
+((-3800 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1129)) (-4 *2 (-1129)))))
+(-13 (-1129) (-10 -8 (-15 -3800 (|t#2| $ |t#1|))))
+(((-13) . T) ((-1129) . T))
+((-1576 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3113 ((|#3| $ |#2|) 10 T ELT)))
+(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1576 (|#3| |#1| |#2| |#3|)) (-15 -3113 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1014) (-1129)) (T -242))
+NIL
+((-3788 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3996)) ELT)) (-1576 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) 11 T ELT)) (-3800 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
+(((-243 |#1| |#2|) (-113) (-1014) (-1129)) (T -243))
+((-3800 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1129)))) (-3113 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1129)))) (-1576 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1129)))))
+(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3800 (|t#2| $ |t#1| |t#2|)) (-15 -3113 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3788 (|t#2| $ |t#1| |t#2|)) (-15 -1576 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-241 |#1| |#2|) . T) ((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 37 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 44 T ELT)) (-2064 (($ $) 41 T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2565 (($ $ $) 35 T ELT)) (-3842 (($ |#2| |#3|) 18 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 ((|#3| $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 19 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) NIL T ELT)) (-1607 (((-695) $) 36 T ELT)) (-3800 ((|#2| $ |#2|) 46 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 23 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 31 T CONST)) (-2667 (($) 39 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT)))
+(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2615 (|#3| $)) (-15 -3946 (|#2| $)) (-15 -3842 ($ |#2| |#3|)) (-15 -2403 ((-3 $ #1="failed") $ $)) (-15 -3467 ((-3 $ #1#) $)) (-15 -2485 ($ $)))) (-146) (-1155 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244))
+((-3467 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2615 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1155 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3842 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1155 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2485 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))))
+((-3126 (((-85) $ $) 10 T ELT)))
+(((-245 |#1|) (-10 -7 (-15 -3126 ((-85) |#1| |#1|))) (-246)) (T -245))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-246) (-113)) (T -246))
NIL
-(-13 (-961) (-82 $ $) (-10 -7 (-6 -3987)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-1583 (((-583 (-997)) $) 10 T ELT)) (-1581 (($ (-446) (-446) (-1015) $) 19 T ELT)) (-1579 (($ (-446) (-583 (-876)) $) 23 T ELT)) (-1577 (($) 25 T ELT)) (-1582 (((-632 (-1015)) (-446) (-446) $) 18 T ELT)) (-1580 (((-583 (-876)) (-446) $) 22 T ELT)) (-3564 (($) 7 T ELT)) (-1578 (($) 24 T ELT)) (-3945 (((-772) $) 29 T ELT)) (-1576 (($) 26 T ELT)))
-(((-247) (-13 (-552 (-772)) (-10 -8 (-15 -3564 ($)) (-15 -1583 ((-583 (-997)) $)) (-15 -1582 ((-632 (-1015)) (-446) (-446) $)) (-15 -1581 ($ (-446) (-446) (-1015) $)) (-15 -1580 ((-583 (-876)) (-446) $)) (-15 -1579 ($ (-446) (-583 (-876)) $)) (-15 -1578 ($)) (-15 -1577 ($)) (-15 -1576 ($))))) (T -247))
-((-3564 (*1 *1) (-5 *1 (-247))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-583 (-997))) (-5 *1 (-247)))) (-1582 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-1015))) (-5 *1 (-247)))) (-1581 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-247)))) (-1580 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-583 (-876))) (-5 *1 (-247)))) (-1579 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-247)))) (-1578 (*1 *1) (-5 *1 (-247))) (-1577 (*1 *1) (-5 *1 (-247))) (-1576 (*1 *1) (-5 *1 (-247))))
-((-1587 (((-583 (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-349 (-857 |#1|))))))) (-630 (-349 (-857 |#1|)))) 103 T ELT)) (-1586 (((-583 (-630 (-349 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 |#1|)))))) (-630 (-349 (-857 |#1|)))) 98 T ELT) (((-583 (-630 (-349 (-857 |#1|)))) (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|))) (-630 (-349 (-857 |#1|))) (-694) (-694)) 42 T ELT)) (-1588 (((-583 (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 |#1|))))))) (-630 (-349 (-857 |#1|)))) 100 T ELT)) (-1585 (((-583 (-630 (-349 (-857 |#1|)))) (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|))) (-630 (-349 (-857 |#1|)))) 76 T ELT)) (-1584 (((-583 (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (-630 (-349 (-857 |#1|)))) 75 T ELT)) (-2449 (((-857 |#1|) (-630 (-349 (-857 |#1|)))) 56 T ELT) (((-857 |#1|) (-630 (-349 (-857 |#1|))) (-1089)) 57 T ELT)))
-(((-248 |#1|) (-10 -7 (-15 -2449 ((-857 |#1|) (-630 (-349 (-857 |#1|))) (-1089))) (-15 -2449 ((-857 |#1|) (-630 (-349 (-857 |#1|))))) (-15 -1584 ((-583 (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (-630 (-349 (-857 |#1|))))) (-15 -1585 ((-583 (-630 (-349 (-857 |#1|)))) (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|))) (-630 (-349 (-857 |#1|))))) (-15 -1586 ((-583 (-630 (-349 (-857 |#1|)))) (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|))) (-630 (-349 (-857 |#1|))) (-694) (-694))) (-15 -1586 ((-583 (-630 (-349 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 |#1|)))))) (-630 (-349 (-857 |#1|))))) (-15 -1587 ((-583 (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-349 (-857 |#1|))))))) (-630 (-349 (-857 |#1|))))) (-15 -1588 ((-583 (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 |#1|))))))) (-630 (-349 (-857 |#1|)))))) (-391)) (T -248))
-((-1588 (*1 *2 *3) (-12 (-4 *4 (-391)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-630 (-349 (-857 *4)))))) (-1587 (*1 *2 *3) (-12 (-4 *4 (-391)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4)))) (|:| |geneigvec| (-583 (-630 (-349 (-857 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-630 (-349 (-857 *4)))))) (-1586 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-349 (-857 *5)) (-1079 (-1089) (-857 *5)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-630 (-349 (-857 *5)))))) (-1586 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-349 (-857 *6)) (-1079 (-1089) (-857 *6)))) (-5 *5 (-694)) (-4 *6 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-630 (-349 (-857 *6)))))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-349 (-857 *5)) (-1079 (-1089) (-857 *5)))) (-4 *5 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-630 (-349 (-857 *5)))))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 *4)))) (-4 *4 (-391)) (-5 *2 (-583 (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4))))) (-5 *1 (-248 *4)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-248 *4)) (-4 *4 (-391)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-349 (-857 *5)))) (-5 *4 (-1089)) (-5 *2 (-857 *5)) (-5 *1 (-248 *5)) (-4 *5 (-391)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1594 (($ $) 12 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1603 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3723 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-663))) CONST)) (-1592 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1590 (((-3 $ #1#) $) 62 (|has| |#1| (-663)) ELT)) (-3527 ((|#1| $) 11 T ELT)) (-3466 (((-3 $ #1#) $) 60 (|has| |#1| (-663)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-663)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3528 ((|#1| $) 10 T ELT)) (-1593 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1591 (((-3 $ #1#) $) 61 (|has| |#1| (-663)) ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2484 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-412))) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1589 (((-583 $) $) 85 (|has| |#1| (-495)) ELT)) (-3767 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-1089) |#1|) 17 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 21 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3226 (($ |#1| |#1|) 9 T ELT)) (-3910 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 87 (|has| |#1| (-809 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-809 (-1089))) ELT)) (-3009 (($ $ $) NIL (|has| |#1| (-412)) ELT)) (-2435 (($ $ $) NIL (|has| |#1| (-412)) ELT)) (-3945 (($ (-484)) NIL (|has| |#1| (-961)) ELT) (((-85) $) 37 (|has| |#1| (-1013)) ELT) (((-772) $) 36 (|has| |#1| (-1013)) ELT)) (-3126 (((-694)) 67 (|has| |#1| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-961)) ELT)) (-2660 (($) 47 (|has| |#1| (-21)) CONST)) (-2666 (($) 57 (|has| |#1| (-663)) CONST)) (-2669 (($ $ (-1089)) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-809 (-1089))) ELT)) (-3056 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1013)) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-412))) ELT)) (-3836 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3838 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) NIL (|has| |#1| (-412)) ELT) (($ $ (-694)) NIL (|has| |#1| (-663)) ELT) (($ $ (-830)) NIL (|has| |#1| (-1025)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1025)) ELT) (($ |#1| $) 54 (|has| |#1| (-1025)) ELT) (($ $ $) 53 (|has| |#1| (-1025)) ELT) (($ (-484) $) 70 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-25)) ELT)))
-(((-249 |#1|) (-13 (-1128) (-10 -8 (-15 -3056 ($ |#1| |#1|)) (-15 -3226 ($ |#1| |#1|)) (-15 -1594 ($ $)) (-15 -3528 (|#1| $)) (-15 -3527 (|#1| $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455 (-1089) |#1|)) (-6 (-455 (-1089) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-552 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3767 ($ $ $)) (-15 -3767 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3838 ($ |#1| $)) (-15 -3838 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1593 ($ $)) (-15 -1592 ($ $)) (-15 -3836 ($ |#1| $)) (-15 -3836 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -1591 ((-3 $ #1="failed") $)) (-15 -1590 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-412)) (PROGN (-6 (-412)) (-15 -1591 ((-3 $ #1#) $)) (-15 -1590 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-495)) (-15 -1589 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-809 (-1089))) (-6 (-809 (-1089))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1186 |#1|)) (-15 -3948 ($ $ $)) (-15 -2484 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1603 ($ $ $)) |%noBranch|))) (-1128)) (T -249))
-((-3056 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-3226 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-3528 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-3527 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-249 *3)))) (-3767 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)) (-5 *1 (-249 *2)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)) (-5 *1 (-249 *3)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-3836 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-3836 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-1591 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1128)))) (-1590 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1128)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-583 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-495)) (-4 *3 (-1128)))) (-1603 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1128)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) (-3948 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1128))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-412)) (-4 *2 (-1128))))) (-2484 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1128))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-412)) (-4 *2 (-1128))))))
-((-3957 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT)))
-(((-250 |#1| |#2|) (-10 -7 (-15 -3957 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1128) (-1128)) (T -250))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6)))))
-((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-251 |#1| |#2|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3994))) (-1013) (-1013)) (T -251))
-NIL
-((-1595 (((-262) (-1072) (-583 (-1072))) 17 T ELT) (((-262) (-1072) (-1072)) 16 T ELT) (((-262) (-583 (-1072))) 15 T ELT) (((-262) (-1072)) 14 T ELT)))
-(((-252) (-10 -7 (-15 -1595 ((-262) (-1072))) (-15 -1595 ((-262) (-583 (-1072)))) (-15 -1595 ((-262) (-1072) (-1072))) (-15 -1595 ((-262) (-1072) (-583 (-1072)))))) (T -252))
-((-1595 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1072))) (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1595 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252)))))
-((-1599 (((-583 (-550 $)) $) 27 T ELT)) (-1603 (($ $ (-249 $)) 78 T ELT) (($ $ (-583 (-249 $))) 140 T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3157 (((-3 (-550 $) #1="failed") $) 128 T ELT)) (-3156 (((-550 $) $) 127 T ELT)) (-2573 (($ $) 17 T ELT) (($ (-583 $)) 54 T ELT)) (-1598 (((-583 (-86)) $) 35 T ELT)) (-3594 (((-86) (-86)) 89 T ELT)) (-2673 (((-85) $) 151 T ELT)) (-3957 (($ (-1 $ $) (-550 $)) 87 T ELT)) (-1601 (((-3 (-550 $) #1#) $) 95 T ELT)) (-2235 (($ (-86) $) 59 T ELT) (($ (-86) (-583 $)) 111 T ELT)) (-2633 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1089)) 132 T ELT)) (-2603 (((-694) $) 44 T ELT)) (-1597 (((-85) $ $) 57 T ELT) (((-85) $ (-1089)) 49 T ELT)) (-2674 (((-85) $) 149 T ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) 81 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-583 $))) 67 T ELT) (($ $ (-1089) (-1 $ $)) 72 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 80 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-583 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3799 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-583 $)) 124 T ELT)) (-1602 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2590 (($ $) 15 T ELT) (($ (-583 $)) 53 T ELT)) (-2254 (((-85) (-86)) 21 T ELT)))
-(((-253 |#1|) (-10 -7 (-15 -2673 ((-85) |#1|)) (-15 -2674 ((-85) |#1|)) (-15 -3767 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3767 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-1089) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-1 |#1| |#1|)))) (-15 -1597 ((-85) |#1| (-1089))) (-15 -1597 ((-85) |#1| |#1|)) (-15 -3957 (|#1| (-1 |#1| |#1|) (-550 |#1|))) (-15 -2235 (|#1| (-86) (-583 |#1|))) (-15 -2235 (|#1| (-86) |#1|)) (-15 -2633 ((-85) |#1| (-1089))) (-15 -2633 ((-85) |#1| (-86))) (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -1598 ((-583 (-86)) |#1|)) (-15 -1599 ((-583 (-550 |#1|)) |#1|)) (-15 -1601 ((-3 (-550 |#1|) #1="failed") |#1|)) (-15 -2603 ((-694) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -1602 (|#1| |#1|)) (-15 -2573 (|#1| (-583 |#1|))) (-15 -2573 (|#1| |#1|)) (-15 -2590 (|#1| (-583 |#1|))) (-15 -2590 (|#1| |#1|)) (-15 -1603 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1603 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -1603 (|#1| |#1| (-249 |#1|))) (-15 -3799 (|#1| (-86) (-583 |#1|))) (-15 -3799 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3767 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3157 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3156 ((-550 |#1|) |#1|))) (-254)) (T -253))
-((-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-1599 (((-583 (-550 $)) $) 42 T ELT)) (-1603 (($ $ (-249 $)) 54 T ELT) (($ $ (-583 (-249 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3157 (((-3 (-550 $) "failed") $) 67 T ELT)) (-3156 (((-550 $) $) 68 T ELT)) (-2573 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1598 (((-583 (-86)) $) 41 T ELT)) (-3594 (((-86) (-86)) 40 T ELT)) (-2673 (((-85) $) 20 (|has| $ (-950 (-484))) ELT)) (-1596 (((-1084 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1601 (((-3 (-550 $) "failed") $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1600 (((-583 (-550 $)) $) 43 T ELT)) (-2235 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2633 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1089)) 37 T ELT)) (-2603 (((-694) $) 45 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1597 (((-85) $ $) 33 T ELT) (((-85) $ (-1089)) 32 T ELT)) (-2674 (((-85) $) 21 (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1089) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1089) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3799 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-1602 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3185 (($ $) 22 (|has| $ (-961)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT)) (-2590 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2254 (((-85) (-86)) 39 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
+(-13 (-962) (-82 $ $) (-10 -7 (-6 -3988)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-1584 (((-584 (-998)) $) 10 T ELT)) (-1582 (($ (-447) (-447) (-1016) $) 19 T ELT)) (-1580 (($ (-447) (-584 (-877)) $) 23 T ELT)) (-1578 (($) 25 T ELT)) (-1583 (((-633 (-1016)) (-447) (-447) $) 18 T ELT)) (-1581 (((-584 (-877)) (-447) $) 22 T ELT)) (-3565 (($) 7 T ELT)) (-1579 (($) 24 T ELT)) (-3946 (((-773) $) 29 T ELT)) (-1577 (($) 26 T ELT)))
+(((-247) (-13 (-553 (-773)) (-10 -8 (-15 -3565 ($)) (-15 -1584 ((-584 (-998)) $)) (-15 -1583 ((-633 (-1016)) (-447) (-447) $)) (-15 -1582 ($ (-447) (-447) (-1016) $)) (-15 -1581 ((-584 (-877)) (-447) $)) (-15 -1580 ($ (-447) (-584 (-877)) $)) (-15 -1579 ($)) (-15 -1578 ($)) (-15 -1577 ($))))) (T -247))
+((-3565 (*1 *1) (-5 *1 (-247))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-584 (-998))) (-5 *1 (-247)))) (-1583 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-247)))) (-1582 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-247)))) (-1581 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-247)))) (-1580 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-247)))) (-1579 (*1 *1) (-5 *1 (-247))) (-1578 (*1 *1) (-5 *1 (-247))) (-1577 (*1 *1) (-5 *1 (-247))))
+((-1588 (((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))) 103 T ELT)) (-1587 (((-584 (-631 (-350 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|)))))) (-631 (-350 (-858 |#1|)))) 98 T ELT) (((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|))) (-631 (-350 (-858 |#1|))) (-695) (-695)) 42 T ELT)) (-1589 (((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))) 100 T ELT)) (-1586 (((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|))) (-631 (-350 (-858 |#1|)))) 76 T ELT)) (-1585 (((-584 (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|)))) (-631 (-350 (-858 |#1|)))) 75 T ELT)) (-2450 (((-858 |#1|) (-631 (-350 (-858 |#1|)))) 56 T ELT) (((-858 |#1|) (-631 (-350 (-858 |#1|))) (-1090)) 57 T ELT)))
+(((-248 |#1|) (-10 -7 (-15 -2450 ((-858 |#1|) (-631 (-350 (-858 |#1|))) (-1090))) (-15 -2450 ((-858 |#1|) (-631 (-350 (-858 |#1|))))) (-15 -1585 ((-584 (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|)))) (-631 (-350 (-858 |#1|))))) (-15 -1586 ((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|))) (-631 (-350 (-858 |#1|))))) (-15 -1587 ((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|))) (-631 (-350 (-858 |#1|))) (-695) (-695))) (-15 -1587 ((-584 (-631 (-350 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|)))))) (-631 (-350 (-858 |#1|))))) (-15 -1588 ((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|))))) (-15 -1589 ((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1080 (-1090) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))))) (-392)) (T -248))
+((-1589 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1080 (-1090) (-858 *4)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))) (-1588 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1080 (-1090) (-858 *4)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-350 (-858 *5)) (-1080 (-1090) (-858 *5)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-631 (-350 (-858 *5)))))) (-1587 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-350 (-858 *6)) (-1080 (-1090) (-858 *6)))) (-5 *5 (-695)) (-4 *6 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-631 (-350 (-858 *6)))))) (-1586 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-350 (-858 *5)) (-1080 (-1090) (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-631 (-350 (-858 *5)))))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-4 *4 (-392)) (-5 *2 (-584 (-3 (-350 (-858 *4)) (-1080 (-1090) (-858 *4))))) (-5 *1 (-248 *4)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-248 *4)) (-4 *4 (-392)))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-858 *5)))) (-5 *4 (-1090)) (-5 *2 (-858 *5)) (-5 *1 (-248 *5)) (-4 *5 (-392)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1595 (($ $) 12 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1604 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3724 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-664))) CONST)) (-1593 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1591 (((-3 $ #1#) $) 62 (|has| |#1| (-664)) ELT)) (-3528 ((|#1| $) 11 T ELT)) (-3467 (((-3 $ #1#) $) 60 (|has| |#1| (-664)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-664)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3529 ((|#1| $) 10 T ELT)) (-1594 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1592 (((-3 $ #1#) $) 61 (|has| |#1| (-664)) ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-2485 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1590 (((-584 $) $) 85 (|has| |#1| (-496)) ELT)) (-3768 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-1090) |#1|) 17 (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) 21 (|has| |#1| (-456 (-1090) |#1|)) ELT)) (-3227 (($ |#1| |#1|) 9 T ELT)) (-3911 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 87 (|has| |#1| (-810 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-810 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-810 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-810 (-1090))) ELT)) (-3010 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3946 (($ (-485)) NIL (|has| |#1| (-962)) ELT) (((-85) $) 37 (|has| |#1| (-1014)) ELT) (((-773) $) 36 (|has| |#1| (-1014)) ELT)) (-3127 (((-695)) 67 (|has| |#1| (-962)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-962)) ELT)) (-2661 (($) 47 (|has| |#1| (-21)) CONST)) (-2667 (($) 57 (|has| |#1| (-664)) CONST)) (-2670 (($ $ (-1090)) NIL (|has| |#1| (-810 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-810 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-810 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-810 (-1090))) ELT)) (-3057 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1014)) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3837 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3839 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) NIL (|has| |#1| (-413)) ELT) (($ $ (-695)) NIL (|has| |#1| (-664)) ELT) (($ $ (-831)) NIL (|has| |#1| (-1026)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1026)) ELT) (($ |#1| $) 54 (|has| |#1| (-1026)) ELT) (($ $ $) 53 (|has| |#1| (-1026)) ELT) (($ (-485) $) 70 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-25)) ELT)))
+(((-249 |#1|) (-13 (-1129) (-10 -8 (-15 -3057 ($ |#1| |#1|)) (-15 -3227 ($ |#1| |#1|)) (-15 -1595 ($ $)) (-15 -3529 (|#1| $)) (-15 -3528 (|#1| $)) (-15 -3958 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-456 (-1090) |#1|)) (-6 (-456 (-1090) |#1|)) |%noBranch|) (IF (|has| |#1| (-1014)) (PROGN (-6 (-1014)) (-6 (-553 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3768 ($ $ $)) (-15 -3768 ($ $ (-584 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3839 ($ |#1| $)) (-15 -3839 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1594 ($ $)) (-15 -1593 ($ $)) (-15 -3837 ($ |#1| $)) (-15 -3837 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1026)) (PROGN (-6 (-1026)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -1592 ((-3 $ #1="failed") $)) (-15 -1591 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-413)) (PROGN (-6 (-413)) (-15 -1592 ((-3 $ #1#) $)) (-15 -1591 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-6 (-962)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-496)) (-15 -1590 ((-584 $) $)) |%noBranch|) (IF (|has| |#1| (-810 (-1090))) (-6 (-810 (-1090))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1187 |#1|)) (-15 -3949 ($ $ $)) (-15 -2485 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1604 ($ $ $)) |%noBranch|))) (-1129)) (T -249))
+((-3057 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3227 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3529 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3528 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-249 *3)))) (-3768 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1014)) (-4 *2 (-1129)) (-5 *1 (-249 *2)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1014)) (-4 *3 (-1129)) (-5 *1 (-249 *3)))) (-3839 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-3837 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-1592 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1129)))) (-1591 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1129)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-584 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496)) (-4 *3 (-1129)))) (-1604 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1129)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1129)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1129)))) (-3949 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129))))) (-2485 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129))))))
+((-3958 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT)))
+(((-250 |#1| |#2|) (-10 -7 (-15 -3958 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1129) (-1129)) (T -250))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-773) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-251 |#1| |#2|) (-1107 |#1| |#2|) (-1014) (-1014)) (T -251))
+NIL
+((-1596 (((-262) (-1073) (-584 (-1073))) 17 T ELT) (((-262) (-1073) (-1073)) 16 T ELT) (((-262) (-584 (-1073))) 15 T ELT) (((-262) (-1073)) 14 T ELT)))
+(((-252) (-10 -7 (-15 -1596 ((-262) (-1073))) (-15 -1596 ((-262) (-584 (-1073)))) (-15 -1596 ((-262) (-1073) (-1073))) (-15 -1596 ((-262) (-1073) (-584 (-1073)))))) (T -252))
+((-1596 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1073))) (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1596 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))))
+((-1600 (((-584 (-551 $)) $) 27 T ELT)) (-1604 (($ $ (-249 $)) 78 T ELT) (($ $ (-584 (-249 $))) 140 T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3158 (((-3 (-551 $) #1="failed") $) 128 T ELT)) (-3157 (((-551 $) $) 127 T ELT)) (-2574 (($ $) 17 T ELT) (($ (-584 $)) 54 T ELT)) (-1599 (((-584 (-86)) $) 35 T ELT)) (-3595 (((-86) (-86)) 89 T ELT)) (-2674 (((-85) $) 151 T ELT)) (-3958 (($ (-1 $ $) (-551 $)) 87 T ELT)) (-1602 (((-3 (-551 $) #1#) $) 95 T ELT)) (-2236 (($ (-86) $) 59 T ELT) (($ (-86) (-584 $)) 111 T ELT)) (-2634 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1090)) 132 T ELT)) (-2604 (((-695) $) 44 T ELT)) (-1598 (((-85) $ $) 57 T ELT) (((-85) $ (-1090)) 49 T ELT)) (-2675 (((-85) $) 149 T ELT)) (-3768 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ $))) 81 T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-584 $))) 67 T ELT) (($ $ (-1090) (-1 $ $)) 72 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 80 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-584 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3800 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-584 $)) 124 T ELT)) (-1603 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2591 (($ $) 15 T ELT) (($ (-584 $)) 53 T ELT)) (-2255 (((-85) (-86)) 21 T ELT)))
+(((-253 |#1|) (-10 -7 (-15 -2674 ((-85) |#1|)) (-15 -2675 ((-85) |#1|)) (-15 -3768 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3768 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3768 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3768 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-1090) (-1 |#1| (-584 |#1|)))) (-15 -3768 (|#1| |#1| (-584 (-1090)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3768 (|#1| |#1| (-584 (-1090)) (-584 (-1 |#1| |#1|)))) (-15 -1598 ((-85) |#1| (-1090))) (-15 -1598 ((-85) |#1| |#1|)) (-15 -3958 (|#1| (-1 |#1| |#1|) (-551 |#1|))) (-15 -2236 (|#1| (-86) (-584 |#1|))) (-15 -2236 (|#1| (-86) |#1|)) (-15 -2634 ((-85) |#1| (-1090))) (-15 -2634 ((-85) |#1| (-86))) (-15 -2255 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -1599 ((-584 (-86)) |#1|)) (-15 -1600 ((-584 (-551 |#1|)) |#1|)) (-15 -1602 ((-3 (-551 |#1|) #1="failed") |#1|)) (-15 -2604 ((-695) |#1|)) (-15 -1603 (|#1| |#1| |#1|)) (-15 -1603 (|#1| |#1|)) (-15 -2574 (|#1| (-584 |#1|))) (-15 -2574 (|#1| |#1|)) (-15 -2591 (|#1| (-584 |#1|))) (-15 -2591 (|#1| |#1|)) (-15 -1604 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1604 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -1604 (|#1| |#1| (-249 |#1|))) (-15 -3800 (|#1| (-86) (-584 |#1|))) (-15 -3800 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1|)) (-15 -3768 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3768 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3768 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3158 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3157 ((-551 |#1|) |#1|))) (-254)) (T -253))
+((-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-1600 (((-584 (-551 $)) $) 42 T ELT)) (-1604 (($ $ (-249 $)) 54 T ELT) (($ $ (-584 (-249 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3158 (((-3 (-551 $) "failed") $) 67 T ELT)) (-3157 (((-551 $) $) 68 T ELT)) (-2574 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1599 (((-584 (-86)) $) 41 T ELT)) (-3595 (((-86) (-86)) 40 T ELT)) (-2674 (((-85) $) 20 (|has| $ (-951 (-485))) ELT)) (-1597 (((-1085 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3958 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1602 (((-3 (-551 $) "failed") $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1601 (((-584 (-551 $)) $) 43 T ELT)) (-2236 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2634 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1090)) 37 T ELT)) (-2604 (((-695) $) 45 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1598 (((-85) $ $) 33 T ELT) (((-85) $ (-1090)) 32 T ELT)) (-2675 (((-85) $) 21 (|has| $ (-951 (-485))) ELT)) (-3768 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1090) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1090) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3800 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-1603 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3186 (($ $) 22 (|has| $ (-962)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT)) (-2591 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2255 (((-85) (-86)) 39 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-254) (-113)) (T -254))
-((-3799 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3799 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3799 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3799 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3799 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *1))) (-4 *1 (-254)))) (-1603 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-2590 (*1 *1 *1) (-4 *1 (-254))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) (-2573 (*1 *1 *1) (-4 *1 (-254))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) (-1602 (*1 *1 *1) (-4 *1 (-254))) (-1602 (*1 *1 *1 *1) (-4 *1 (-254))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-694)))) (-1601 (*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-583 (-86))))) (-3594 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2254 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1089)) (-5 *2 (-85)))) (-2235 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2235 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-254)))) (-1597 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1597 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1089)) (-5 *2 (-85)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-254)) (-5 *2 (-1084 *1)))) (-3185 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-254)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))))
-(-13 (-1013) (-950 (-550 $)) (-455 (-550 $) $) (-260 $) (-10 -8 (-15 -3799 ($ (-86) $)) (-15 -3799 ($ (-86) $ $)) (-15 -3799 ($ (-86) $ $ $)) (-15 -3799 ($ (-86) $ $ $ $)) (-15 -3799 ($ (-86) (-583 $))) (-15 -1603 ($ $ (-249 $))) (-15 -1603 ($ $ (-583 (-249 $)))) (-15 -1603 ($ $ (-583 (-550 $)) (-583 $))) (-15 -2590 ($ $)) (-15 -2590 ($ (-583 $))) (-15 -2573 ($ $)) (-15 -2573 ($ (-583 $))) (-15 -1602 ($ $)) (-15 -1602 ($ $ $)) (-15 -2603 ((-694) $)) (-15 -1601 ((-3 (-550 $) "failed") $)) (-15 -1600 ((-583 (-550 $)) $)) (-15 -1599 ((-583 (-550 $)) $)) (-15 -1598 ((-583 (-86)) $)) (-15 -3594 ((-86) (-86))) (-15 -2254 ((-85) (-86))) (-15 -2633 ((-85) $ (-86))) (-15 -2633 ((-85) $ (-1089))) (-15 -2235 ($ (-86) $)) (-15 -2235 ($ (-86) (-583 $))) (-15 -3957 ($ (-1 $ $) (-550 $))) (-15 -1597 ((-85) $ $)) (-15 -1597 ((-85) $ (-1089))) (-15 -3767 ($ $ (-583 (-1089)) (-583 (-1 $ $)))) (-15 -3767 ($ $ (-583 (-1089)) (-583 (-1 $ (-583 $))))) (-15 -3767 ($ $ (-1089) (-1 $ (-583 $)))) (-15 -3767 ($ $ (-1089) (-1 $ $))) (-15 -3767 ($ $ (-583 (-86)) (-583 (-1 $ $)))) (-15 -3767 ($ $ (-583 (-86)) (-583 (-1 $ (-583 $))))) (-15 -3767 ($ $ (-86) (-1 $ (-583 $)))) (-15 -3767 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -1596 ((-1084 $) (-550 $))) (-15 -3185 ($ $))) |%noBranch|) (IF (|has| $ (-950 (-484))) (PROGN (-15 -2674 ((-85) $)) (-15 -2673 ((-85) $))) |%noBranch|)))
-(((-72) . T) ((-555 (-550 $)) . T) ((-552 (-772)) . T) ((-260 $) . T) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-13) . T) ((-950 (-550 $)) . T) ((-1013) . T) ((-1128) . T))
-((-3957 ((|#2| (-1 |#2| |#1|) (-1072) (-550 |#1|)) 18 T ELT)))
-(((-255 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| (-1 |#2| |#1|) (-1072) (-550 |#1|)))) (-254) (-1128)) (T -255))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-550 *6)) (-4 *6 (-254)) (-4 *2 (-1128)) (-5 *1 (-255 *6 *2)))))
-((-3957 ((|#2| (-1 |#2| |#1|) (-550 |#1|)) 17 T ELT)))
-(((-256 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| (-1 |#2| |#1|) (-550 |#1|)))) (-254) (-254)) (T -256))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2)))))
-((-1607 (((-85) $ $) 14 T ELT)) (-2564 (($ $ $) 18 T ELT)) (-2563 (($ $ $) 17 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 50 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 67 T ELT)) (-3144 (($ $ $) 25 T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3465 (((-3 $ #1#) $ $) 21 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 55 T ELT)))
-(((-257 |#1|) (-10 -7 (-15 -1604 ((-3 (-583 |#1|) #1="failed") (-583 |#1|) |#1|)) (-15 -1605 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1605 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -1607 ((-85) |#1| |#1|)) (-15 -2740 ((-632 (-583 |#1|)) (-583 |#1|) |#1|)) (-15 -2741 ((-2 (|:| -3953 (-583 |#1|)) (|:| -2409 |#1|)) (-583 |#1|))) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3144 (|#1| |#1| |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) "failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-3800 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3800 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3800 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3800 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3800 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *1))) (-4 *1 (-254)))) (-1604 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-2591 (*1 *1 *1) (-4 *1 (-254))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) (-2574 (*1 *1 *1) (-4 *1 (-254))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) (-1603 (*1 *1 *1) (-4 *1 (-254))) (-1603 (*1 *1 *1 *1) (-4 *1 (-254))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-695)))) (-1602 (*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-254)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-584 (-86))))) (-3595 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2255 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85)))) (-2236 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2236 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-3958 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-254)))) (-1598 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1598 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-254)) (-5 *2 (-1085 *1)))) (-3186 (*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-254)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))))
+(-13 (-1014) (-951 (-551 $)) (-456 (-551 $) $) (-260 $) (-10 -8 (-15 -3800 ($ (-86) $)) (-15 -3800 ($ (-86) $ $)) (-15 -3800 ($ (-86) $ $ $)) (-15 -3800 ($ (-86) $ $ $ $)) (-15 -3800 ($ (-86) (-584 $))) (-15 -1604 ($ $ (-249 $))) (-15 -1604 ($ $ (-584 (-249 $)))) (-15 -1604 ($ $ (-584 (-551 $)) (-584 $))) (-15 -2591 ($ $)) (-15 -2591 ($ (-584 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-584 $))) (-15 -1603 ($ $)) (-15 -1603 ($ $ $)) (-15 -2604 ((-695) $)) (-15 -1602 ((-3 (-551 $) "failed") $)) (-15 -1601 ((-584 (-551 $)) $)) (-15 -1600 ((-584 (-551 $)) $)) (-15 -1599 ((-584 (-86)) $)) (-15 -3595 ((-86) (-86))) (-15 -2255 ((-85) (-86))) (-15 -2634 ((-85) $ (-86))) (-15 -2634 ((-85) $ (-1090))) (-15 -2236 ($ (-86) $)) (-15 -2236 ($ (-86) (-584 $))) (-15 -3958 ($ (-1 $ $) (-551 $))) (-15 -1598 ((-85) $ $)) (-15 -1598 ((-85) $ (-1090))) (-15 -3768 ($ $ (-584 (-1090)) (-584 (-1 $ $)))) (-15 -3768 ($ $ (-584 (-1090)) (-584 (-1 $ (-584 $))))) (-15 -3768 ($ $ (-1090) (-1 $ (-584 $)))) (-15 -3768 ($ $ (-1090) (-1 $ $))) (-15 -3768 ($ $ (-584 (-86)) (-584 (-1 $ $)))) (-15 -3768 ($ $ (-584 (-86)) (-584 (-1 $ (-584 $))))) (-15 -3768 ($ $ (-86) (-1 $ (-584 $)))) (-15 -3768 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-962)) (PROGN (-15 -1597 ((-1085 $) (-551 $))) (-15 -3186 ($ $))) |%noBranch|) (IF (|has| $ (-951 (-485))) (PROGN (-15 -2675 ((-85) $)) (-15 -2674 ((-85) $))) |%noBranch|)))
+(((-72) . T) ((-556 (-551 $)) . T) ((-553 (-773)) . T) ((-260 $) . T) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-13) . T) ((-951 (-551 $)) . T) ((-1014) . T) ((-1129) . T))
+((-3958 ((|#2| (-1 |#2| |#1|) (-1073) (-551 |#1|)) 18 T ELT)))
+(((-255 |#1| |#2|) (-10 -7 (-15 -3958 (|#2| (-1 |#2| |#1|) (-1073) (-551 |#1|)))) (-254) (-1129)) (T -255))
+((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-551 *6)) (-4 *6 (-254)) (-4 *2 (-1129)) (-5 *1 (-255 *6 *2)))))
+((-3958 ((|#2| (-1 |#2| |#1|) (-551 |#1|)) 17 T ELT)))
+(((-256 |#1| |#2|) (-10 -7 (-15 -3958 (|#2| (-1 |#2| |#1|) (-551 |#1|)))) (-254) (-254)) (T -256))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2)))))
+((-1608 (((-85) $ $) 14 T ELT)) (-2565 (($ $ $) 18 T ELT)) (-2564 (($ $ $) 17 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 50 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 67 T ELT)) (-3145 (($ $ $) 25 T ELT) (($ (-584 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3466 (((-3 $ #1#) $ $) 21 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 55 T ELT)))
+(((-257 |#1|) (-10 -7 (-15 -1605 ((-3 (-584 |#1|) #1="failed") (-584 |#1|) |#1|)) (-15 -1606 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1606 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -1608 ((-85) |#1| |#1|)) (-15 -2741 ((-633 (-584 |#1|)) (-584 |#1|) |#1|)) (-15 -2742 ((-2 (|:| -3954 (-584 |#1|)) (|:| -2410 |#1|)) (-584 |#1|))) (-15 -3145 (|#1| (-584 |#1|))) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1605 (((-3 (-584 $) "failed") (-584 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-258) (-113)) (T -258))
-((-1607 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-694)))) (-2879 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-258)))) (-2563 (*1 *1 *1 *1) (-4 *1 (-258))) (-2564 (*1 *1 *1 *1) (-4 *1 (-258))) (-1605 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-258)))) (-1605 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1604 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-258)))))
-(-13 (-832) (-10 -8 (-15 -1607 ((-85) $ $)) (-15 -1606 ((-694) $)) (-15 -2879 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2563 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -1605 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -1605 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1604 ((-3 (-583 $) "failed") (-583 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3767 (($ $ (-583 |#2|) (-583 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-583 (-249 |#2|))) NIL T ELT)))
-(((-259 |#1| |#2|) (-10 -7 (-15 -3767 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3767 (|#1| |#1| (-249 |#2|))) (-15 -3767 (|#1| |#1| |#2| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-260 |#2|) (-1013)) (T -259))
-NIL
-((-3767 (($ $ (-583 |#1|) (-583 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-583 (-249 |#1|))) 12 T ELT)))
-(((-260 |#1|) (-113) (-1013)) (T -260))
-((-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1013)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1013)))))
-(-13 (-455 |t#1| |t#1|) (-10 -8 (-15 -3767 ($ $ (-249 |t#1|))) (-15 -3767 ($ $ (-583 (-249 |t#1|))))))
-(((-455 |#1| |#1|) . T))
-((-3767 ((|#1| (-1 |#1| (-484)) (-1091 (-349 (-484)))) 26 T ELT)))
-(((-261 |#1|) (-10 -7 (-15 -3767 (|#1| (-1 |#1| (-484)) (-1091 (-349 (-484)))))) (-38 (-349 (-484)))) (T -261))
-((-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1091 (-349 (-484)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-349 (-484)))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT)))
-(((-262) (-1013)) (T -262))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3505 (((-484) $) 13 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 10 T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-263) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $)) (-15 -3505 ((-484) $))))) (T -263))
-((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-263)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-263)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 60 T ELT)) (-3129 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1165 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-1159 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3156 (((-1165 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1089) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-1165 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1178 (-1165 |#1| |#2| |#3| |#4|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-1165 |#1| |#2| |#3| |#4|)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-1165 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3444 (((-632 $) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3957 (($ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3783 (((-3 (-750 |#2|) #1#) $) 80 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-1165 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1178 (-1165 |#1| |#2| |#3| |#4|)))) (-1178 $) $) NIL T ELT) (((-630 (-1165 |#1| |#2| |#3| |#4|)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3130 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-1165 |#1| |#2| |#3| |#4|)) (-583 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-249 (-1165 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-1089)) (-583 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-455 (-1089) (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1089) (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-455 (-1089) (-1165 |#1| |#2| |#3| |#4|))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-241 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-1165 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-933)) ELT) (((-179) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1165 |#1| |#2| |#3| |#4|) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-1165 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-1089))) ELT) (($ (-1159 |#2| |#3| |#4|)) 37 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1165 |#1| |#2| |#3| |#4|) (-821))) (|has| (-1165 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3948 (($ $ $) 35 T ELT) (($ (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-1165 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1165 |#1| |#2| |#3| |#4|)) NIL T ELT)))
-(((-264 |#1| |#2| |#3| |#4|) (-13 (-904 (-1165 |#1| |#2| |#3| |#4|)) (-950 (-1159 |#2| |#3| |#4|)) (-10 -8 (-15 -3783 ((-3 (-750 |#2|) "failed") $)) (-15 -3945 ($ (-1159 |#2| |#3| |#4|))))) (-13 (-950 (-484)) (-580 (-484)) (-391)) (-13 (-27) (-1114) (-363 |#1|)) (-1089) |#2|) (T -264))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4) (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3783 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *2 (-750 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1214 (((-583 $) $ (-1089)) NIL (|has| |#1| (-495)) ELT) (((-583 $) $) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1084 $)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-1215 (($ $ (-1089)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $)) NIL (|has| |#1| (-495)) ELT) (($ (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3188 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3081 (((-583 (-1089)) $) 365 T ELT)) (-3083 (((-349 (-1084 $)) $ (-550 $)) NIL (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1599 (((-583 (-550 $)) $) NIL T ELT)) (-3491 (($ $) 170 (|has| |#1| (-495)) ELT)) (-3638 (($ $) 146 (|has| |#1| (-495)) ELT)) (-1371 (($ $ (-1004 $)) 231 (|has| |#1| (-495)) ELT) (($ $ (-1089)) 227 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1603 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) 383 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 438 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 305 (-12 (|has| |#1| (-391)) (|has| |#1| (-495))) ELT)) (-3774 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-495)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3489 (($ $) 166 (|has| |#1| (-495)) ELT)) (-3637 (($ $) 142 (|has| |#1| (-495)) ELT)) (-1608 (($ $ (-484)) 68 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 174 (|has| |#1| (-495)) ELT)) (-3636 (($ $) 150 (|has| |#1| (-495)) ELT)) (-3723 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) (|has| |#1| (-1025))) CONST)) (-1216 (((-583 $) $ (-1089)) NIL (|has| |#1| (-495)) ELT) (((-583 $) $) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1084 $)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3183 (($ $ (-1089)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $) (-1089)) 133 (|has| |#1| (-495)) ELT) (($ (-1084 $)) NIL (|has| |#1| (-495)) ELT) (($ (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 (-550 $) #1#) $) 18 T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-857 |#1|)) #1#) $) NIL (|has| |#1| (-495)) ELT) (((-3 (-857 |#1|) #1#) $) NIL (|has| |#1| (-961)) ELT) (((-3 (-349 (-484)) #1#) $) 48 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3156 (((-550 $) $) 12 T ELT) (((-1089) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-857 |#1|)) $) NIL (|has| |#1| (-495)) ELT) (((-857 |#1|) $) NIL (|has| |#1| (-961)) ELT) (((-349 (-484)) $) 316 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 124 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 114 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT)) (-3841 (($ $) 95 (|has| |#1| (-495)) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3943 (($ $ (-1004 $)) 235 (|has| |#1| (-495)) ELT) (($ $ (-1089)) 233 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-495)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3385 (($ $ $) 201 (|has| |#1| (-495)) ELT)) (-3626 (($) 136 (|has| |#1| (-495)) ELT)) (-1368 (($ $ $) 221 (|has| |#1| (-495)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 389 (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 396 (|has| |#1| (-796 (-329))) ELT)) (-2573 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1213 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1598 (((-583 (-86)) $) NIL T ELT)) (-3594 (((-86) (-86)) 275 T ELT)) (-2410 (((-85) $) 27 (|has| |#1| (-1025)) ELT)) (-2673 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2996 (($ $) 73 (|has| |#1| (-961)) ELT)) (-2998 (((-1038 |#1| (-550 $)) $) 90 (|has| |#1| (-961)) ELT)) (-1609 (((-85) $) 49 (|has| |#1| (-495)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-495)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-495)) ELT)) (-1596 (((-1084 $) (-550 $)) 276 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) 434 T ELT)) (-1601 (((-3 (-550 $) #1#) $) NIL T ELT)) (-3941 (($ $) 140 (|has| |#1| (-495)) ELT)) (-2257 (($ $) 246 (|has| |#1| (-495)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1600 (((-583 (-550 $)) $) 51 T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) 439 T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #1#) $) NIL (|has| |#1| (-961)) ELT)) (-2822 (((-3 (-583 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1793 (((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $) NIL (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-86)) NIL (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-1089)) NIL (|has| |#1| (-961)) ELT)) (-2633 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) 53 T ELT)) (-2484 (($ $) NIL (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT)) (-2832 (($ $ (-1089)) 250 (|has| |#1| (-495)) ELT) (($ $ (-1004 $)) 252 (|has| |#1| (-495)) ELT)) (-2603 (((-694) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 45 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 298 (|has| |#1| (-495)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-1597 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-1372 (($ $ (-1089)) 225 (|has| |#1| (-495)) ELT) (($ $) 223 (|has| |#1| (-495)) ELT)) (-1366 (($ $) 217 (|has| |#1| (-495)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 303 (-12 (|has| |#1| (-391)) (|has| |#1| (-495))) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-495)) ELT)) (-3942 (($ $) 138 (|has| |#1| (-495)) ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 433 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 376 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-553 (-473))) ELT) (($ $) NIL (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1089)) 363 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-86)) (-583 $) (-1089)) 362 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ (-583 $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ $)) NIL (|has| |#1| (-961)) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-2255 (($ $) 238 (|has| |#1| (-495)) ELT)) (-3799 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-1602 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2256 (($ $) 248 (|has| |#1| (-495)) ELT)) (-3384 (($ $) 199 (|has| |#1| (-495)) ELT)) (-3757 (($ $ (-1089)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2995 (($ $) 74 (|has| |#1| (-495)) ELT)) (-2997 (((-1038 |#1| (-550 $)) $) 92 (|has| |#1| (-495)) ELT)) (-3185 (($ $) 314 (|has| $ (-961)) ELT)) (-3494 (($ $) 176 (|has| |#1| (-495)) ELT)) (-3635 (($ $) 152 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 172 (|has| |#1| (-495)) ELT)) (-3634 (($ $) 148 (|has| |#1| (-495)) ELT)) (-3490 (($ $) 168 (|has| |#1| (-495)) ELT)) (-3633 (($ $) 144 (|has| |#1| (-495)) ELT)) (-3971 (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| |#1| (-553 (-800 (-329)))) ELT) (($ (-347 $)) NIL (|has| |#1| (-495)) ELT) (((-473) $) 360 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $ $) NIL (|has| |#1| (-412)) ELT)) (-2435 (($ $ $) NIL (|has| |#1| (-412)) ELT)) (-3945 (((-772) $) 432 T ELT) (($ (-550 $)) 423 T ELT) (($ (-1089)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (($ (-1038 |#1| (-550 $))) 94 (|has| |#1| (-961)) ELT) (($ (-349 |#1|)) NIL (|has| |#1| (-495)) ELT) (($ (-857 (-349 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-857 (-349 |#1|)))) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-857 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-857 |#1|)) NIL (|has| |#1| (-961)) ELT) (($ (-484)) 36 (OR (|has| |#1| (-950 (-484))) (|has| |#1| (-961))) ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-495)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL (|has| |#1| (-961)) CONST)) (-2590 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3101 (($ $ $) 219 (|has| |#1| (-495)) ELT)) (-3388 (($ $ $) 205 (|has| |#1| (-495)) ELT)) (-3390 (($ $ $) 209 (|has| |#1| (-495)) ELT)) (-3387 (($ $ $) 203 (|has| |#1| (-495)) ELT)) (-3389 (($ $ $) 207 (|has| |#1| (-495)) ELT)) (-2254 (((-85) (-86)) 10 T ELT)) (-1264 (((-85) $ $) 85 T ELT)) (-3497 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3485 (($ $) 158 (|has| |#1| (-495)) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 178 (|has| |#1| (-495)) ELT)) (-3483 (($ $) 154 (|has| |#1| (-495)) ELT)) (-3499 (($ $) 186 (|has| |#1| (-495)) ELT)) (-3487 (($ $) 162 (|has| |#1| (-495)) ELT)) (-1794 (($ (-1089) $) NIL T ELT) (($ (-1089) $ $) NIL T ELT) (($ (-1089) $ $ $) NIL T ELT) (($ (-1089) $ $ $ $) NIL T ELT) (($ (-1089) (-583 $)) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-961)) ELT)) (-3392 (($ $) 213 (|has| |#1| (-495)) ELT)) (-3391 (($ $) 211 (|has| |#1| (-495)) ELT)) (-3500 (($ $) 188 (|has| |#1| (-495)) ELT)) (-3488 (($ $) 164 (|has| |#1| (-495)) ELT)) (-3498 (($ $) 184 (|has| |#1| (-495)) ELT)) (-3486 (($ $) 160 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 180 (|has| |#1| (-495)) ELT)) (-3484 (($ $) 156 (|has| |#1| (-495)) ELT)) (-3382 (($ $) 191 (|has| |#1| (-495)) ELT)) (-2660 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) CONST)) (-2259 (($ $) 242 (|has| |#1| (-495)) ELT)) (-2666 (($) 25 (|has| |#1| (-1025)) CONST)) (-3386 (($ $) 193 (|has| |#1| (-495)) ELT) (($ $ $) 195 (|has| |#1| (-495)) ELT)) (-2260 (($ $) 240 (|has| |#1| (-495)) ELT)) (-2669 (($ $ (-1089)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2258 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3383 (($ $ $) 197 (|has| |#1| (-495)) ELT)) (-3056 (((-85) $ $) 87 T ELT)) (-3948 (($ (-1038 |#1| (-550 $)) (-1038 |#1| (-550 $))) 105 (|has| |#1| (-495)) ELT) (($ $ $) 44 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT)) (-3836 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3838 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-495)) ELT) (($ $ (-349 (-484))) 311 (|has| |#1| (-495)) ELT) (($ $ (-484)) 79 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT) (($ $ (-694)) 75 (|has| |#1| (-1025)) ELT) (($ $ (-830)) 83 (|has| |#1| (-1025)) ELT)) (* (($ (-349 (-484)) $) NIL (|has| |#1| (-495)) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-495)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-961)) ELT) (($ $ $) 38 (|has| |#1| (-1025)) ELT) (($ (-484) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ (-694) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ (-830) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)))
-(((-265 |#1|) (-13 (-363 |#1|) (-10 -8 (IF (|has| |#1| (-495)) (PROGN (-6 (-29 |#1|)) (-6 (-1114)) (-6 (-133)) (-6 (-569)) (-6 (-1052)) (-15 -3841 ($ $)) (-15 -1609 ((-85) $)) (-15 -1608 ($ $ (-484))) (IF (|has| |#1| (-391)) (PROGN (-15 -2706 ((-347 (-1084 $)) (-1084 $))) (-15 -2707 ((-347 (-1084 $)) (-1084 $)))) |%noBranch|) (IF (|has| |#1| (-950 (-484))) (-6 (-950 (-48))) |%noBranch|)) |%noBranch|))) (-1013)) (T -265))
-((-3841 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-495)) (-4 *2 (-1013)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-347 (-1084 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1084 *1)) (-4 *4 (-391)) (-4 *4 (-495)) (-4 *4 (-1013)))) (-2707 (*1 *2 *3) (-12 (-5 *2 (-347 (-1084 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1084 *1)) (-4 *4 (-391)) (-4 *4 (-495)) (-4 *4 (-1013)))))
-((-3957 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT)))
-(((-266 |#1| |#2|) (-10 -7 (-15 -3957 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1013) (-1013)) (T -266))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6)))))
-((-3728 (((-51) |#2| (-249 |#2|) (-694)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-694)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1089)) 26 T ELT)) (-3817 (((-51) |#2| (-249 |#2|) (-349 (-484))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-349 (-484))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1089)) 55 T ELT)) (-3781 (((-51) |#2| (-249 |#2|) (-349 (-484))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-349 (-484))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1089)) 50 T ELT)) (-3778 (((-51) |#2| (-249 |#2|) (-484)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-484)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1089)) 43 T ELT)))
-(((-267 |#1| |#2|) (-10 -7 (-15 -3728 ((-51) (-1089))) (-15 -3728 ((-51) |#2|)) (-15 -3728 ((-51) |#2| (-694))) (-15 -3728 ((-51) |#2| (-249 |#2|))) (-15 -3728 ((-51) |#2| (-249 |#2|) (-694))) (-15 -3778 ((-51) (-1089))) (-15 -3778 ((-51) |#2|)) (-15 -3778 ((-51) |#2| (-484))) (-15 -3778 ((-51) |#2| (-249 |#2|))) (-15 -3778 ((-51) |#2| (-249 |#2|) (-484))) (-15 -3781 ((-51) (-1089))) (-15 -3781 ((-51) |#2|)) (-15 -3781 ((-51) |#2| (-349 (-484)))) (-15 -3781 ((-51) |#2| (-249 |#2|))) (-15 -3781 ((-51) |#2| (-249 |#2|) (-349 (-484)))) (-15 -3817 ((-51) (-1089))) (-15 -3817 ((-51) |#2|)) (-15 -3817 ((-51) |#2| (-349 (-484)))) (-15 -3817 ((-51) |#2| (-249 |#2|))) (-15 -3817 ((-51) |#2| (-249 |#2|) (-349 (-484))))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -267))
-((-3817 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-5 *4 (-349 (-484))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-3817 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-349 (-484))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-3781 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) (-3778 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 *5) (-580 *5))) (-5 *5 (-484)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-13 (-391) (-950 *4) (-580 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-3778 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))))
-((-1610 (((-51) |#2| (-86) (-249 |#2|) (-583 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|))) 81 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 |#2|)) 83 T ELT) (((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 |#2|)) 84 T ELT) (((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT)))
-(((-268 |#1| |#2|) (-10 -7 (-15 -1610 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1610 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|))) (-15 -1610 ((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|)))) (-15 -1610 ((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 |#2|))) (-15 -1610 ((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 |#2|))) (-15 -1610 ((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|)))) (-15 -1610 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1610 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1610 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1610 ((-51) |#2| (-86) (-249 |#2|) (-583 |#2|)))) (-13 (-495) (-553 (-473))) (-363 |#1|)) (T -268))
-((-1610 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-583 *3)) (-4 *3 (-363 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1610 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1610 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1610 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1610 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-249 *8))) (-4 *8 (-363 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1610 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1610 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-249 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-583 *8)) (-4 *8 (-363 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1610 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1610 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1610 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-363 *5)) (-4 *5 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))))
-((-1612 (((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1072)) 67 T ELT) (((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484)) 68 T ELT) (((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1072)) 64 T ELT) (((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484)) 65 T ELT)) (-1611 (((-1 (-179) (-179)) (-179)) 66 T ELT)))
-(((-269) (-10 -7 (-15 -1611 ((-1 (-179) (-179)) (-179))) (-15 -1612 ((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484))) (-15 -1612 ((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1072))) (-15 -1612 ((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484))) (-15 -1612 ((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1072))))) (T -269))
-((-1612 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1072)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) (-1612 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) (-1612 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *7 (-1072)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) (-1612 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) (-1611 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 26 T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) NIL T ELT) (($ $ (-349 (-484)) (-349 (-484))) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) 20 T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) 36 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) NIL T ELT) (((-349 (-484)) $ (-349 (-484))) 16 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) NIL T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1613 (((-349 (-484)) $) 17 T ELT)) (-3090 (($ (-1159 |#1| |#2| |#3|)) 11 T ELT)) (-2401 (((-1159 |#1| |#2| |#3|) $) 12 T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3947 (((-349 (-484)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 10 T ELT)) (-3945 (((-772) $) 42 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) 34 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 28 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 37 T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-270 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-716) (-10 -8 (-15 -3090 ($ (-1159 |#1| |#2| |#3|))) (-15 -2401 ((-1159 |#1| |#2| |#3|) $)) (-15 -1613 ((-349 (-484)) $)))) (-312) (-1089) |#1|) (T -270))
-((-3090 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1089)) (-14 *5 *3))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1089)) (-14 *5 *3))))
-((-3011 (((-2 (|:| -2401 (-694)) (|:| -3953 |#1|) (|:| |radicand| (-583 |#1|))) (-347 |#1|) (-694)) 35 T ELT)) (-3941 (((-583 (-2 (|:| -3953 (-694)) (|:| |logand| |#1|))) (-347 |#1|)) 40 T ELT)))
-(((-271 |#1|) (-10 -7 (-15 -3011 ((-2 (|:| -2401 (-694)) (|:| -3953 |#1|) (|:| |radicand| (-583 |#1|))) (-347 |#1|) (-694))) (-15 -3941 ((-583 (-2 (|:| -3953 (-694)) (|:| |logand| |#1|))) (-347 |#1|)))) (-495)) (T -271))
-((-3941 (*1 *2 *3) (-12 (-5 *3 (-347 *4)) (-4 *4 (-495)) (-5 *2 (-583 (-2 (|:| -3953 (-694)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *5)) (-4 *5 (-495)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-694)))))
-((-3081 (((-583 |#2|) (-1084 |#4|)) 45 T ELT)) (-1618 ((|#3| (-484)) 48 T ELT)) (-1616 (((-1084 |#4|) (-1084 |#3|)) 30 T ELT)) (-1617 (((-1084 |#4|) (-1084 |#4|) (-484)) 67 T ELT)) (-1615 (((-1084 |#3|) (-1084 |#4|)) 21 T ELT)) (-3947 (((-583 (-694)) (-1084 |#4|) (-583 |#2|)) 41 T ELT)) (-1614 (((-1084 |#3|) (-1084 |#4|) (-583 |#2|) (-583 |#3|)) 35 T ELT)))
-(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1614 ((-1084 |#3|) (-1084 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3947 ((-583 (-694)) (-1084 |#4|) (-583 |#2|))) (-15 -3081 ((-583 |#2|) (-1084 |#4|))) (-15 -1615 ((-1084 |#3|) (-1084 |#4|))) (-15 -1616 ((-1084 |#4|) (-1084 |#3|))) (-15 -1617 ((-1084 |#4|) (-1084 |#4|) (-484))) (-15 -1618 (|#3| (-484)))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|)) (T -272))
-((-1618 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5)))) (-1617 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 *7)) (-5 *3 (-484)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-1084 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1084 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-1084 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-1084 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-1084 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756)) (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1614 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1084 *8)) (-5 *1 (-272 *6 *7 *8 *9)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 19 T ELT)) (-3773 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-484)))) $) 21 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-1621 (((-484) $ (-484)) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1620 (($ (-1 (-484) (-484)) $) 11 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1619 (($ $ $) NIL (|has| (-484) (-716)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3676 (((-484) |#1| $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 30 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3838 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ (-484) |#1|) 28 T ELT)))
-(((-273 |#1|) (-13 (-21) (-654 (-484)) (-274 |#1| (-484)) (-10 -7 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|))) (-1013)) (T -273))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3773 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))) $) 34 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3136 (((-694) $) 35 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| "failed") $) 39 T ELT)) (-3156 ((|#1| $) 40 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2299 ((|#1| $ (-484)) 32 T ELT)) (-1621 ((|#2| $ (-484)) 33 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1620 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1619 (($ $ $) 28 (|has| |#2| (-716)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3676 ((|#2| |#1| $) 31 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT)))
-(((-274 |#1| |#2|) (-113) (-1013) (-104)) (T -274))
-((-3838 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-694)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))))) (-1621 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013)))) (-3676 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-1619 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-716)))))
-(-13 (-104) (-950 |t#1|) (-10 -8 (-15 -3838 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3136 ((-694) $)) (-15 -3773 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3942 |t#2|))) $)) (-15 -1621 (|t#2| $ (-484))) (-15 -2299 (|t#1| $ (-484))) (-15 -3676 (|t#2| |t#1| $)) (-15 -1620 ($ (-1 |t#2| |t#2|) $)) (-15 -2290 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-716)) (-15 -1619 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-694)))) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-1621 (((-694) $ (-484)) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1620 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1619 (($ $ $) NIL (|has| (-694) (-716)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3676 (((-694) |#1| $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-694) |#1|) NIL T ELT)))
-(((-275 |#1|) (-274 |#1| (-694)) (-1013)) (T -275))
-NIL
-((-3502 (($ $) 72 T ELT)) (-1623 (($ $ |#2| |#3| $) 14 T ELT)) (-1624 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1796 (((-85) $) 42 T ELT)) (-1795 ((|#2| $) 44 T ELT)) (-3465 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2817 ((|#2| $) 68 T ELT)) (-3816 (((-583 |#2|) $) 56 T ELT)) (-1622 (($ $ $ (-694)) 37 T ELT)) (-3948 (($ $ |#2|) 60 T ELT)))
-(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3502 (|#1| |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3465 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1622 (|#1| |#1| |#1| (-694))) (-15 -1623 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1624 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3816 ((-583 |#2|) |#1|)) (-15 -1795 (|#2| |#1|)) (-15 -1796 ((-85) |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3948 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-961) (-716)) (T -276))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 109 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 107 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3156 (((-484) $) 108 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 106 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 105 T ELT)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 93 (|has| |#1| (-391)) ELT)) (-1623 (($ $ |#1| |#2| $) 97 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 100 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT)) (-2820 ((|#2| $) 99 T ELT)) (-1624 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 103 T ELT)) (-1795 ((|#1| $) 102 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-495)) ELT)) (-3947 ((|#2| $) 84 T ELT)) (-2817 ((|#1| $) 94 (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 T ELT) (($ (-349 (-484))) 77 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) 101 T ELT)) (-3676 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 96 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-277 |#1| |#2|) (-113) (-961) (-716)) (T -277))
-((-1796 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-1624 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-1623 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-1622 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *3 (-146)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-495)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-391)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-391)))))
-(-13 (-47 |t#1| |t#2|) (-354 |t#1|) (-10 -8 (-15 -1796 ((-85) $)) (-15 -1795 (|t#1| $)) (-15 -3816 ((-583 |t#1|) $)) (-15 -2420 ((-694) $)) (-15 -2820 (|t#2| $)) (-15 -1624 ($ (-1 |t#2| |t#2|) $)) (-15 -1623 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1622 ($ $ $ (-694))) |%noBranch|) (IF (|has| |t#1| (-495)) (-15 -3465 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-391)) (PROGN (-15 -2817 (|t#1| $)) (-15 -3502 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-354 |#1|) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1986 (((-85) (-85)) NIL T ELT)) (-3787 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-2368 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1987 (($ $ (-484)) NIL T ELT)) (-1988 (((-694) $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3608 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1989 (($ (-583 |#1|)) NIL T ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1570 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3790 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1989 ($ (-583 |#1|))) (-15 -1988 ((-694) $)) (-15 -1987 ($ $ (-484))) (-15 -1986 ((-85) (-85))))) (-1128)) (T -278))
-((-1989 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-278 *3)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-278 *3)) (-4 *3 (-1128)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-278 *3)) (-4 *3 (-1128)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1128)))))
-((-3931 (((-85) $) 47 T ELT)) (-3928 (((-694)) 23 T ELT)) (-3329 ((|#2| $) 51 T ELT) (($ $ (-830)) 123 T ELT)) (-3136 (((-694)) 124 T ELT)) (-1791 (($ (-1178 |#2|)) 20 T ELT)) (-2011 (((-85) $) 136 T ELT)) (-3132 ((|#2| $) 53 T ELT) (($ $ (-830)) 120 T ELT)) (-2014 (((-1084 |#2|) $) NIL T ELT) (((-1084 $) $ (-830)) 111 T ELT)) (-1626 (((-1084 |#2|) $) 95 T ELT)) (-1625 (((-1084 |#2|) $) 91 T ELT) (((-3 (-1084 |#2|) "failed") $ $) 88 T ELT)) (-1627 (($ $ (-1084 |#2|)) 58 T ELT)) (-3929 (((-743 (-830))) 30 T ELT) (((-830)) 48 T ELT)) (-3910 (((-107)) 27 T ELT)) (-3947 (((-743 (-830)) $) 32 T ELT) (((-830) $) 139 T ELT)) (-1628 (($) 130 T ELT)) (-3224 (((-1178 |#2|) $) NIL T ELT) (((-630 |#2|) (-1178 $)) 42 T ELT)) (-2702 (($ $) NIL T ELT) (((-632 $) $) 100 T ELT)) (-3932 (((-85) $) 45 T ELT)))
-(((-279 |#1| |#2|) (-10 -7 (-15 -2702 ((-632 |#1|) |#1|)) (-15 -3136 ((-694))) (-15 -2702 (|#1| |#1|)) (-15 -1625 ((-3 (-1084 |#2|) "failed") |#1| |#1|)) (-15 -1625 ((-1084 |#2|) |#1|)) (-15 -1626 ((-1084 |#2|) |#1|)) (-15 -1627 (|#1| |#1| (-1084 |#2|))) (-15 -2011 ((-85) |#1|)) (-15 -1628 (|#1|)) (-15 -3329 (|#1| |#1| (-830))) (-15 -3132 (|#1| |#1| (-830))) (-15 -2014 ((-1084 |#1|) |#1| (-830))) (-15 -3329 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3947 ((-830) |#1|)) (-15 -3929 ((-830))) (-15 -2014 ((-1084 |#2|) |#1|)) (-15 -1791 (|#1| (-1178 |#2|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1|)) (-15 -3928 ((-694))) (-15 -3929 ((-743 (-830)))) (-15 -3947 ((-743 (-830)) |#1|)) (-15 -3931 ((-85) |#1|)) (-15 -3932 ((-85) |#1|)) (-15 -3910 ((-107)))) (-280 |#2|) (-312)) (T -279))
-((-3910 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3929 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-743 (-830))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3928 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3929 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-830)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3136 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3931 (((-85) $) 114 T ELT)) (-3928 (((-694)) 110 T ELT)) (-3329 ((|#1| $) 162 T ELT) (($ $ (-830)) 159 (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 144 (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3136 (((-694)) 134 (|has| |#1| (-319)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| "failed") $) 121 T ELT)) (-3156 ((|#1| $) 122 T ELT)) (-1791 (($ (-1178 |#1|)) 168 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2994 (($) 131 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-2833 (($) 146 (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) 147 (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) 89 T ELT)) (-3771 (((-830) $) 149 (|has| |#1| (-319)) ELT) (((-743 (-830)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2013 (($) 157 (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) 156 (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) 163 T ELT) (($ $ (-830)) 160 (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) 135 (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2014 (((-1084 |#1|) $) 167 T ELT) (((-1084 $) $ (-830)) 161 (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) 132 (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) 153 (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) 152 (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) "failed") $ $) 151 (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) 154 (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3445 (($) 136 (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) 133 (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) 113 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (($) 155 (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 143 (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-3929 (((-743 (-830))) 111 T ELT) (((-830)) 165 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1764 (((-694) $) 148 (|has| |#1| (-319)) ELT) (((-3 (-694) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) 119 T ELT)) (-3757 (($ $ (-694)) 139 (|has| |#1| (-319)) ELT) (($ $) 137 (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) 112 T ELT) (((-830) $) 164 T ELT)) (-3185 (((-1084 |#1|)) 166 T ELT)) (-1673 (($) 145 (|has| |#1| (-319)) ELT)) (-1628 (($) 158 (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) 170 T ELT) (((-630 |#1|) (-1178 $)) 169 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 142 (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2702 (($ $) 141 (|has| |#1| (-319)) ELT) (((-632 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 172 T ELT) (((-1178 $) (-830)) 171 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3932 (((-85) $) 115 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3927 (($ $) 109 (|has| |#1| (-319)) ELT) (($ $ (-694)) 108 (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) 140 (|has| |#1| (-319)) ELT) (($ $) 138 (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
+((-1608 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-695)))) (-2880 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-258)))) (-2564 (*1 *1 *1 *1) (-4 *1 (-258))) (-2565 (*1 *1 *1 *1) (-4 *1 (-258))) (-1606 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-258)))) (-1606 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1605 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-258)))))
+(-13 (-833) (-10 -8 (-15 -1608 ((-85) $ $)) (-15 -1607 ((-695) $)) (-15 -2880 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2564 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -1606 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -1606 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1605 ((-3 (-584 $) "failed") (-584 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3768 (($ $ (-584 |#2|) (-584 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-584 (-249 |#2|))) NIL T ELT)))
+(((-259 |#1| |#2|) (-10 -7 (-15 -3768 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3768 (|#1| |#1| (-249 |#2|))) (-15 -3768 (|#1| |#1| |#2| |#2|)) (-15 -3768 (|#1| |#1| (-584 |#2|) (-584 |#2|)))) (-260 |#2|) (-1014)) (T -259))
+NIL
+((-3768 (($ $ (-584 |#1|) (-584 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-584 (-249 |#1|))) 12 T ELT)))
+(((-260 |#1|) (-113) (-1014)) (T -260))
+((-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1014)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1014)))))
+(-13 (-456 |t#1| |t#1|) (-10 -8 (-15 -3768 ($ $ (-249 |t#1|))) (-15 -3768 ($ $ (-584 (-249 |t#1|))))))
+(((-456 |#1| |#1|) . T))
+((-3768 ((|#1| (-1 |#1| (-485)) (-1092 (-350 (-485)))) 26 T ELT)))
+(((-261 |#1|) (-10 -7 (-15 -3768 (|#1| (-1 |#1| (-485)) (-1092 (-350 (-485)))))) (-38 (-350 (-485)))) (T -261))
+((-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1092 (-350 (-485)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-350 (-485)))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT)))
+(((-262) (-1014)) (T -262))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3506 (((-485) $) 13 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1049) $) 10 T ELT)) (-3946 (((-773) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-263) (-13 (-996) (-10 -8 (-15 -3207 ((-1049) $)) (-15 -3506 ((-485) $))))) (T -263))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-263)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 60 T ELT)) (-3130 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-1166 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-951 (-1090))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-1160 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3157 (((-1166 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1090) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-1160 |#2| |#3| |#4|) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1166 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1179 (-1166 |#1| |#2| |#3| |#4|)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-1166 |#1| |#2| |#3| |#4|)) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-797 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-1166 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3445 (((-633 $) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3958 (($ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3784 (((-3 (-751 |#2|) #1#) $) 80 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1166 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1179 (-1166 |#1| |#2| |#3| |#4|)))) (-1179 $) $) NIL T ELT) (((-631 (-1166 |#1| |#2| |#3| |#4|)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3131 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3768 (($ $ (-584 (-1166 |#1| |#2| |#3| |#4|)) (-584 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-249 (-1166 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-1090)) (-584 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-456 (-1090) (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1090) (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-456 (-1090) (-1166 |#1| |#2| |#3| |#4|))) ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ $ (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-241 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-812 (-1090))) ELT) (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-1166 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3972 (((-801 (-485)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-934)) ELT) (((-179) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-934)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1166 |#1| |#2| |#3| |#4|) (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-1166 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1090)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-951 (-1090))) ELT) (($ (-1160 |#2| |#3| |#4|)) 37 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1166 |#1| |#2| |#3| |#4|) (-822))) (|has| (-1166 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-812 (-1090))) ELT) (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3949 (($ $ $) 35 T ELT) (($ (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-1166 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1166 |#1| |#2| |#3| |#4|)) NIL T ELT)))
+(((-264 |#1| |#2| |#3| |#4|) (-13 (-905 (-1166 |#1| |#2| |#3| |#4|)) (-951 (-1160 |#2| |#3| |#4|)) (-10 -8 (-15 -3784 ((-3 (-751 |#2|) "failed") $)) (-15 -3946 ($ (-1160 |#2| |#3| |#4|))))) (-13 (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1115) (-364 |#1|)) (-1090) |#2|) (T -264))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1160 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4) (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3784 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1215 (((-584 $) $ (-1090)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1085 $) (-1090)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1085 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-1216 (($ $ (-1090)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1085 $) (-1090)) NIL (|has| |#1| (-496)) ELT) (($ (-1085 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3189 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3082 (((-584 (-1090)) $) 365 T ELT)) (-3084 (((-350 (-1085 $)) $ (-551 $)) NIL (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1600 (((-584 (-551 $)) $) NIL T ELT)) (-3492 (($ $) 170 (|has| |#1| (-496)) ELT)) (-3639 (($ $) 146 (|has| |#1| (-496)) ELT)) (-1372 (($ $ (-1005 $)) 231 (|has| |#1| (-496)) ELT) (($ $ (-1090)) 227 (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) 383 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 438 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 305 (-12 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3775 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-496)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-496)) ELT)) (-3638 (($ $) 142 (|has| |#1| (-496)) ELT)) (-1609 (($ $ (-485)) 68 (|has| |#1| (-496)) ELT)) (-3494 (($ $) 174 (|has| |#1| (-496)) ELT)) (-3637 (($ $) 150 (|has| |#1| (-496)) ELT)) (-3724 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) (|has| |#1| (-1026))) CONST)) (-1217 (((-584 $) $ (-1090)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1085 $) (-1090)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1085 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3184 (($ $ (-1090)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1085 $) (-1090)) 133 (|has| |#1| (-496)) ELT) (($ (-1085 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 (-551 $) #1#) $) 18 T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-858 |#1|)) #1#) $) NIL (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) NIL (|has| |#1| (-962)) ELT) (((-3 (-350 (-485)) #1#) $) 48 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3157 (((-551 $) $) 12 T ELT) (((-1090) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-858 |#1|)) $) NIL (|has| |#1| (-496)) ELT) (((-858 |#1|) $) NIL (|has| |#1| (-962)) ELT) (((-350 (-485)) $) 316 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 124 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 114 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-3842 (($ $) 95 (|has| |#1| (-496)) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3944 (($ $ (-1005 $)) 235 (|has| |#1| (-496)) ELT) (($ $ (-1090)) 233 (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-496)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3386 (($ $ $) 201 (|has| |#1| (-496)) ELT)) (-3627 (($) 136 (|has| |#1| (-496)) ELT)) (-1369 (($ $ $) 221 (|has| |#1| (-496)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 389 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 396 (|has| |#1| (-797 (-330))) ELT)) (-2574 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1599 (((-584 (-86)) $) NIL T ELT)) (-3595 (((-86) (-86)) 275 T ELT)) (-2411 (((-85) $) 27 (|has| |#1| (-1026)) ELT)) (-2674 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-2997 (($ $) 73 (|has| |#1| (-962)) ELT)) (-2999 (((-1039 |#1| (-551 $)) $) 90 (|has| |#1| (-962)) ELT)) (-1610 (((-85) $) 49 (|has| |#1| (-496)) ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-496)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-1597 (((-1085 $) (-551 $)) 276 (|has| $ (-962)) ELT)) (-3958 (($ (-1 $ $) (-551 $)) 434 T ELT)) (-1602 (((-3 (-551 $) #1#) $) NIL T ELT)) (-3942 (($ $) 140 (|has| |#1| (-496)) ELT)) (-2258 (($ $) 246 (|has| |#1| (-496)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1179 $)) NIL (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-1179 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1601 (((-584 (-551 $)) $) 51 T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) 439 T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #1#) $) NIL (|has| |#1| (-962)) ELT)) (-2823 (((-3 (-584 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1794 (((-3 (-2 (|:| -3954 (-485)) (|:| |var| (-551 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2825 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $) NIL (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-86)) NIL (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-1090)) NIL (|has| |#1| (-962)) ELT)) (-2634 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1090)) 53 T ELT)) (-2485 (($ $) NIL (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2833 (($ $ (-1090)) 250 (|has| |#1| (-496)) ELT) (($ $ (-1005 $)) 252 (|has| |#1| (-496)) ELT)) (-2604 (((-695) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) 45 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 298 (|has| |#1| (-496)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-1598 (((-85) $ $) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-1373 (($ $ (-1090)) 225 (|has| |#1| (-496)) ELT) (($ $) 223 (|has| |#1| (-496)) ELT)) (-1367 (($ $) 217 (|has| |#1| (-496)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 303 (-12 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-3943 (($ $) 138 (|has| |#1| (-496)) ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3768 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 433 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 376 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-554 (-474))) ELT) (($ $) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1090)) 363 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-86)) (-584 $) (-1090)) 362 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ (-584 $)))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695) (-1 $ (-584 $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695) (-1 $ $)) NIL (|has| |#1| (-962)) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-2256 (($ $) 238 (|has| |#1| (-496)) ELT)) (-3800 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-1603 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2257 (($ $) 248 (|has| |#1| (-496)) ELT)) (-3385 (($ $) 199 (|has| |#1| (-496)) ELT)) (-3758 (($ $ (-1090)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2996 (($ $) 74 (|has| |#1| (-496)) ELT)) (-2998 (((-1039 |#1| (-551 $)) $) 92 (|has| |#1| (-496)) ELT)) (-3186 (($ $) 314 (|has| $ (-962)) ELT)) (-3495 (($ $) 176 (|has| |#1| (-496)) ELT)) (-3636 (($ $) 152 (|has| |#1| (-496)) ELT)) (-3493 (($ $) 172 (|has| |#1| (-496)) ELT)) (-3635 (($ $) 148 (|has| |#1| (-496)) ELT)) (-3491 (($ $) 168 (|has| |#1| (-496)) ELT)) (-3634 (($ $) 144 (|has| |#1| (-496)) ELT)) (-3972 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (($ (-348 $)) NIL (|has| |#1| (-496)) ELT) (((-474) $) 360 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3946 (((-773) $) 432 T ELT) (($ (-551 $)) 423 T ELT) (($ (-1090)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (($ (-1039 |#1| (-551 $))) 94 (|has| |#1| (-962)) ELT) (($ (-350 |#1|)) NIL (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-858 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) NIL (|has| |#1| (-962)) ELT) (($ (-485)) 36 (OR (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-496)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL (|has| |#1| (-962)) CONST)) (-2591 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3102 (($ $ $) 219 (|has| |#1| (-496)) ELT)) (-3389 (($ $ $) 205 (|has| |#1| (-496)) ELT)) (-3391 (($ $ $) 209 (|has| |#1| (-496)) ELT)) (-3388 (($ $ $) 203 (|has| |#1| (-496)) ELT)) (-3390 (($ $ $) 207 (|has| |#1| (-496)) ELT)) (-2255 (((-85) (-86)) 10 T ELT)) (-1265 (((-85) $ $) 85 T ELT)) (-3498 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3486 (($ $) 158 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) 178 (|has| |#1| (-496)) ELT)) (-3484 (($ $) 154 (|has| |#1| (-496)) ELT)) (-3500 (($ $) 186 (|has| |#1| (-496)) ELT)) (-3488 (($ $) 162 (|has| |#1| (-496)) ELT)) (-1795 (($ (-1090) $) NIL T ELT) (($ (-1090) $ $) NIL T ELT) (($ (-1090) $ $ $) NIL T ELT) (($ (-1090) $ $ $ $) NIL T ELT) (($ (-1090) (-584 $)) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-962)) ELT)) (-3393 (($ $) 213 (|has| |#1| (-496)) ELT)) (-3392 (($ $) 211 (|has| |#1| (-496)) ELT)) (-3501 (($ $) 188 (|has| |#1| (-496)) ELT)) (-3489 (($ $) 164 (|has| |#1| (-496)) ELT)) (-3499 (($ $) 184 (|has| |#1| (-496)) ELT)) (-3487 (($ $) 160 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 180 (|has| |#1| (-496)) ELT)) (-3485 (($ $) 156 (|has| |#1| (-496)) ELT)) (-3383 (($ $) 191 (|has| |#1| (-496)) ELT)) (-2661 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) CONST)) (-2260 (($ $) 242 (|has| |#1| (-496)) ELT)) (-2667 (($) 25 (|has| |#1| (-1026)) CONST)) (-3387 (($ $) 193 (|has| |#1| (-496)) ELT) (($ $ $) 195 (|has| |#1| (-496)) ELT)) (-2261 (($ $) 240 (|has| |#1| (-496)) ELT)) (-2670 (($ $ (-1090)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2259 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3384 (($ $ $) 197 (|has| |#1| (-496)) ELT)) (-3057 (((-85) $ $) 87 T ELT)) (-3949 (($ (-1039 |#1| (-551 $)) (-1039 |#1| (-551 $))) 105 (|has| |#1| (-496)) ELT) (($ $ $) 44 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3837 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3839 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) 311 (|has| |#1| (-496)) ELT) (($ $ (-485)) 79 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 75 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 83 (|has| |#1| (-1026)) ELT)) (* (($ (-350 (-485)) $) NIL (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-496)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-962)) ELT) (($ $ $) 38 (|has| |#1| (-1026)) ELT) (($ (-485) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-695) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-831) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)))
+(((-265 |#1|) (-13 (-364 |#1|) (-10 -8 (IF (|has| |#1| (-496)) (PROGN (-6 (-29 |#1|)) (-6 (-1115)) (-6 (-133)) (-6 (-570)) (-6 (-1053)) (-15 -3842 ($ $)) (-15 -1610 ((-85) $)) (-15 -1609 ($ $ (-485))) (IF (|has| |#1| (-392)) (PROGN (-15 -2707 ((-348 (-1085 $)) (-1085 $))) (-15 -2708 ((-348 (-1085 $)) (-1085 $)))) |%noBranch|) (IF (|has| |#1| (-951 (-485))) (-6 (-951 (-48))) |%noBranch|)) |%noBranch|))) (-1014)) (T -265))
+((-3842 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1014)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-1609 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-2707 (*1 *2 *3) (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))))
+((-3958 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT)))
+(((-266 |#1| |#2|) (-10 -7 (-15 -3958 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1014) (-1014)) (T -266))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6)))))
+((-3729 (((-51) |#2| (-249 |#2|) (-695)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-695)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1090)) 26 T ELT)) (-3818 (((-51) |#2| (-249 |#2|) (-350 (-485))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-350 (-485))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1090)) 55 T ELT)) (-3782 (((-51) |#2| (-249 |#2|) (-350 (-485))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-350 (-485))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1090)) 50 T ELT)) (-3779 (((-51) |#2| (-249 |#2|) (-485)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-485)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1090)) 43 T ELT)))
+(((-267 |#1| |#2|) (-10 -7 (-15 -3729 ((-51) (-1090))) (-15 -3729 ((-51) |#2|)) (-15 -3729 ((-51) |#2| (-695))) (-15 -3729 ((-51) |#2| (-249 |#2|))) (-15 -3729 ((-51) |#2| (-249 |#2|) (-695))) (-15 -3779 ((-51) (-1090))) (-15 -3779 ((-51) |#2|)) (-15 -3779 ((-51) |#2| (-485))) (-15 -3779 ((-51) |#2| (-249 |#2|))) (-15 -3779 ((-51) |#2| (-249 |#2|) (-485))) (-15 -3782 ((-51) (-1090))) (-15 -3782 ((-51) |#2|)) (-15 -3782 ((-51) |#2| (-350 (-485)))) (-15 -3782 ((-51) |#2| (-249 |#2|))) (-15 -3782 ((-51) |#2| (-249 |#2|) (-350 (-485)))) (-15 -3818 ((-51) (-1090))) (-15 -3818 ((-51) |#2|)) (-15 -3818 ((-51) |#2| (-350 (-485)))) (-15 -3818 ((-51) |#2| (-249 |#2|))) (-15 -3818 ((-51) |#2| (-249 |#2|) (-350 (-485))))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1115) (-364 |#1|))) (T -267))
+((-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) (-3782 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3782 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) (-3779 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3779 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3779 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-13 (-392) (-951 *4) (-581 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3779 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) (-3729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))))
+((-1611 (((-51) |#2| (-86) (-249 |#2|) (-584 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|))) 81 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 |#2|)) 83 T ELT) (((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 |#2|)) 84 T ELT) (((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT)))
+(((-268 |#1| |#2|) (-10 -7 (-15 -1611 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1611 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|))) (-15 -1611 ((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|)))) (-15 -1611 ((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 |#2|))) (-15 -1611 ((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 |#2|))) (-15 -1611 ((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|)))) (-15 -1611 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1611 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1611 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1611 ((-51) |#2| (-86) (-249 |#2|) (-584 |#2|)))) (-13 (-496) (-554 (-474))) (-364 |#1|)) (T -268))
+((-1611 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-584 *3)) (-4 *3 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1611 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1611 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1611 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1611 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-249 *8))) (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1611 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1611 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 (-249 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-584 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1611 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1611 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1611 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) (-4 *5 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))))
+((-1613 (((-1125 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485) (-1073)) 67 T ELT) (((-1125 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485)) 68 T ELT) (((-1125 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485) (-1073)) 64 T ELT) (((-1125 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485)) 65 T ELT)) (-1612 (((-1 (-179) (-179)) (-179)) 66 T ELT)))
+(((-269) (-10 -7 (-15 -1612 ((-1 (-179) (-179)) (-179))) (-15 -1613 ((-1125 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485))) (-15 -1613 ((-1125 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485) (-1073))) (-15 -1613 ((-1125 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485))) (-15 -1613 ((-1125 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485) (-1073))))) (T -269))
+((-1613 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1073)) (-5 *2 (-1125 (-839))) (-5 *1 (-269)))) (-1613 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1125 (-839))) (-5 *1 (-269)))) (-1613 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-485)) (-5 *7 (-1073)) (-5 *2 (-1125 (-839))) (-5 *1 (-269)))) (-1613 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-485)) (-5 *2 (-1125 (-839))) (-5 *1 (-269)))) (-1612 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 26 T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 20 T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-695) (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) 36 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) NIL T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-485))) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1614 (((-350 (-485)) $) 17 T ELT)) (-3091 (($ (-1160 |#1| |#2| |#3|)) 11 T ELT)) (-2402 (((-1160 |#1| |#2| |#3|) $) 12 T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3948 (((-350 (-485)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 10 T ELT)) (-3946 (((-773) $) 42 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-350 (-485))) 34 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3773 ((|#1| $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 28 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 37 T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-270 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-717) (-10 -8 (-15 -3091 ($ (-1160 |#1| |#2| |#3|))) (-15 -2402 ((-1160 |#1| |#2| |#3|) $)) (-15 -1614 ((-350 (-485)) $)))) (-312) (-1090) |#1|) (T -270))
+((-3091 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-1160 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3))))
+((-3012 (((-2 (|:| -2402 (-695)) (|:| -3954 |#1|) (|:| |radicand| (-584 |#1|))) (-348 |#1|) (-695)) 35 T ELT)) (-3942 (((-584 (-2 (|:| -3954 (-695)) (|:| |logand| |#1|))) (-348 |#1|)) 40 T ELT)))
+(((-271 |#1|) (-10 -7 (-15 -3012 ((-2 (|:| -2402 (-695)) (|:| -3954 |#1|) (|:| |radicand| (-584 |#1|))) (-348 |#1|) (-695))) (-15 -3942 ((-584 (-2 (|:| -3954 (-695)) (|:| |logand| |#1|))) (-348 |#1|)))) (-496)) (T -271))
+((-3942 (*1 *2 *3) (-12 (-5 *3 (-348 *4)) (-4 *4 (-496)) (-5 *2 (-584 (-2 (|:| -3954 (-695)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3012 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *5)) (-4 *5 (-496)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *5) (|:| |radicand| (-584 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-695)))))
+((-3082 (((-584 |#2|) (-1085 |#4|)) 45 T ELT)) (-1619 ((|#3| (-485)) 48 T ELT)) (-1617 (((-1085 |#4|) (-1085 |#3|)) 30 T ELT)) (-1618 (((-1085 |#4|) (-1085 |#4|) (-485)) 67 T ELT)) (-1616 (((-1085 |#3|) (-1085 |#4|)) 21 T ELT)) (-3948 (((-584 (-695)) (-1085 |#4|) (-584 |#2|)) 41 T ELT)) (-1615 (((-1085 |#3|) (-1085 |#4|) (-584 |#2|) (-584 |#3|)) 35 T ELT)))
+(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1615 ((-1085 |#3|) (-1085 |#4|) (-584 |#2|) (-584 |#3|))) (-15 -3948 ((-584 (-695)) (-1085 |#4|) (-584 |#2|))) (-15 -3082 ((-584 |#2|) (-1085 |#4|))) (-15 -1616 ((-1085 |#3|) (-1085 |#4|))) (-15 -1617 ((-1085 |#4|) (-1085 |#3|))) (-15 -1618 ((-1085 |#4|) (-1085 |#4|) (-485))) (-15 -1619 (|#3| (-485)))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|)) (T -272))
+((-1619 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1085 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1085 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-1085 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-1085 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-1085 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1085 *8)) (-5 *1 (-272 *6 *7 *8 *9)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 19 T ELT)) (-3774 (((-584 (-2 (|:| |gen| |#1|) (|:| -3943 (-485)))) $) 21 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-1622 (((-485) $ (-485)) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1621 (($ (-1 (-485) (-485)) $) 11 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1620 (($ $ $) NIL (|has| (-485) (-717)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3677 (((-485) |#1| $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 30 (|has| |#1| (-757)) ELT)) (-3837 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3839 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ (-485) |#1|) 28 T ELT)))
+(((-273 |#1|) (-13 (-21) (-655 (-485)) (-274 |#1| (-485)) (-10 -7 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|))) (-1014)) (T -273))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3774 (((-584 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))) $) 34 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3137 (((-695) $) 35 T ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#1| "failed") $) 39 T ELT)) (-3157 ((|#1| $) 40 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2300 ((|#1| $ (-485)) 32 T ELT)) (-1622 ((|#2| $ (-485)) 33 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1621 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1620 (($ $ $) 28 (|has| |#2| (-717)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3677 ((|#2| |#1| $) 31 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT)))
+(((-274 |#1| |#2|) (-113) (-1014) (-104)) (T -274))
+((-3839 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-695)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 *4)))))) (-1622 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-104)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1014)))) (-3677 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) (-1621 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) (-1620 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)) (-4 *3 (-717)))))
+(-13 (-104) (-951 |t#1|) (-10 -8 (-15 -3839 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3137 ((-695) $)) (-15 -3774 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3943 |t#2|))) $)) (-15 -1622 (|t#2| $ (-485))) (-15 -2300 (|t#1| $ (-485))) (-15 -3677 (|t#2| |t#1| $)) (-15 -1621 ($ (-1 |t#2| |t#2|) $)) (-15 -2291 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-717)) (-15 -1620 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3774 (((-584 (-2 (|:| |gen| |#1|) (|:| -3943 (-695)))) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-1622 (((-695) $ (-485)) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1621 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1620 (($ $ $) NIL (|has| (-695) (-717)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3677 (((-695) |#1| $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-695) |#1|) NIL T ELT)))
+(((-275 |#1|) (-274 |#1| (-695)) (-1014)) (T -275))
+NIL
+((-3503 (($ $) 72 T ELT)) (-1624 (($ $ |#2| |#3| $) 14 T ELT)) (-1625 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1797 (((-85) $) 42 T ELT)) (-1796 ((|#2| $) 44 T ELT)) (-3466 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2818 ((|#2| $) 68 T ELT)) (-3817 (((-584 |#2|) $) 56 T ELT)) (-1623 (($ $ $ (-695)) 37 T ELT)) (-3949 (($ $ |#2|) 60 T ELT)))
+(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3503 (|#1| |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3466 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1623 (|#1| |#1| |#1| (-695))) (-15 -1624 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1625 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3817 ((-584 |#2|) |#1|)) (-15 -1796 (|#2| |#1|)) (-15 -1797 ((-85) |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3949 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-962) (-717)) (T -276))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 107 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3157 (((-485) $) 108 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 106 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 105 T ELT)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 93 (|has| |#1| (-392)) ELT)) (-1624 (($ $ |#1| |#2| $) 97 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 100 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT)) (-2821 ((|#2| $) 99 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1797 (((-85) $) 103 T ELT)) (-1796 ((|#1| $) 102 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-496)) ELT)) (-3948 ((|#2| $) 84 T ELT)) (-2818 ((|#1| $) 94 (|has| |#1| (-392)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 T ELT) (($ (-350 (-485))) 77 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3817 (((-584 |#1|) $) 101 T ELT)) (-3677 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1623 (($ $ $ (-695)) 96 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-277 |#1| |#2|) (-113) (-962) (-717)) (T -277))
+((-1797 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-1625 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-1624 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-1623 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *3 (-146)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-496)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3503 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392)))))
+(-13 (-47 |t#1| |t#2|) (-355 |t#1|) (-10 -8 (-15 -1797 ((-85) $)) (-15 -1796 (|t#1| $)) (-15 -3817 ((-584 |t#1|) $)) (-15 -2421 ((-695) $)) (-15 -2821 (|t#2| $)) (-15 -1625 ($ (-1 |t#2| |t#2|) $)) (-15 -1624 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1623 ($ $ $ (-695))) |%noBranch|) (IF (|has| |t#1| (-496)) (-15 -3466 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2818 (|t#1| $)) (-15 -3503 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-355 |#1|) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1987 (((-85) (-85)) NIL T ELT)) (-3788 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-2369 (($ $) NIL (|has| |#1| (-1014)) ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3405 (($ |#1| $) NIL (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-1988 (($ $ (-485)) NIL T ELT)) (-1989 (((-695) $) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3609 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1990 (($ (-584 |#1|)) NIL T ELT)) (-3801 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-1571 (($ $ (-1146 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) NIL T ELT)) (-3791 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1990 ($ (-584 |#1|))) (-15 -1989 ((-695) $)) (-15 -1988 ($ $ (-485))) (-15 -1987 ((-85) (-85))))) (-1129)) (T -278))
+((-1990 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-278 *3)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))))
+((-3932 (((-85) $) 47 T ELT)) (-3929 (((-695)) 23 T ELT)) (-3330 ((|#2| $) 51 T ELT) (($ $ (-831)) 123 T ELT)) (-3137 (((-695)) 124 T ELT)) (-1792 (($ (-1179 |#2|)) 20 T ELT)) (-2012 (((-85) $) 136 T ELT)) (-3133 ((|#2| $) 53 T ELT) (($ $ (-831)) 120 T ELT)) (-2015 (((-1085 |#2|) $) NIL T ELT) (((-1085 $) $ (-831)) 111 T ELT)) (-1627 (((-1085 |#2|) $) 95 T ELT)) (-1626 (((-1085 |#2|) $) 91 T ELT) (((-3 (-1085 |#2|) "failed") $ $) 88 T ELT)) (-1628 (($ $ (-1085 |#2|)) 58 T ELT)) (-3930 (((-744 (-831))) 30 T ELT) (((-831)) 48 T ELT)) (-3911 (((-107)) 27 T ELT)) (-3948 (((-744 (-831)) $) 32 T ELT) (((-831) $) 139 T ELT)) (-1629 (($) 130 T ELT)) (-3225 (((-1179 |#2|) $) NIL T ELT) (((-631 |#2|) (-1179 $)) 42 T ELT)) (-2703 (($ $) NIL T ELT) (((-633 $) $) 100 T ELT)) (-3933 (((-85) $) 45 T ELT)))
+(((-279 |#1| |#2|) (-10 -7 (-15 -2703 ((-633 |#1|) |#1|)) (-15 -3137 ((-695))) (-15 -2703 (|#1| |#1|)) (-15 -1626 ((-3 (-1085 |#2|) "failed") |#1| |#1|)) (-15 -1626 ((-1085 |#2|) |#1|)) (-15 -1627 ((-1085 |#2|) |#1|)) (-15 -1628 (|#1| |#1| (-1085 |#2|))) (-15 -2012 ((-85) |#1|)) (-15 -1629 (|#1|)) (-15 -3330 (|#1| |#1| (-831))) (-15 -3133 (|#1| |#1| (-831))) (-15 -2015 ((-1085 |#1|) |#1| (-831))) (-15 -3330 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3948 ((-831) |#1|)) (-15 -3930 ((-831))) (-15 -2015 ((-1085 |#2|) |#1|)) (-15 -1792 (|#1| (-1179 |#2|))) (-15 -3225 ((-631 |#2|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1|)) (-15 -3929 ((-695))) (-15 -3930 ((-744 (-831)))) (-15 -3948 ((-744 (-831)) |#1|)) (-15 -3932 ((-85) |#1|)) (-15 -3933 ((-85) |#1|)) (-15 -3911 ((-107)))) (-280 |#2|) (-312)) (T -279))
+((-3911 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-744 (-831))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3929 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-831)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3137 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3932 (((-85) $) 114 T ELT)) (-3929 (((-695)) 110 T ELT)) (-3330 ((|#1| $) 162 T ELT) (($ $ (-831)) 159 (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) 144 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3137 (((-695)) 134 (|has| |#1| (-320)) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#1| "failed") $) 121 T ELT)) (-3157 ((|#1| $) 122 T ELT)) (-1792 (($ (-1179 |#1|)) 168 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2995 (($) 131 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-2834 (($) 146 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) 147 (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-695)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) 89 T ELT)) (-3772 (((-831) $) 149 (|has| |#1| (-320)) ELT) (((-744 (-831)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2014 (($) 157 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 156 (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) 163 T ELT) (($ $ (-831)) 160 (|has| |#1| (-320)) ELT)) (-3445 (((-633 $) $) 135 (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2015 (((-1085 |#1|) $) 167 T ELT) (((-1085 $) $ (-831)) 161 (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 132 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) 153 (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) 152 (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) "failed") $ $) 151 (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) 154 (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3446 (($) 136 (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 133 (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) 113 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2410 (($) 155 (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) 143 (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-3930 (((-744 (-831))) 111 T ELT) (((-831)) 165 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1765 (((-695) $) 148 (|has| |#1| (-320)) ELT) (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) 119 T ELT)) (-3758 (($ $ (-695)) 139 (|has| |#1| (-320)) ELT) (($ $) 137 (|has| |#1| (-320)) ELT)) (-3948 (((-744 (-831)) $) 112 T ELT) (((-831) $) 164 T ELT)) (-3186 (((-1085 |#1|)) 166 T ELT)) (-1674 (($) 145 (|has| |#1| (-320)) ELT)) (-1629 (($) 158 (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) 170 T ELT) (((-631 |#1|) (-1179 $)) 169 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-631 $)) 142 (|has| |#1| (-320)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2703 (($ $) 141 (|has| |#1| (-320)) ELT) (((-633 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2013 (((-1179 $)) 172 T ELT) (((-1179 $) (-831)) 171 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3933 (((-85) $) 115 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3928 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-695)) 108 (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) 140 (|has| |#1| (-320)) ELT) (($ $) 138 (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
(((-280 |#1|) (-113) (-312)) (T -280))
-((-2012 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1178 *1)) (-4 *1 (-280 *3)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-312)) (-5 *2 (-1178 *1)) (-4 *1 (-280 *4)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1178 *3)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1084 *3)))) (-3185 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1084 *3)))) (-3929 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2014 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-4 *4 (-319)) (-4 *4 (-312)) (-5 *2 (-1084 *1)) (-4 *1 (-280 *4)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)))) (-1628 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312)))) (-2013 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-85)))) (-2409 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-319)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3)))) (-1625 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3)))))
-(-13 (-1197 |t#1|) (-950 |t#1|) (-10 -8 (-15 -2012 ((-1178 $))) (-15 -2012 ((-1178 $) (-830))) (-15 -3224 ((-1178 |t#1|) $)) (-15 -3224 ((-630 |t#1|) (-1178 $))) (-15 -1791 ($ (-1178 |t#1|))) (-15 -2014 ((-1084 |t#1|) $)) (-15 -3185 ((-1084 |t#1|))) (-15 -3929 ((-830))) (-15 -3947 ((-830) $)) (-15 -3132 (|t#1| $)) (-15 -3329 (|t#1| $)) (IF (|has| |t#1| (-319)) (PROGN (-6 (-299)) (-15 -2014 ((-1084 $) $ (-830))) (-15 -3132 ($ $ (-830))) (-15 -3329 ($ $ (-830))) (-15 -1628 ($)) (-15 -2013 ($)) (-15 -2011 ((-85) $)) (-15 -2409 ($)) (-15 -1627 ($ $ (-1084 |t#1|))) (-15 -1626 ((-1084 |t#1|) $)) (-15 -1625 ((-1084 |t#1|) $)) (-15 -1625 ((-3 (-1084 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-319)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) |has| |#1| (-319)) ((-190) |has| |#1| (-319)) ((-189) |has| |#1| (-319)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1197 |#1|) . T) ((-312) . T) ((-344) OR (|has| |#1| (-319)) (|has| |#1| (-118))) ((-319) |has| |#1| (-319)) ((-299) |has| |#1| (-319)) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-319)) ((-1128) . T) ((-1133) . T) ((-1186 |#1|) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-1629 (((-85) $) 13 T ELT)) (-3637 (($ |#1|) 10 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3633 (($ |#1|) 12 T ELT)) (-3945 (((-772) $) 19 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2236 ((|#1| $) 14 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 21 T ELT)))
-(((-281 |#1|) (-13 (-756) (-10 -8 (-15 -3637 ($ |#1|)) (-15 -3633 ($ |#1|)) (-15 -1629 ((-85) $)) (-15 -2236 (|#1| $)))) (-756)) (T -281))
-((-3637 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) (-3633 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-756)))) (-2236 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1630 (((-446) $) 20 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1631 (((-869 (-694)) $) 18 T ELT)) (-1633 (((-209) $) 7 T ELT)) (-3945 (((-772) $) 26 T ELT)) (-2206 (((-869 (-158 (-112))) $) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1632 (((-583 (-782 (-1094) (-694))) $) 12 T ELT)) (-3056 (((-85) $ $) 22 T ELT)))
-(((-282) (-13 (-1013) (-10 -8 (-15 -1633 ((-209) $)) (-15 -1632 ((-583 (-782 (-1094) (-694))) $)) (-15 -1631 ((-869 (-694)) $)) (-15 -2206 ((-869 (-158 (-112))) $)) (-15 -1630 ((-446) $))))) (T -282))
-((-1633 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1094) (-694)))) (-5 *1 (-282)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-282)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-282)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-282)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3841 (($ $) 34 T ELT)) (-1636 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1634 (((-1178 |#4|) $) 133 T ELT)) (-1968 (((-355 |#2| (-349 |#2|) |#3| |#4|) $) 32 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (((-3 |#4| #1#) $) 37 T ELT)) (-1635 (((-1178 |#4|) $) 125 T ELT)) (-1637 (($ (-355 |#2| (-349 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-484)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3434 (((-2 (|:| -2336 (-355 |#2| (-349 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-3056 (((-85) $ $) 21 T ELT)) (-3836 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 24 T ELT)))
-(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1635 ((-1178 |#4|) $)) (-15 -1634 ((-1178 |#4|) $)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -283))
-((-1635 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-1178 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1634 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-1178 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
-((-3957 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT)))
-(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1154 |#5|) (-1154 (-349 |#6|)) (-291 |#5| |#6| |#7|)) (T -284))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1154 *9)) (-4 *11 (-1154 (-349 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11)))))
-((-1636 (((-85) $) 14 T ELT)))
-(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1636 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1154 |#2|) (-1154 (-349 |#3|)) (-291 |#2| |#3| |#4|)) (T -285))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3841 (($ $) 35 T ELT)) (-1636 (((-85) $) 34 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1968 (((-355 |#2| (-349 |#2|) |#3| |#4|) $) 41 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (((-3 |#4| "failed") $) 33 T ELT)) (-1637 (($ (-355 |#2| (-349 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-484)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3434 (((-2 (|:| -2336 (-355 |#2| (-349 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT)))
-(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1154 |t#1|) (-1154 (-349 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286))
-((-1968 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-355 *4 (-349 *4) *5 *6)))) (-1637 (*1 *1 *2) (-12 (-5 *2 (-355 *4 (-349 *4) *5 *6)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1637 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1637 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1637 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-312)) (-4 *4 (-1154 *2)) (-4 *5 (-1154 (-349 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2336 (-355 *4 (-349 *4) *5 *6)) (|:| |principalPart| *6))))) (-3841 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2409 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1637 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -1968 ((-355 |t#2| (-349 |t#2|) |t#3| |t#4|) $)) (-15 -1637 ($ (-355 |t#2| (-349 |t#2|) |t#3| |t#4|))) (-15 -1637 ($ |t#4|)) (-15 -1637 ($ |t#1| |t#1|)) (-15 -1637 ($ |t#1| |t#1| (-484))) (-15 -3434 ((-2 (|:| -2336 (-355 |t#2| (-349 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3841 ($ $)) (-15 -1636 ((-85) $)) (-15 -2409 ((-3 |t#4| "failed") $)) (-15 -1637 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1013) . T) ((-1128) . T))
-((-3767 (($ $ (-1089) |#2|) NIL T ELT) (($ $ (-583 (-1089)) (-583 |#2|)) 20 T ELT) (($ $ (-583 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-3799 (($ $ |#2|) 11 T ELT)))
-(((-287 |#1| |#2|) (-10 -7 (-15 -3799 (|#1| |#1| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#2| |#2|)) (-15 -3767 (|#1| |#1| (-249 |#2|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 |#2|))) (-15 -3767 (|#1| |#1| (-1089) |#2|))) (-288 |#2|) (-1013)) (T -287))
-NIL
-((-3957 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3767 (($ $ (-1089) |#1|) 17 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 16 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3799 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT)))
-(((-288 |#1|) (-113) (-1013)) (T -288))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1013)))))
-(-13 (-10 -8 (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455 (-1089) |t#1|)) (-6 (-455 (-1089) |t#1|)) |%noBranch|)))
-(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1128) |has| |#1| (-241 |#1| |#1|)))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3156 (((-817 |#1|) $) NIL T ELT)) (-1791 (($ (-1178 (-817 |#1|))) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1679 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3132 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 (-817 |#1|)) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1626 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1625 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-1084 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1627 (($ $ (-1084 (-817 |#1|))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-817 |#1|) (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 (-817 |#1|))) NIL T ELT)) (-1673 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1628 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3224 (((-1178 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT)))
-(((-289 |#1| |#2|) (-280 (-817 |#1|)) (-830) (-830)) (T -289))
-NIL
-((-1646 (((-2 (|:| |num| (-1178 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1791 (($ (-1178 (-349 |#3|)) (-1178 $)) NIL T ELT) (($ (-1178 (-349 |#3|))) NIL T ELT) (($ (-1178 |#3|) |#3|) 172 T ELT)) (-1651 (((-1178 $) (-1178 $)) 156 T ELT)) (-1638 (((-583 (-583 |#2|))) 126 T ELT)) (-1663 (((-85) |#2| |#2|) 76 T ELT)) (-3502 (($ $) 148 T ELT)) (-3376 (((-694)) 171 T ELT)) (-1652 (((-1178 $) (-1178 $)) 219 T ELT)) (-1639 (((-583 (-857 |#2|)) (-1089)) 115 T ELT)) (-1655 (((-85) $) 168 T ELT)) (-1654 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1641 (((-3 |#3| #1="failed")) 52 T ELT)) (-1665 (((-694)) 183 T ELT)) (-3799 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1642 (((-3 |#3| #1#)) 71 T ELT)) (-3757 (($ $ (-1 (-349 |#3|) (-349 |#3|))) NIL T ELT) (($ $ (-1 (-349 |#3|) (-349 |#3|)) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-1653 (((-1178 $) (-1178 $)) 162 T ELT)) (-1640 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1664 (((-85)) 34 T ELT)))
-(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -1638 ((-583 (-583 |#2|)))) (-15 -1639 ((-583 (-857 |#2|)) (-1089))) (-15 -1640 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1641 ((-3 |#3| #1="failed"))) (-15 -1642 ((-3 |#3| #1#))) (-15 -3799 (|#2| |#1| |#2| |#2|)) (-15 -3502 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1654 ((-85) |#1| |#3|)) (-15 -1654 ((-85) |#1| |#2|)) (-15 -1791 (|#1| (-1178 |#3|) |#3|)) (-15 -1646 ((-2 (|:| |num| (-1178 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1651 ((-1178 |#1|) (-1178 |#1|))) (-15 -1652 ((-1178 |#1|) (-1178 |#1|))) (-15 -1653 ((-1178 |#1|) (-1178 |#1|))) (-15 -1654 ((-85) |#1|)) (-15 -1655 ((-85) |#1|)) (-15 -1663 ((-85) |#2| |#2|)) (-15 -1664 ((-85))) (-15 -1665 ((-694))) (-15 -3376 ((-694))) (-15 -3757 (|#1| |#1| (-1 (-349 |#3|) (-349 |#3|)) (-694))) (-15 -3757 (|#1| |#1| (-1 (-349 |#3|) (-349 |#3|)))) (-15 -1791 (|#1| (-1178 (-349 |#3|)))) (-15 -1791 (|#1| (-1178 (-349 |#3|)) (-1178 |#1|)))) (-291 |#2| |#3| |#4|) (-1133) (-1154 |#2|) (-1154 (-349 |#3|))) (T -290))
-((-3376 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1664 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1663 (*1 *2 *3 *3) (-12 (-4 *3 (-1133)) (-4 *5 (-1154 *3)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1642 (*1 *2) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1641 (*1 *2) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-5 *2 (-583 (-857 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1638 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1646 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 114 (|has| (-349 |#2|) (-312)) ELT)) (-2063 (($ $) 115 (|has| (-349 |#2|) (-312)) ELT)) (-2061 (((-85) $) 117 (|has| (-349 |#2|) (-312)) ELT)) (-1781 (((-630 (-349 |#2|)) (-1178 $)) 61 T ELT) (((-630 (-349 |#2|))) 77 T ELT)) (-3329 (((-349 |#2|) $) 67 T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 167 (|has| (-349 |#2|) (-299)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 134 (|has| (-349 |#2|) (-312)) ELT)) (-3970 (((-347 $) $) 135 (|has| (-349 |#2|) (-312)) ELT)) (-1607 (((-85) $ $) 125 (|has| (-349 |#2|) (-312)) ELT)) (-3136 (((-694)) 108 (|has| (-349 |#2|) (-319)) ELT)) (-1660 (((-85)) 242 T ELT)) (-1659 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 194 (|has| (-349 |#2|) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 192 (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-3 (-349 |#2|) #1#) $) 189 T ELT)) (-3156 (((-484) $) 193 (|has| (-349 |#2|) (-950 (-484))) ELT) (((-349 (-484)) $) 191 (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-349 |#2|) $) 190 T ELT)) (-1791 (($ (-1178 (-349 |#2|)) (-1178 $)) 63 T ELT) (($ (-1178 (-349 |#2|))) 80 T ELT) (($ (-1178 |#2|) |#2|) 224 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-349 |#2|) (-299)) ELT)) (-2564 (($ $ $) 129 (|has| (-349 |#2|) (-312)) ELT)) (-1780 (((-630 (-349 |#2|)) $ (-1178 $)) 68 T ELT) (((-630 (-349 |#2|)) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 185 (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-630 $) (-1178 $)) 184 T ELT) (((-630 (-349 |#2|)) (-630 $)) 183 T ELT)) (-1651 (((-1178 $) (-1178 $)) 230 T ELT)) (-3841 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-349 |#3|)) 175 (|has| (-349 |#2|) (-312)) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1638 (((-583 (-583 |#1|))) 211 (|has| |#1| (-319)) ELT)) (-1663 (((-85) |#1| |#1|) 246 T ELT)) (-3108 (((-830)) 69 T ELT)) (-2994 (($) 111 (|has| (-349 |#2|) (-319)) ELT)) (-1658 (((-85)) 239 T ELT)) (-1657 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2563 (($ $ $) 128 (|has| (-349 |#2|) (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| (-349 |#2|) (-312)) ELT)) (-3502 (($ $) 217 T ELT)) (-2833 (($) 169 (|has| (-349 |#2|) (-299)) ELT)) (-1679 (((-85) $) 170 (|has| (-349 |#2|) (-299)) ELT)) (-1763 (($ $ (-694)) 161 (|has| (-349 |#2|) (-299)) ELT) (($ $) 160 (|has| (-349 |#2|) (-299)) ELT)) (-3722 (((-85) $) 136 (|has| (-349 |#2|) (-312)) ELT)) (-3771 (((-830) $) 172 (|has| (-349 |#2|) (-299)) ELT) (((-743 (-830)) $) 158 (|has| (-349 |#2|) (-299)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3376 (((-694)) 249 T ELT)) (-1652 (((-1178 $) (-1178 $)) 231 T ELT)) (-3132 (((-349 |#2|) $) 66 T ELT)) (-1639 (((-583 (-857 |#1|)) (-1089)) 212 (|has| |#1| (-312)) ELT)) (-3444 (((-632 $) $) 162 (|has| (-349 |#2|) (-299)) ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| (-349 |#2|) (-312)) ELT)) (-2014 ((|#3| $) 59 (|has| (-349 |#2|) (-312)) ELT)) (-2010 (((-830) $) 110 (|has| (-349 |#2|) (-319)) ELT)) (-3079 ((|#3| $) 176 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 188 (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 187 (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-1178 $) $) 182 T ELT) (((-630 (-349 |#2|)) (-1178 $)) 181 T ELT)) (-1890 (($ (-583 $)) 121 (|has| (-349 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-349 |#2|) (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1647 (((-630 (-349 |#2|))) 226 T ELT)) (-1649 (((-630 (-349 |#2|))) 228 T ELT)) (-2484 (($ $) 137 (|has| (-349 |#2|) (-312)) ELT)) (-1644 (($ (-1178 |#2|) |#2|) 222 T ELT)) (-1648 (((-630 (-349 |#2|))) 227 T ELT)) (-1650 (((-630 (-349 |#2|))) 229 T ELT)) (-1643 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1656 (((-1178 $)) 235 T ELT)) (-3917 (((-1178 $)) 236 T ELT)) (-1655 (((-85) $) 234 T ELT)) (-1654 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3445 (($) 163 (|has| (-349 |#2|) (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| (-349 |#2|) (-319)) ELT)) (-1641 (((-3 |#2| "failed")) 214 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1665 (((-694)) 248 T ELT)) (-2409 (($) 180 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 122 (|has| (-349 |#2|) (-312)) ELT)) (-3144 (($ (-583 $)) 119 (|has| (-349 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-349 |#2|) (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 166 (|has| (-349 |#2|) (-299)) ELT)) (-3731 (((-347 $) $) 133 (|has| (-349 |#2|) (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-349 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| (-349 |#2|) (-312)) ELT)) (-3465 (((-3 $ "failed") $ $) 113 (|has| (-349 |#2|) (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 124 (|has| (-349 |#2|) (-312)) ELT)) (-1606 (((-694) $) 126 (|has| (-349 |#2|) (-312)) ELT)) (-3799 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1642 (((-3 |#2| "failed")) 215 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 127 (|has| (-349 |#2|) (-312)) ELT)) (-3756 (((-349 |#2|) (-1178 $)) 62 T ELT) (((-349 |#2|)) 76 T ELT)) (-1764 (((-694) $) 171 (|has| (-349 |#2|) (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| (-349 |#2|) (-299)) ELT)) (-3757 (($ $ (-1 (-349 |#2|) (-349 |#2|))) 145 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) 144 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 150 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-1089) (-694)) 149 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-583 (-1089))) 148 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-1089)) 146 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-694)) 156 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-189))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-190))) (-2562 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) 154 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-189))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-190))) (-2562 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-2408 (((-630 (-349 |#2|)) (-1178 $) (-1 (-349 |#2|) (-349 |#2|))) 174 (|has| (-349 |#2|) (-312)) ELT)) (-3185 ((|#3|) 179 T ELT)) (-1673 (($) 168 (|has| (-349 |#2|) (-299)) ELT)) (-3224 (((-1178 (-349 |#2|)) $ (-1178 $)) 65 T ELT) (((-630 (-349 |#2|)) (-1178 $) (-1178 $)) 64 T ELT) (((-1178 (-349 |#2|)) $) 82 T ELT) (((-630 (-349 |#2|)) (-1178 $)) 81 T ELT)) (-3971 (((-1178 (-349 |#2|)) $) 79 T ELT) (($ (-1178 (-349 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 165 (|has| (-349 |#2|) (-299)) ELT)) (-1653 (((-1178 $) (-1178 $)) 232 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 |#2|)) 52 T ELT) (($ (-349 (-484))) 107 (OR (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-950 (-349 (-484))))) ELT) (($ $) 112 (|has| (-349 |#2|) (-312)) ELT)) (-2702 (($ $) 164 (|has| (-349 |#2|) (-299)) ELT) (((-632 $) $) 58 (|has| (-349 |#2|) (-118)) ELT)) (-2449 ((|#3| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1662 (((-85)) 245 T ELT)) (-1661 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 83 T ELT)) (-2062 (((-85) $ $) 116 (|has| (-349 |#2|) (-312)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-1640 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1664 (((-85)) 247 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 (-349 |#2|) (-349 |#2|))) 143 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) 142 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 153 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-1089) (-694)) 152 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-583 (-1089))) 151 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-1089)) 147 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-694)) 157 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-189))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-190))) (-2562 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) 155 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-189))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-190))) (-2562 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 141 (|has| (-349 |#2|) (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 138 (|has| (-349 |#2|) (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 |#2|)) 54 T ELT) (($ (-349 |#2|) $) 53 T ELT) (($ (-349 (-484)) $) 140 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-349 (-484))) 139 (|has| (-349 |#2|) (-312)) ELT)))
-(((-291 |#1| |#2| |#3|) (-113) (-1133) (-1154 |t#1|) (-1154 (-349 |t#2|))) (T -291))
-((-3376 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-694)))) (-1665 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-694)))) (-1664 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1662 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) (-1660 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) (-1658 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) (-3917 (*1 *2) (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1656 (*1 *2) (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))) (-1647 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))) (-1791 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1154 (-349 *3))))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))) (-1644 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1154 (-349 *3))))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5))))) (-1654 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1654 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3))))) (-3799 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3))))) (-1642 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1133)) (-4 *4 (-1154 (-349 *2))) (-4 *2 (-1154 *3)))) (-1641 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1133)) (-4 *4 (-1154 (-349 *2))) (-4 *2 (-1154 *3)))) (-1640 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-1133)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-4 *4 (-312)) (-5 *2 (-583 (-857 *4))))) (-1638 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *3 (-319)) (-5 *2 (-583 (-583 *3))))))
-(-13 (-661 (-349 |t#2|) |t#3|) (-10 -8 (-15 -3376 ((-694))) (-15 -1665 ((-694))) (-15 -1664 ((-85))) (-15 -1663 ((-85) |t#1| |t#1|)) (-15 -1662 ((-85))) (-15 -1661 ((-85) |t#1|)) (-15 -1661 ((-85) |t#2|)) (-15 -1660 ((-85))) (-15 -1659 ((-85) |t#1|)) (-15 -1659 ((-85) |t#2|)) (-15 -1658 ((-85))) (-15 -1657 ((-85) |t#1|)) (-15 -1657 ((-85) |t#2|)) (-15 -3917 ((-1178 $))) (-15 -1656 ((-1178 $))) (-15 -1655 ((-85) $)) (-15 -1654 ((-85) $)) (-15 -1653 ((-1178 $) (-1178 $))) (-15 -1652 ((-1178 $) (-1178 $))) (-15 -1651 ((-1178 $) (-1178 $))) (-15 -1650 ((-630 (-349 |t#2|)))) (-15 -1649 ((-630 (-349 |t#2|)))) (-15 -1648 ((-630 (-349 |t#2|)))) (-15 -1647 ((-630 (-349 |t#2|)))) (-15 -1646 ((-2 (|:| |num| (-1178 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1791 ($ (-1178 |t#2|) |t#2|)) (-15 -1645 ((-2 (|:| |num| (-1178 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1644 ($ (-1178 |t#2|) |t#2|)) (-15 -1643 ((-2 (|:| |num| (-630 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1654 ((-85) $ |t#1|)) (-15 -1654 ((-85) $ |t#2|)) (-15 -3757 ($ $ (-1 |t#2| |t#2|))) (-15 -3502 ($ $)) (-15 -3799 (|t#1| $ |t#1| |t#1|)) (-15 -1642 ((-3 |t#2| "failed"))) (-15 -1641 ((-3 |t#2| "failed"))) (-15 -1640 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1639 ((-583 (-857 |t#1|)) (-1089))) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -1638 ((-583 (-583 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-38 (-349 |#2|)) . T) ((-38 $) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-82 (-349 |#2|) (-349 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-118))) ((-120) |has| (-349 |#2|) (-120)) ((-555 (-349 (-484))) OR (|has| (-349 |#2|) (-950 (-349 (-484)))) (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-555 (-349 |#2|)) . T) ((-555 (-484)) . T) ((-555 $) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#3|) . T) ((-186 $) OR (|has| (-349 |#2|) (-299)) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312)))) ((-184 (-349 |#2|)) |has| (-349 |#2|) (-312)) ((-190) OR (|has| (-349 |#2|) (-299)) (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312)))) ((-189) OR (|has| (-349 |#2|) (-299)) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312)))) ((-225 (-349 |#2|)) |has| (-349 |#2|) (-312)) ((-201) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-246) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-258) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-312) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-344) |has| (-349 |#2|) (-299)) ((-319) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-319))) ((-299) |has| (-349 |#2|) (-299)) ((-321 (-349 |#2|) |#3|) . T) ((-352 (-349 |#2|) |#3|) . T) ((-328 (-349 |#2|)) . T) ((-354 (-349 |#2|)) . T) ((-391) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-495) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-588 (-349 |#2|)) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-590 (-349 |#2|)) . T) ((-590 (-484)) |has| (-349 |#2|) (-580 (-484))) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-582 (-349 |#2|)) . T) ((-582 $) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-580 (-349 |#2|)) . T) ((-580 (-484)) |has| (-349 |#2|) (-580 (-484))) ((-654 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-654 (-349 |#2|)) . T) ((-654 $) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-661 (-349 |#2|) |#3|) . T) ((-663) . T) ((-806 $ (-1089)) OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089))))) ((-809 (-1089)) -12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) ((-811 (-1089)) OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089))))) ((-832) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-950 (-349 (-484))) |has| (-349 |#2|) (-950 (-349 (-484)))) ((-950 (-349 |#2|)) . T) ((-950 (-484)) |has| (-349 |#2|) (-950 (-484))) ((-963 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-963 (-349 |#2|)) . T) ((-963 $) . T) ((-968 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-968 (-349 |#2|)) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| (-349 |#2|) (-299)) ((-1128) . T) ((-1133) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))))
-((-3957 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT)))
-(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 (|#8| (-1 |#5| |#1|) |#4|))) (-1133) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|) (-1133) (-1154 |#5|) (-1154 (-349 |#6|)) (-291 |#5| |#6| |#7|)) (T -292))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1133)) (-4 *8 (-1133)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *9 (-1154 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1154 (-349 *9))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3156 (((-817 |#1|) $) NIL T ELT)) (-1791 (($ (-1178 (-817 |#1|))) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1679 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3132 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 (-817 |#1|)) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1626 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1625 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-1084 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1627 (($ $ (-1084 (-817 |#1|))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-817 |#1|) (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1666 (((-869 (-1033))) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 (-817 |#1|))) NIL T ELT)) (-1673 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1628 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3224 (((-1178 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT)))
-(((-293 |#1| |#2|) (-13 (-280 (-817 |#1|)) (-10 -7 (-15 -1666 ((-869 (-1033)))))) (-830) (-830)) (T -293))
-((-1666 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-293 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 58 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 56 (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 139 T ELT)) (-3156 ((|#1| $) 111 T ELT)) (-1791 (($ (-1178 |#1|)) 128 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) 122 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 155 (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) 65 (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) 60 (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 62 T ELT)) (-2013 (($) 157 (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) 115 T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) 165 (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 172 T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) 94 (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) 142 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1666 (((-869 (-1033))) 57 T ELT)) (-2409 (($) 153 (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 117 (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) 88 T ELT) (((-830)) 89 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) 156 (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 |#1|)) 120 T ELT)) (-1673 (($) 154 (|has| |#1| (-319)) ELT)) (-1628 (($) 162 (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) 76 T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 168 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 150 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 141 T ELT) (((-1178 $) (-830)) 96 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) 66 T CONST)) (-2666 (($) 101 T CONST)) (-3927 (($ $) 105 (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 64 T ELT)) (-3948 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3836 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 84 T ELT)) (** (($ $ (-830)) 174 T ELT) (($ $ (-694)) 175 T ELT) (($ $ (-484)) 173 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT)))
-(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1666 ((-869 (-1033)))))) (-299) (-1084 |#1|)) (T -294))
-((-1666 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1084 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1666 (((-869 (-1033))) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 |#1|)) NIL T ELT)) (-1673 (($) NIL (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1666 ((-869 (-1033)))))) (-299) (-830)) (T -295))
-((-1666 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
-((-1676 (((-694) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) 61 T ELT)) (-1667 (((-869 (-1033)) (-1084 |#1|)) 112 T ELT)) (-1668 (((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) (-1084 |#1|)) 103 T ELT)) (-1669 (((-630 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) 113 T ELT)) (-1670 (((-3 (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) "failed") (-830)) 13 T ELT)) (-1671 (((-3 (-1084 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) (-830)) 18 T ELT)))
-(((-296 |#1|) (-10 -7 (-15 -1667 ((-869 (-1033)) (-1084 |#1|))) (-15 -1668 ((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) (-1084 |#1|))) (-15 -1669 ((-630 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (-15 -1676 ((-694) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (-15 -1670 ((-3 (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) "failed") (-830))) (-15 -1671 ((-3 (-1084 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) (-830)))) (-299)) (T -296))
-((-1671 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-3 (-1084 *4) (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1670 (*1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-5 *2 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-694)) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-630 *4)) (-5 *1 (-296 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-869 (-1033))) (-5 *1 (-296 *4)))))
-((-3945 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
-(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3945 (|#3| |#1|)) (-15 -3945 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297))
-((-3945 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3945 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4)))))
-((-1679 (((-85) $) 65 T ELT)) (-3771 (((-743 (-830)) $) 26 T ELT) (((-830) $) 69 T ELT)) (-3444 (((-632 $) $) 21 T ELT)) (-3445 (($) 9 T CONST)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 120 T ELT)) (-1764 (((-3 (-694) #1="failed") $ $) 98 T ELT) (((-694) $) 84 T ELT)) (-3757 (($ $) 8 T ELT) (($ $ (-694)) NIL T ELT)) (-1673 (($) 58 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 41 T ELT)) (-2702 (((-632 $) $) 50 T ELT) (($ $) 47 T ELT)))
-(((-298 |#1|) (-10 -7 (-15 -3771 ((-830) |#1|)) (-15 -1764 ((-694) |#1|)) (-15 -1679 ((-85) |#1|)) (-15 -1673 (|#1|)) (-15 -2703 ((-3 (-1178 |#1|) #1="failed") (-630 |#1|))) (-15 -2702 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3445 (|#1|) -3951) (-15 -3444 ((-632 |#1|) |#1|)) (-15 -1764 ((-3 (-694) #1#) |#1| |#1|)) (-15 -3771 ((-743 (-830)) |#1|)) (-15 -2702 ((-632 |#1|) |#1|)) (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|)))) (-299)) (T -298))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 113 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3136 (((-694)) 123 T ELT)) (-3723 (($) 23 T CONST)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2994 (($) 126 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-2833 (($) 111 T ELT)) (-1679 (((-85) $) 110 T ELT)) (-1763 (($ $) 97 T ELT) (($ $ (-694)) 96 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-3771 (((-743 (-830)) $) 99 T ELT) (((-830) $) 108 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3444 (((-632 $) $) 122 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2010 (((-830) $) 125 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3445 (($) 121 T CONST)) (-2400 (($ (-830)) 124 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 114 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1764 (((-3 (-694) "failed") $ $) 98 T ELT) (((-694) $) 109 T ELT)) (-3757 (($ $) 120 T ELT) (($ $ (-694)) 118 T ELT)) (-1673 (($) 112 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 115 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT)) (-2702 (((-632 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $) 119 T ELT) (($ $ (-694)) 117 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT)))
+((-2013 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *3)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *4)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1179 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3)))) (-3186 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3)))) (-3930 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2015 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1085 *1)) (-4 *1 (-280 *4)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-1629 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2014 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) (-2410 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))) (-1626 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))))
+(-13 (-1198 |t#1|) (-951 |t#1|) (-10 -8 (-15 -2013 ((-1179 $))) (-15 -2013 ((-1179 $) (-831))) (-15 -3225 ((-1179 |t#1|) $)) (-15 -3225 ((-631 |t#1|) (-1179 $))) (-15 -1792 ($ (-1179 |t#1|))) (-15 -2015 ((-1085 |t#1|) $)) (-15 -3186 ((-1085 |t#1|))) (-15 -3930 ((-831))) (-15 -3948 ((-831) $)) (-15 -3133 (|t#1| $)) (-15 -3330 (|t#1| $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-299)) (-15 -2015 ((-1085 $) $ (-831))) (-15 -3133 ($ $ (-831))) (-15 -3330 ($ $ (-831))) (-15 -1629 ($)) (-15 -2014 ($)) (-15 -2012 ((-85) $)) (-15 -2410 ($)) (-15 -1628 ($ $ (-1085 |t#1|))) (-15 -1627 ((-1085 |t#1|) $)) (-15 -1626 ((-1085 |t#1|) $)) (-15 -1626 ((-3 (-1085 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) |has| |#1| (-320)) ((-190) |has| |#1| (-320)) ((-189) |has| |#1| (-320)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1198 |#1|) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-320) |has| |#1| (-320)) ((-299) |has| |#1| (-320)) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1066) |has| |#1| (-320)) ((-1129) . T) ((-1134) . T) ((-1187 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-1630 (((-85) $) 13 T ELT)) (-3638 (($ |#1|) 10 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3634 (($ |#1|) 12 T ELT)) (-3946 (((-773) $) 19 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2237 ((|#1| $) 14 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 21 T ELT)))
+(((-281 |#1|) (-13 (-757) (-10 -8 (-15 -3638 ($ |#1|)) (-15 -3634 ($ |#1|)) (-15 -1630 ((-85) $)) (-15 -2237 (|#1| $)))) (-757)) (T -281))
+((-3638 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) (-3634 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-757)))) (-2237 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1631 (((-447) $) 20 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1632 (((-870 (-695)) $) 18 T ELT)) (-1634 (((-209) $) 7 T ELT)) (-3946 (((-773) $) 26 T ELT)) (-2207 (((-870 (-158 (-112))) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1633 (((-584 (-783 (-1095) (-695))) $) 12 T ELT)) (-3057 (((-85) $ $) 22 T ELT)))
+(((-282) (-13 (-1014) (-10 -8 (-15 -1634 ((-209) $)) (-15 -1633 ((-584 (-783 (-1095) (-695))) $)) (-15 -1632 ((-870 (-695)) $)) (-15 -2207 ((-870 (-158 (-112))) $)) (-15 -1631 ((-447) $))))) (T -282))
+((-1634 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1095) (-695)))) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-282)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-282)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-282)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3842 (($ $) 34 T ELT)) (-1637 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1635 (((-1179 |#4|) $) 133 T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 32 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (((-3 |#4| #1#) $) 37 T ELT)) (-1636 (((-1179 |#4|) $) 125 T ELT)) (-1638 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-485)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3435 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3946 (((-773) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-3057 (((-85) $ $) 21 T ELT)) (-3837 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 24 T ELT)))
+(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1636 ((-1179 |#4|) $)) (-15 -1635 ((-1179 |#4|) $)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -283))
+((-1636 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1635 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
+((-3958 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT)))
+(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3958 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1155 |#5|) (-1155 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -284))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1155 *9)) (-4 *11 (-1155 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11)))))
+((-1637 (((-85) $) 14 T ELT)))
+(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1637 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1155 |#2|) (-1155 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -285))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3842 (($ $) 35 T ELT)) (-1637 (((-85) $) 34 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 41 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2410 (((-3 |#4| "failed") $) 33 T ELT)) (-1638 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-485)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3435 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT)))
+(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1155 |t#1|) (-1155 (-350 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286))
+((-1969 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1638 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1638 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1638 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1155 *2)) (-4 *5 (-1155 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2337 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) (-3842 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2410 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1638 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -1969 ((-356 |t#2| (-350 |t#2|) |t#3| |t#4|) $)) (-15 -1638 ($ (-356 |t#2| (-350 |t#2|) |t#3| |t#4|))) (-15 -1638 ($ |t#4|)) (-15 -1638 ($ |t#1| |t#1|)) (-15 -1638 ($ |t#1| |t#1| (-485))) (-15 -3435 ((-2 (|:| -2337 (-356 |t#2| (-350 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3842 ($ $)) (-15 -1637 ((-85) $)) (-15 -2410 ((-3 |t#4| "failed") $)) (-15 -1638 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1129) . T))
+((-3768 (($ $ (-1090) |#2|) NIL T ELT) (($ $ (-584 (-1090)) (-584 |#2|)) 20 T ELT) (($ $ (-584 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-3800 (($ $ |#2|) 11 T ELT)))
+(((-287 |#1| |#2|) (-10 -7 (-15 -3800 (|#1| |#1| |#2|)) (-15 -3768 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3768 (|#1| |#1| |#2| |#2|)) (-15 -3768 (|#1| |#1| (-249 |#2|))) (-15 -3768 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3768 (|#1| |#1| (-584 (-1090)) (-584 |#2|))) (-15 -3768 (|#1| |#1| (-1090) |#2|))) (-288 |#2|) (-1014)) (T -287))
+NIL
+((-3958 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3768 (($ $ (-1090) |#1|) 17 (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) 16 (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3800 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT)))
+(((-288 |#1|) (-113) (-1014)) (T -288))
+((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1014)))))
+(-13 (-10 -8 (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-456 (-1090) |t#1|)) (-6 (-456 (-1090) |t#1|)) |%noBranch|)))
+(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-456 (-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1129) |has| |#1| (-241 |#1| |#1|)))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3157 (((-818 |#1|) $) NIL T ELT)) (-1792 (($ (-1179 (-818 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3133 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 (-818 |#1|)) $) NIL T ELT) (((-1085 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1085 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1626 (((-1085 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1085 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1085 (-818 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3225 (((-1179 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT) (((-1179 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
+(((-289 |#1| |#2|) (-280 (-818 |#1|)) (-831) (-831)) (T -289))
+NIL
+((-1647 (((-2 (|:| |num| (-1179 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1792 (($ (-1179 (-350 |#3|)) (-1179 $)) NIL T ELT) (($ (-1179 (-350 |#3|))) NIL T ELT) (($ (-1179 |#3|) |#3|) 172 T ELT)) (-1652 (((-1179 $) (-1179 $)) 156 T ELT)) (-1639 (((-584 (-584 |#2|))) 126 T ELT)) (-1664 (((-85) |#2| |#2|) 76 T ELT)) (-3503 (($ $) 148 T ELT)) (-3377 (((-695)) 171 T ELT)) (-1653 (((-1179 $) (-1179 $)) 219 T ELT)) (-1640 (((-584 (-858 |#2|)) (-1090)) 115 T ELT)) (-1656 (((-85) $) 168 T ELT)) (-1655 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1642 (((-3 |#3| #1="failed")) 52 T ELT)) (-1666 (((-695)) 183 T ELT)) (-3800 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1643 (((-3 |#3| #1#)) 71 T ELT)) (-3758 (($ $ (-1 (-350 |#3|) (-350 |#3|))) NIL T ELT) (($ $ (-1 (-350 |#3|) (-350 |#3|)) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-1654 (((-1179 $) (-1179 $)) 162 T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1665 (((-85)) 34 T ELT)))
+(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -1639 ((-584 (-584 |#2|)))) (-15 -1640 ((-584 (-858 |#2|)) (-1090))) (-15 -1641 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1642 ((-3 |#3| #1="failed"))) (-15 -1643 ((-3 |#3| #1#))) (-15 -3800 (|#2| |#1| |#2| |#2|)) (-15 -3503 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1655 ((-85) |#1| |#3|)) (-15 -1655 ((-85) |#1| |#2|)) (-15 -1792 (|#1| (-1179 |#3|) |#3|)) (-15 -1647 ((-2 (|:| |num| (-1179 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1652 ((-1179 |#1|) (-1179 |#1|))) (-15 -1653 ((-1179 |#1|) (-1179 |#1|))) (-15 -1654 ((-1179 |#1|) (-1179 |#1|))) (-15 -1655 ((-85) |#1|)) (-15 -1656 ((-85) |#1|)) (-15 -1664 ((-85) |#2| |#2|)) (-15 -1665 ((-85))) (-15 -1666 ((-695))) (-15 -3377 ((-695))) (-15 -3758 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)) (-695))) (-15 -3758 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)))) (-15 -1792 (|#1| (-1179 (-350 |#3|)))) (-15 -1792 (|#1| (-1179 (-350 |#3|)) (-1179 |#1|)))) (-291 |#2| |#3| |#4|) (-1134) (-1155 |#2|) (-1155 (-350 |#3|))) (T -290))
+((-3377 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1666 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1664 (*1 *2 *3 *3) (-12 (-4 *3 (-1134)) (-4 *5 (-1155 *3)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1643 (*1 *2) (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1642 (*1 *2) (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *5 (-1134)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-5 *2 (-584 (-858 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1639 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1647 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 114 (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) 115 (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) 117 (|has| (-350 |#2|) (-312)) ELT)) (-1782 (((-631 (-350 |#2|)) (-1179 $)) 61 T ELT) (((-631 (-350 |#2|))) 77 T ELT)) (-3330 (((-350 |#2|) $) 67 T ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) 167 (|has| (-350 |#2|) (-299)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 134 (|has| (-350 |#2|) (-312)) ELT)) (-3971 (((-348 $) $) 135 (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-85) $ $) 125 (|has| (-350 |#2|) (-312)) ELT)) (-3137 (((-695)) 108 (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) 242 T ELT)) (-1660 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 194 (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) 189 T ELT)) (-3157 (((-485) $) 193 (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) 190 T ELT)) (-1792 (($ (-1179 (-350 |#2|)) (-1179 $)) 63 T ELT) (($ (-1179 (-350 |#2|))) 80 T ELT) (($ (-1179 |#2|) |#2|) 224 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-350 |#2|) (-299)) ELT)) (-2565 (($ $ $) 129 (|has| (-350 |#2|) (-312)) ELT)) (-1781 (((-631 (-350 |#2|)) $ (-1179 $)) 68 T ELT) (((-631 (-350 |#2|)) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 185 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-631 $) (-1179 $)) 184 T ELT) (((-631 (-350 |#2|)) (-631 $)) 183 T ELT)) (-1652 (((-1179 $) (-1179 $)) 230 T ELT)) (-3842 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-350 |#3|)) 175 (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1639 (((-584 (-584 |#1|))) 211 (|has| |#1| (-320)) ELT)) (-1664 (((-85) |#1| |#1|) 246 T ELT)) (-3109 (((-831)) 69 T ELT)) (-2995 (($) 111 (|has| (-350 |#2|) (-320)) ELT)) (-1659 (((-85)) 239 T ELT)) (-1658 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2564 (($ $ $) 128 (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| (-350 |#2|) (-312)) ELT)) (-3503 (($ $) 217 T ELT)) (-2834 (($) 169 (|has| (-350 |#2|) (-299)) ELT)) (-1680 (((-85) $) 170 (|has| (-350 |#2|) (-299)) ELT)) (-1764 (($ $ (-695)) 161 (|has| (-350 |#2|) (-299)) ELT) (($ $) 160 (|has| (-350 |#2|) (-299)) ELT)) (-3723 (((-85) $) 136 (|has| (-350 |#2|) (-312)) ELT)) (-3772 (((-831) $) 172 (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) 158 (|has| (-350 |#2|) (-299)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3377 (((-695)) 249 T ELT)) (-1653 (((-1179 $) (-1179 $)) 231 T ELT)) (-3133 (((-350 |#2|) $) 66 T ELT)) (-1640 (((-584 (-858 |#1|)) (-1090)) 212 (|has| |#1| (-312)) ELT)) (-3445 (((-633 $) $) 162 (|has| (-350 |#2|) (-299)) ELT)) (-1605 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) 59 (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) 110 (|has| (-350 |#2|) (-320)) ELT)) (-3080 ((|#3| $) 176 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 188 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 187 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-1179 $) $) 182 T ELT) (((-631 (-350 |#2|)) (-1179 $)) 181 T ELT)) (-1891 (($ (-584 $)) 121 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-350 |#2|) (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1648 (((-631 (-350 |#2|))) 226 T ELT)) (-1650 (((-631 (-350 |#2|))) 228 T ELT)) (-2485 (($ $) 137 (|has| (-350 |#2|) (-312)) ELT)) (-1645 (($ (-1179 |#2|) |#2|) 222 T ELT)) (-1649 (((-631 (-350 |#2|))) 227 T ELT)) (-1651 (((-631 (-350 |#2|))) 229 T ELT)) (-1644 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1646 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1657 (((-1179 $)) 235 T ELT)) (-3918 (((-1179 $)) 236 T ELT)) (-1656 (((-85) $) 234 T ELT)) (-1655 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3446 (($) 163 (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| (-350 |#2|) (-320)) ELT)) (-1642 (((-3 |#2| "failed")) 214 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1666 (((-695)) 248 T ELT)) (-2410 (($) 180 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 122 (|has| (-350 |#2|) (-312)) ELT)) (-3145 (($ (-584 $)) 119 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-350 |#2|) (-312)) ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) 166 (|has| (-350 |#2|) (-299)) ELT)) (-3732 (((-348 $) $) 133 (|has| (-350 |#2|) (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| (-350 |#2|) (-312)) ELT)) (-3466 (((-3 $ "failed") $ $) 113 (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 124 (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-695) $) 126 (|has| (-350 |#2|) (-312)) ELT)) (-3800 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1643 (((-3 |#2| "failed")) 215 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 127 (|has| (-350 |#2|) (-312)) ELT)) (-3757 (((-350 |#2|) (-1179 $)) 62 T ELT) (((-350 |#2|)) 76 T ELT)) (-1765 (((-695) $) 171 (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| (-350 |#2|) (-299)) ELT)) (-3758 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 145 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) 144 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-584 (-1090)) (-584 (-695))) 150 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-2563 (|has| (-350 |#2|) (-812 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090) (-695)) 149 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-2563 (|has| (-350 |#2|) (-812 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-584 (-1090))) 148 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-2563 (|has| (-350 |#2|) (-812 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090)) 146 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-2563 (|has| (-350 |#2|) (-812 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-695)) 156 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 154 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1179 $) (-1 (-350 |#2|) (-350 |#2|))) 174 (|has| (-350 |#2|) (-312)) ELT)) (-3186 ((|#3|) 179 T ELT)) (-1674 (($) 168 (|has| (-350 |#2|) (-299)) ELT)) (-3225 (((-1179 (-350 |#2|)) $ (-1179 $)) 65 T ELT) (((-631 (-350 |#2|)) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 (-350 |#2|)) $) 82 T ELT) (((-631 (-350 |#2|)) (-1179 $)) 81 T ELT)) (-3972 (((-1179 (-350 |#2|)) $) 79 T ELT) (($ (-1179 (-350 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-631 $)) 165 (|has| (-350 |#2|) (-299)) ELT)) (-1654 (((-1179 $) (-1179 $)) 232 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 |#2|)) 52 T ELT) (($ (-350 (-485))) 107 (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) 112 (|has| (-350 |#2|) (-312)) ELT)) (-2703 (($ $) 164 (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) 58 (|has| (-350 |#2|) (-118)) ELT)) (-2450 ((|#3| $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1663 (((-85)) 245 T ELT)) (-1662 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2013 (((-1179 $)) 83 T ELT)) (-2063 (((-85) $ $) 116 (|has| (-350 |#2|) (-312)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1665 (((-85)) 247 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 143 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) 142 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 153 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-2563 (|has| (-350 |#2|) (-812 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090) (-695)) 152 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-2563 (|has| (-350 |#2|) (-812 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-584 (-1090))) 151 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-2563 (|has| (-350 |#2|) (-812 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090)) 147 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-2563 (|has| (-350 |#2|) (-812 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-695)) 157 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 155 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 141 (|has| (-350 |#2|) (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 |#2|)) 54 T ELT) (($ (-350 |#2|) $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| (-350 |#2|) (-312)) ELT)))
+(((-291 |#1| |#2| |#3|) (-113) (-1134) (-1155 |t#1|) (-1155 (-350 |t#2|))) (T -291))
+((-3377 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-695)))) (-1666 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-695)))) (-1665 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1664 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-1661 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-1659 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-3918 (*1 *2) (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1657 (*1 *2) (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-1651 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3))))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))) (-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3))))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))) (-1655 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-3503 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))))) (-3800 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))))) (-1643 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134)) (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))) (-1642 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134)) (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))) (-1641 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-1134)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *4 (-312)) (-5 *2 (-584 (-858 *4))))) (-1639 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-584 (-584 *3))))))
+(-13 (-662 (-350 |t#2|) |t#3|) (-10 -8 (-15 -3377 ((-695))) (-15 -1666 ((-695))) (-15 -1665 ((-85))) (-15 -1664 ((-85) |t#1| |t#1|)) (-15 -1663 ((-85))) (-15 -1662 ((-85) |t#1|)) (-15 -1662 ((-85) |t#2|)) (-15 -1661 ((-85))) (-15 -1660 ((-85) |t#1|)) (-15 -1660 ((-85) |t#2|)) (-15 -1659 ((-85))) (-15 -1658 ((-85) |t#1|)) (-15 -1658 ((-85) |t#2|)) (-15 -3918 ((-1179 $))) (-15 -1657 ((-1179 $))) (-15 -1656 ((-85) $)) (-15 -1655 ((-85) $)) (-15 -1654 ((-1179 $) (-1179 $))) (-15 -1653 ((-1179 $) (-1179 $))) (-15 -1652 ((-1179 $) (-1179 $))) (-15 -1651 ((-631 (-350 |t#2|)))) (-15 -1650 ((-631 (-350 |t#2|)))) (-15 -1649 ((-631 (-350 |t#2|)))) (-15 -1648 ((-631 (-350 |t#2|)))) (-15 -1647 ((-2 (|:| |num| (-1179 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1792 ($ (-1179 |t#2|) |t#2|)) (-15 -1646 ((-2 (|:| |num| (-1179 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1645 ($ (-1179 |t#2|) |t#2|)) (-15 -1644 ((-2 (|:| |num| (-631 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1655 ((-85) $ |t#1|)) (-15 -1655 ((-85) $ |t#2|)) (-15 -3758 ($ $ (-1 |t#2| |t#2|))) (-15 -3503 ($ $)) (-15 -3800 (|t#1| $ |t#1| |t#1|)) (-15 -1643 ((-3 |t#2| "failed"))) (-15 -1642 ((-3 |t#2| "failed"))) (-15 -1641 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1640 ((-584 (-858 |t#1|)) (-1090))) |%noBranch|) (IF (|has| |t#1| (-320)) (-15 -1639 ((-584 (-584 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-38 (-350 |#2|)) . T) ((-38 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-82 (-350 |#2|) (-350 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-118))) ((-120) |has| (-350 |#2|) (-120)) ((-556 (-350 (-485))) OR (|has| (-350 |#2|) (-951 (-350 (-485)))) (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-556 (-350 |#2|)) . T) ((-556 (-485)) . T) ((-556 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#3|) . T) ((-186 $) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-184 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-190) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-189) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-225 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-201) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-246) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-258) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-312) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-345) |has| (-350 |#2|) (-299)) ((-320) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-320))) ((-299) |has| (-350 |#2|) (-299)) ((-322 (-350 |#2|) |#3|) . T) ((-353 (-350 |#2|) |#3|) . T) ((-329 (-350 |#2|)) . T) ((-355 (-350 |#2|)) . T) ((-392) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-496) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-589 (-350 |#2|)) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-591 (-350 |#2|)) . T) ((-591 (-485)) |has| (-350 |#2|) (-581 (-485))) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-583 (-350 |#2|)) . T) ((-583 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-581 (-350 |#2|)) . T) ((-581 (-485)) |has| (-350 |#2|) (-581 (-485))) ((-655 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-655 (-350 |#2|)) . T) ((-655 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-662 (-350 |#2|) |#3|) . T) ((-664) . T) ((-807 $ (-1090)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090))))) ((-810 (-1090)) -12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) ((-812 (-1090)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090))))) ((-833) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-951 (-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) ((-951 (-350 |#2|)) . T) ((-951 (-485)) |has| (-350 |#2|) (-951 (-485))) ((-964 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-964 (-350 |#2|)) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-969 (-350 |#2|)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1066) |has| (-350 |#2|) (-299)) ((-1129) . T) ((-1134) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))))
+((-3958 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT)))
+(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3958 (|#8| (-1 |#5| |#1|) |#4|))) (-1134) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-1134) (-1155 |#5|) (-1155 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -292))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1134)) (-4 *8 (-1134)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *9 (-1155 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1155 (-350 *9))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3157 (((-818 |#1|) $) NIL T ELT)) (-1792 (($ (-1179 (-818 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3133 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 (-818 |#1|)) $) NIL T ELT) (((-1085 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1085 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1626 (((-1085 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1085 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1667 (((-870 (-1034))) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1085 (-818 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3225 (((-1179 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT) (((-1179 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
+(((-293 |#1| |#2|) (-13 (-280 (-818 |#1|)) (-10 -7 (-15 -1667 ((-870 (-1034)))))) (-831) (-831)) (T -293))
+((-1667 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 58 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) 56 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 139 T ELT)) (-3157 ((|#1| $) 111 T ELT)) (-1792 (($ (-1179 |#1|)) 128 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) 122 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) 155 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) 65 (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) 60 (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 62 T ELT)) (-2014 (($) 157 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 |#1|) $) 115 T ELT) (((-1085 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 165 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 172 T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 94 (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) 142 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1667 (((-870 (-1034))) 57 T ELT)) (-2410 (($) 153 (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) 117 (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) 88 T ELT) (((-831)) 89 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) 156 (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1085 |#1|)) 120 T ELT)) (-1674 (($) 154 (|has| |#1| (-320)) ELT)) (-1629 (($) 162 (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) 76 T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-773) $) 168 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 150 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) 141 T ELT) (((-1179 $) (-831)) 96 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) 66 T CONST)) (-2667 (($) 101 T CONST)) (-3928 (($ $) 105 (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 64 T ELT)) (-3949 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3837 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 84 T ELT)) (** (($ $ (-831)) 174 T ELT) (($ $ (-695)) 175 T ELT) (($ $ (-485)) 173 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT)))
+(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1667 ((-870 (-1034)))))) (-299) (-1085 |#1|)) (T -294))
+((-1667 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1085 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 |#1|) $) NIL T ELT) (((-1085 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1667 (((-870 (-1034))) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1085 |#1|)) NIL T ELT)) (-1674 (($) NIL (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT) (((-1179 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1667 ((-870 (-1034)))))) (-299) (-831)) (T -295))
+((-1667 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
+((-1677 (((-695) (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034)))))) 61 T ELT)) (-1668 (((-870 (-1034)) (-1085 |#1|)) 112 T ELT)) (-1669 (((-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))) (-1085 |#1|)) 103 T ELT)) (-1670 (((-631 |#1|) (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034)))))) 113 T ELT)) (-1671 (((-3 (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))) "failed") (-831)) 13 T ELT)) (-1672 (((-3 (-1085 |#1|) (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034)))))) (-831)) 18 T ELT)))
+(((-296 |#1|) (-10 -7 (-15 -1668 ((-870 (-1034)) (-1085 |#1|))) (-15 -1669 ((-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))) (-1085 |#1|))) (-15 -1670 ((-631 |#1|) (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))))) (-15 -1677 ((-695) (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))))) (-15 -1671 ((-3 (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))) "failed") (-831))) (-15 -1672 ((-3 (-1085 |#1|) (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034)))))) (-831)))) (-299)) (T -296))
+((-1672 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-3 (-1085 *4) (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1671 (*1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-5 *2 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-695)) (-5 *1 (-296 *4)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-631 *4)) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-870 (-1034))) (-5 *1 (-296 *4)))))
+((-3946 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
+(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3946 (|#3| |#1|)) (-15 -3946 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297))
+((-3946 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4)))))
+((-1680 (((-85) $) 65 T ELT)) (-3772 (((-744 (-831)) $) 26 T ELT) (((-831) $) 69 T ELT)) (-3445 (((-633 $) $) 21 T ELT)) (-3446 (($) 9 T CONST)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 120 T ELT)) (-1765 (((-3 (-695) #1="failed") $ $) 98 T ELT) (((-695) $) 84 T ELT)) (-3758 (($ $) 8 T ELT) (($ $ (-695)) NIL T ELT)) (-1674 (($) 58 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) 41 T ELT)) (-2703 (((-633 $) $) 50 T ELT) (($ $) 47 T ELT)))
+(((-298 |#1|) (-10 -7 (-15 -3772 ((-831) |#1|)) (-15 -1765 ((-695) |#1|)) (-15 -1680 ((-85) |#1|)) (-15 -1674 (|#1|)) (-15 -2704 ((-3 (-1179 |#1|) #1="failed") (-631 |#1|))) (-15 -2703 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1|)) (-15 -3446 (|#1|) -3952) (-15 -3445 ((-633 |#1|) |#1|)) (-15 -1765 ((-3 (-695) #1#) |#1| |#1|)) (-15 -3772 ((-744 (-831)) |#1|)) (-15 -2703 ((-633 |#1|) |#1|)) (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) (-299)) (T -298))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) 113 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3137 (((-695)) 123 T ELT)) (-3724 (($) 23 T CONST)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2995 (($) 126 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-2834 (($) 111 T ELT)) (-1680 (((-85) $) 110 T ELT)) (-1764 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-3772 (((-744 (-831)) $) 99 T ELT) (((-831) $) 108 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3445 (((-633 $) $) 122 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2011 (((-831) $) 125 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3446 (($) 121 T CONST)) (-2401 (($ (-831)) 124 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) 114 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1765 (((-3 (-695) "failed") $ $) 98 T ELT) (((-695) $) 109 T ELT)) (-3758 (($ $) 120 T ELT) (($ $ (-695)) 118 T ELT)) (-1674 (($) 112 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-631 $)) 115 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-2703 (((-633 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $) 119 T ELT) (($ $ (-695)) 117 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
(((-299) (-113)) (T -299))
-((-2702 (*1 *1 *1) (-4 *1 (-299))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-299)) (-5 *2 (-1178 *1)))) (-1675 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))))) (-1674 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-484)) (-5 *2 (-1101 (-830) (-694))))) (-1673 (*1 *1) (-4 *1 (-299))) (-2833 (*1 *1) (-4 *1 (-299))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-694)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-830)))) (-1672 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-344) (-319) (-1065) (-190) (-10 -8 (-15 -2702 ($ $)) (-15 -2703 ((-3 (-1178 $) "failed") (-630 $))) (-15 -1675 ((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484)))))) (-15 -1674 ((-1101 (-830) (-694)) (-484))) (-15 -1673 ($)) (-15 -2833 ($)) (-15 -1679 ((-85) $)) (-15 -1764 ((-694) $)) (-15 -3771 ((-830) $)) (-15 -1672 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-344) . T) ((-319) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) . T) ((-1128) . T) ((-1133) . T))
-((-3918 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|) 55 T ELT)) (-3917 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 53 T ELT)))
-(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3917 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))))) (-15 -3918 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))) (-1154 |#1|) (-352 |#1| |#2|)) (T -300))
-((-3918 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-3917 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1676 (((-694)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3156 (((-817 |#1|) $) NIL T ELT)) (-1791 (($ (-1178 (-817 |#1|))) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1679 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3132 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 (-817 |#1|)) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1626 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1625 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-1084 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1627 (($ $ (-1084 (-817 |#1|))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-817 |#1|) (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1678 (((-1178 (-583 (-2 (|:| -3401 (-817 |#1|)) (|:| -2400 (-1033)))))) NIL T ELT)) (-1677 (((-630 (-817 |#1|))) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 (-817 |#1|))) NIL T ELT)) (-1673 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1628 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3224 (((-1178 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT)))
-(((-301 |#1| |#2|) (-13 (-280 (-817 |#1|)) (-10 -7 (-15 -1678 ((-1178 (-583 (-2 (|:| -3401 (-817 |#1|)) (|:| -2400 (-1033))))))) (-15 -1677 ((-630 (-817 |#1|)))) (-15 -1676 ((-694))))) (-830) (-830)) (T -301))
-((-1678 (*1 *2) (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 (-817 *3)) (|:| -2400 (-1033)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1677 (*1 *2) (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1676 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))))
-((-2568 (((-85) $ $) 72 T ELT)) (-3188 (((-85) $) 87 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) 105 T ELT) (($ $ (-830)) 103 (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 168 (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1676 (((-694)) 102 T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 185 (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 126 T ELT)) (-3156 ((|#1| $) 104 T ELT)) (-1791 (($ (-1178 |#1|)) 70 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) 180 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 169 (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 112 (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) 198 (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) 107 T ELT) (($ $ (-830)) 106 (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) 212 T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) 146 (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) 86 (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) 83 (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) 95 (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) 82 (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 216 T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) 148 (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) 122 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1678 (((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) 96 T ELT)) (-1677 (((-630 |#1|)) 100 T ELT)) (-2409 (($) 109 (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 171 (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) 172 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) 74 T ELT)) (-3185 (((-1084 |#1|)) 173 T ELT)) (-1673 (($) 145 (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) 120 T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 138 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 178 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 195 T ELT) (((-1178 $) (-830)) 115 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) 184 T CONST)) (-2666 (($) 159 T CONST)) (-3927 (($ $) 121 (|has| |#1| (-319)) ELT) (($ $ (-694)) 113 (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 206 T ELT)) (-3948 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3836 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3838 (($ $ $) 202 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 151 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT)))
-(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1678 ((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (-15 -1677 ((-630 |#1|))) (-15 -1676 ((-694))))) (-299) (-3 (-1084 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (T -302))
-((-1678 (*1 *2) (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1084 *3) *2)))) (-1677 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1084 *3) (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033))))))))) (-1676 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1084 *3) (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033))))))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1676 (((-694)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1678 (((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) NIL T ELT)) (-1677 (((-630 |#1|)) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 |#1|)) NIL T ELT)) (-1673 (($) NIL (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1678 ((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (-15 -1677 ((-630 |#1|))) (-15 -1676 ((-694))))) (-299) (-830)) (T -303))
-((-1678 (*1 *2) (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))) (-1677 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))) (-1676 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 130 (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 156 (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 104 T ELT)) (-3156 ((|#1| $) 101 T ELT)) (-1791 (($ (-1178 |#1|)) 96 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) 93 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 52 (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 131 (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) 85 (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) 48 T ELT) (($ $ (-830)) 53 (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) 76 T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) 108 (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) 106 (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) 158 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) 45 (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 125 (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) 155 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) 68 T ELT)) (-3185 (((-1084 |#1|)) 99 T ELT)) (-1673 (($) 136 (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) 64 T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 154 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 160 T CONST)) (-1264 (((-85) $ $) 162 T ELT)) (-2012 (((-1178 $)) 120 T ELT) (((-1178 $) (-830)) 59 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) 122 T CONST)) (-2666 (($) 40 T CONST)) (-3927 (($ $) 79 (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 118 T ELT)) (-3948 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3836 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3838 (($ $ $) 114 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 54 T ELT) (($ $ (-484)) 139 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT)))
-(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1084 |#1|)) (T -304))
-NIL
-((-1694 (((-869 (-1084 |#1|)) (-1084 |#1|)) 49 T ELT)) (-2994 (((-1084 |#1|) (-830) (-830)) 159 T ELT) (((-1084 |#1|) (-830)) 155 T ELT)) (-1679 (((-85) (-1084 |#1|)) 110 T ELT)) (-1681 (((-830) (-830)) 85 T ELT)) (-1682 (((-830) (-830)) 94 T ELT)) (-1680 (((-830) (-830)) 83 T ELT)) (-2011 (((-85) (-1084 |#1|)) 114 T ELT)) (-1689 (((-3 (-1084 |#1|) #1="failed") (-1084 |#1|)) 139 T ELT)) (-1692 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 144 T ELT)) (-1691 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 143 T ELT)) (-1690 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 142 T ELT)) (-1688 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 134 T ELT)) (-1693 (((-1084 |#1|) (-1084 |#1|)) 71 T ELT)) (-1684 (((-1084 |#1|) (-830)) 149 T ELT)) (-1687 (((-1084 |#1|) (-830)) 152 T ELT)) (-1686 (((-1084 |#1|) (-830)) 151 T ELT)) (-1685 (((-1084 |#1|) (-830)) 150 T ELT)) (-1683 (((-1084 |#1|) (-830)) 147 T ELT)))
-(((-305 |#1|) (-10 -7 (-15 -1679 ((-85) (-1084 |#1|))) (-15 -2011 ((-85) (-1084 |#1|))) (-15 -1680 ((-830) (-830))) (-15 -1681 ((-830) (-830))) (-15 -1682 ((-830) (-830))) (-15 -1683 ((-1084 |#1|) (-830))) (-15 -1684 ((-1084 |#1|) (-830))) (-15 -1685 ((-1084 |#1|) (-830))) (-15 -1686 ((-1084 |#1|) (-830))) (-15 -1687 ((-1084 |#1|) (-830))) (-15 -1688 ((-3 (-1084 |#1|) #1="failed") (-1084 |#1|))) (-15 -1689 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1690 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1691 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1692 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -2994 ((-1084 |#1|) (-830))) (-15 -2994 ((-1084 |#1|) (-830) (-830))) (-15 -1693 ((-1084 |#1|) (-1084 |#1|))) (-15 -1694 ((-869 (-1084 |#1|)) (-1084 |#1|)))) (-299)) (T -305))
-((-1694 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-869 (-1084 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1084 *4)))) (-1693 (*1 *2 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2994 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))))
-((-1695 ((|#1| (-1084 |#2|)) 60 T ELT)))
-(((-306 |#1| |#2|) (-10 -7 (-15 -1695 (|#1| (-1084 |#2|)))) (-13 (-344) (-10 -7 (-15 -3945 (|#1| |#2|)) (-15 -2010 ((-830) |#1|)) (-15 -2012 ((-1178 |#1|) (-830))) (-15 -3927 (|#1| |#1|)))) (-299)) (T -306))
-((-1695 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-344) (-10 -7 (-15 -3945 (*2 *4)) (-15 -2010 ((-830) *2)) (-15 -2012 ((-1178 *2) (-830))) (-15 -3927 (*2 *2))))) (-5 *1 (-306 *2 *4)))))
-((-2704 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 40 T ELT)))
-(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2704 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-299) (-1154 |#1|) (-1154 |#2|)) (T -307))
-((-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 |#1|)) NIL T ELT)) (-1673 (($) NIL (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-308 |#1| |#2|) (-280 |#1|) (-299) (-830)) (T -308))
-NIL
-((-2249 (((-85) (-583 (-857 |#1|))) 41 T ELT)) (-2251 (((-583 (-857 |#1|)) (-583 (-857 |#1|))) 53 T ELT)) (-2250 (((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|))) 48 T ELT)))
-(((-309 |#1| |#2|) (-10 -7 (-15 -2249 ((-85) (-583 (-857 |#1|)))) (-15 -2250 ((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|)))) (-15 -2251 ((-583 (-857 |#1|)) (-583 (-857 |#1|))))) (-391) (-583 (-1089))) (T -309))
-((-2251 (*1 *2 *2) (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-391)) (-5 *1 (-309 *3 *4)) (-14 *4 (-583 (-1089))))) (-2250 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-391)) (-5 *1 (-309 *3 *4)) (-14 *4 (-583 (-1089))))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-391)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-583 (-1089))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2410 (((-85) $) 17 T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-484) $ (-484)) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2291 (($ (-1 (-484) (-484)) $) 26 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 28 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1778 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-484)))) $) 30 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 7 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ |#1| (-484)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
-(((-310 |#1|) (-13 (-412) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-484))) (-15 -3136 ((-694) $)) (-15 -2300 ((-484) $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -2291 ($ (-1 (-484) (-484)) $)) (-15 -2290 ($ (-1 |#1| |#1|) $)) (-15 -1778 ((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-484)))) $)))) (-1013)) (T -310))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2300 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-310 *3)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 (-484))))) (-5 *1 (-310 *3)) (-4 *3 (-1013)))))
-((-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 13 T ELT)) (-2063 (($ $) 14 T ELT)) (-3970 (((-347 $) $) 31 T ELT)) (-3722 (((-85) $) 27 T ELT)) (-2484 (($ $) 19 T ELT)) (-3144 (($ $ $) 22 T ELT) (($ (-583 $)) NIL T ELT)) (-3731 (((-347 $) $) 32 T ELT)) (-3465 (((-3 $ "failed") $ $) 21 T ELT)) (-1606 (((-694) $) 25 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 36 T ELT)) (-2062 (((-85) $ $) 16 T ELT)) (-3948 (($ $ $) 34 T ELT)))
-(((-311 |#1|) (-10 -7 (-15 -3948 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3722 ((-85) |#1|)) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -2879 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -1606 ((-694) |#1|)) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3144 (|#1| |#1| |#1|)) (-15 -2062 ((-85) |#1| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2064 ((-2 (|:| -1771 |#1|) (|:| -3981 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3465 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT)))
+((-2703 (*1 *1 *1) (-4 *1 (-299))) (-2704 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-299)) (-5 *2 (-1179 *1)))) (-1676 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))))) (-1675 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1102 (-831) (-695))))) (-1674 (*1 *1) (-4 *1 (-299))) (-2834 (*1 *1) (-4 *1 (-299))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-695)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-831)))) (-1673 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-345) (-320) (-1066) (-190) (-10 -8 (-15 -2703 ($ $)) (-15 -2704 ((-3 (-1179 $) "failed") (-631 $))) (-15 -1676 ((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485)))))) (-15 -1675 ((-1102 (-831) (-695)) (-485))) (-15 -1674 ($)) (-15 -2834 ($)) (-15 -1680 ((-85) $)) (-15 -1765 ((-695) $)) (-15 -3772 ((-831) $)) (-15 -1673 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) . T) ((-320) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1066) . T) ((-1129) . T) ((-1134) . T))
+((-3919 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|) 55 T ELT)) (-3918 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 53 T ELT)))
+(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3918 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))))) (-15 -3919 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))) (-1155 |#1|) (-353 |#1| |#2|)) (T -300))
+((-3919 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3918 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1677 (((-695)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3157 (((-818 |#1|) $) NIL T ELT)) (-1792 (($ (-1179 (-818 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3133 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 (-818 |#1|)) $) NIL T ELT) (((-1085 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1085 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1626 (((-1085 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1085 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1679 (((-1179 (-584 (-2 (|:| -3402 (-818 |#1|)) (|:| -2401 (-1034)))))) NIL T ELT)) (-1678 (((-631 (-818 |#1|))) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1085 (-818 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3225 (((-1179 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT) (((-1179 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
+(((-301 |#1| |#2|) (-13 (-280 (-818 |#1|)) (-10 -7 (-15 -1679 ((-1179 (-584 (-2 (|:| -3402 (-818 |#1|)) (|:| -2401 (-1034))))))) (-15 -1678 ((-631 (-818 |#1|)))) (-15 -1677 ((-695))))) (-831) (-831)) (T -301))
+((-1679 (*1 *2) (-12 (-5 *2 (-1179 (-584 (-2 (|:| -3402 (-818 *3)) (|:| -2401 (-1034)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1678 (*1 *2) (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1677 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))))
+((-2569 (((-85) $ $) 72 T ELT)) (-3189 (((-85) $) 87 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 ((|#1| $) 105 T ELT) (($ $ (-831)) 103 (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) 168 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1677 (((-695)) 102 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 185 (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 126 T ELT)) (-3157 ((|#1| $) 104 T ELT)) (-1792 (($ (-1179 |#1|)) 70 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) 180 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) 169 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 112 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 198 (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) 107 T ELT) (($ $ (-831)) 106 (|has| |#1| (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 |#1|) $) 212 T ELT) (((-1085 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 146 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) 86 (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) 83 (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) 95 (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) 82 (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 216 T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 148 (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) 122 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1679 (((-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034)))))) 96 T ELT)) (-1678 (((-631 |#1|)) 100 T ELT)) (-2410 (($) 109 (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) 171 (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) NIL T ELT) (((-831)) 172 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) 74 T ELT)) (-3186 (((-1085 |#1|)) 173 T ELT)) (-1674 (($) 145 (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) 120 T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-773) $) 138 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 178 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) 195 T ELT) (((-1179 $) (-831)) 115 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) 184 T CONST)) (-2667 (($) 159 T CONST)) (-3928 (($ $) 121 (|has| |#1| (-320)) ELT) (($ $ (-695)) 113 (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 206 T ELT)) (-3949 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3837 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3839 (($ $ $) 202 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 151 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT)))
+(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1679 ((-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))))) (-15 -1678 ((-631 |#1|))) (-15 -1677 ((-695))))) (-299) (-3 (-1085 |#1|) (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))))) (T -302))
+((-1679 (*1 *2) (-12 (-5 *2 (-1179 (-584 (-2 (|:| -3402 *3) (|:| -2401 (-1034)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) *2)))) (-1678 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) (-1179 (-584 (-2 (|:| -3402 *3) (|:| -2401 (-1034))))))))) (-1677 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) (-1179 (-584 (-2 (|:| -3402 *3) (|:| -2401 (-1034))))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1677 (((-695)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 |#1|) $) NIL T ELT) (((-1085 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1679 (((-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034)))))) NIL T ELT)) (-1678 (((-631 |#1|)) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1085 |#1|)) NIL T ELT)) (-1674 (($) NIL (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT) (((-1179 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1679 ((-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))))) (-15 -1678 ((-631 |#1|))) (-15 -1677 ((-695))))) (-299) (-831)) (T -303))
+((-1679 (*1 *2) (-12 (-5 *2 (-1179 (-584 (-2 (|:| -3402 *3) (|:| -2401 (-1034)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))) (-1678 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))) (-1677 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) 130 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 156 (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 104 T ELT)) (-3157 ((|#1| $) 101 T ELT)) (-1792 (($ (-1179 |#1|)) 96 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) 93 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) 52 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 131 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 85 (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) 48 T ELT) (($ $ (-831)) 53 (|has| |#1| (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 |#1|) $) 76 T ELT) (((-1085 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 108 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 106 (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) 158 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) 45 (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) 125 (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) NIL T ELT) (((-831)) 155 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) 68 T ELT)) (-3186 (((-1085 |#1|)) 99 T ELT)) (-1674 (($) 136 (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) 64 T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-773) $) 154 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 160 T CONST)) (-1265 (((-85) $ $) 162 T ELT)) (-2013 (((-1179 $)) 120 T ELT) (((-1179 $) (-831)) 59 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) 122 T CONST)) (-2667 (($) 40 T CONST)) (-3928 (($ $) 79 (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 118 T ELT)) (-3949 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3837 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3839 (($ $ $) 114 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 54 T ELT) (($ $ (-485)) 139 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT)))
+(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1085 |#1|)) (T -304))
+NIL
+((-1695 (((-870 (-1085 |#1|)) (-1085 |#1|)) 49 T ELT)) (-2995 (((-1085 |#1|) (-831) (-831)) 159 T ELT) (((-1085 |#1|) (-831)) 155 T ELT)) (-1680 (((-85) (-1085 |#1|)) 110 T ELT)) (-1682 (((-831) (-831)) 85 T ELT)) (-1683 (((-831) (-831)) 94 T ELT)) (-1681 (((-831) (-831)) 83 T ELT)) (-2012 (((-85) (-1085 |#1|)) 114 T ELT)) (-1690 (((-3 (-1085 |#1|) #1="failed") (-1085 |#1|)) 139 T ELT)) (-1693 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 144 T ELT)) (-1692 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 143 T ELT)) (-1691 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 142 T ELT)) (-1689 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 134 T ELT)) (-1694 (((-1085 |#1|) (-1085 |#1|)) 71 T ELT)) (-1685 (((-1085 |#1|) (-831)) 149 T ELT)) (-1688 (((-1085 |#1|) (-831)) 152 T ELT)) (-1687 (((-1085 |#1|) (-831)) 151 T ELT)) (-1686 (((-1085 |#1|) (-831)) 150 T ELT)) (-1684 (((-1085 |#1|) (-831)) 147 T ELT)))
+(((-305 |#1|) (-10 -7 (-15 -1680 ((-85) (-1085 |#1|))) (-15 -2012 ((-85) (-1085 |#1|))) (-15 -1681 ((-831) (-831))) (-15 -1682 ((-831) (-831))) (-15 -1683 ((-831) (-831))) (-15 -1684 ((-1085 |#1|) (-831))) (-15 -1685 ((-1085 |#1|) (-831))) (-15 -1686 ((-1085 |#1|) (-831))) (-15 -1687 ((-1085 |#1|) (-831))) (-15 -1688 ((-1085 |#1|) (-831))) (-15 -1689 ((-3 (-1085 |#1|) #1="failed") (-1085 |#1|))) (-15 -1690 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -1691 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -1692 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -1693 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -2995 ((-1085 |#1|) (-831))) (-15 -2995 ((-1085 |#1|) (-831) (-831))) (-15 -1694 ((-1085 |#1|) (-1085 |#1|))) (-15 -1695 ((-870 (-1085 |#1|)) (-1085 |#1|)))) (-299)) (T -305))
+((-1695 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-870 (-1085 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1085 *4)))) (-1694 (*1 *2 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2995 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))))
+((-1696 ((|#1| (-1085 |#2|)) 60 T ELT)))
+(((-306 |#1| |#2|) (-10 -7 (-15 -1696 (|#1| (-1085 |#2|)))) (-13 (-345) (-10 -7 (-15 -3946 (|#1| |#2|)) (-15 -2011 ((-831) |#1|)) (-15 -2013 ((-1179 |#1|) (-831))) (-15 -3928 (|#1| |#1|)))) (-299)) (T -306))
+((-1696 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) (-10 -7 (-15 -3946 (*2 *4)) (-15 -2011 ((-831) *2)) (-15 -2013 ((-1179 *2) (-831))) (-15 -3928 (*2 *2))))) (-5 *1 (-306 *2 *4)))))
+((-2705 (((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|) 40 T ELT)))
+(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2705 ((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|))) (-299) (-1155 |#1|) (-1155 |#2|)) (T -307))
+((-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 |#1|) $) NIL T ELT) (((-1085 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1085 |#1|)) NIL T ELT)) (-1674 (($) NIL (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT) (((-1179 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-308 |#1| |#2|) (-280 |#1|) (-299) (-831)) (T -308))
+NIL
+((-2250 (((-85) (-584 (-858 |#1|))) 41 T ELT)) (-2252 (((-584 (-858 |#1|)) (-584 (-858 |#1|))) 53 T ELT)) (-2251 (((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|))) 48 T ELT)))
+(((-309 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-584 (-858 |#1|)))) (-15 -2251 ((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|)))) (-15 -2252 ((-584 (-858 |#1|)) (-584 (-858 |#1|))))) (-392) (-584 (-1090))) (T -309))
+((-2252 (*1 *2 *2) (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-584 (-1090))))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-584 (-1090))))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-584 (-1090))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2411 (((-85) $) 17 T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-485) $ (-485)) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2292 (($ (-1 (-485) (-485)) $) 26 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 28 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1779 (((-584 (-2 (|:| |gen| |#1|) (|:| -3943 (-485)))) $) 30 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3946 (((-773) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 7 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ |#1| (-485)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
+(((-310 |#1|) (-13 (-413) (-951 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-485))) (-15 -3137 ((-695) $)) (-15 -2301 ((-485) $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -2292 ($ (-1 (-485) (-485)) $)) (-15 -2291 ($ (-1 |#1| |#1|) $)) (-15 -1779 ((-584 (-2 (|:| |gen| |#1|) (|:| -3943 (-485)))) $)))) (-1014)) (T -310))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2301 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-310 *3)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 (-485))))) (-5 *1 (-310 *3)) (-4 *3 (-1014)))))
+((-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 13 T ELT)) (-2064 (($ $) 14 T ELT)) (-3971 (((-348 $) $) 31 T ELT)) (-3723 (((-85) $) 27 T ELT)) (-2485 (($ $) 19 T ELT)) (-3145 (($ $ $) 22 T ELT) (($ (-584 $)) NIL T ELT)) (-3732 (((-348 $) $) 32 T ELT)) (-3466 (((-3 $ "failed") $ $) 21 T ELT)) (-1607 (((-695) $) 25 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 36 T ELT)) (-2063 (((-85) $ $) 16 T ELT)) (-3949 (($ $ $) 34 T ELT)))
+(((-311 |#1|) (-10 -7 (-15 -3949 (|#1| |#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3723 ((-85) |#1|)) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -2880 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -1607 ((-695) |#1|)) (-15 -3145 (|#1| (-584 |#1|))) (-15 -3145 (|#1| |#1| |#1|)) (-15 -2063 ((-85) |#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2065 ((-2 (|:| -1772 |#1|) (|:| -3982 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
(((-312) (-113)) (T -312))
-((-3948 (*1 *1 *1 *1) (-4 *1 (-312))))
-(-13 (-258) (-1133) (-201) (-10 -8 (-15 -3948 ($ $ $)) (-6 -3992) (-6 -3986)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-1696 ((|#1| $ |#1|) 35 T ELT)) (-1700 (($ $ (-1072)) 23 T ELT)) (-3618 (((-3 |#1| "failed") $) 34 T ELT)) (-1697 ((|#1| $) 32 T ELT)) (-1701 (($ (-337)) 22 T ELT) (($ (-337) (-1072)) 21 T ELT)) (-3541 (((-337) $) 25 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1698 (((-1072) $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT)) (-1699 (($ $) 24 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 19 T ELT)))
-(((-313 |#1|) (-13 (-314 (-337) |#1|) (-10 -8 (-15 -3618 ((-3 |#1| "failed") $)))) (-1013)) (T -313))
-((-3618 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1013)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-1696 ((|#2| $ |#2|) 17 T ELT)) (-1700 (($ $ (-1072)) 22 T ELT)) (-1697 ((|#2| $) 18 T ELT)) (-1701 (($ |#1|) 24 T ELT) (($ |#1| (-1072)) 23 T ELT)) (-3541 ((|#1| $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1698 (((-1072) $) 19 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1699 (($ $) 21 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-314 |#1| |#2|) (-113) (-1013) (-1013)) (T -314))
-((-1701 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1701 (*1 *1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-1699 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1072)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1696 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(-13 (-1013) (-10 -8 (-15 -1701 ($ |t#1|)) (-15 -1701 ($ |t#1| (-1072))) (-15 -1700 ($ $ (-1072))) (-15 -1699 ($ $)) (-15 -3541 (|t#1| $)) (-15 -1698 ((-1072) $)) (-15 -1697 (|t#2| $)) (-15 -1696 (|t#2| $ |t#2|))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-3223 (((-1178 (-630 |#2|)) (-1178 $)) 67 T ELT)) (-1787 (((-630 |#2|) (-1178 $)) 139 T ELT)) (-1726 ((|#2| $) 36 T ELT)) (-1785 (((-630 |#2|) $ (-1178 $)) 142 T ELT)) (-2404 (((-3 $ #1="failed") $) 89 T ELT)) (-1724 ((|#2| $) 39 T ELT)) (-1704 (((-1084 |#2|) $) 98 T ELT)) (-1789 ((|#2| (-1178 $)) 122 T ELT)) (-1722 (((-1084 |#2|) $) 32 T ELT)) (-1716 (((-85)) 116 T ELT)) (-1791 (($ (-1178 |#2|) (-1178 $)) 132 T ELT)) (-3466 (((-3 $ #1#) $) 93 T ELT)) (-1709 (((-85)) 111 T ELT)) (-1707 (((-85)) 106 T ELT)) (-1711 (((-85)) 58 T ELT)) (-1788 (((-630 |#2|) (-1178 $)) 137 T ELT)) (-1727 ((|#2| $) 35 T ELT)) (-1786 (((-630 |#2|) $ (-1178 $)) 141 T ELT)) (-2405 (((-3 $ #1#) $) 87 T ELT)) (-1725 ((|#2| $) 38 T ELT)) (-1705 (((-1084 |#2|) $) 97 T ELT)) (-1790 ((|#2| (-1178 $)) 120 T ELT)) (-1723 (((-1084 |#2|) $) 30 T ELT)) (-1717 (((-85)) 115 T ELT)) (-1708 (((-85)) 108 T ELT)) (-1710 (((-85)) 56 T ELT)) (-1712 (((-85)) 103 T ELT)) (-1715 (((-85)) 117 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) 128 T ELT)) (-1721 (((-85)) 113 T ELT)) (-1706 (((-583 (-1178 |#2|))) 102 T ELT)) (-1719 (((-85)) 114 T ELT)) (-1720 (((-85)) 112 T ELT)) (-1718 (((-85)) 51 T ELT)) (-1714 (((-85)) 118 T ELT)))
-(((-315 |#1| |#2|) (-10 -7 (-15 -1704 ((-1084 |#2|) |#1|)) (-15 -1705 ((-1084 |#2|) |#1|)) (-15 -1706 ((-583 (-1178 |#2|)))) (-15 -2404 ((-3 |#1| #1="failed") |#1|)) (-15 -2405 ((-3 |#1| #1#) |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1|)) (-15 -1707 ((-85))) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1714 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-1084 |#2|) |#1|)) (-15 -1723 ((-1084 |#2|) |#1|)) (-15 -1787 ((-630 |#2|) (-1178 |#1|))) (-15 -1788 ((-630 |#2|) (-1178 |#1|))) (-15 -1789 (|#2| (-1178 |#1|))) (-15 -1790 (|#2| (-1178 |#1|))) (-15 -1791 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1724 (|#2| |#1|)) (-15 -1725 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1785 ((-630 |#2|) |#1| (-1178 |#1|))) (-15 -1786 ((-630 |#2|) |#1| (-1178 |#1|))) (-15 -3223 ((-1178 (-630 |#2|)) (-1178 |#1|)))) (-316 |#2|) (-146)) (T -315))
-((-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1178 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1771 (((-3 $ "failed")) 48 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3223 (((-1178 (-630 |#1|)) (-1178 $)) 89 T ELT)) (-1728 (((-1178 $)) 92 T ELT)) (-3723 (($) 23 T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed")) 51 (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ "failed")) 49 (|has| |#1| (-495)) ELT)) (-1787 (((-630 |#1|) (-1178 $)) 76 T ELT)) (-1726 ((|#1| $) 85 T ELT)) (-1785 (((-630 |#1|) $ (-1178 $)) 87 T ELT)) (-2404 (((-3 $ "failed") $) 56 (|has| |#1| (-495)) ELT)) (-2407 (($ $ (-830)) 37 T ELT)) (-1724 ((|#1| $) 83 T ELT)) (-1704 (((-1084 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) 78 T ELT)) (-1722 (((-1084 |#1|) $) 74 T ELT)) (-1716 (((-85)) 68 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) 80 T ELT)) (-3466 (((-3 $ "failed") $) 58 (|has| |#1| (-495)) ELT)) (-3108 (((-830)) 91 T ELT)) (-1713 (((-85)) 65 T ELT)) (-2433 (($ $ (-830)) 44 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-1709 (((-85)) 61 T ELT)) (-1707 (((-85)) 59 T ELT)) (-1711 (((-85)) 63 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed")) 52 (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ "failed")) 50 (|has| |#1| (-495)) ELT)) (-1788 (((-630 |#1|) (-1178 $)) 77 T ELT)) (-1727 ((|#1| $) 86 T ELT)) (-1786 (((-630 |#1|) $ (-1178 $)) 88 T ELT)) (-2405 (((-3 $ "failed") $) 57 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-1725 ((|#1| $) 84 T ELT)) (-1705 (((-1084 |#1|) $) 54 (|has| |#1| (-495)) ELT)) (-1790 ((|#1| (-1178 $)) 79 T ELT)) (-1723 (((-1084 |#1|) $) 75 T ELT)) (-1717 (((-85)) 69 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1708 (((-85)) 60 T ELT)) (-1710 (((-85)) 62 T ELT)) (-1712 (((-85)) 64 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1715 (((-85)) 67 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 82 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 81 T ELT)) (-1891 (((-583 (-857 |#1|)) (-1178 $)) 90 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-1721 (((-85)) 73 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1706 (((-583 (-1178 |#1|))) 55 (|has| |#1| (-495)) ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-1719 (((-85)) 71 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-1720 (((-85)) 72 T ELT)) (-1718 (((-85)) 70 T ELT)) (-1714 (((-85)) 66 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+((-3949 (*1 *1 *1 *1) (-4 *1 (-312))))
+(-13 (-258) (-1134) (-201) (-10 -8 (-15 -3949 ($ $ $)) (-6 -3993) (-6 -3987)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-1697 ((|#1| $ |#1|) 35 T ELT)) (-1701 (($ $ (-1073)) 23 T ELT)) (-3619 (((-3 |#1| "failed") $) 34 T ELT)) (-1698 ((|#1| $) 32 T ELT)) (-1702 (($ (-338)) 22 T ELT) (($ (-338) (-1073)) 21 T ELT)) (-3542 (((-338) $) 25 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1699 (((-1073) $) 26 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 20 T ELT)) (-1700 (($ $) 24 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 19 T ELT)))
+(((-313 |#1|) (-13 (-314 (-338) |#1|) (-10 -8 (-15 -3619 ((-3 |#1| "failed") $)))) (-1014)) (T -313))
+((-3619 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1014)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-1697 ((|#2| $ |#2|) 17 T ELT)) (-1701 (($ $ (-1073)) 22 T ELT)) (-1698 ((|#2| $) 18 T ELT)) (-1702 (($ |#1|) 24 T ELT) (($ |#1| (-1073)) 23 T ELT)) (-3542 ((|#1| $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1699 (((-1073) $) 19 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1700 (($ $) 21 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-314 |#1| |#2|) (-113) (-1014) (-1014)) (T -314))
+((-1702 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1702 (*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1073)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1697 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(-13 (-1014) (-10 -8 (-15 -1702 ($ |t#1|)) (-15 -1702 ($ |t#1| (-1073))) (-15 -1701 ($ $ (-1073))) (-15 -1700 ($ $)) (-15 -3542 (|t#1| $)) (-15 -1699 ((-1073) $)) (-15 -1698 (|t#2| $)) (-15 -1697 (|t#2| $ |t#2|))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-3224 (((-1179 (-631 |#2|)) (-1179 $)) 67 T ELT)) (-1788 (((-631 |#2|) (-1179 $)) 139 T ELT)) (-1727 ((|#2| $) 36 T ELT)) (-1786 (((-631 |#2|) $ (-1179 $)) 142 T ELT)) (-2405 (((-3 $ #1="failed") $) 89 T ELT)) (-1725 ((|#2| $) 39 T ELT)) (-1705 (((-1085 |#2|) $) 98 T ELT)) (-1790 ((|#2| (-1179 $)) 122 T ELT)) (-1723 (((-1085 |#2|) $) 32 T ELT)) (-1717 (((-85)) 116 T ELT)) (-1792 (($ (-1179 |#2|) (-1179 $)) 132 T ELT)) (-3467 (((-3 $ #1#) $) 93 T ELT)) (-1710 (((-85)) 111 T ELT)) (-1708 (((-85)) 106 T ELT)) (-1712 (((-85)) 58 T ELT)) (-1789 (((-631 |#2|) (-1179 $)) 137 T ELT)) (-1728 ((|#2| $) 35 T ELT)) (-1787 (((-631 |#2|) $ (-1179 $)) 141 T ELT)) (-2406 (((-3 $ #1#) $) 87 T ELT)) (-1726 ((|#2| $) 38 T ELT)) (-1706 (((-1085 |#2|) $) 97 T ELT)) (-1791 ((|#2| (-1179 $)) 120 T ELT)) (-1724 (((-1085 |#2|) $) 30 T ELT)) (-1718 (((-85)) 115 T ELT)) (-1709 (((-85)) 108 T ELT)) (-1711 (((-85)) 56 T ELT)) (-1713 (((-85)) 103 T ELT)) (-1716 (((-85)) 117 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-631 |#2|) (-1179 $) (-1179 $)) 128 T ELT)) (-1722 (((-85)) 113 T ELT)) (-1707 (((-584 (-1179 |#2|))) 102 T ELT)) (-1720 (((-85)) 114 T ELT)) (-1721 (((-85)) 112 T ELT)) (-1719 (((-85)) 51 T ELT)) (-1715 (((-85)) 118 T ELT)))
+(((-315 |#1| |#2|) (-10 -7 (-15 -1705 ((-1085 |#2|) |#1|)) (-15 -1706 ((-1085 |#2|) |#1|)) (-15 -1707 ((-584 (-1179 |#2|)))) (-15 -2405 ((-3 |#1| #1="failed") |#1|)) (-15 -2406 ((-3 |#1| #1#) |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1|)) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-1085 |#2|) |#1|)) (-15 -1724 ((-1085 |#2|) |#1|)) (-15 -1788 ((-631 |#2|) (-1179 |#1|))) (-15 -1789 ((-631 |#2|) (-1179 |#1|))) (-15 -1790 (|#2| (-1179 |#1|))) (-15 -1791 (|#2| (-1179 |#1|))) (-15 -1792 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3225 ((-631 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1725 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1728 (|#2| |#1|)) (-15 -1786 ((-631 |#2|) |#1| (-1179 |#1|))) (-15 -1787 ((-631 |#2|) |#1| (-1179 |#1|))) (-15 -3224 ((-1179 (-631 |#2|)) (-1179 |#1|)))) (-316 |#2|) (-146)) (T -315))
+((-1722 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1179 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1772 (((-3 $ "failed")) 48 (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3224 (((-1179 (-631 |#1|)) (-1179 $)) 89 T ELT)) (-1729 (((-1179 $)) 92 T ELT)) (-3724 (($) 23 T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed")) 51 (|has| |#1| (-496)) ELT)) (-1703 (((-3 $ "failed")) 49 (|has| |#1| (-496)) ELT)) (-1788 (((-631 |#1|) (-1179 $)) 76 T ELT)) (-1727 ((|#1| $) 85 T ELT)) (-1786 (((-631 |#1|) $ (-1179 $)) 87 T ELT)) (-2405 (((-3 $ "failed") $) 56 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) 37 T ELT)) (-1725 ((|#1| $) 83 T ELT)) (-1705 (((-1085 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1790 ((|#1| (-1179 $)) 78 T ELT)) (-1723 (((-1085 |#1|) $) 74 T ELT)) (-1717 (((-85)) 68 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) 80 T ELT)) (-3467 (((-3 $ "failed") $) 58 (|has| |#1| (-496)) ELT)) (-3109 (((-831)) 91 T ELT)) (-1714 (((-85)) 65 T ELT)) (-2434 (($ $ (-831)) 44 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-1710 (((-85)) 61 T ELT)) (-1708 (((-85)) 59 T ELT)) (-1712 (((-85)) 63 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed")) 52 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ "failed")) 50 (|has| |#1| (-496)) ELT)) (-1789 (((-631 |#1|) (-1179 $)) 77 T ELT)) (-1728 ((|#1| $) 86 T ELT)) (-1787 (((-631 |#1|) $ (-1179 $)) 88 T ELT)) (-2406 (((-3 $ "failed") $) 57 (|has| |#1| (-496)) ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-1726 ((|#1| $) 84 T ELT)) (-1706 (((-1085 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1791 ((|#1| (-1179 $)) 79 T ELT)) (-1724 (((-1085 |#1|) $) 75 T ELT)) (-1718 (((-85)) 69 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1709 (((-85)) 60 T ELT)) (-1711 (((-85)) 62 T ELT)) (-1713 (((-85)) 64 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1716 (((-85)) 67 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 82 T ELT) (((-631 |#1|) (-1179 $) (-1179 $)) 81 T ELT)) (-1892 (((-584 (-858 |#1|)) (-1179 $)) 90 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-1722 (((-85)) 73 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1707 (((-584 (-1179 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-1720 (((-85)) 71 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-1721 (((-85)) 72 T ELT)) (-1719 (((-85)) 70 T ELT)) (-1715 (((-85)) 66 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
(((-316 |#1|) (-113) (-146)) (T -316))
-((-1728 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-316 *3)))) (-3108 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-830)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1178 (-630 *4))))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1178 *4)))) (-3224 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1791 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1707 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3466 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2405 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2404 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-1706 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-583 (-1178 *3))))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))) (-1906 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) (-1905 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) (-1703 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1702 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1771 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))))
-(-13 (-683 |t#1|) (-10 -8 (-15 -1728 ((-1178 $))) (-15 -3108 ((-830))) (-15 -1891 ((-583 (-857 |t#1|)) (-1178 $))) (-15 -3223 ((-1178 (-630 |t#1|)) (-1178 $))) (-15 -1786 ((-630 |t#1|) $ (-1178 $))) (-15 -1785 ((-630 |t#1|) $ (-1178 $))) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -1725 (|t#1| $)) (-15 -1724 (|t#1| $)) (-15 -3224 ((-1178 |t#1|) $ (-1178 $))) (-15 -3224 ((-630 |t#1|) (-1178 $) (-1178 $))) (-15 -1791 ($ (-1178 |t#1|) (-1178 $))) (-15 -1790 (|t#1| (-1178 $))) (-15 -1789 (|t#1| (-1178 $))) (-15 -1788 ((-630 |t#1|) (-1178 $))) (-15 -1787 ((-630 |t#1|) (-1178 $))) (-15 -1723 ((-1084 |t#1|) $)) (-15 -1722 ((-1084 |t#1|) $)) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (-15 -1707 ((-85))) (IF (|has| |t#1| (-495)) (PROGN (-15 -3466 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)) (-15 -1706 ((-583 (-1178 |t#1|)))) (-15 -1705 ((-1084 |t#1|) $)) (-15 -1704 ((-1084 |t#1|) $)) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed"))) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed"))) (-15 -1703 ((-3 $ "failed"))) (-15 -1702 ((-3 $ "failed"))) (-15 -1771 ((-3 $ "failed"))) (-6 -3991)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-317 |#1|) (-113) (-1128)) (T -317))
-((-3956 (*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-694)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))) (-1945 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-3245 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))))
-(-13 (-428 |t#1|) (-10 -8 (-6 -3994) (-15 -3956 ((-694) $)) (-15 -1947 ((-85) (-1 (-85) |t#1|) $)) (-15 -1946 ((-85) (-1 (-85) |t#1|) $)) (-15 -1945 ((-694) (-1 (-85) |t#1|) $)) (-15 -2608 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -1945 ((-694) |t#1| $)) (-15 -3245 ((-85) |t#1| $))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2994 (($) 15 T ELT)))
-(((-318 |#1|) (-10 -7 (-15 -2994 (|#1|))) (-319)) (T -318))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3136 (((-694)) 20 T ELT)) (-2994 (($) 17 T ELT)) (-2010 (((-830) $) 18 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2400 (($ (-830)) 19 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-319) (-113)) (T -319))
-((-3136 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-694)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-319)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-830)))) (-2994 (*1 *1) (-4 *1 (-319))))
-(-13 (-1013) (-10 -8 (-15 -3136 ((-694))) (-15 -2400 ($ (-830))) (-15 -2010 ((-830) $)) (-15 -2994 ($))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-1781 (((-630 |#2|) (-1178 $)) 45 T ELT)) (-1791 (($ (-1178 |#2|) (-1178 $)) 39 T ELT)) (-1780 (((-630 |#2|) $ (-1178 $)) 47 T ELT)) (-3756 ((|#2| (-1178 $)) 13 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) 27 T ELT)))
-(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -1781 ((-630 |#2|) (-1178 |#1|))) (-15 -3756 (|#2| (-1178 |#1|))) (-15 -1791 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1780 ((-630 |#2|) |#1| (-1178 |#1|)))) (-321 |#2| |#3|) (-146) (-1154 |#2|)) (T -320))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1781 (((-630 |#1|) (-1178 $)) 61 T ELT)) (-3329 ((|#1| $) 67 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1791 (($ (-1178 |#1|) (-1178 $)) 63 T ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) 68 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-830)) 69 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 66 T ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3756 ((|#1| (-1178 $)) 62 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 65 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 64 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2702 (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-321 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -321))
-((-3108 (*1 *2) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-830)))) (-1780 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *4)))) (-3224 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) (-1791 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-321 *4 *5)) (-4 *5 (-1154 *4)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *2 *4)) (-4 *4 (-1154 *2)) (-4 *2 (-146)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1154 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3108 ((-830))) (-15 -1780 ((-630 |t#1|) $ (-1178 $))) (-15 -3329 (|t#1| $)) (-15 -3132 (|t#1| $)) (-15 -3224 ((-1178 |t#1|) $ (-1178 $))) (-15 -3224 ((-630 |t#1|) (-1178 $) (-1178 $))) (-15 -1791 ($ (-1178 |t#1|) (-1178 $))) (-15 -3756 (|t#1| (-1178 $))) (-15 -1781 ((-630 |t#1|) (-1178 $))) (-15 -2449 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2014 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-1731 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1729 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2909 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2298 (($ $) 25 T ELT)) (-3418 (((-484) (-1 (-85) |#2|) $) NIL T ELT) (((-484) |#2| $) 11 T ELT) (((-484) |#2| $ (-484)) NIL T ELT)) (-3517 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT)))
-(((-322 |#1| |#2|) (-10 -7 (-15 -1729 (|#1| |#1|)) (-15 -1729 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1731 ((-85) |#1|)) (-15 -2909 (|#1| |#1|)) (-15 -3517 (|#1| |#1| |#1|)) (-15 -3418 ((-484) |#2| |#1| (-484))) (-15 -3418 ((-484) |#2| |#1|)) (-15 -3418 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2909 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -3517 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-323 |#2|) (-1128)) (T -322))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3995)) ELT) (($ $) 98 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 100 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 110 T ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) 107 T ELT) (((-484) |#1| $) 106 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 105 (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-1730 (($ $ $ (-484)) 101 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-323 |#1|) (-113) (-1128)) (T -323))
-((-3517 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)))) (-2909 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) (-1731 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-323 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3418 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-323 *4)) (-4 *4 (-1128)) (-5 *2 (-484)))) (-3418 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-484)))) (-3418 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)))) (-3517 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))) (-2909 (*1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-756)) (-5 *2 (-85)))) (-1730 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3995)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) (-2297 (*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-323 *2)) (-4 *2 (-1128)))) (-1729 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3995)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) (-1729 (*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))))
-(-13 (-593 |t#1|) (-317 |t#1|) (-10 -8 (-15 -3517 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2298 ($ $)) (-15 -2909 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1731 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3418 ((-484) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3418 ((-484) |t#1| $)) (-15 -3418 ((-484) |t#1| $ (-484)))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-6 (-756)) (-15 -3517 ($ $ $)) (-15 -2909 ($ $)) (-15 -1731 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3995)) (PROGN (-15 -1730 ($ $ $ (-484))) (-15 -2297 ($ $)) (-15 -1729 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-15 -1729 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1128) . T))
-((-3840 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3841 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3957 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT)))
-(((-324 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3841 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3840 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1128) (-323 |#1|) (-1128) (-323 |#3|)) (T -324))
-((-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-323 *5)) (-5 *1 (-324 *6 *4 *5 *2)) (-4 *4 (-323 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-324 *5 *4 *2 *6)) (-4 *4 (-323 *5)) (-4 *6 (-323 *2)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-323 *6)) (-5 *1 (-324 *5 *4 *6 *2)) (-4 *4 (-323 *5)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3933 (((-583 |#1|) $) 43 T ELT)) (-3946 (($ $ (-694)) 44 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3938 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 47 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3935 (($ $) 45 T ELT)) (-3939 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 48 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3767 (($ $ |#1| $) 42 T ELT) (($ $ (-583 |#1|) (-583 $)) 41 T ELT)) (-3947 (((-694) $) 49 T ELT)) (-3529 (($ $ $) 40 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1194 |#1| |#2|) $) 51 T ELT) (((-1203 |#1| |#2|) $) 50 T ELT)) (-3953 ((|#2| (-1203 |#1| |#2|) $) 53 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-1732 (($ (-614 |#1|)) 46 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
-(((-325 |#1| |#2|) (-113) (-756) (-146)) (T -325))
-((-3953 (*1 *2 *3 *1) (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-325 *4 *2)) (-4 *4 (-756)) (-4 *2 (-146)))) (-3945 (*1 *1 *2) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1194 *3 *4)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1203 *3 *4)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694)))) (-3939 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3938 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-1732 (*1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-325 *3 *4)) (-4 *4 (-146)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3)))) (-3767 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-756)) (-4 *5 (-146)))))
-(-13 (-574 |t#2|) (-10 -8 (-15 -3953 (|t#2| (-1203 |t#1| |t#2|) $)) (-15 -3945 ($ |t#1|)) (-15 -3945 ((-1194 |t#1| |t#2|) $)) (-15 -3945 ((-1203 |t#1| |t#2|) $)) (-15 -3947 ((-694) $)) (-15 -3939 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -3938 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -1732 ($ (-614 |t#1|))) (-15 -3935 ($ $)) (-15 -3946 ($ $ (-694))) (-15 -3933 ((-583 |t#1|) $)) (-15 -3767 ($ $ |t#1| $)) (-15 -3767 ($ $ (-583 |t#1|) (-583 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-590 |#2|) . T) ((-574 |#2|) . T) ((-582 |#2|) . T) ((-654 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1013) . T) ((-1128) . T))
-((-1735 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1733 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1734 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT)))
-(((-326 |#1| |#2|) (-10 -7 (-15 -1733 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1734 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1735 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1128) (-13 (-323 |#1|) (-10 -7 (-6 -3995)))) (T -326))
-((-1735 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2)) (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))))) (-1734 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2)) (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))))) (-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2)) (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))))))
-((-2279 (((-630 |#2|) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 22 T ELT) (((-630 (-484)) (-630 $)) 14 T ELT)))
-(((-327 |#1| |#2|) (-10 -7 (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 |#2|) (-630 |#1|)))) (-328 |#2|) (-961)) (T -327))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2279 (((-630 |#1|) (-630 $)) 36 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 35 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 47 (|has| |#1| (-580 (-484))) ELT) (((-630 (-484)) (-630 $)) 46 (|has| |#1| (-580 (-484))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2280 (((-630 |#1|) (-1178 $)) 38 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 37 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 45 (|has| |#1| (-580 (-484))) ELT) (((-630 (-484)) (-1178 $)) 44 (|has| |#1| (-580 (-484))) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
-(((-328 |#1|) (-113) (-961)) (T -328))
-NIL
-(-13 (-580 |t#1|) (-10 -7 (IF (|has| |t#1| (-580 (-484))) (-6 (-580 (-484))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 16 T ELT)) (-3129 (((-484) $) 44 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3770 (($ $) 120 T ELT)) (-3491 (($ $) 81 T ELT)) (-3638 (($ $) 72 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) 28 T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3489 (($ $) 79 T ELT)) (-3637 (($ $) 67 T ELT)) (-3622 (((-484) $) 60 T ELT)) (-2441 (($ $ (-484)) 55 T ELT)) (-3493 (($ $) NIL T ELT)) (-3636 (($ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3127 (($ $) 122 T ELT)) (-3157 (((-3 (-484) #1#) $) 217 T ELT) (((-3 (-349 (-484)) #1#) $) 213 T ELT)) (-3156 (((-484) $) 215 T ELT) (((-349 (-484)) $) 211 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-1744 (((-484) $ $) 110 T ELT)) (-3466 (((-3 $ #1#) $) 125 T ELT)) (-1743 (((-349 (-484)) $ (-694)) 218 T ELT) (((-349 (-484)) $ (-694) (-694)) 210 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-1767 (((-830)) 106 T ELT) (((-830) (-830)) 107 (|has| $ (-6 -3985)) ELT)) (-3186 (((-85) $) 38 T ELT)) (-3626 (($) 22 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL T ELT)) (-1736 (((-1184) (-694)) 177 T ELT)) (-1737 (((-1184)) 182 T ELT) (((-1184) (-694)) 183 T ELT)) (-1739 (((-1184)) 184 T ELT) (((-1184) (-694)) 185 T ELT)) (-1738 (((-1184)) 180 T ELT) (((-1184) (-694)) 181 T ELT)) (-3771 (((-484) $) 50 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 21 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-2443 (($ $) 32 T ELT)) (-3132 (($ $) NIL T ELT)) (-3187 (((-85) $) 18 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL (-12 (-2560 (|has| $ (-6 -3977))) (-2560 (|has| $ (-6 -3985)))) ELT)) (-2857 (($ $ $) NIL T ELT) (($) NIL (-12 (-2560 (|has| $ (-6 -3977))) (-2560 (|has| $ (-6 -3985)))) ELT)) (-1769 (((-484) $) 112 T ELT)) (-1742 (($) 90 T ELT) (($ $) 97 T ELT)) (-1741 (($) 96 T ELT) (($ $) 98 T ELT)) (-3941 (($ $) 84 T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 127 T ELT)) (-1766 (((-830) (-484)) 27 (|has| $ (-6 -3985)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) 41 T ELT)) (-3130 (($ $) 119 T ELT)) (-3254 (($ (-484) (-484)) 115 T ELT) (($ (-484) (-484) (-830)) 116 T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2401 (((-484) $) 113 T ELT)) (-1740 (($) 99 T ELT)) (-3942 (($ $) 78 T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-830)) 108 T ELT) (((-830) (-830)) 109 (|has| $ (-6 -3985)) ELT)) (-3757 (($ $) 126 T ELT) (($ $ (-694)) NIL T ELT)) (-1765 (((-830) (-484)) 31 (|has| $ (-6 -3985)) ELT)) (-3494 (($ $) NIL T ELT)) (-3635 (($ $) NIL T ELT)) (-3492 (($ $) NIL T ELT)) (-3634 (($ $) NIL T ELT)) (-3490 (($ $) 80 T ELT)) (-3633 (($ $) 71 T ELT)) (-3971 (((-329) $) 202 T ELT) (((-179) $) 204 T ELT) (((-800 (-329)) $) NIL T ELT) (((-1072) $) 188 T ELT) (((-473) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3945 (((-772) $) 192 T ELT) (($ (-484)) 214 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-484)) 214 T ELT) (($ (-349 (-484))) NIL T ELT) (((-179) $) 205 T ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (($ $) 121 T ELT)) (-1768 (((-830)) 42 T ELT) (((-830) (-830)) 62 (|has| $ (-6 -3985)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (((-830)) 111 T ELT)) (-3497 (($ $) 87 T ELT)) (-3485 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 85 T ELT)) (-3483 (($ $) 20 T ELT)) (-3499 (($ $) NIL T ELT)) (-3487 (($ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL T ELT)) (-3488 (($ $) NIL T ELT)) (-3498 (($ $) NIL T ELT)) (-3486 (($ $) NIL T ELT)) (-3496 (($ $) 86 T ELT)) (-3484 (($ $) 33 T ELT)) (-3382 (($ $) 39 T ELT)) (-2660 (($) 17 T CONST)) (-2666 (($) 24 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) 189 T ELT)) (-2567 (((-85) $ $) 26 T ELT)) (-3056 (((-85) $ $) 37 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 43 T ELT)) (-3948 (($ $ $) 29 T ELT) (($ $ (-484)) 23 T ELT)) (-3836 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3838 (($ $ $) 54 T ELT)) (** (($ $ (-830)) 65 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 91 T ELT) (($ $ (-349 (-484))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-830) $) 61 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT)))
-(((-329) (-13 (-346) (-190) (-553 (-1072)) (-552 (-179)) (-1114) (-553 (-473)) (-557 (-179)) (-10 -8 (-15 -3948 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -2443 ($ $)) (-15 -1744 ((-484) $ $)) (-15 -2441 ($ $ (-484))) (-15 -1743 ((-349 (-484)) $ (-694))) (-15 -1743 ((-349 (-484)) $ (-694) (-694))) (-15 -1742 ($)) (-15 -1741 ($)) (-15 -1740 ($)) (-15 -3485 ($ $ $)) (-15 -1742 ($ $)) (-15 -1741 ($ $)) (-15 -1739 ((-1184))) (-15 -1739 ((-1184) (-694))) (-15 -1738 ((-1184))) (-15 -1738 ((-1184) (-694))) (-15 -1737 ((-1184))) (-15 -1737 ((-1184) (-694))) (-15 -1736 ((-1184) (-694))) (-6 -3985) (-6 -3977)))) (T -329))
-((** (*1 *1 *1 *1) (-5 *1 (-329))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-329)))) (-2443 (*1 *1 *1) (-5 *1 (-329))) (-1744 (*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-329)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-329)))) (-1743 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-329)))) (-1743 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-329)))) (-1742 (*1 *1) (-5 *1 (-329))) (-1741 (*1 *1) (-5 *1 (-329))) (-1740 (*1 *1) (-5 *1 (-329))) (-3485 (*1 *1 *1 *1) (-5 *1 (-329))) (-1742 (*1 *1 *1) (-5 *1 (-329))) (-1741 (*1 *1 *1) (-5 *1 (-329))) (-1739 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))) (-1738 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))) (-1737 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))))
-((-1745 (((-583 (-249 (-857 (-142 |#1|)))) (-249 (-349 (-857 (-142 (-484))))) |#1|) 52 T ELT) (((-583 (-249 (-857 (-142 |#1|)))) (-349 (-857 (-142 (-484)))) |#1|) 51 T ELT) (((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-249 (-349 (-857 (-142 (-484)))))) |#1|) 48 T ELT) (((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-349 (-857 (-142 (-484))))) |#1|) 42 T ELT)) (-1746 (((-583 (-583 (-142 |#1|))) (-583 (-349 (-857 (-142 (-484))))) (-583 (-1089)) |#1|) 30 T ELT) (((-583 (-142 |#1|)) (-349 (-857 (-142 (-484)))) |#1|) 18 T ELT)))
-(((-330 |#1|) (-10 -7 (-15 -1745 ((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-349 (-857 (-142 (-484))))) |#1|)) (-15 -1745 ((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-249 (-349 (-857 (-142 (-484)))))) |#1|)) (-15 -1745 ((-583 (-249 (-857 (-142 |#1|)))) (-349 (-857 (-142 (-484)))) |#1|)) (-15 -1745 ((-583 (-249 (-857 (-142 |#1|)))) (-249 (-349 (-857 (-142 (-484))))) |#1|)) (-15 -1746 ((-583 (-142 |#1|)) (-349 (-857 (-142 (-484)))) |#1|)) (-15 -1746 ((-583 (-583 (-142 |#1|))) (-583 (-349 (-857 (-142 (-484))))) (-583 (-1089)) |#1|))) (-13 (-312) (-755))) (T -330))
-((-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-349 (-857 (-142 (-484)))))) (-5 *4 (-583 (-1089))) (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-330 *5)) (-4 *5 (-13 (-312) (-755))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-142 (-484))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-349 (-857 (-142 (-484)))))) (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-142 (-484))))) (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-349 (-857 (-142 (-484))))))) (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 (-142 (-484)))))) (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))))
-((-3572 (((-583 (-249 (-857 |#1|))) (-249 (-349 (-857 (-484)))) |#1|) 47 T ELT) (((-583 (-249 (-857 |#1|))) (-349 (-857 (-484))) |#1|) 46 T ELT) (((-583 (-583 (-249 (-857 |#1|)))) (-583 (-249 (-349 (-857 (-484))))) |#1|) 43 T ELT) (((-583 (-583 (-249 (-857 |#1|)))) (-583 (-349 (-857 (-484)))) |#1|) 37 T ELT)) (-1747 (((-583 |#1|) (-349 (-857 (-484))) |#1|) 20 T ELT) (((-583 (-583 |#1|)) (-583 (-349 (-857 (-484)))) (-583 (-1089)) |#1|) 30 T ELT)))
-(((-331 |#1|) (-10 -7 (-15 -3572 ((-583 (-583 (-249 (-857 |#1|)))) (-583 (-349 (-857 (-484)))) |#1|)) (-15 -3572 ((-583 (-583 (-249 (-857 |#1|)))) (-583 (-249 (-349 (-857 (-484))))) |#1|)) (-15 -3572 ((-583 (-249 (-857 |#1|))) (-349 (-857 (-484))) |#1|)) (-15 -3572 ((-583 (-249 (-857 |#1|))) (-249 (-349 (-857 (-484)))) |#1|)) (-15 -1747 ((-583 (-583 |#1|)) (-583 (-349 (-857 (-484)))) (-583 (-1089)) |#1|)) (-15 -1747 ((-583 |#1|) (-349 (-857 (-484))) |#1|))) (-13 (-755) (-312))) (T -331))
-((-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-349 (-857 (-484))))) (-5 *4 (-583 (-1089))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-755) (-312))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-349 (-857 (-484))))) (-5 *2 (-583 (-249 (-857 *4)))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-484)))) (-5 *2 (-583 (-249 (-857 *4)))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-349 (-857 (-484)))))) (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 (-484))))) (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3945 (((-772) $) 34 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
-(((-332 |#1| |#2|) (-13 (-82 |#1| |#1|) (-449 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|))) (-961) (-759)) (T -332))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 29 T ELT)) (-3156 ((|#2| $) 31 T ELT)) (-3958 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2420 (((-694) $) 13 T ELT)) (-2821 (((-583 $) $) 23 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ |#2| |#1|) 21 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1748 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2894 ((|#2| $) 18 T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3816 (((-583 |#1|) $) 20 T ELT)) (-3676 ((|#1| $ |#2|) 54 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 32 T CONST)) (-2665 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT)))
-(((-333 |#1| |#2|) (-13 (-334 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-756)) (T -333))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-333 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#2| "failed") $) 55 T ELT)) (-3156 ((|#2| $) 56 T ELT)) (-3958 (($ $) 41 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2420 (((-694) $) 45 T ELT)) (-2821 (((-583 $) $) 46 T ELT)) (-3936 (((-85) $) 49 T ELT)) (-3937 (($ |#2| |#1|) 50 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1748 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2894 ((|#2| $) 44 T ELT)) (-3174 ((|#1| $) 43 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3816 (((-583 |#1|) $) 47 T ELT)) (-3676 ((|#1| $ |#2|) 52 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2665 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT)))
-(((-334 |#1| |#2|) (-113) (-961) (-1013)) (T -334))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))) (-3676 (*1 *2 *1 *3) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)))) (-3937 (*1 *1 *2 *3) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) (-2821 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-334 *3 *4)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-694)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))))
-(-13 (-82 |t#1| |t#1|) (-950 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3676 (|t#1| $ |t#2|)) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -3937 ($ |t#2| |t#1|)) (-15 -3936 ((-85) $)) (-15 -2665 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3816 ((-583 |t#1|) $)) (-15 -2821 ((-583 $) $)) (-15 -2420 ((-694) $)) (-15 -2894 (|t#2| $)) (-15 -3174 (|t#1| $)) (-15 -1748 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3958 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-950 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3136 (((-694) $) 40 T ELT)) (-3723 (($) 23 T CONST)) (-3938 (((-3 $ "failed") $ $) 43 T ELT)) (-3157 (((-3 |#1| "failed") $) 51 T ELT)) (-3156 ((|#1| $) 52 T ELT)) (-3466 (((-3 $ "failed") $) 20 T ELT)) (-1749 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-2299 ((|#1| $ (-484)) 37 T ELT)) (-2300 (((-694) $ (-484)) 38 T ELT)) (-2531 (($ $ $) 29 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 30 (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2291 (($ (-1 (-694) (-694)) $) 36 T ELT)) (-3939 (((-3 $ "failed") $ $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1750 (($ $ $) 45 T ELT)) (-1751 (($ $ $) 46 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1778 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-694)))) $) 39 T ELT)) (-2879 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2566 (((-85) $ $) 31 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 33 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 32 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 34 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ |#1| (-694)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT)))
-(((-335 |#1|) (-113) (-1013)) (T -335))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-1751 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-1750 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-3939 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-3938 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-2879 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-335 *3)))) (-1749 (*1 *2 *1 *1) (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-335 *3)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 (-694))))))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-335 *4)) (-4 *4 (-1013)) (-5 *2 (-694)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-335 *3)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3)) (-4 *3 (-1013)))))
-(-13 (-663) (-950 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-694))) (-15 -1751 ($ $ $)) (-15 -1750 ($ $ $)) (-15 -3939 ((-3 $ "failed") $ $)) (-15 -3938 ((-3 $ "failed") $ $)) (-15 -2879 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1749 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3136 ((-694) $)) (-15 -1778 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3942 (-694)))) $)) (-15 -2300 ((-694) $ (-484))) (-15 -2299 (|t#1| $ (-484))) (-15 -2291 ($ (-1 (-694) (-694)) $)) (-15 -2290 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|)))
-(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 |#1|) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694) $) 74 T ELT)) (-3723 (($) NIL T CONST)) (-3938 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1749 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2410 (((-85) $) 17 T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-694) $ (-484)) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2291 (($ (-1 (-694) (-694)) $) 37 T ELT)) (-3939 (((-3 $ #1#) $ $) 60 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1750 (($ $ $) 28 T ELT)) (-1751 (($ $ $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1778 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-694)))) $) 34 T ELT)) (-2879 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 7 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
-(((-336 |#1|) (-335 |#1|) (-1013)) (T -336))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-1752 (((-85) $) 25 T ELT)) (-1753 (((-85) $) 22 T ELT)) (-3613 (($ (-1072) (-1072) (-1072)) 26 T ELT)) (-3541 (((-1072) $) 16 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1757 (($ (-1072) (-1072) (-1072)) 14 T ELT)) (-1755 (((-1072) $) 17 T ELT)) (-1754 (((-85) $) 18 T ELT)) (-1756 (((-1072) $) 15 T ELT)) (-3945 (((-772) $) 12 T ELT) (($ (-1072)) 13 T ELT) (((-1072) $) 9 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 7 T ELT)))
-(((-337) (-338)) (T -337))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-1752 (((-85) $) 20 T ELT)) (-1753 (((-85) $) 21 T ELT)) (-3613 (($ (-1072) (-1072) (-1072)) 19 T ELT)) (-3541 (((-1072) $) 24 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1757 (($ (-1072) (-1072) (-1072)) 26 T ELT)) (-1755 (((-1072) $) 23 T ELT)) (-1754 (((-85) $) 22 T ELT)) (-1756 (((-1072) $) 25 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-1072)) 28 T ELT) (((-1072) $) 27 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-338) (-113)) (T -338))
-((-1757 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-338)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85)))) (-3613 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-338)))))
-(-13 (-1013) (-429 (-1072)) (-10 -8 (-15 -1757 ($ (-1072) (-1072) (-1072))) (-15 -1756 ((-1072) $)) (-15 -3541 ((-1072) $)) (-15 -1755 ((-1072) $)) (-15 -1754 ((-85) $)) (-15 -1753 ((-85) $)) (-15 -1752 ((-85) $)) (-15 -3613 ($ (-1072) (-1072) (-1072)))))
-(((-72) . T) ((-555 (-1072)) . T) ((-552 (-772)) . T) ((-552 (-1072)) . T) ((-429 (-1072)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-1758 (((-772) $) 64 T ELT)) (-3723 (($) NIL T CONST)) (-2407 (($ $ (-830)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) 38 T ELT)) (-3910 (((-694)) 18 T ELT)) (-1759 (((-772) $) 66 T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 41 T ELT)) (-3836 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3838 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT)))
-(((-339 |#1| |#2| |#3|) (-13 (-683 |#3|) (-10 -8 (-15 -3910 ((-694))) (-15 -1759 ((-772) $)) (-15 -1758 ((-772) $)) (-15 -2409 ($ (-694))))) (-694) (-694) (-146)) (T -339))
-((-3910 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))))
-((-3771 (((-694) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT)))
-(((-340 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3771 ((-694) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-319) (-312)) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -340))
-((-3771 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-319) (-312))) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-694)) (-5 *1 (-340 *4 *5 *6 *7)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1761 ((|#2| $) 38 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1762 (($ (-349 |#2|)) 93 T ELT)) (-1760 (((-583 (-2 (|:| -2401 (-694)) (|:| -3772 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3757 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-3971 (((-349 |#2|) $) 49 T ELT)) (-3529 (($ (-583 (-2 (|:| -2401 (-694)) (|:| -3772 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3945 (((-772) $) 131 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2669 (($ $ (-694)) 37 T ELT) (($ $) 35 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3838 (($ |#2| $) 41 T ELT)))
-(((-341 |#1| |#2|) (-13 (-1013) (-189) (-553 (-349 |#2|)) (-10 -8 (-15 -3838 ($ |#2| $)) (-15 -1762 ($ (-349 |#2|))) (-15 -1761 (|#2| $)) (-15 -1760 ((-583 (-2 (|:| -2401 (-694)) (|:| -3772 |#2|) (|:| |num| |#2|))) $)) (-15 -3529 ($ (-583 (-2 (|:| -2401 (-694)) (|:| -3772 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1154 |#1|)) (T -341))
-((-3838 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *2)) (-4 *2 (-1154 *3)))) (-1762 (*1 *1 *2) (-12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *4)))) (-1761 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-341 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1760 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3772 *4) (|:| |num| *4)))) (-5 *1 (-341 *3 *4)) (-4 *4 (-1154 *3)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3772 *4) (|:| |num| *4)))) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *4)))))
-((-2568 (((-85) $ $) 10 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 16 (|has| |#1| (-796 (-329))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 15 (|has| |#1| (-796 (-484))) ELT)) (-3242 (((-1072) $) 14 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-3243 (((-1033) $) 13 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-3945 (((-772) $) 12 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-1264 (((-85) $ $) 11 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-3056 (((-85) $ $) 9 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)))
-(((-342 |#1|) (-113) (-1128)) (T -342))
-NIL
-(-13 (-1128) (-10 -7 (IF (|has| |t#1| (-796 (-484))) (-6 (-796 (-484))) |%noBranch|) (IF (|has| |t#1| (-796 (-329))) (-6 (-796 (-329))) |%noBranch|)))
-(((-72) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ((-552 (-772)) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ((-13) . T) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-1013) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ((-1128) . T))
-((-1763 (($ $) 10 T ELT) (($ $ (-694)) 12 T ELT)))
-(((-343 |#1|) (-10 -7 (-15 -1763 (|#1| |#1| (-694))) (-15 -1763 (|#1| |#1|))) (-344)) (T -343))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1763 (($ $) 97 T ELT) (($ $ (-694)) 96 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-3771 (((-743 (-830)) $) 99 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1764 (((-3 (-694) "failed") $ $) 98 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT)) (-2702 (((-632 $) $) 100 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT)))
-(((-344) (-113)) (T -344))
-((-3771 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-743 (-830))))) (-1764 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-344)) (-5 *2 (-694)))) (-1763 (*1 *1 *1) (-4 *1 (-344))) (-1763 (*1 *1 *1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-694)))))
-(-13 (-312) (-118) (-10 -8 (-15 -3771 ((-743 (-830)) $)) (-15 -1764 ((-3 (-694) "failed") $ $)) (-15 -1763 ($ $)) (-15 -1763 ($ $ (-694)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
-((-3254 (($ (-484) (-484)) 11 T ELT) (($ (-484) (-484) (-830)) NIL T ELT)) (-2615 (((-830)) 19 T ELT) (((-830) (-830)) NIL T ELT)))
-(((-345 |#1|) (-10 -7 (-15 -2615 ((-830) (-830))) (-15 -2615 ((-830))) (-15 -3254 (|#1| (-484) (-484) (-830))) (-15 -3254 (|#1| (-484) (-484)))) (-346)) (T -345))
-((-2615 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-345 *3)) (-4 *3 (-346)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-345 *3)) (-4 *3 (-346)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 (((-484) $) 108 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3770 (($ $) 106 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-3037 (($ $) 116 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3622 (((-484) $) 133 T ELT)) (-3723 (($) 23 T CONST)) (-3127 (($ $) 105 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 121 T ELT) (((-3 (-349 (-484)) #1#) $) 118 T ELT)) (-3156 (((-484) $) 122 T ELT) (((-349 (-484)) $) 119 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-1767 (((-830)) 149 T ELT) (((-830) (-830)) 146 (|has| $ (-6 -3985)) ELT)) (-3186 (((-85) $) 131 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 112 T ELT)) (-3771 (((-484) $) 155 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 115 T ELT)) (-3132 (($ $) 111 T ELT)) (-3187 (((-85) $) 132 T ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-2531 (($ $ $) 125 T ELT) (($) 143 (-12 (-2560 (|has| $ (-6 -3985))) (-2560 (|has| $ (-6 -3977)))) ELT)) (-2857 (($ $ $) 126 T ELT) (($) 142 (-12 (-2560 (|has| $ (-6 -3985))) (-2560 (|has| $ (-6 -3977)))) ELT)) (-1769 (((-484) $) 152 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-1766 (((-830) (-484)) 145 (|has| $ (-6 -3985)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3128 (($ $) 107 T ELT)) (-3130 (($ $) 109 T ELT)) (-3254 (($ (-484) (-484)) 157 T ELT) (($ (-484) (-484) (-830)) 156 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-2401 (((-484) $) 153 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-2615 (((-830)) 150 T ELT) (((-830) (-830)) 147 (|has| $ (-6 -3985)) ELT)) (-1765 (((-830) (-484)) 144 (|has| $ (-6 -3985)) ELT)) (-3971 (((-329) $) 124 T ELT) (((-179) $) 123 T ELT) (((-800 (-329)) $) 113 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ (-484)) 120 T ELT) (($ (-349 (-484))) 117 T ELT)) (-3126 (((-694)) 40 T CONST)) (-3131 (($ $) 110 T ELT)) (-1768 (((-830)) 151 T ELT) (((-830) (-830)) 148 (|has| $ (-6 -3985)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2694 (((-830)) 154 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 (($ $) 134 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 127 T ELT)) (-2567 (((-85) $ $) 129 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 128 T ELT)) (-2685 (((-85) $ $) 130 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-349 (-484))) 114 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT)))
-(((-346) (-113)) (T -346))
-((-3254 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-346)))) (-3254 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-830)) (-4 *1 (-346)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484)))) (-2694 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484)))) (-1768 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) (-2615 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) (-1767 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346)))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3985)) (-4 *1 (-346)) (-5 *2 (-830)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3985)) (-4 *1 (-346)) (-5 *2 (-830)))) (-2531 (*1 *1) (-12 (-4 *1 (-346)) (-2560 (|has| *1 (-6 -3985))) (-2560 (|has| *1 (-6 -3977))))) (-2857 (*1 *1) (-12 (-4 *1 (-346)) (-2560 (|has| *1 (-6 -3985))) (-2560 (|has| *1 (-6 -3977))))))
-(-13 (-973) (-10 -8 (-6 -3769) (-15 -3254 ($ (-484) (-484))) (-15 -3254 ($ (-484) (-484) (-830))) (-15 -3771 ((-484) $)) (-15 -2694 ((-830))) (-15 -2401 ((-484) $)) (-15 -1769 ((-484) $)) (-15 -1768 ((-830))) (-15 -2615 ((-830))) (-15 -1767 ((-830))) (IF (|has| $ (-6 -3985)) (PROGN (-15 -1768 ((-830) (-830))) (-15 -2615 ((-830) (-830))) (-15 -1767 ((-830) (-830))) (-15 -1766 ((-830) (-484))) (-15 -1765 ((-830) (-484)))) |%noBranch|) (IF (|has| $ (-6 -3977)) |%noBranch| (IF (|has| $ (-6 -3985)) |%noBranch| (PROGN (-15 -2531 ($)) (-15 -2857 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-329)) . T) ((-553 (-800 (-329))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-329)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-973) . T) ((-950 (-349 (-484))) . T) ((-950 (-484)) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 59 T ELT)) (-1770 (($ $) 77 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 189 T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) 48 T ELT)) (-1771 ((|#1| $) 16 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-1133)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-1133)) ELT)) (-1773 (($ |#1| (-484)) 42 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 73 T ELT)) (-3466 (((-3 $ #1#) $) 163 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 84 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 80 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 82 (|has| |#1| (-483)) ELT)) (-1774 (($ |#1| (-484)) 44 T ELT)) (-3722 (((-85) $) 209 (|has| |#1| (-1133)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 61 T ELT)) (-1833 (((-694) $) 51 T ELT)) (-1775 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-484)) 174 T ELT)) (-2299 ((|#1| $ (-484)) 173 T ELT)) (-1776 (((-484) $ (-484)) 172 T ELT)) (-1779 (($ |#1| (-484)) 41 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1830 (($ |#1| (-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484))))) 78 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1777 (($ |#1| (-484)) 43 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) 190 (|has| |#1| (-391)) ELT)) (-1772 (($ |#1| (-484) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1778 (((-583 (-2 (|:| -3731 |#1|) (|:| -2401 (-484)))) $) 72 T ELT)) (-1951 (((-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $) 12 T ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-1133)) ELT)) (-3465 (((-3 $ #1#) $ $) 175 T ELT)) (-2401 (((-484) $) 166 T ELT)) (-3962 ((|#1| $) 74 T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 105 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) $) NIL (|has| |#1| (-455 (-1089) $)) ELT) (($ $ (-583 (-1089)) (-583 $)) 106 (|has| |#1| (-455 (-1089) $)) ELT) (($ $ (-583 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3799 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3971 (((-473) $) 39 (|has| |#1| (-553 (-473))) ELT) (((-329) $) 112 (|has| |#1| (-933)) ELT) (((-179) $) 118 (|has| |#1| (-933)) ELT)) (-3945 (((-772) $) 145 T ELT) (($ (-484)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT)) (-3126 (((-694)) 66 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 53 T CONST)) (-2666 (($) 52 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 158 T ELT)) (-3836 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 179 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 124 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-347 |#1|) (-13 (-495) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-354 |#1|) (-10 -8 (-15 -3962 (|#1| $)) (-15 -2401 ((-484) $)) (-15 -1830 ($ |#1| (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))))) (-15 -1951 ((-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $)) (-15 -1779 ($ |#1| (-484))) (-15 -1778 ((-583 (-2 (|:| -3731 |#1|) (|:| -2401 (-484)))) $)) (-15 -1777 ($ |#1| (-484))) (-15 -1776 ((-484) $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -1775 ((-3 #1# #2# #3# #4#) $ (-484))) (-15 -1833 ((-694) $)) (-15 -1774 ($ |#1| (-484))) (-15 -1773 ($ |#1| (-484))) (-15 -1772 ($ |#1| (-484) (-3 #1# #2# #3# #4#))) (-15 -1771 (|#1| $)) (-15 -1770 ($ $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-391)) (-6 (-391)) |%noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-455 (-1089) $)) (-6 (-455 (-1089) $)) |%noBranch|))) (-495)) (T -347))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-347 *3)))) (-3962 (*1 *2 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-1830 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-484))))) (-4 *2 (-495)) (-5 *1 (-347 *2)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-484))))) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3731 *3) (|:| -2401 (-484))))) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-1777 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1776 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-347 *4)) (-4 *4 (-495)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1773 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1772 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1771 (*1 *2 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1770 (*1 *1 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495)))))
-((-3957 (((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)) 20 T ELT)))
-(((-348 |#1| |#2|) (-10 -7 (-15 -3957 ((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)))) (-495) (-495)) (T -348))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 13 T ELT)) (-3129 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1089) #1#) $) NIL (|has| |#1| (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) 54 (|has| |#1| (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT)) (-3156 ((|#1| $) 15 T ELT) (((-1089) $) NIL (|has| |#1| (-950 (-1089))) ELT) (((-349 (-484)) $) 51 (|has| |#1| (-950 (-484))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 32 T ELT)) (-2994 (($) NIL (|has| |#1| (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| |#1| (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 38 T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#1| $) 55 T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3187 (((-85) $) 22 (|has| |#1| (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 82 T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3130 ((|#1| $) 26 (|has| |#1| (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 133 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 128 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#1| $) 57 T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| |#1| (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT) (((-329) $) NIL (|has| |#1| (-933)) ELT) (((-179) $) NIL (|has| |#1| (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1089)) NIL (|has| |#1| (-950 (-1089))) ELT)) (-2702 (((-632 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 93 T CONST)) (-3131 ((|#1| $) 24 (|has| |#1| (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| |#1| (-740)) ELT)) (-2660 (($) 28 T CONST)) (-2666 (($) 8 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 48 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3948 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3836 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3838 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 122 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT)))
-(((-349 |#1|) (-13 (-904 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3981)) (IF (|has| |#1| (-391)) (IF (|has| |#1| (-6 -3992)) (-6 -3981) |%noBranch|) |%noBranch|) |%noBranch|))) (-495)) (T -349))
-NIL
-((-3957 (((-349 |#2|) (-1 |#2| |#1|) (-349 |#1|)) 13 T ELT)))
-(((-350 |#1| |#2|) (-10 -7 (-15 -3957 ((-349 |#2|) (-1 |#2| |#1|) (-349 |#1|)))) (-495) (-495)) (T -350))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-349 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-349 *6)) (-5 *1 (-350 *5 *6)))))
-((-1781 (((-630 |#2|) (-1178 $)) NIL T ELT) (((-630 |#2|)) 18 T ELT)) (-1791 (($ (-1178 |#2|) (-1178 $)) NIL T ELT) (($ (-1178 |#2|)) 24 T ELT)) (-1780 (((-630 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) $) 40 T ELT)) (-2014 ((|#3| $) 69 T ELT)) (-3756 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 22 T ELT) (((-630 |#2|) (-1178 $)) 38 T ELT)) (-3971 (((-1178 |#2|) $) 11 T ELT) (($ (-1178 |#2|)) 13 T ELT)) (-2449 ((|#3| $) 55 T ELT)))
-(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -1780 ((-630 |#2|) |#1|)) (-15 -3756 (|#2|)) (-15 -1781 ((-630 |#2|))) (-15 -3971 (|#1| (-1178 |#2|))) (-15 -3971 ((-1178 |#2|) |#1|)) (-15 -1791 (|#1| (-1178 |#2|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1|)) (-15 -2014 (|#3| |#1|)) (-15 -2449 (|#3| |#1|)) (-15 -1781 ((-630 |#2|) (-1178 |#1|))) (-15 -3756 (|#2| (-1178 |#1|))) (-15 -1791 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1780 ((-630 |#2|) |#1| (-1178 |#1|)))) (-352 |#2| |#3|) (-146) (-1154 |#2|)) (T -351))
-((-1781 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)) (-5 *1 (-351 *3 *4 *5)) (-4 *3 (-352 *4 *5)))) (-3756 (*1 *2) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-146)) (-5 *1 (-351 *3 *2 *4)) (-4 *3 (-352 *2 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1781 (((-630 |#1|) (-1178 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3329 ((|#1| $) 67 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1791 (($ (-1178 |#1|) (-1178 $)) 63 T ELT) (($ (-1178 |#1|)) 80 T ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-830)) 69 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 66 T ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3756 ((|#1| (-1178 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 65 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 64 T ELT) (((-1178 |#1|) $) 82 T ELT) (((-630 |#1|) (-1178 $)) 81 T ELT)) (-3971 (((-1178 |#1|) $) 79 T ELT) (($ (-1178 |#1|)) 78 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2702 (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 83 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-352 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -352))
-((-2012 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *1)) (-4 *1 (-352 *3 *4)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *3)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-352 *3 *4)) (-4 *4 (-1154 *3)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *3)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-352 *3 *4)) (-4 *4 (-1154 *3)))) (-1781 (*1 *2) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-630 *3)))) (-3756 (*1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-630 *3)))))
-(-13 (-321 |t#1| |t#2|) (-10 -8 (-15 -2012 ((-1178 $))) (-15 -3224 ((-1178 |t#1|) $)) (-15 -3224 ((-630 |t#1|) (-1178 $))) (-15 -1791 ($ (-1178 |t#1|))) (-15 -3971 ((-1178 |t#1|) $)) (-15 -3971 ($ (-1178 |t#1|))) (-15 -1781 ((-630 |t#1|))) (-15 -3756 (|t#1|)) (-15 -1780 ((-630 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-321 |#1| |#2|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) 27 T ELT) (((-3 (-484) #1#) $) 19 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) 24 T ELT) (((-484) $) 14 T ELT)) (-3945 (($ |#2|) NIL T ELT) (($ (-349 (-484))) 22 T ELT) (($ (-484)) 11 T ELT)))
-(((-353 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| (-484))) (-15 -3157 ((-3 (-484) #1="failed") |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3945 (|#1| |#2|))) (-354 |#2|) (-1128)) (T -353))
-NIL
-((-3157 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-349 (-484)) #1#) $) 16 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) 13 (|has| |#1| (-950 (-484))) ELT)) (-3156 ((|#1| $) 8 T ELT) (((-349 (-484)) $) 17 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 14 (|has| |#1| (-950 (-484))) ELT)) (-3945 (($ |#1|) 6 T ELT) (($ (-349 (-484))) 15 (|has| |#1| (-950 (-349 (-484)))) ELT) (($ (-484)) 12 (|has| |#1| (-950 (-484))) ELT)))
-(((-354 |#1|) (-113) (-1128)) (T -354))
-NIL
-(-13 (-950 |t#1|) (-10 -7 (IF (|has| |t#1| (-950 (-484))) (-6 (-950 (-484))) |%noBranch|) (IF (|has| |t#1| (-950 (-349 (-484)))) (-6 (-950 (-349 (-484)))) |%noBranch|)))
-(((-555 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-555 (-484)) |has| |#1| (-950 (-484))) ((-555 |#1|) . T) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-1782 ((|#4| (-694) (-1178 |#4|)) 55 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2998 (((-1178 |#4|) $) 15 T ELT)) (-3132 ((|#2| $) 53 T ELT)) (-1783 (($ $) 156 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 103 T ELT)) (-1968 (($ (-1178 |#4|)) 102 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2997 ((|#1| $) 16 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 147 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 |#4|) $) 140 T ELT)) (-2666 (($) 11 T CONST)) (-3056 (((-85) $ $) 39 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 133 T ELT)) (* (($ $ $) 130 T ELT)))
-(((-355 |#1| |#2| |#3| |#4|) (-13 (-412) (-10 -8 (-15 -1968 ($ (-1178 |#4|))) (-15 -2012 ((-1178 |#4|) $)) (-15 -3132 (|#2| $)) (-15 -2998 ((-1178 |#4|) $)) (-15 -2997 (|#1| $)) (-15 -1783 ($ $)) (-15 -1782 (|#4| (-694) (-1178 |#4|))))) (-258) (-904 |#1|) (-1154 |#2|) (-13 (-352 |#2| |#3|) (-950 |#2|))) (T -355))
-((-1968 (*1 *1 *2) (-12 (-5 *2 (-1178 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4))) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-258)) (-5 *1 (-355 *3 *4 *5 *6)))) (-2012 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4))))) (-3132 (*1 *2 *1) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-904 *3)) (-5 *1 (-355 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-352 *2 *4) (-950 *2))))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4))))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-904 *2)) (-4 *4 (-1154 *3)) (-4 *2 (-258)) (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-13 (-352 *3 *4) (-950 *3))))) (-1783 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-904 *2)) (-4 *4 (-1154 *3)) (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-13 (-352 *3 *4) (-950 *3))))) (-1782 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1178 *2)) (-4 *5 (-258)) (-4 *6 (-904 *5)) (-4 *2 (-13 (-352 *6 *7) (-950 *6))) (-5 *1 (-355 *5 *6 *7 *2)) (-4 *7 (-1154 *6)))))
-((-3957 (((-355 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-355 |#1| |#2| |#3| |#4|)) 35 T ELT)))
-(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 ((-355 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-355 |#1| |#2| |#3| |#4|)))) (-258) (-904 |#1|) (-1154 |#2|) (-13 (-352 |#2| |#3|) (-950 |#2|)) (-258) (-904 |#5|) (-1154 |#6|) (-13 (-352 |#6| |#7|) (-950 |#6|))) (T -356))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-355 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-904 *5)) (-4 *7 (-1154 *6)) (-4 *8 (-13 (-352 *6 *7) (-950 *6))) (-4 *9 (-258)) (-4 *10 (-904 *9)) (-4 *11 (-1154 *10)) (-5 *2 (-355 *9 *10 *11 *12)) (-5 *1 (-356 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-352 *10 *11) (-950 *10))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3132 ((|#2| $) 69 T ELT)) (-1784 (($ (-1178 |#4|)) 27 T ELT) (($ (-355 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-950 |#2|)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 37 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 |#4|) $) 28 T ELT)) (-2666 (($) 26 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ $ $) 80 T ELT)))
-(((-357 |#1| |#2| |#3| |#4| |#5|) (-13 (-663) (-10 -8 (-15 -2012 ((-1178 |#4|) $)) (-15 -3132 (|#2| $)) (-15 -1784 ($ (-1178 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1784 ($ (-355 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-904 |#1|) (-1154 |#2|) (-352 |#2| |#3|) (-1178 |#4|)) (T -357))
-((-2012 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-357 *3 *4 *5 *6 *7)) (-4 *6 (-352 *4 *5)) (-14 *7 *2))) (-3132 (*1 *2 *1) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-904 *3)) (-5 *1 (-357 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-352 *2 *4)) (-14 *6 (-1178 *5)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-1178 *6)) (-4 *6 (-352 *4 *5)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-258)) (-5 *1 (-357 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-355 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *6 (-352 *4 *5)) (-14 *7 (-1178 *6)) (-5 *1 (-357 *3 *4 *5 *6 *7)))))
-((-3957 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT)))
-(((-358 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|))) (-360 |#2|) (-146) (-360 |#4|) (-146)) (T -358))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-360 *6)) (-5 *1 (-358 *4 *5 *2 *6)) (-4 *4 (-360 *5)))))
-((-1771 (((-3 $ #1="failed")) 99 T ELT)) (-3223 (((-1178 (-630 |#2|)) (-1178 $)) NIL T ELT) (((-1178 (-630 |#2|))) 104 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 97 T ELT)) (-1702 (((-3 $ #1#)) 96 T ELT)) (-1787 (((-630 |#2|) (-1178 $)) NIL T ELT) (((-630 |#2|)) 115 T ELT)) (-1785 (((-630 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) $) 123 T ELT)) (-1899 (((-1084 (-857 |#2|))) 64 T ELT)) (-1789 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1791 (($ (-1178 |#2|) (-1178 $)) NIL T ELT) (($ (-1178 |#2|)) 125 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 95 T ELT)) (-1703 (((-3 $ #1#)) 87 T ELT)) (-1788 (((-630 |#2|) (-1178 $)) NIL T ELT) (((-630 |#2|)) 113 T ELT)) (-1786 (((-630 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) $) 121 T ELT)) (-1903 (((-1084 (-857 |#2|))) 63 T ELT)) (-1790 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 124 T ELT) (((-630 |#2|) (-1178 $)) 133 T ELT)) (-3971 (((-1178 |#2|) $) 109 T ELT) (($ (-1178 |#2|)) 111 T ELT)) (-1891 (((-583 (-857 |#2|)) (-1178 $)) NIL T ELT) (((-583 (-857 |#2|))) 107 T ELT)) (-2545 (($ (-630 |#2|) $) 103 T ELT)))
-(((-359 |#1| |#2|) (-10 -7 (-15 -2545 (|#1| (-630 |#2|) |#1|)) (-15 -1899 ((-1084 (-857 |#2|)))) (-15 -1903 ((-1084 (-857 |#2|)))) (-15 -1785 ((-630 |#2|) |#1|)) (-15 -1786 ((-630 |#2|) |#1|)) (-15 -1787 ((-630 |#2|))) (-15 -1788 ((-630 |#2|))) (-15 -1789 (|#2|)) (-15 -1790 (|#2|)) (-15 -3971 (|#1| (-1178 |#2|))) (-15 -3971 ((-1178 |#2|) |#1|)) (-15 -1791 (|#1| (-1178 |#2|))) (-15 -1891 ((-583 (-857 |#2|)))) (-15 -3223 ((-1178 (-630 |#2|)))) (-15 -3224 ((-630 |#2|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1|)) (-15 -1771 ((-3 |#1| #1="failed"))) (-15 -1702 ((-3 |#1| #1#))) (-15 -1703 ((-3 |#1| #1#))) (-15 -1905 ((-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#))) (-15 -1906 ((-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#))) (-15 -1787 ((-630 |#2|) (-1178 |#1|))) (-15 -1788 ((-630 |#2|) (-1178 |#1|))) (-15 -1789 (|#2| (-1178 |#1|))) (-15 -1790 (|#2| (-1178 |#1|))) (-15 -1791 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1785 ((-630 |#2|) |#1| (-1178 |#1|))) (-15 -1786 ((-630 |#2|) |#1| (-1178 |#1|))) (-15 -3223 ((-1178 (-630 |#2|)) (-1178 |#1|))) (-15 -1891 ((-583 (-857 |#2|)) (-1178 |#1|)))) (-360 |#2|) (-146)) (T -359))
-((-3223 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1891 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1790 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2)))) (-1789 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2)))) (-1788 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1787 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1903 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-857 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1899 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-857 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1771 (((-3 $ #1="failed")) 48 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3223 (((-1178 (-630 |#1|)) (-1178 $)) 89 T ELT) (((-1178 (-630 |#1|))) 115 T ELT)) (-1728 (((-1178 $)) 92 T ELT)) (-3723 (($) 23 T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 51 (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ #1#)) 49 (|has| |#1| (-495)) ELT)) (-1787 (((-630 |#1|) (-1178 $)) 76 T ELT) (((-630 |#1|)) 107 T ELT)) (-1726 ((|#1| $) 85 T ELT)) (-1785 (((-630 |#1|) $ (-1178 $)) 87 T ELT) (((-630 |#1|) $) 105 T ELT)) (-2404 (((-3 $ #1#) $) 56 (|has| |#1| (-495)) ELT)) (-1899 (((-1084 (-857 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-830)) 37 T ELT)) (-1724 ((|#1| $) 83 T ELT)) (-1704 (((-1084 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1722 (((-1084 |#1|) $) 74 T ELT)) (-1716 (((-85)) 68 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) 80 T ELT) (($ (-1178 |#1|)) 113 T ELT)) (-3466 (((-3 $ #1#) $) 58 (|has| |#1| (-495)) ELT)) (-3108 (((-830)) 91 T ELT)) (-1713 (((-85)) 65 T ELT)) (-2433 (($ $ (-830)) 44 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-1709 (((-85)) 61 T ELT)) (-1707 (((-85)) 59 T ELT)) (-1711 (((-85)) 63 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 52 (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ #1#)) 50 (|has| |#1| (-495)) ELT)) (-1788 (((-630 |#1|) (-1178 $)) 77 T ELT) (((-630 |#1|)) 108 T ELT)) (-1727 ((|#1| $) 86 T ELT)) (-1786 (((-630 |#1|) $ (-1178 $)) 88 T ELT) (((-630 |#1|) $) 106 T ELT)) (-2405 (((-3 $ #1#) $) 57 (|has| |#1| (-495)) ELT)) (-1903 (((-1084 (-857 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-1725 ((|#1| $) 84 T ELT)) (-1705 (((-1084 |#1|) $) 54 (|has| |#1| (-495)) ELT)) (-1790 ((|#1| (-1178 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1723 (((-1084 |#1|) $) 75 T ELT)) (-1717 (((-85)) 69 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1708 (((-85)) 60 T ELT)) (-1710 (((-85)) 62 T ELT)) (-1712 (((-85)) 64 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1715 (((-85)) 67 T ELT)) (-3799 ((|#1| $ (-484)) 119 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 82 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 81 T ELT) (((-1178 |#1|) $) 117 T ELT) (((-630 |#1|) (-1178 $)) 116 T ELT)) (-3971 (((-1178 |#1|) $) 112 T ELT) (($ (-1178 |#1|)) 111 T ELT)) (-1891 (((-583 (-857 |#1|)) (-1178 $)) 90 T ELT) (((-583 (-857 |#1|))) 114 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-1721 (((-85)) 73 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 118 T ELT)) (-1706 (((-583 (-1178 |#1|))) 55 (|has| |#1| (-495)) ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-1719 (((-85)) 71 T ELT)) (-2545 (($ (-630 |#1|) $) 102 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-1720 (((-85)) 72 T ELT)) (-1718 (((-85)) 70 T ELT)) (-1714 (((-85)) 66 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
-(((-360 |#1|) (-113) (-146)) (T -360))
-((-2012 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-360 *3)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-360 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-3223 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 (-630 *3))))) (-1891 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3))))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-360 *3)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-360 *3)))) (-1790 (*1 *2) (-12 (-4 *1 (-360 *2)) (-4 *2 (-146)))) (-1789 (*1 *2) (-12 (-4 *1 (-360 *2)) (-4 *2 (-146)))) (-1788 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1787 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1903 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1084 (-857 *3))))) (-1899 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1084 (-857 *3))))) (-2545 (*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-360 *3)) (-4 *3 (-146)))))
-(-13 (-316 |t#1|) (-241 (-484) |t#1|) (-10 -8 (-15 -2012 ((-1178 $))) (-15 -3224 ((-1178 |t#1|) $)) (-15 -3224 ((-630 |t#1|) (-1178 $))) (-15 -3223 ((-1178 (-630 |t#1|)))) (-15 -1891 ((-583 (-857 |t#1|)))) (-15 -1791 ($ (-1178 |t#1|))) (-15 -3971 ((-1178 |t#1|) $)) (-15 -3971 ($ (-1178 |t#1|))) (-15 -1790 (|t#1|)) (-15 -1789 (|t#1|)) (-15 -1788 ((-630 |t#1|))) (-15 -1787 ((-630 |t#1|))) (-15 -1786 ((-630 |t#1|) $)) (-15 -1785 ((-630 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1903 ((-1084 (-857 |t#1|)))) (-15 -1899 ((-1084 (-857 |t#1|))))) |%noBranch|) (-15 -2545 ($ (-630 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-241 (-484) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-3134 (((-347 |#1|) (-347 |#1|) (-1 (-347 |#1|) |#1|)) 28 T ELT)) (-1792 (((-347 |#1|) (-347 |#1|) (-347 |#1|)) 17 T ELT)))
-(((-361 |#1|) (-10 -7 (-15 -3134 ((-347 |#1|) (-347 |#1|) (-1 (-347 |#1|) |#1|))) (-15 -1792 ((-347 |#1|) (-347 |#1|) (-347 |#1|)))) (-495)) (T -361))
-((-1792 (*1 *2 *2 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-495)) (-5 *1 (-361 *3)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-347 *4) *4)) (-4 *4 (-495)) (-5 *2 (-347 *4)) (-5 *1 (-361 *4)))))
-((-3081 (((-583 (-1089)) $) 81 T ELT)) (-3083 (((-349 (-1084 $)) $ (-550 $)) 313 T ELT)) (-1603 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 277 T ELT)) (-3157 (((-3 (-550 $) #1="failed") $) NIL T ELT) (((-3 (-1089) #1#) $) 84 T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-349 (-857 |#2|)) #1#) $) 363 T ELT) (((-3 (-857 |#2|) #1#) $) 275 T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3156 (((-550 $) $) NIL T ELT) (((-1089) $) 28 T ELT) (((-484) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-349 (-857 |#2|)) $) 345 T ELT) (((-857 |#2|) $) 272 T ELT) (((-349 (-484)) $) NIL T ELT)) (-3594 (((-86) (-86)) 47 T ELT)) (-2996 (($ $) 99 T ELT)) (-1601 (((-3 (-550 $) #1#) $) 268 T ELT)) (-1600 (((-583 (-550 $)) $) 269 T ELT)) (-2823 (((-3 (-583 $) #1#) $) 287 T ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #1#) $) 294 T ELT)) (-2822 (((-3 (-583 $) #1#) $) 285 T ELT)) (-1793 (((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) #1#) $) 304 T ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-1089)) 257 T ELT)) (-1796 (((-85) $) 17 T ELT)) (-1795 ((|#2| $) 19 T ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 276 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) 109 T ELT) (($ $ (-1089) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1089)) 62 T ELT) (($ $ (-583 (-1089))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1089)) 65 T ELT) (($ $ (-583 (-86)) (-583 $) (-1089)) 72 T ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $))) 120 T ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 282 T ELT) (($ $ (-1089) (-694) (-1 $ (-583 $))) 105 T ELT) (($ $ (-1089) (-694) (-1 $ $)) 104 T ELT)) (-3799 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) 119 T ELT)) (-3757 (($ $ (-1089)) 278 T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-2995 (($ $) 324 T ELT)) (-3971 (((-800 (-484)) $) 297 T ELT) (((-800 (-329)) $) 301 T ELT) (($ (-347 $)) 359 T ELT) (((-473) $) NIL T ELT)) (-3945 (((-772) $) 279 T ELT) (($ (-550 $)) 93 T ELT) (($ (-1089)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1038 |#2| (-550 $))) NIL T ELT) (($ (-349 |#2|)) 329 T ELT) (($ (-857 (-349 |#2|))) 368 T ELT) (($ (-349 (-857 (-349 |#2|)))) 341 T ELT) (($ (-349 (-857 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-857 |#2|)) 216 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) 373 T ELT)) (-3126 (((-694)) 88 T CONST)) (-2254 (((-85) (-86)) 42 T ELT)) (-1794 (($ (-1089) $) 31 T ELT) (($ (-1089) $ $) 32 T ELT) (($ (-1089) $ $ $) 33 T ELT) (($ (-1089) $ $ $ $) 34 T ELT) (($ (-1089) (-583 $)) 39 T ELT)) (* (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT)))
-(((-362 |#1| |#2|) (-10 -7 (-15 * (|#1| (-830) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3157 ((-3 (-349 (-484)) #1="failed") |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3945 (|#1| (-484))) (-15 -3126 ((-694)) -3951) (-15 * (|#1| |#2| |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3945 (|#1| (-857 |#2|))) (-15 -3157 ((-3 (-857 |#2|) #1#) |#1|)) (-15 -3156 ((-857 |#2|) |#1|)) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 * (|#1| |#1| |#2|)) (-15 -3945 (|#1| |#1|)) (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 -3945 (|#1| (-349 (-857 |#2|)))) (-15 -3157 ((-3 (-349 (-857 |#2|)) #1#) |#1|)) (-15 -3156 ((-349 (-857 |#2|)) |#1|)) (-15 -3083 ((-349 (-1084 |#1|)) |#1| (-550 |#1|))) (-15 -3945 (|#1| (-349 (-857 (-349 |#2|))))) (-15 -3945 (|#1| (-857 (-349 |#2|)))) (-15 -3945 (|#1| (-349 |#2|))) (-15 -2995 (|#1| |#1|)) (-15 -3971 (|#1| (-347 |#1|))) (-15 -3767 (|#1| |#1| (-1089) (-694) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-1089) (-694) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-694)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-694)) (-583 (-1 |#1| |#1|)))) (-15 -2825 ((-3 (-2 (|:| |val| |#1|) (|:| -2401 (-484))) #1#) |#1|)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1| (-1089))) (-15 -2824 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1| (-86))) (-15 -2996 (|#1| |#1|)) (-15 -3945 (|#1| (-1038 |#2| (-550 |#1|)))) (-15 -1793 ((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 |#1|))) #1#) |#1|)) (-15 -2822 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1|)) (-15 -2823 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 |#1|) (-1089))) (-15 -3767 (|#1| |#1| (-86) |#1| (-1089))) (-15 -3767 (|#1| |#1|)) (-15 -3767 (|#1| |#1| (-583 (-1089)))) (-15 -3767 (|#1| |#1| (-1089))) (-15 -1794 (|#1| (-1089) (-583 |#1|))) (-15 -1794 (|#1| (-1089) |#1| |#1| |#1| |#1|)) (-15 -1794 (|#1| (-1089) |#1| |#1| |#1|)) (-15 -1794 (|#1| (-1089) |#1| |#1|)) (-15 -1794 (|#1| (-1089) |#1|)) (-15 -3081 ((-583 (-1089)) |#1|)) (-15 -1795 (|#2| |#1|)) (-15 -1796 ((-85) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -3945 (|#1| (-1089))) (-15 -3157 ((-3 (-1089) #1#) |#1|)) (-15 -3156 ((-1089) |#1|)) (-15 -3767 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3767 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-1089) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-1 |#1| |#1|)))) (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -1600 ((-583 (-550 |#1|)) |#1|)) (-15 -1601 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -1603 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1603 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -1603 (|#1| |#1| (-249 |#1|))) (-15 -3799 (|#1| (-86) (-583 |#1|))) (-15 -3799 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3767 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3945 (|#1| (-550 |#1|))) (-15 -3157 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3156 ((-550 |#1|) |#1|)) (-15 -3945 ((-772) |#1|))) (-363 |#2|) (-1013)) (T -362))
-((-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-362 *4 *5)) (-4 *4 (-363 *5)))) (-3126 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3081 (((-583 (-1089)) $) 222 T ELT)) (-3083 (((-349 (-1084 $)) $ (-550 $)) 190 (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 162 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 163 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 165 (|has| |#1| (-495)) ELT)) (-1599 (((-583 (-550 $)) $) 42 T ELT)) (-1311 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1603 (($ $ (-249 $)) 54 T ELT) (($ $ (-583 (-249 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3774 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3970 (((-347 $) $) 183 (|has| |#1| (-495)) ELT)) (-1607 (((-85) $ $) 173 (|has| |#1| (-495)) ELT)) (-3723 (($) 117 (OR (|has| |#1| (-1025)) (|has| |#1| (-25))) CONST)) (-3157 (((-3 (-550 $) #1="failed") $) 67 T ELT) (((-3 (-1089) #1#) $) 235 T ELT) (((-3 (-484) #1#) $) 229 (|has| |#1| (-950 (-484))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-349 (-857 |#1|)) #1#) $) 188 (|has| |#1| (-495)) ELT) (((-3 (-857 |#1|) #1#) $) 137 (|has| |#1| (-961)) ELT) (((-3 (-349 (-484)) #1#) $) 111 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3156 (((-550 $) $) 68 T ELT) (((-1089) $) 236 T ELT) (((-484) $) 228 (|has| |#1| (-950 (-484))) ELT) ((|#1| $) 227 T ELT) (((-349 (-857 |#1|)) $) 189 (|has| |#1| (-495)) ELT) (((-857 |#1|) $) 138 (|has| |#1| (-961)) ELT) (((-349 (-484)) $) 112 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2564 (($ $ $) 177 (|has| |#1| (-495)) ELT)) (-2279 (((-630 (-484)) (-630 $)) 155 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 154 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 153 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 152 (|has| |#1| (-961)) ELT)) (-3466 (((-3 $ "failed") $) 119 (|has| |#1| (-1025)) ELT)) (-2563 (($ $ $) 176 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 171 (|has| |#1| (-495)) ELT)) (-3722 (((-85) $) 184 (|has| |#1| (-495)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 231 (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 230 (|has| |#1| (-796 (-329))) ELT)) (-2573 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1213 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1598 (((-583 (-86)) $) 41 T ELT)) (-3594 (((-86) (-86)) 40 T ELT)) (-2410 (((-85) $) 118 (|has| |#1| (-1025)) ELT)) (-2673 (((-85) $) 20 (|has| $ (-950 (-484))) ELT)) (-2996 (($ $) 205 (|has| |#1| (-961)) ELT)) (-2998 (((-1038 |#1| (-550 $)) $) 206 (|has| |#1| (-961)) ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 180 (|has| |#1| (-495)) ELT)) (-1596 (((-1084 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1601 (((-3 (-550 $) "failed") $) 44 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 157 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 156 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 151 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1178 $)) 150 (|has| |#1| (-961)) ELT)) (-1890 (($ (-583 $)) 169 (|has| |#1| (-495)) ELT) (($ $ $) 168 (|has| |#1| (-495)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1600 (((-583 (-550 $)) $) 43 T ELT)) (-2235 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2823 (((-3 (-583 $) "failed") $) 211 (|has| |#1| (-1025)) ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) "failed") $) 202 (|has| |#1| (-961)) ELT)) (-2822 (((-3 (-583 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1793 (((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $) 210 (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-86)) 204 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-1089)) 203 (|has| |#1| (-961)) ELT)) (-2633 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1089)) 37 T ELT)) (-2484 (($ $) 121 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT)) (-2603 (((-694) $) 45 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 224 T ELT)) (-1795 ((|#1| $) 223 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 170 (|has| |#1| (-495)) ELT)) (-3144 (($ (-583 $)) 167 (|has| |#1| (-495)) ELT) (($ $ $) 166 (|has| |#1| (-495)) ELT)) (-1597 (((-85) $ $) 33 T ELT) (((-85) $ (-1089)) 32 T ELT)) (-3731 (((-347 $) $) 181 (|has| |#1| (-495)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 178 (|has| |#1| (-495)) ELT)) (-3465 (((-3 $ "failed") $ $) 161 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 172 (|has| |#1| (-495)) ELT)) (-2674 (((-85) $) 21 (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1089) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1089) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1089)) 216 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089))) 215 (|has| |#1| (-553 (-473))) ELT) (($ $) 214 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1089)) 213 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-86)) (-583 $) (-1089)) 212 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $))) 201 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 200 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ (-583 $))) 199 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ $)) 198 (|has| |#1| (-961)) ELT)) (-1606 (((-694) $) 174 (|has| |#1| (-495)) ELT)) (-3799 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 175 (|has| |#1| (-495)) ELT)) (-1602 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3757 (($ $ (-1089)) 148 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) 146 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) 145 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 144 (|has| |#1| (-961)) ELT)) (-2995 (($ $) 195 (|has| |#1| (-495)) ELT)) (-2997 (((-1038 |#1| (-550 $)) $) 196 (|has| |#1| (-495)) ELT)) (-3185 (($ $) 22 (|has| $ (-961)) ELT)) (-3971 (((-800 (-484)) $) 233 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) 232 (|has| |#1| (-553 (-800 (-329)))) ELT) (($ (-347 $)) 197 (|has| |#1| (-495)) ELT) (((-473) $) 113 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $ $) 124 (|has| |#1| (-412)) ELT)) (-2435 (($ $ $) 125 (|has| |#1| (-412)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT) (($ (-1089)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1038 |#1| (-550 $))) 207 (|has| |#1| (-961)) ELT) (($ (-349 |#1|)) 193 (|has| |#1| (-495)) ELT) (($ (-857 (-349 |#1|))) 192 (|has| |#1| (-495)) ELT) (($ (-349 (-857 (-349 |#1|)))) 191 (|has| |#1| (-495)) ELT) (($ (-349 (-857 |#1|))) 187 (|has| |#1| (-495)) ELT) (($ $) 160 (|has| |#1| (-495)) ELT) (($ (-857 |#1|)) 136 (|has| |#1| (-961)) ELT) (($ (-349 (-484))) 110 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ (-484)) 109 (OR (|has| |#1| (-961)) (|has| |#1| (-950 (-484)))) ELT)) (-2702 (((-632 $) $) 158 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 140 (|has| |#1| (-961)) CONST)) (-2590 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2254 (((-85) (-86)) 39 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 164 (|has| |#1| (-495)) ELT)) (-1794 (($ (-1089) $) 221 T ELT) (($ (-1089) $ $) 220 T ELT) (($ (-1089) $ $ $) 219 T ELT) (($ (-1089) $ $ $ $) 218 T ELT) (($ (-1089) (-583 $)) 217 T ELT)) (-3125 (((-85) $ $) 139 (|has| |#1| (-961)) ELT)) (-2660 (($) 128 (|has| |#1| (-25)) CONST)) (-2666 (($) 116 (|has| |#1| (-1025)) CONST)) (-2669 (($ $ (-1089)) 147 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) 143 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) 142 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 141 (|has| |#1| (-961)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ (-1038 |#1| (-550 $)) (-1038 |#1| (-550 $))) 194 (|has| |#1| (-495)) ELT) (($ $ $) 122 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT)) (-3836 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) 123 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT) (($ $ (-694)) 120 (|has| |#1| (-1025)) ELT) (($ $ (-830)) 115 (|has| |#1| (-1025)) ELT)) (* (($ (-349 (-484)) $) 186 (|has| |#1| (-495)) ELT) (($ $ (-349 (-484))) 185 (|has| |#1| (-495)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-961)) ELT) (($ (-484) $) 133 (|has| |#1| (-21)) ELT) (($ (-694) $) 130 (|has| |#1| (-25)) ELT) (($ (-830) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1025)) ELT)))
-(((-363 |#1|) (-113) (-1013)) (T -363))
-((-1796 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-1089))))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) (-1794 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) (-1794 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) (-1794 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) (-1794 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-583 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1013)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-4 *3 (-553 (-473))))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1089))) (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-4 *3 (-553 (-473))))) (-3767 (*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-553 (-473))))) (-3767 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1089)) (-4 *1 (-363 *4)) (-4 *4 (-1013)) (-4 *4 (-553 (-473))))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1089)) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-553 (-473))))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-363 *3)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *3)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-363 *3)))) (-1793 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| -3953 (-484)) (|:| |var| (-550 *1)))) (-4 *1 (-363 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1038 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-550 *1))) (-4 *1 (-363 *3)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-961)))) (-2824 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *4)))) (-2824 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *4)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |val| *1) (|:| -2401 (-484)))) (-4 *1 (-363 *3)))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-347 *1)) (-4 *1 (-363 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-550 *1))) (-4 *1 (-363 *3)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-495)))) (-3948 (*1 *1 *2 *2) (-12 (-5 *2 (-1038 *3 (-550 *1))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-349 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-857 (-349 *3))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-349 (-857 (-349 *3)))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-3083 (*1 *2 *1 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1013)) (-4 *4 (-495)) (-5 *2 (-349 (-1084 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-4 *3 (-1025)))))
-(-13 (-254) (-950 (-1089)) (-794 |t#1|) (-342 |t#1|) (-354 |t#1|) (-10 -8 (-15 -1796 ((-85) $)) (-15 -1795 (|t#1| $)) (-15 -3081 ((-583 (-1089)) $)) (-15 -1794 ($ (-1089) $)) (-15 -1794 ($ (-1089) $ $)) (-15 -1794 ($ (-1089) $ $ $)) (-15 -1794 ($ (-1089) $ $ $ $)) (-15 -1794 ($ (-1089) (-583 $))) (IF (|has| |t#1| (-553 (-473))) (PROGN (-6 (-553 (-473))) (-15 -3767 ($ $ (-1089))) (-15 -3767 ($ $ (-583 (-1089)))) (-15 -3767 ($ $)) (-15 -3767 ($ $ (-86) $ (-1089))) (-15 -3767 ($ $ (-583 (-86)) (-583 $) (-1089)))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-663)) (-15 ** ($ $ (-694))) (-15 -2823 ((-3 (-583 $) "failed") $)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-412)) (-6 (-412)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2822 ((-3 (-583 $) "failed") $)) (-15 -1793 ((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-950 (-857 |t#1|))) (-6 (-809 (-1089))) (-6 (-328 |t#1|)) (-15 -3945 ($ (-1038 |t#1| (-550 $)))) (-15 -2998 ((-1038 |t#1| (-550 $)) $)) (-15 -2996 ($ $)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-86))) (-15 -2824 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-1089))) (-15 -2825 ((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) "failed") $)) (-15 -3767 ($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $)))) (-15 -3767 ($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $))))) (-15 -3767 ($ $ (-1089) (-694) (-1 $ (-583 $)))) (-15 -3767 ($ $ (-1089) (-694) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-312)) (-6 (-950 (-349 (-857 |t#1|)))) (-15 -3971 ($ (-347 $))) (-15 -2997 ((-1038 |t#1| (-550 $)) $)) (-15 -2995 ($ $)) (-15 -3948 ($ (-1038 |t#1| (-550 $)) (-1038 |t#1| (-550 $)))) (-15 -3945 ($ (-349 |t#1|))) (-15 -3945 ($ (-857 (-349 |t#1|)))) (-15 -3945 ($ (-349 (-857 (-349 |t#1|))))) (-15 -3083 ((-349 (-1084 $)) $ (-550 $))) (IF (|has| |t#1| (-950 (-484))) (-6 (-950 (-349 (-484)))) |%noBranch|)) |%noBranch|)))
-(((-21) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-349 (-484))) |has| |#1| (-495)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-495)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-495)) ((-104) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-495))) ((-555 (-349 (-857 |#1|))) |has| |#1| (-495)) ((-555 (-484)) OR (|has| |#1| (-961)) (|has| |#1| (-950 (-484))) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1089)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) |has| |#1| (-495)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-201) |has| |#1| (-495)) ((-246) |has| |#1| (-495)) ((-258) |has| |#1| (-495)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-495)) ((-328 |#1|) |has| |#1| (-961)) ((-342 |#1|) . T) ((-354 |#1|) . T) ((-391) |has| |#1| (-495)) ((-412) |has| |#1| (-412)) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-495)) ((-588 (-484)) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-590 (-349 (-484))) |has| |#1| (-495)) ((-590 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-582 (-349 (-484))) |has| |#1| (-495)) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-580 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-349 (-484))) |has| |#1| (-495)) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) OR (|has| |#1| (-1025)) (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-412)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-806 $ (-1089)) |has| |#1| (-961)) ((-809 (-1089)) |has| |#1| (-961)) ((-811 (-1089)) |has| |#1| (-961)) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-832) |has| |#1| (-495)) ((-950 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484))))) ((-950 (-349 (-857 |#1|))) |has| |#1| (-495)) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1089)) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) |has| |#1| (-495)) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) |has| |#1| (-495)) ((-968 (-349 (-484))) |has| |#1| (-495)) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) |has| |#1| (-495)) ((-961) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-970) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1025) OR (|has| |#1| (-1025)) (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-412)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1060) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-495)))
-((-3957 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT)))
-(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-363 |#1|) (-961) (-363 |#3|)) (T -364))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-363 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-363 *5)))))
-((-1800 ((|#2| |#2|) 182 T ELT)) (-1797 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85)) 60 T ELT)))
-(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1797 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85))) (-15 -1800 (|#2| |#2|))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|)) (-1089) |#2|) (T -365))
-((-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-365 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-363 *3))) (-14 *4 (-1089)) (-14 *5 *2))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-365 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-14 *6 (-1089)) (-14 *7 *3))))
-((-1800 ((|#2| |#2|) 105 T ELT)) (-1798 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072)) 52 T ELT)) (-1799 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072)) 169 T ELT)))
-(((-366 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1798 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072))) (-15 -1799 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072))) (-15 -1800 (|#2| |#2|))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|) (-10 -8 (-15 -3945 ($ |#3|)))) (-755) (-13 (-1157 |#2| |#3|) (-312) (-1114) (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $)))) (-896 |#4|) (-1089)) (T -366))
-((-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-4 *2 (-13 (-27) (-1114) (-363 *3) (-10 -8 (-15 -3945 ($ *4))))) (-4 *4 (-755)) (-4 *5 (-13 (-1157 *2 *4) (-312) (-1114) (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $))))) (-5 *1 (-366 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1089)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-27) (-1114) (-363 *6) (-10 -8 (-15 -3945 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1157 *3 *7) (-312) (-1114) (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-896 *8)) (-14 *10 (-1089)))) (-1798 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-27) (-1114) (-363 *6) (-10 -8 (-15 -3945 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1157 *3 *7) (-312) (-1114) (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-896 *8)) (-14 *10 (-1089)))))
-((-1801 (($) 51 T ELT)) (-3234 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3236 (($ $ $) 46 T ELT)) (-3235 (((-85) $ $) 35 T ELT)) (-3136 (((-694)) 55 T ELT)) (-3239 (($ (-583 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2994 (($) 66 T ELT)) (-3241 (((-85) $ $) 15 T ELT)) (-2531 ((|#2| $) 77 T ELT)) (-2857 ((|#2| $) 75 T ELT)) (-2010 (((-830) $) 70 T ELT)) (-3238 (($ $ $) 42 T ELT)) (-2400 (($ (-830)) 60 T ELT)) (-3237 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1945 (((-694) |#2| $) 31 T ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3529 (($ (-583 |#2|)) 27 T ELT)) (-1802 (($ $) 53 T ELT)) (-3945 (((-772) $) 40 T ELT)) (-1803 (((-694) $) 24 T ELT)) (-3240 (($ (-583 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3056 (((-85) $ $) 19 T ELT)))
-(((-367 |#1| |#2|) (-10 -7 (-15 -3136 ((-694))) (-15 -2400 (|#1| (-830))) (-15 -2010 ((-830) |#1|)) (-15 -2994 (|#1|)) (-15 -2531 (|#2| |#1|)) (-15 -2857 (|#2| |#1|)) (-15 -1801 (|#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1803 ((-694) |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-694) |#2| |#1|)) (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3241 ((-85) |#1| |#1|)) (-15 -3240 (|#1|)) (-15 -3240 (|#1| (-583 |#2|))) (-15 -3239 (|#1|)) (-15 -3239 (|#1| (-583 |#2|))) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3235 ((-85) |#1| |#1|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3234 (|#1| |#1| |#2|)) (-15 -3234 (|#1| |#2| |#1|)) (-15 -3529 (|#1| (-583 |#2|)))) (-368 |#2|) (-1013)) (T -367))
-((-3136 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-367 *3 *4)) (-4 *3 (-368 *4)))))
-((-2568 (((-85) $ $) 19 T ELT)) (-1801 (($) 72 (|has| |#1| (-319)) ELT)) (-3234 (($ |#1| $) 87 T ELT) (($ $ |#1|) 86 T ELT) (($ $ $) 85 T ELT)) (-3236 (($ $ $) 83 T ELT)) (-3235 (((-85) $ $) 84 T ELT)) (-3136 (((-694)) 66 (|has| |#1| (-319)) ELT)) (-3239 (($ (-583 |#1|)) 79 T ELT) (($) 78 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2994 (($) 69 (|has| |#1| (-319)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 75 T ELT)) (-2531 ((|#1| $) 70 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-2857 ((|#1| $) 71 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2010 (((-830) $) 68 (|has| |#1| (-319)) ELT)) (-3242 (((-1072) $) 22 T ELT)) (-3238 (($ $ $) 80 T ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-2400 (($ (-830)) 67 (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) 21 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3237 (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-1802 (($ $) 73 (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 17 T ELT)) (-1803 (((-694) $) 74 T ELT)) (-3240 (($ (-583 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1264 (((-85) $ $) 20 T ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-368 |#1|) (-113) (-1013)) (T -368))
-((-1803 (*1 *2 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-1802 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-319)))) (-1801 (*1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-319)) (-4 *2 (-1013)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))))
-(-13 (-183 |t#1|) (-1011 |t#1|) (-317 |t#1|) (-10 -8 (-15 -1803 ((-694) $)) (IF (|has| |t#1| (-319)) (PROGN (-6 (-319)) (-15 -1802 ($ $)) (-15 -1801 ($))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2857 (|t#1| $)) (-15 -2531 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-319) |has| |#1| (-319)) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-3840 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3841 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3957 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT)))
-(((-369 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3841 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3840 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1013) (-368 |#1|) (-1013) (-368 |#3|)) (T -369))
-((-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-368 *5)) (-5 *1 (-369 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-5 *1 (-369 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-368 *6)) (-5 *1 (-369 *5 *4 *6 *2)) (-4 *4 (-368 *5)))))
-((-1804 (((-519 |#2|) |#2| (-1089)) 36 T ELT)) (-2100 (((-519 |#2|) |#2| (-1089)) 21 T ELT)) (-2149 ((|#2| |#2| (-1089)) 26 T ELT)))
-(((-370 |#1| |#2|) (-10 -7 (-15 -2100 ((-519 |#2|) |#2| (-1089))) (-15 -1804 ((-519 |#2|) |#2| (-1089))) (-15 -2149 (|#2| |#2| (-1089)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-29 |#1|))) (T -370))
-((-2149 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4))))) (-1804 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1806 (($ |#2| |#1|) 37 T ELT)) (-1805 (($ |#2| |#1|) 35 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 16 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-371 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3981)) (IF (|has| |#1| (-6 -3981)) (-6 -3981) |%noBranch|) |%noBranch|) (-15 -3945 ($ |#1|)) (-15 -3945 ($ (-281 |#2|))) (-15 -1806 ($ |#2| |#1|)) (-15 -1805 ($ |#2| |#1|)))) (-13 (-146) (-38 (-349 (-484)))) (-13 (-756) (-21))) (T -371))
-((-3945 (*1 *1 *2) (-12 (-5 *1 (-371 *2 *3)) (-4 *2 (-13 (-146) (-38 (-349 (-484))))) (-4 *3 (-13 (-756) (-21))))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-371 *3 *4)) (-4 *3 (-13 (-146) (-38 (-349 (-484))))))) (-1806 (*1 *1 *2 *3) (-12 (-5 *1 (-371 *3 *2)) (-4 *3 (-13 (-146) (-38 (-349 (-484))))) (-4 *2 (-13 (-756) (-21))))) (-1805 (*1 *1 *2 *3) (-12 (-5 *1 (-371 *3 *2)) (-4 *3 (-13 (-146) (-38 (-349 (-484))))) (-4 *2 (-13 (-756) (-21))))))
-((-3811 (((-3 |#2| (-583 |#2|)) |#2| (-1089)) 115 T ELT)))
-(((-372 |#1| |#2|) (-10 -7 (-15 -3811 ((-3 |#2| (-583 |#2|)) |#2| (-1089)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-871) (-29 |#1|))) (T -372))
-((-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-372 *5 *3)) (-4 *3 (-13 (-1114) (-871) (-29 *5))))))
-((-3385 ((|#2| |#2| |#2|) 31 T ELT)) (-3594 (((-86) (-86)) 43 T ELT)) (-1808 ((|#2| |#2|) 63 T ELT)) (-1807 ((|#2| |#2|) 66 T ELT)) (-3384 ((|#2| |#2|) 30 T ELT)) (-3388 ((|#2| |#2| |#2|) 33 T ELT)) (-3390 ((|#2| |#2| |#2|) 35 T ELT)) (-3387 ((|#2| |#2| |#2|) 32 T ELT)) (-3389 ((|#2| |#2| |#2|) 34 T ELT)) (-2254 (((-85) (-86)) 41 T ELT)) (-3392 ((|#2| |#2|) 37 T ELT)) (-3391 ((|#2| |#2|) 36 T ELT)) (-3382 ((|#2| |#2|) 25 T ELT)) (-3386 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3383 ((|#2| |#2| |#2|) 29 T ELT)))
-(((-373 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -3382 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3383 (|#2| |#2| |#2|)) (-15 -3384 (|#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -1808 (|#2| |#2|))) (-495) (-363 |#1|)) (T -373))
-((-1808 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-1807 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3391 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3383 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-373 *3 *4)) (-4 *4 (-363 *3)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-373 *4 *5)) (-4 *5 (-363 *4)))))
-((-2833 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1084 |#2|)) (|:| |pol2| (-1084 |#2|)) (|:| |prim| (-1084 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1084 |#2|))) (|:| |prim| (-1084 |#2|))) (-583 |#2|)) 65 T ELT)))
-(((-374 |#1| |#2|) (-10 -7 (-15 -2833 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1084 |#2|))) (|:| |prim| (-1084 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -2833 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1084 |#2|)) (|:| |pol2| (-1084 |#2|)) (|:| |prim| (-1084 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-495) (-120)) (-363 |#1|)) (T -374))
-((-2833 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1084 *3)) (|:| |pol2| (-1084 *3)) (|:| |prim| (-1084 *3)))) (-5 *1 (-374 *4 *3)) (-4 *3 (-27)) (-4 *3 (-363 *4)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-363 *4)) (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1084 *5))) (|:| |prim| (-1084 *5)))) (-5 *1 (-374 *4 *5)))))
-((-1810 (((-1184)) 18 T ELT)) (-1809 (((-1084 (-349 (-484))) |#2| (-550 |#2|)) 40 T ELT) (((-349 (-484)) |#2|) 27 T ELT)))
-(((-375 |#1| |#2|) (-10 -7 (-15 -1809 ((-349 (-484)) |#2|)) (-15 -1809 ((-1084 (-349 (-484))) |#2| (-550 |#2|))) (-15 -1810 ((-1184)))) (-13 (-495) (-950 (-484))) (-363 |#1|)) (T -375))
-((-1810 (*1 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *2 (-1184)) (-5 *1 (-375 *3 *4)) (-4 *4 (-363 *3)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-363 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-375 *5 *3)))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-375 *4 *3)) (-4 *3 (-363 *4)))))
-((-3644 (((-85) $) 33 T ELT)) (-1811 (((-85) $) 35 T ELT)) (-3259 (((-85) $) 36 T ELT)) (-1813 (((-85) $) 39 T ELT)) (-1815 (((-85) $) 34 T ELT)) (-1814 (((-85) $) 38 T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1072)) 32 T ELT) (($ (-1089)) 30 T ELT) (((-1089) $) 24 T ELT) (((-1015) $) 23 T ELT)) (-1812 (((-85) $) 37 T ELT)) (-3056 (((-85) $ $) 17 T ELT)))
-(((-376) (-13 (-552 (-772)) (-10 -8 (-15 -3945 ($ (-1072))) (-15 -3945 ($ (-1089))) (-15 -3945 ((-1089) $)) (-15 -3945 ((-1015) $)) (-15 -3644 ((-85) $)) (-15 -1815 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -1814 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -1812 ((-85) $)) (-15 -1811 ((-85) $)) (-15 -3056 ((-85) $ $))))) (T -376))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-376)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-376)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-376)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-376)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-3056 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))))
-((-1817 (((-3 (-347 (-1084 (-349 (-484)))) #1="failed") |#3|) 71 T ELT)) (-1816 (((-347 |#3|) |#3|) 34 T ELT)) (-1819 (((-3 (-347 (-1084 (-48))) #1#) |#3|) 29 (|has| |#2| (-950 (-48))) ELT)) (-1818 (((-3 (|:| |overq| (-1084 (-349 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2639 (-85))) |#3|) 37 T ELT)))
-(((-377 |#1| |#2| |#3|) (-10 -7 (-15 -1816 ((-347 |#3|) |#3|)) (-15 -1817 ((-3 (-347 (-1084 (-349 (-484)))) #1="failed") |#3|)) (-15 -1818 ((-3 (|:| |overq| (-1084 (-349 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2639 (-85))) |#3|)) (IF (|has| |#2| (-950 (-48))) (-15 -1819 ((-3 (-347 (-1084 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-495) (-950 (-484))) (-363 |#1|) (-1154 |#2|)) (T -377))
-((-1819 (*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-347 (-1084 (-48)))) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1818 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-3 (|:| |overq| (-1084 (-349 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2639 (-85)))) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1817 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-347 (-1084 (-349 (-484))))) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1816 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-347 *3)) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1829 (((-3 (|:| |fst| (-376)) (|:| -3909 #1="void")) $) 11 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1826 (($) 35 T ELT)) (-1823 (($) 41 T ELT)) (-1824 (($) 37 T ELT)) (-1821 (($) 39 T ELT)) (-1825 (($) 36 T ELT)) (-1822 (($) 38 T ELT)) (-1820 (($) 40 T ELT)) (-1827 (((-85) $) 8 T ELT)) (-1828 (((-583 (-857 (-484))) $) 19 T ELT)) (-3529 (($ (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-583 (-1089)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-583 (-857 (-484))) (-85)) 30 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-376)) 32 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-378) (-13 (-1013) (-10 -8 (-15 -3945 ($ (-376))) (-15 -1829 ((-3 (|:| |fst| (-376)) (|:| -3909 #1="void")) $)) (-15 -1828 ((-583 (-857 (-484))) $)) (-15 -1827 ((-85) $)) (-15 -3529 ($ (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-583 (-1089)) (-85))) (-15 -3529 ($ (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-583 (-857 (-484))) (-85))) (-15 -1826 ($)) (-15 -1825 ($)) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($)) (-15 -1821 ($)) (-15 -1820 ($))))) (T -378))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-376)) (-5 *1 (-378)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1="void"))) (-5 *1 (-378)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-484)))) (-5 *1 (-378)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-378)))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *3 (-583 (-1089))) (-5 *4 (-85)) (-5 *1 (-378)))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-85)) (-5 *1 (-378)))) (-1826 (*1 *1) (-5 *1 (-378))) (-1825 (*1 *1) (-5 *1 (-378))) (-1824 (*1 *1) (-5 *1 (-378))) (-1823 (*1 *1) (-5 *1 (-378))) (-1822 (*1 *1) (-5 *1 (-378))) (-1821 (*1 *1) (-5 *1 (-378))) (-1820 (*1 *1) (-5 *1 (-378))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3541 (((-1089) $) 8 T ELT)) (-3242 (((-1072) $) 17 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 14 T ELT)))
-(((-379 |#1|) (-13 (-1013) (-10 -8 (-15 -3541 ((-1089) $)))) (-1089)) (T -379))
-((-3541 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-379 *3)) (-14 *3 *2))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3319 (((-1028) $) 7 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT)))
-(((-380) (-13 (-1013) (-10 -8 (-15 -3319 ((-1028) $))))) (T -380))
-((-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-380)))))
-((-1835 (((-85)) 18 T ELT)) (-1836 (((-85) (-85)) 19 T ELT)) (-1837 (((-85)) 14 T ELT)) (-1838 (((-85) (-85)) 15 T ELT)) (-1840 (((-85)) 16 T ELT)) (-1841 (((-85) (-85)) 17 T ELT)) (-1832 (((-830) (-830)) 22 T ELT) (((-830)) 21 T ELT)) (-1833 (((-694) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484))))) 52 T ELT)) (-1831 (((-830) (-830)) 24 T ELT) (((-830)) 23 T ELT)) (-1834 (((-2 (|:| -2578 (-484)) (|:| -1778 (-583 |#1|))) |#1|) 94 T ELT)) (-1830 (((-347 |#1|) (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484))))))) 176 T ELT)) (-3733 (((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)) 209 T ELT)) (-3732 (((-347 |#1|) |#1| (-694) (-694)) 224 T ELT) (((-347 |#1|) |#1| (-583 (-694)) (-694)) 221 T ELT) (((-347 |#1|) |#1| (-583 (-694))) 223 T ELT) (((-347 |#1|) |#1| (-694)) 222 T ELT) (((-347 |#1|) |#1|) 220 T ELT)) (-1852 (((-3 |#1| #1="failed") (-830) |#1| (-583 (-694)) (-694) (-85)) 226 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694)) 227 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694))) 229 T ELT) (((-3 |#1| #1#) (-830) |#1| (-694)) 228 T ELT) (((-3 |#1| #1#) (-830) |#1|) 230 T ELT)) (-3731 (((-347 |#1|) |#1| (-694) (-694)) 219 T ELT) (((-347 |#1|) |#1| (-583 (-694)) (-694)) 215 T ELT) (((-347 |#1|) |#1| (-583 (-694))) 217 T ELT) (((-347 |#1|) |#1| (-694)) 216 T ELT) (((-347 |#1|) |#1|) 214 T ELT)) (-1839 (((-85) |#1|) 43 T ELT)) (-1851 (((-675 (-694)) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484))))) 99 T ELT)) (-1842 (((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85) (-1009 (-694)) (-694)) 213 T ELT)))
-(((-381 |#1|) (-10 -7 (-15 -1830 ((-347 |#1|) (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))))) (-15 -1851 ((-675 (-694)) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))))) (-15 -1831 ((-830))) (-15 -1831 ((-830) (-830))) (-15 -1832 ((-830))) (-15 -1832 ((-830) (-830))) (-15 -1833 ((-694) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))))) (-15 -1834 ((-2 (|:| -2578 (-484)) (|:| -1778 (-583 |#1|))) |#1|)) (-15 -1835 ((-85))) (-15 -1836 ((-85) (-85))) (-15 -1837 ((-85))) (-15 -1838 ((-85) (-85))) (-15 -1839 ((-85) |#1|)) (-15 -1840 ((-85))) (-15 -1841 ((-85) (-85))) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3731 ((-347 |#1|) |#1| (-694))) (-15 -3731 ((-347 |#1|) |#1| (-583 (-694)))) (-15 -3731 ((-347 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3731 ((-347 |#1|) |#1| (-694) (-694))) (-15 -3732 ((-347 |#1|) |#1|)) (-15 -3732 ((-347 |#1|) |#1| (-694))) (-15 -3732 ((-347 |#1|) |#1| (-583 (-694)))) (-15 -3732 ((-347 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3732 ((-347 |#1|) |#1| (-694) (-694))) (-15 -1852 ((-3 |#1| #1="failed") (-830) |#1|)) (-15 -1852 ((-3 |#1| #1#) (-830) |#1| (-694))) (-15 -1852 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)))) (-15 -1852 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694))) (-15 -1852 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694) (-85))) (-15 -3733 ((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85))) (-15 -1842 ((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85) (-1009 (-694)) (-694)))) (-1154 (-484))) (T -381))
-((-1842 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-694))) (-5 *6 (-694)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1852 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *6 (-85)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-1852 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-1852 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-1852 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-1852 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-830)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-3732 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1840 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1837 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1835 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1834 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2578 (-484)) (|:| -1778 (-583 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3731 *4) (|:| -3947 (-484))))) (-4 *4 (-1154 (-484))) (-5 *2 (-694)) (-5 *1 (-381 *4)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1832 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1831 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3731 *4) (|:| -3947 (-484))))) (-4 *4 (-1154 (-484))) (-5 *2 (-675 (-694))) (-5 *1 (-381 *4)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| *4) (|:| -2395 (-484))))))) (-4 *4 (-1154 (-484))) (-5 *2 (-347 *4)) (-5 *1 (-381 *4)))))
-((-1846 (((-484) |#2|) 52 T ELT) (((-484) |#2| (-694)) 51 T ELT)) (-1845 (((-484) |#2|) 64 T ELT)) (-1847 ((|#3| |#2|) 26 T ELT)) (-3132 ((|#3| |#2| (-830)) 15 T ELT)) (-3832 ((|#3| |#2|) 16 T ELT)) (-1848 ((|#3| |#2|) 9 T ELT)) (-2603 ((|#3| |#2|) 10 T ELT)) (-1844 ((|#3| |#2| (-830)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1843 (((-484) |#2|) 66 T ELT)))
-(((-382 |#1| |#2| |#3|) (-10 -7 (-15 -1843 ((-484) |#2|)) (-15 -1844 (|#3| |#2|)) (-15 -1844 (|#3| |#2| (-830))) (-15 -1845 ((-484) |#2|)) (-15 -1846 ((-484) |#2| (-694))) (-15 -1846 ((-484) |#2|)) (-15 -3132 (|#3| |#2| (-830))) (-15 -1847 (|#3| |#2|)) (-15 -1848 (|#3| |#2|)) (-15 -2603 (|#3| |#2|)) (-15 -3832 (|#3| |#2|))) (-961) (-1154 |#1|) (-13 (-346) (-950 |#1|) (-312) (-1114) (-239))) (T -382))
-((-3832 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-2603 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-346) (-950 *5) (-312) (-1114) (-239))) (-5 *1 (-382 *5 *3 *2)) (-4 *3 (-1154 *5)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239))))) (-1846 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *5 *3 *6)) (-4 *3 (-1154 *5)) (-4 *6 (-13 (-346) (-950 *5) (-312) (-1114) (-239))))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239))))) (-1844 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-346) (-950 *5) (-312) (-1114) (-239))) (-5 *1 (-382 *5 *3 *2)) (-4 *3 (-1154 *5)))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239))))))
-((-3353 ((|#2| (-1178 |#1|)) 42 T ELT)) (-1850 ((|#2| |#2| |#1|) 58 T ELT)) (-1849 ((|#2| |#2| |#1|) 49 T ELT)) (-2298 ((|#2| |#2|) 44 T ELT)) (-3173 (((-85) |#2|) 32 T ELT)) (-1853 (((-583 |#2|) (-830) (-347 |#2|)) 21 T ELT)) (-1852 ((|#2| (-830) (-347 |#2|)) 25 T ELT)) (-1851 (((-675 (-694)) (-347 |#2|)) 29 T ELT)))
-(((-383 |#1| |#2|) (-10 -7 (-15 -3173 ((-85) |#2|)) (-15 -3353 (|#2| (-1178 |#1|))) (-15 -2298 (|#2| |#2|)) (-15 -1849 (|#2| |#2| |#1|)) (-15 -1850 (|#2| |#2| |#1|)) (-15 -1851 ((-675 (-694)) (-347 |#2|))) (-15 -1852 (|#2| (-830) (-347 |#2|))) (-15 -1853 ((-583 |#2|) (-830) (-347 |#2|)))) (-961) (-1154 |#1|)) (T -383))
-((-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-383 *5 *6)))) (-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-347 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-383 *5 *2)) (-4 *5 (-961)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-961)) (-5 *2 (-675 (-694))) (-5 *1 (-383 *4 *5)))) (-1850 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3)))) (-1849 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3)))) (-2298 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-961)) (-4 *2 (-1154 *4)) (-5 *1 (-383 *4 *2)))) (-3173 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-383 *4 *3)) (-4 *3 (-1154 *4)))))
-((-1856 (((-694)) 59 T ELT)) (-1860 (((-694)) 29 (|has| |#1| (-346)) ELT) (((-694) (-694)) 28 (|has| |#1| (-346)) ELT)) (-1859 (((-484) |#1|) 25 (|has| |#1| (-346)) ELT)) (-1858 (((-484) |#1|) 27 (|has| |#1| (-346)) ELT)) (-1855 (((-694)) 58 T ELT) (((-694) (-694)) 57 T ELT)) (-1854 ((|#1| (-694) (-484)) 37 T ELT)) (-1857 (((-1184)) 61 T ELT)))
-(((-384 |#1|) (-10 -7 (-15 -1854 (|#1| (-694) (-484))) (-15 -1855 ((-694) (-694))) (-15 -1855 ((-694))) (-15 -1856 ((-694))) (-15 -1857 ((-1184))) (IF (|has| |#1| (-346)) (PROGN (-15 -1858 ((-484) |#1|)) (-15 -1859 ((-484) |#1|)) (-15 -1860 ((-694) (-694))) (-15 -1860 ((-694)))) |%noBranch|)) (-961)) (T -384))
-((-1860 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))) (-1859 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))) (-1857 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-384 *3)) (-4 *3 (-961)))) (-1856 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961)))) (-1855 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961)))) (-1855 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-484)) (-5 *1 (-384 *2)) (-4 *2 (-961)))))
-((-1861 (((-583 (-484)) (-484)) 76 T ELT)) (-3722 (((-85) (-142 (-484))) 84 T ELT)) (-3731 (((-347 (-142 (-484))) (-142 (-484))) 75 T ELT)))
-(((-385) (-10 -7 (-15 -3731 ((-347 (-142 (-484))) (-142 (-484)))) (-15 -1861 ((-583 (-484)) (-484))) (-15 -3722 ((-85) (-142 (-484)))))) (T -385))
-((-3722 (*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-385)))) (-1861 (*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-385)) (-5 *3 (-484)))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 (-142 (-484)))) (-5 *1 (-385)) (-5 *3 (-142 (-484))))))
-((-2946 ((|#4| |#4| (-583 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2251 (((-583 |#4|) (-583 |#4|) (-1072) (-1072)) 46 T ELT) (((-583 |#4|) (-583 |#4|) (-1072)) 45 T ELT) (((-583 |#4|) (-583 |#4|)) 34 T ELT)))
-(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2251 ((-583 |#4|) (-583 |#4|))) (-15 -2251 ((-583 |#4|) (-583 |#4|) (-1072))) (-15 -2251 ((-583 |#4|) (-583 |#4|) (-1072) (-1072))) (IF (|has| |#1| (-312)) (-15 -2946 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-391) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -386))
-((-2946 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *2)))) (-2251 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *7)))) (-2251 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *7)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-386 *3 *4 *5 *6)))))
-((-1862 ((|#4| |#4| (-583 |#4|)) 82 T ELT)) (-1863 (((-583 |#4|) (-583 |#4|) (-1072) (-1072)) 22 T ELT) (((-583 |#4|) (-583 |#4|) (-1072)) 21 T ELT) (((-583 |#4|) (-583 |#4|)) 13 T ELT)))
-(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1862 (|#4| |#4| (-583 |#4|))) (-15 -1863 ((-583 |#4|) (-583 |#4|))) (-15 -1863 ((-583 |#4|) (-583 |#4|) (-1072))) (-15 -1863 ((-583 |#4|) (-583 |#4|) (-1072) (-1072)))) (-258) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -387))
-((-1863 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1863 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))))
-((-1865 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 90 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 89 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85)) 83 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-1864 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 56 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 78 T ELT)))
-(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1864 ((-583 (-583 |#4|)) (-583 |#4|) (-85))) (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85))) (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|) (-85)))) (-13 (-258) (-120)) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -388))
-((-1865 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1865 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1865 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1864 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-((-1889 (((-694) |#4|) 12 T ELT)) (-1877 (((-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)))) 39 T ELT)) (-1879 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1878 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1867 ((|#4| |#4| (-583 |#4|)) 54 T ELT)) (-1875 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 96 T ELT)) (-1882 (((-1184) |#4|) 59 T ELT)) (-1885 (((-1184) (-583 |#4|)) 69 T ELT)) (-1883 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484)) 66 T ELT)) (-1886 (((-1184) (-484)) 110 T ELT)) (-1880 (((-583 |#4|) (-583 |#4|)) 104 T ELT)) (-1888 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)) |#4| (-694)) 31 T ELT)) (-1881 (((-484) |#4|) 109 T ELT)) (-1876 ((|#4| |#4|) 37 T ELT)) (-1868 (((-583 |#4|) (-583 |#4|) (-484) (-484)) 74 T ELT)) (-1884 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484)) 123 T ELT)) (-1887 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1869 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1874 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1873 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1870 (((-85) |#2| |#2|) 75 T ELT)) (-1872 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1871 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1866 ((|#4| |#4| (-583 |#4|)) 97 T ELT)))
-(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1866 (|#4| |#4| (-583 |#4|))) (-15 -1867 (|#4| |#4| (-583 |#4|))) (-15 -1868 ((-583 |#4|) (-583 |#4|) (-484) (-484))) (-15 -1869 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1870 ((-85) |#2| |#2|)) (-15 -1871 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1872 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1873 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1874 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1875 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -1876 (|#4| |#4|)) (-15 -1877 ((-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))))) (-15 -1878 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1879 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1880 ((-583 |#4|) (-583 |#4|))) (-15 -1881 ((-484) |#4|)) (-15 -1882 ((-1184) |#4|)) (-15 -1883 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484))) (-15 -1884 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484))) (-15 -1885 ((-1184) (-583 |#4|))) (-15 -1886 ((-1184) (-484))) (-15 -1887 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1888 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)) |#4| (-694))) (-15 -1889 ((-694) |#4|))) (-391) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -389))
-((-1889 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)) (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1888 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2004 *4))) (-5 *5 (-694)) (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-389 *6 *7 *8 *4)))) (-1887 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1884 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-756)) (-5 *1 (-389 *5 *6 *7 *4)))) (-1883 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-756)) (-5 *1 (-389 *5 *6 *7 *4)))) (-1882 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-484)) (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1880 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *6)))) (-1879 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *6)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-389 *4 *5 *6 *2)) (-4 *4 (-391)) (-4 *6 (-756)))) (-1877 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 *3)))) (-5 *4 (-694)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-389 *5 *6 *7 *3)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1875 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-389 *5 *6 *7 *3)))) (-1874 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-391)) (-4 *5 (-756)) (-5 *1 (-389 *4 *3 *5 *6)))) (-1873 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *6)))) (-1872 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *3)))) (-1871 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-391)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-389 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1870 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-389 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1868 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *2)))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *2)))))
-((-1890 (($ $ $) 14 T ELT) (($ (-583 $)) 21 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 45 T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) 22 T ELT)))
-(((-390 |#1|) (-10 -7 (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -1890 (|#1| (-583 |#1|))) (-15 -1890 (|#1| |#1| |#1|)) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3144 (|#1| |#1| |#1|))) (-391)) (T -390))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-391) (-113)) (T -391))
-((-3144 (*1 *1 *1 *1) (-4 *1 (-391))) (-3144 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-391)))) (-1890 (*1 *1 *1 *1) (-4 *1 (-391))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-391)))) (-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-391)))))
-(-13 (-495) (-10 -8 (-15 -3144 ($ $ $)) (-15 -3144 ($ (-583 $))) (-15 -1890 ($ $ $)) (-15 -1890 ($ (-583 $))) (-15 -2708 ((-1084 $) (-1084 $) (-1084 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 (-349 (-857 |#1|)))) (-1178 $)) NIL T ELT) (((-1178 (-630 (-349 (-857 |#1|))))) NIL T ELT)) (-1728 (((-1178 $)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL T ELT)) (-1702 (((-3 $ #1#)) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1787 (((-630 (-349 (-857 |#1|))) (-1178 $)) NIL T ELT) (((-630 (-349 (-857 |#1|)))) NIL T ELT)) (-1726 (((-349 (-857 |#1|)) $) NIL T ELT)) (-1785 (((-630 (-349 (-857 |#1|))) $ (-1178 $)) NIL T ELT) (((-630 (-349 (-857 |#1|))) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1899 (((-1084 (-857 (-349 (-857 |#1|))))) NIL (|has| (-349 (-857 |#1|)) (-312)) ELT) (((-1084 (-349 (-857 |#1|)))) 89 (|has| |#1| (-495)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 (((-349 (-857 |#1|)) $) NIL T ELT)) (-1704 (((-1084 (-349 (-857 |#1|))) $) 87 (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1789 (((-349 (-857 |#1|)) (-1178 $)) NIL T ELT) (((-349 (-857 |#1|))) NIL T ELT)) (-1722 (((-1084 (-349 (-857 |#1|))) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-1791 (($ (-1178 (-349 (-857 |#1|))) (-1178 $)) 111 T ELT) (($ (-1178 (-349 (-857 |#1|)))) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-3108 (((-830)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL T ELT)) (-1703 (((-3 $ #1#)) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1788 (((-630 (-349 (-857 |#1|))) (-1178 $)) NIL T ELT) (((-630 (-349 (-857 |#1|)))) NIL T ELT)) (-1727 (((-349 (-857 |#1|)) $) NIL T ELT)) (-1786 (((-630 (-349 (-857 |#1|))) $ (-1178 $)) NIL T ELT) (((-630 (-349 (-857 |#1|))) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1903 (((-1084 (-857 (-349 (-857 |#1|))))) NIL (|has| (-349 (-857 |#1|)) (-312)) ELT) (((-1084 (-349 (-857 |#1|)))) 88 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 (((-349 (-857 |#1|)) $) NIL T ELT)) (-1705 (((-1084 (-349 (-857 |#1|))) $) 84 (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1790 (((-349 (-857 |#1|)) (-1178 $)) NIL T ELT) (((-349 (-857 |#1|))) NIL T ELT)) (-1723 (((-1084 (-349 (-857 |#1|))) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1893 (((-349 (-857 |#1|)) $ $) 75 (|has| |#1| (-495)) ELT)) (-1897 (((-349 (-857 |#1|)) $) 74 (|has| |#1| (-495)) ELT)) (-1896 (((-349 (-857 |#1|)) $) 101 (|has| |#1| (-495)) ELT)) (-1898 (((-1084 (-349 (-857 |#1|))) $) 93 (|has| |#1| (-495)) ELT)) (-1892 (((-349 (-857 |#1|))) 76 (|has| |#1| (-495)) ELT)) (-1895 (((-349 (-857 |#1|)) $ $) 64 (|has| |#1| (-495)) ELT)) (-1901 (((-349 (-857 |#1|)) $) 63 (|has| |#1| (-495)) ELT)) (-1900 (((-349 (-857 |#1|)) $) 100 (|has| |#1| (-495)) ELT)) (-1902 (((-1084 (-349 (-857 |#1|))) $) 92 (|has| |#1| (-495)) ELT)) (-1894 (((-349 (-857 |#1|))) 73 (|has| |#1| (-495)) ELT)) (-1904 (($) 107 T ELT) (($ (-1089)) 115 T ELT) (($ (-1178 (-1089))) 114 T ELT) (($ (-1178 $)) 102 T ELT) (($ (-1089) (-1178 $)) 113 T ELT) (($ (-1178 (-1089)) (-1178 $)) 112 T ELT)) (-1715 (((-85)) NIL T ELT)) (-3799 (((-349 (-857 |#1|)) $ (-484)) NIL T ELT)) (-3224 (((-1178 (-349 (-857 |#1|))) $ (-1178 $)) 104 T ELT) (((-630 (-349 (-857 |#1|))) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-349 (-857 |#1|))) $) 44 T ELT) (((-630 (-349 (-857 |#1|))) (-1178 $)) NIL T ELT)) (-3971 (((-1178 (-349 (-857 |#1|))) $) NIL T ELT) (($ (-1178 (-349 (-857 |#1|)))) 41 T ELT)) (-1891 (((-583 (-857 (-349 (-857 |#1|)))) (-1178 $)) NIL T ELT) (((-583 (-857 (-349 (-857 |#1|))))) NIL T ELT) (((-583 (-857 |#1|)) (-1178 $)) 105 (|has| |#1| (-495)) ELT) (((-583 (-857 |#1|))) 106 (|has| |#1| (-495)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1178 (-349 (-857 |#1|)))) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 66 T ELT)) (-1706 (((-583 (-1178 (-349 (-857 |#1|))))) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-2545 (($ (-630 (-349 (-857 |#1|))) $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-349 (-857 |#1|))) NIL T ELT) (($ (-349 (-857 |#1|)) $) NIL T ELT) (($ (-1055 |#2| (-349 (-857 |#1|))) $) NIL T ELT)))
-(((-392 |#1| |#2| |#3| |#4|) (-13 (-360 (-349 (-857 |#1|))) (-590 (-1055 |#2| (-349 (-857 |#1|)))) (-10 -8 (-15 -3945 ($ (-1178 (-349 (-857 |#1|))))) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1="failed"))) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#))) (-15 -1904 ($)) (-15 -1904 ($ (-1089))) (-15 -1904 ($ (-1178 (-1089)))) (-15 -1904 ($ (-1178 $))) (-15 -1904 ($ (-1089) (-1178 $))) (-15 -1904 ($ (-1178 (-1089)) (-1178 $))) (IF (|has| |#1| (-495)) (PROGN (-15 -1903 ((-1084 (-349 (-857 |#1|))))) (-15 -1902 ((-1084 (-349 (-857 |#1|))) $)) (-15 -1901 ((-349 (-857 |#1|)) $)) (-15 -1900 ((-349 (-857 |#1|)) $)) (-15 -1899 ((-1084 (-349 (-857 |#1|))))) (-15 -1898 ((-1084 (-349 (-857 |#1|))) $)) (-15 -1897 ((-349 (-857 |#1|)) $)) (-15 -1896 ((-349 (-857 |#1|)) $)) (-15 -1895 ((-349 (-857 |#1|)) $ $)) (-15 -1894 ((-349 (-857 |#1|)))) (-15 -1893 ((-349 (-857 |#1|)) $ $)) (-15 -1892 ((-349 (-857 |#1|)))) (-15 -1891 ((-583 (-857 |#1|)) (-1178 $))) (-15 -1891 ((-583 (-857 |#1|))))) |%noBranch|))) (-146) (-830) (-583 (-1089)) (-1178 (-630 |#1|))) (T -392))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1178 (-349 (-857 *3)))) (-4 *3 (-146)) (-14 *6 (-1178 (-630 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))))) (-1906 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-392 *3 *4 *5 *6)) (|:| -2012 (-583 (-392 *3 *4 *5 *6))))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1905 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-392 *3 *4 *5 *6)) (|:| -2012 (-583 (-392 *3 *4 *5 *6))))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1904 (*1 *1) (-12 (-5 *1 (-392 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830)) (-14 *4 (-583 (-1089))) (-14 *5 (-1178 (-630 *2))))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1178 (-630 *3))))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1178 (-1089))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1178 (-392 *3 *4 *5 *6))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1904 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1178 (-392 *4 *5 *6 *7))) (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2)) (-14 *7 (-1178 (-630 *4))))) (-1904 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 (-1089))) (-5 *3 (-1178 (-392 *4 *5 *6 *7))) (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1089))) (-14 *7 (-1178 (-630 *4))))) (-1903 (*1 *2) (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1899 (*1 *2) (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1895 (*1 *2 *1 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1894 (*1 *2) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1893 (*1 *2 *1 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1892 (*1 *2) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1178 (-392 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4))) (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1089))) (-14 *7 (-1178 (-630 *4))))) (-1891 (*1 *2) (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 19 T ELT)) (-3081 (((-583 (-773 |#1|)) $) 88 T ELT)) (-3083 (((-1084 $) $ (-773 |#1|)) 53 T ELT) (((-1084 |#2|) $) 140 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) 28 T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) 49 T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1936 (($ $ (-583 (-484))) 95 T ELT)) (-3958 (($ $) 81 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| |#3| $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 66 T ELT)) (-3084 (($ (-1084 |#2|) (-773 |#1|)) 145 T ELT) (($ (-1084 $) (-773 |#1|)) 59 T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) 69 T ELT)) (-2893 (($ |#2| |#3|) 36 T ELT) (($ $ (-773 |#1|) (-694)) 38 T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 ((|#3| $) NIL T ELT) (((-694) $ (-773 |#1|)) 57 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 64 T ELT)) (-1624 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) 46 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) 48 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 47 T ELT)) (-1795 ((|#2| $) 138 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) 151 (|has| |#2| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) 102 T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) 108 T ELT) (($ $ (-773 |#1|) $) 100 T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) 126 T ELT)) (-3756 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) 60 T ELT)) (-3947 ((|#3| $) 80 T ELT) (((-694) $ (-773 |#1|)) 43 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 63 T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) 147 (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) 175 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-773 |#1|)) 40 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ |#3|) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 23 T CONST)) (-2666 (($) 32 T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 133 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 131 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-393 |#1| |#2| |#3|) (-13 (-861 |#2| |#3| (-773 |#1|)) (-10 -8 (-15 -1936 ($ $ (-583 (-484)))))) (-583 (-1089)) (-961) (-196 (-3956 |#1|) (-694))) (T -393))
-((-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-14 *3 (-583 (-1089))) (-5 *1 (-393 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-196 (-3956 *3) (-694))))))
-((-1910 (((-85) |#1| (-583 |#2|)) 90 T ELT)) (-1908 (((-3 (-1178 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|)) 99 T ELT)) (-1909 (((-3 (-583 |#2|) #1#) |#2| |#1| (-1178 (-583 |#2|))) 101 T ELT)) (-2037 ((|#2| |#2| |#1|) 35 T ELT)) (-1907 (((-694) |#2| (-583 |#2|)) 26 T ELT)))
-(((-394 |#1| |#2|) (-10 -7 (-15 -2037 (|#2| |#2| |#1|)) (-15 -1907 ((-694) |#2| (-583 |#2|))) (-15 -1908 ((-3 (-1178 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|))) (-15 -1909 ((-3 (-583 |#2|) #1#) |#2| |#1| (-1178 (-583 |#2|)))) (-15 -1910 ((-85) |#1| (-583 |#2|)))) (-258) (-1154 |#1|)) (T -394))
-((-1910 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1154 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-394 *3 *5)))) (-1909 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1178 (-583 *3))) (-4 *4 (-258)) (-5 *2 (-583 *3)) (-5 *1 (-394 *4 *3)) (-4 *3 (-1154 *4)))) (-1908 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-258)) (-4 *6 (-1154 *4)) (-5 *2 (-1178 (-583 *6))) (-5 *1 (-394 *4 *6)) (-5 *5 (-583 *6)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-258)) (-5 *2 (-694)) (-5 *1 (-394 *5 *3)))) (-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-394 *3 *2)) (-4 *2 (-1154 *3)))))
-((-3731 (((-347 |#5|) |#5|) 24 T ELT)))
-(((-395 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3731 ((-347 |#5|) |#5|))) (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089))))) (-717) (-495) (-495) (-861 |#4| |#2| |#1|)) (T -395))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089)))))) (-4 *5 (-717)) (-4 *7 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-395 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-861 *7 *5 *4)))))
-((-2700 ((|#3|) 43 T ELT)) (-2708 (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 34 T ELT)))
-(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2708 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -2700 (|#3|))) (-717) (-756) (-821) (-861 |#3| |#1| |#2|)) (T -396))
-((-2700 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-396 *3 *4 *2 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-821)) (-5 *1 (-396 *3 *4 *5 *6)))))
-((-3731 (((-347 (-1084 |#1|)) (-1084 |#1|)) 43 T ELT)))
-(((-397 |#1|) (-10 -7 (-15 -3731 ((-347 (-1084 |#1|)) (-1084 |#1|)))) (-258)) (T -397))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-347 (-1084 *4))) (-5 *1 (-397 *4)) (-5 *3 (-1084 *4)))))
-((-3728 (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-694))) 44 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-694))) 43 T ELT) (((-51) |#2| (-1089) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|)) 29 T ELT)) (-3817 (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))) 88 T ELT) (((-51) (-1 |#2| (-349 (-484))) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))) 87 T ELT) (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-484))) 86 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-484))) 85 T ELT) (((-51) |#2| (-1089) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|)) 79 T ELT)) (-3781 (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))) 74 T ELT) (((-51) (-1 |#2| (-349 (-484))) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))) 72 T ELT)) (-3778 (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-484))) 51 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-484))) 50 T ELT)))
-(((-398 |#1| |#2|) (-10 -7 (-15 -3728 ((-51) (-1 |#2| (-484)) (-249 |#2|))) (-15 -3728 ((-51) |#2| (-1089) (-249 |#2|))) (-15 -3728 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-694)))) (-15 -3728 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-694)))) (-15 -3778 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-484)))) (-15 -3778 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-484)))) (-15 -3781 ((-51) (-1 |#2| (-349 (-484))) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484)))) (-15 -3781 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484)))) (-15 -3817 ((-51) (-1 |#2| (-484)) (-249 |#2|))) (-15 -3817 ((-51) |#2| (-1089) (-249 |#2|))) (-15 -3817 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-484)))) (-15 -3817 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-484)))) (-15 -3817 ((-51) (-1 |#2| (-349 (-484))) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484)))) (-15 -3817 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -398))
-((-3817 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-349 (-484)))) (-5 *7 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *8))) (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *8 *3)))) (-3817 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-349 (-484)))) (-5 *4 (-249 *8)) (-5 *5 (-1145 (-349 (-484)))) (-5 *6 (-349 (-484))) (-4 *8 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *8)))) (-3817 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *3)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-484))) (-4 *7 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *7)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *5 *6)))) (-3781 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-349 (-484)))) (-5 *7 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *8))) (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *8 *3)))) (-3781 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-349 (-484)))) (-5 *4 (-249 *8)) (-5 *5 (-1145 (-349 (-484)))) (-5 *6 (-349 (-484))) (-4 *8 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *8)))) (-3778 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *3)))) (-3778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-484))) (-4 *7 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *7)))) (-3728 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-694))) (-4 *3 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *3)))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-694))) (-4 *7 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *7)))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *5 *6)))))
-((-2037 ((|#2| |#2| |#1|) 15 T ELT)) (-1912 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-830)) 82 T ELT)) (-1911 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830)) 71 T ELT)))
-(((-399 |#1| |#2|) (-10 -7 (-15 -1911 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830))) (-15 -1912 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-830))) (-15 -2037 (|#2| |#2| |#1|))) (-258) (-1154 |#1|)) (T -399))
-((-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-399 *3 *2)) (-4 *2 (-1154 *3)))) (-1912 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1154 *4)) (-4 *4 (-258)) (-5 *1 (-399 *4 *3)))) (-1911 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-830)) (-4 *5 (-258)) (-4 *3 (-1154 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-399 *5 *3)) (-5 *4 (-583 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 28 T ELT)) (-3706 (($ |#3|) 25 T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) 32 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1913 (($ |#2| |#4| $) 33 T ELT)) (-2893 (($ |#2| (-650 |#3| |#4| |#5|)) 24 T ELT)) (-2894 (((-650 |#3| |#4| |#5|) $) 15 T ELT)) (-1915 ((|#3| $) 19 T ELT)) (-1916 ((|#4| $) 17 T ELT)) (-3174 ((|#2| $) 29 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1914 (($ |#2| |#3| |#4|) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 36 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-400 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3174 (|#2| $)) (-15 -2894 ((-650 |#3| |#4| |#5|) $)) (-15 -1916 (|#4| $)) (-15 -1915 (|#3| $)) (-15 -3958 ($ $)) (-15 -2893 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -3706 ($ |#3|)) (-15 -1914 ($ |#2| |#3| |#4|)) (-15 -1913 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1089)) (-146) (-756) (-196 (-3956 |#1|) (-694)) (-1 (-85) (-2 (|:| -2400 |#3|) (|:| -2401 |#4|)) (-2 (|:| -2400 |#3|) (|:| -2401 |#4|))) (-861 |#2| |#4| (-773 |#1|))) (T -400))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3956 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-5 *1 (-400 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756)) (-4 *2 (-861 *4 *6 (-773 *3))))) (-3174 (*1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *5 (-196 (-3956 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) (-2 (|:| -2400 *4) (|:| -2401 *5)))) (-4 *2 (-146)) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *2 *5 (-773 *3))))) (-2894 (*1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3956 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-400 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756)) (-4 *8 (-861 *4 *6 (-773 *3))))) (-1916 (*1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *2)) (-2 (|:| -2400 *5) (|:| -2401 *2)))) (-4 *2 (-196 (-3956 *3) (-694))) (-5 *1 (-400 *3 *4 *5 *2 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3))))) (-1915 (*1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3956 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) (-2 (|:| -2400 *2) (|:| -2401 *5)))) (-4 *2 (-756)) (-5 *1 (-400 *3 *4 *2 *5 *6 *7)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-3958 (*1 *1 *1) (-12 (-14 *2 (-583 (-1089))) (-4 *3 (-146)) (-4 *5 (-196 (-3956 *2) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) (-2 (|:| -2400 *4) (|:| -2401 *5)))) (-5 *1 (-400 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *3 *5 (-773 *2))))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3956 *4) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-14 *4 (-583 (-1089))) (-4 *2 (-146)) (-5 *1 (-400 *4 *2 *5 *6 *7 *8)) (-4 *8 (-861 *2 *6 (-773 *4))))) (-3706 (*1 *1 *2) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3956 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) (-2 (|:| -2400 *2) (|:| -2401 *5)))) (-5 *1 (-400 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-1914 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1089))) (-4 *2 (-146)) (-4 *4 (-196 (-3956 *5) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *4)) (-2 (|:| -2400 *3) (|:| -2401 *4)))) (-5 *1 (-400 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756)) (-4 *7 (-861 *2 *4 (-773 *5))))) (-1913 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1089))) (-4 *2 (-146)) (-4 *3 (-196 (-3956 *4) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *3)) (-2 (|:| -2400 *5) (|:| -2401 *3)))) (-5 *1 (-400 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *2 *3 (-773 *4))))))
-((-1917 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT)))
-(((-401 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1917 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|) (-13 (-950 (-349 (-484))) (-312) (-10 -8 (-15 -3945 ($ |#4|)) (-15 -2998 (|#4| $)) (-15 -2997 (|#4| $))))) (T -401))
-((-1917 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-495)) (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-401 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-349 (-484))) (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3081 (((-583 |#3|) $) 41 T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1="failed") (-583 |#4|)) 49 T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3994)) ELT)) (-3180 ((|#3| $) 47 T ELT)) (-2608 (((-583 |#4|) $) 14 T ELT)) (-3245 (((-85) |#4| $) 26 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 39 T ELT)) (-3564 (($) 17 T ELT)) (-1945 (((-694) |#4| $) NIL (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3399 (($ $) 16 T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT) (($ (-583 |#4|)) 51 T ELT)) (-3529 (($ (-583 |#4|)) 13 T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) 38 T ELT) (((-583 |#4|) $) 50 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3056 (((-85) $ $) 30 T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-402 |#1| |#2| |#3| |#4|) (-13 (-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3971 ($ (-583 |#4|))) (-6 -3995))) (-961) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -402))
-((-3971 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-402 *3 *4 *5 *6)))))
-((-2660 (($) 11 T CONST)) (-2666 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
-(((-403 |#1| |#2| |#3|) (-10 -7 (-15 -2666 (|#1|) -3951) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2660 (|#1|) -3951)) (-404 |#2| |#3|) (-146) (-23)) (T -403))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3157 (((-3 |#1| "failed") $) 30 T ELT)) (-3156 ((|#1| $) 31 T ELT)) (-3943 (($ $ $) 27 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3947 ((|#2| $) 23 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 22 T CONST)) (-2666 (($) 28 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
-(((-404 |#1| |#2|) (-113) (-146) (-23)) (T -404))
-((-2666 (*1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3943 (*1 *1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
-(-13 (-409 |t#1| |t#2|) (-950 |t#1|) (-10 -8 (-15 -2666 ($) -3951) (-15 -3943 ($ $ $))))
-(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-409 |#1| |#2|) . T) ((-13) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-1918 (((-1178 (-1178 (-484))) (-1178 (-1178 (-484))) (-830)) 26 T ELT)) (-1919 (((-1178 (-1178 (-484))) (-830)) 21 T ELT)))
-(((-405) (-10 -7 (-15 -1918 ((-1178 (-1178 (-484))) (-1178 (-1178 (-484))) (-830))) (-15 -1919 ((-1178 (-1178 (-484))) (-830))))) (T -405))
-((-1919 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 (-1178 (-484)))) (-5 *1 (-405)))) (-1918 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 (-1178 (-484)))) (-5 *3 (-830)) (-5 *1 (-405)))))
-((-2770 (((-484) (-484)) 32 T ELT) (((-484)) 24 T ELT)) (-2774 (((-484) (-484)) 28 T ELT) (((-484)) 20 T ELT)) (-2772 (((-484) (-484)) 30 T ELT) (((-484)) 22 T ELT)) (-1921 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1920 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1922 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT)))
-(((-406) (-10 -7 (-15 -1920 ((-85))) (-15 -1921 ((-85))) (-15 -1920 ((-85) (-85))) (-15 -1921 ((-85) (-85))) (-15 -1922 ((-85))) (-15 -2772 ((-484))) (-15 -2774 ((-484))) (-15 -2770 ((-484))) (-15 -1922 ((-85) (-85))) (-15 -2772 ((-484) (-484))) (-15 -2774 ((-484) (-484))) (-15 -2770 ((-484) (-484))))) (T -406))
-((-2770 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-1922 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-2770 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-2774 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-2772 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-1922 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-1921 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-1920 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3850 (((-583 (-329)) $) 34 T ELT) (((-583 (-329)) $ (-583 (-329))) 145 T ELT)) (-1927 (((-583 (-1001 (-329))) $) 16 T ELT) (((-583 (-1001 (-329))) $ (-583 (-1001 (-329)))) 142 T ELT)) (-1924 (((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783))) 58 T ELT)) (-1928 (((-583 (-583 (-854 (-179)))) $) 137 T ELT)) (-3705 (((-1184) $ (-854 (-179)) (-783)) 162 T ELT)) (-1929 (($ $) 136 T ELT) (($ (-583 (-583 (-854 (-179))))) 148 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830))) 147 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221))) 149 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3859 (((-484) $) 110 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1930 (($) 146 T ELT)) (-1923 (((-583 (-179)) (-583 (-583 (-854 (-179))))) 89 T ELT)) (-1926 (((-1184) $ (-583 (-854 (-179))) (-783) (-783) (-830)) 154 T ELT) (((-1184) $ (-854 (-179))) 156 T ELT) (((-1184) $ (-854 (-179)) (-783) (-783) (-830)) 155 T ELT)) (-3945 (((-772) $) 168 T ELT) (($ (-583 (-583 (-854 (-179))))) 163 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1925 (((-1184) $ (-854 (-179))) 161 T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-407) (-13 (-1013) (-10 -8 (-15 -1930 ($)) (-15 -1929 ($ $)) (-15 -1929 ($ (-583 (-583 (-854 (-179)))))) (-15 -1929 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)))) (-15 -1929 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221)))) (-15 -1928 ((-583 (-583 (-854 (-179)))) $)) (-15 -3859 ((-484) $)) (-15 -1927 ((-583 (-1001 (-329))) $)) (-15 -1927 ((-583 (-1001 (-329))) $ (-583 (-1001 (-329))))) (-15 -3850 ((-583 (-329)) $)) (-15 -3850 ((-583 (-329)) $ (-583 (-329)))) (-15 -1926 ((-1184) $ (-583 (-854 (-179))) (-783) (-783) (-830))) (-15 -1926 ((-1184) $ (-854 (-179)))) (-15 -1926 ((-1184) $ (-854 (-179)) (-783) (-783) (-830))) (-15 -1925 ((-1184) $ (-854 (-179)))) (-15 -3705 ((-1184) $ (-854 (-179)) (-783))) (-15 -3945 ($ (-583 (-583 (-854 (-179)))))) (-15 -3945 ((-772) $)) (-15 -1924 ((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783)))) (-15 -1923 ((-583 (-179)) (-583 (-583 (-854 (-179))))))))) (T -407))
-((-3945 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-407)))) (-1930 (*1 *1) (-5 *1 (-407))) (-1929 (*1 *1 *1) (-5 *1 (-407))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407)))) (-1929 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *1 (-407)))) (-1929 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-407)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-407)))) (-1927 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-407)))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-407)))) (-3850 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-407)))) (-1926 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1184)) (-5 *1 (-407)))) (-1926 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-407)))) (-1926 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1184)) (-5 *1 (-407)))) (-1925 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-407)))) (-3705 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-407)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407)))) (-1924 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *1 (-407)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179))) (-5 *1 (-407)))))
-((-3836 (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
-(((-408 |#1| |#2| |#3|) (-10 -7 (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|))) (-409 |#2| |#3|) (-146) (-23)) (T -408))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3947 ((|#2| $) 23 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 22 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
-(((-409 |#1| |#2|) (-113) (-146) (-23)) (T -409))
-((-3947 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2660 (*1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
-(-13 (-1013) (-10 -8 (-15 -3947 (|t#2| $)) (-15 -2660 ($) -3951) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3836 ($ $)) (-15 -3838 ($ $ $)) (-15 -3836 ($ $ $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-1932 (((-3 (-583 (-420 |#1| |#2|)) "failed") (-583 (-420 |#1| |#2|)) (-583 (-773 |#1|))) 135 T ELT)) (-1931 (((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 132 T ELT)) (-1933 (((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-484)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 87 T ELT)))
-(((-410 |#1| |#2| |#3|) (-10 -7 (-15 -1931 ((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1932 ((-3 (-583 (-420 |#1| |#2|)) "failed") (-583 (-420 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1933 ((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-484)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))))) (-583 (-1089)) (-391) (-391)) (T -410))
-((-1933 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1089))) (-4 *6 (-391)) (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-484))))) (-5 *1 (-410 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-391)))) (-1932 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-420 *4 *5))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *1 (-410 *4 *5 *6)) (-4 *6 (-391)))) (-1931 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1089))) (-4 *6 (-391)) (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-410 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-391)))))
-((-3466 (((-3 $ "failed") $) 11 T ELT)) (-3009 (($ $ $) 22 T ELT)) (-2435 (($ $ $) 23 T ELT)) (-3948 (($ $ $) 9 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 21 T ELT)))
-(((-411 |#1|) (-10 -7 (-15 -2435 (|#1| |#1| |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3948 (|#1| |#1| |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-412)) (T -411))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 20 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 30 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3009 (($ $ $) 27 T ELT)) (-2435 (($ $ $) 26 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-412) (-113)) (T -412))
-((-2484 (*1 *1 *1) (-4 *1 (-412))) (-3948 (*1 *1 *1 *1) (-4 *1 (-412))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-484)))) (-3009 (*1 *1 *1 *1) (-4 *1 (-412))) (-2435 (*1 *1 *1 *1) (-4 *1 (-412))))
-(-13 (-663) (-10 -8 (-15 -2484 ($ $)) (-15 -3948 ($ $ $)) (-15 ** ($ $ (-484))) (-6 -3991) (-15 -3009 ($ $ $)) (-15 -2435 ($ $ $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 18 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) NIL T ELT) (($ $ (-349 (-484)) (-349 (-484))) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) NIL T ELT) (((-349 (-484)) $ (-349 (-484))) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) NIL T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 29 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 35 (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 30 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 28 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 16 T ELT)) (-3947 (((-349 (-484)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1175 |#2|)) NIL T ELT) (($ (-1159 |#1| |#2| |#3|)) 9 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 21 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-413 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1175 |#2|))) (-15 -3945 ($ (-1159 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -413))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-413 *3 *4 *5)))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 18 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-414 |#1| |#2| |#3| |#4|) (-1106 |#1| |#2|) (-1013) (-1013) (-1106 |#1| |#2|) |#2|) (T -414))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3681 (((-583 $) (-583 |#4|)) NIL T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3798 (((-3 $ #1#) $) 45 T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) NIL T ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 19 T ELT)) (-3245 (((-85) |#4| $) 27 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3797 (((-3 |#4| #1#) $) 42 T ELT)) (-3696 (((-583 |#4|) $) NIL T ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 40 T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3768 (($ $ |#4|) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 14 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) |#4| $) NIL (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3399 (($ $) 13 T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 22 T ELT)) (-2910 (($ $ |#3|) 49 T ELT)) (-2912 (($ $ |#3|) 51 T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3677 (((-694) $) NIL (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-583 |#3|) $) NIL T ELT)) (-3932 (((-85) |#3| $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-415 |#1| |#2| |#3| |#4|) (-1123 |#1| |#2| |#3| |#4|) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -415))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3626 (($) 17 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3971 (((-329) $) 21 T ELT) (((-179) $) 24 T ELT) (((-349 (-1084 (-484))) $) 18 T ELT) (((-473) $) 53 T ELT)) (-3945 (((-772) $) 51 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (((-179) $) 23 T ELT) (((-329) $) 20 T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 37 T CONST)) (-2666 (($) 8 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT)))
-(((-416) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))) (-933) (-552 (-179)) (-552 (-329)) (-553 (-349 (-1084 (-484)))) (-553 (-473)) (-10 -8 (-15 -3626 ($))))) (T -416))
-((-3626 (*1 *1) (-5 *1 (-416))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1048) $) 12 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-417) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1048) $))))) (T -417))
-((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-417)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-417)))))
-((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 16 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) 13 T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 19 T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) 15 T ELT)))
-(((-418 |#1| |#2| |#3|) (-1106 |#1| |#2|) (-1013) (-1013) (-1072)) (T -418))
-NIL
-((-1934 (((-484) (-484) (-484)) 19 T ELT)) (-1935 (((-85) (-484) (-484) (-484) (-484)) 28 T ELT)) (-3456 (((-1178 (-583 (-484))) (-694) (-694)) 42 T ELT)))
-(((-419) (-10 -7 (-15 -1934 ((-484) (-484) (-484))) (-15 -1935 ((-85) (-484) (-484) (-484) (-484))) (-15 -3456 ((-1178 (-583 (-484))) (-694) (-694))))) (T -419))
-((-3456 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1178 (-583 (-484)))) (-5 *1 (-419)))) (-1935 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-419)))) (-1934 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-419)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3083 (((-1084 $) $ (-773 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1936 (($ $ (-583 (-484))) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| (-421 (-3956 |#1|) (-694)) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1084 $) (-773 |#1|)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-421 (-3956 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 (((-421 (-3956 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1624 (($ (-1 (-421 (-3956 |#1|) (-694)) (-421 (-3956 |#1|) (-694))) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#2| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3756 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3947 (((-421 (-3956 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-421 (-3956 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-420 |#1| |#2|) (-13 (-861 |#2| (-421 (-3956 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1936 ($ $ (-583 (-484)))))) (-583 (-1089)) (-961)) (T -420))
-((-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-420 *3 *4)) (-14 *3 (-583 (-1089))) (-4 *4 (-961)))))
-((-2568 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3706 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#2| (-319)) ELT)) (-3787 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2994 (($) NIL (|has| |#2| (-319)) ELT)) (-1575 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ (-484)) 11 T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1178 $)) NIL (|has| |#2| (-961)) ELT)) (-3242 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-319)) ELT)) (-3243 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3835 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1467 (($ (-1178 |#2|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1945 (((-694) |#2| $) NIL (|has| |#2| (-1013)) ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2660 (($) NIL (|has| |#2| (-23)) CONST)) (-2666 (($) NIL (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 17 (|has| |#2| (-756)) ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-421 |#1| |#2|) (-196 |#1| |#2|) (-694) (-717)) (T -421))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-1937 (((-583 (-785)) $) 16 T ELT)) (-3541 (((-446) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1938 (($ (-446) (-583 (-785))) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 23 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-422) (-13 (-995) (-10 -8 (-15 -1938 ($ (-446) (-583 (-785)))) (-15 -3541 ((-446) $)) (-15 -1937 ((-583 (-785)) $))))) (T -422))
-((-1938 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-785))) (-5 *1 (-422)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-422)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-422)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3723 (($) NIL T CONST)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2856 (($ $ $) 48 T ELT)) (-3517 (($ $ $) 47 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-2857 ((|#1| $) 40 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 41 T ELT)) (-3608 (($ |#1| $) 18 T ELT)) (-1939 (($ (-583 |#1|)) 19 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 11 T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 29 T ELT)))
-(((-423 |#1|) (-13 (-881 |#1|) (-10 -8 (-15 -1939 ($ (-583 |#1|))))) (-756)) (T -423))
-((-1939 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-423 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3841 (($ $) 71 T ELT)) (-1636 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1968 (((-355 |#2| (-349 |#2|) |#3| |#4|) $) 45 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (((-3 |#4| #1#) $) 117 T ELT)) (-1637 (($ (-355 |#2| (-349 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-484)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3434 (((-2 (|:| -2336 (-355 |#2| (-349 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3945 (((-772) $) 110 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 32 T CONST)) (-3056 (((-85) $ $) 121 T ELT)) (-3836 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 72 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 77 T ELT)))
-(((-424 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -424))
-NIL
-((-1943 (((-484) (-583 (-484))) 53 T ELT)) (-1940 ((|#1| (-583 |#1|)) 94 T ELT)) (-1942 (((-583 |#1|) (-583 |#1|)) 95 T ELT)) (-1941 (((-583 |#1|) (-583 |#1|)) 97 T ELT)) (-3144 ((|#1| (-583 |#1|)) 96 T ELT)) (-2817 (((-583 (-484)) (-583 |#1|)) 56 T ELT)))
-(((-425 |#1|) (-10 -7 (-15 -3144 (|#1| (-583 |#1|))) (-15 -1940 (|#1| (-583 |#1|))) (-15 -1941 ((-583 |#1|) (-583 |#1|))) (-15 -1942 ((-583 |#1|) (-583 |#1|))) (-15 -2817 ((-583 (-484)) (-583 |#1|))) (-15 -1943 ((-484) (-583 (-484))))) (-1154 (-484))) (T -425))
-((-1943 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-484)) (-5 *1 (-425 *4)) (-4 *4 (-1154 *2)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1154 (-484))) (-5 *2 (-583 (-484))) (-5 *1 (-425 *4)))) (-1942 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-425 *3)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-425 *3)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-425 *2)) (-4 *2 (-1154 (-484))))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-425 *2)) (-4 *2 (-1154 (-484))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-484) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3957 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-484) (-1065)) CONST)) (-1944 (($ (-349 (-484))) 9 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-349 (-484)) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1089)) (-583 (-484))) NIL (|has| (-484) (-455 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-455 (-1089) (-484))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-484) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL T ELT) (((-917 16) $) 10 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT)))
-(((-426) (-13 (-904 (-484)) (-552 (-349 (-484))) (-552 (-917 16)) (-10 -8 (-15 -3128 ((-349 (-484)) $)) (-15 -1944 ($ (-349 (-484))))))) (T -426))
-((-3128 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-426)))) (-1944 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-426)))))
-((-2608 (((-583 |#2|) $) 31 T ELT)) (-3245 (((-85) |#2| $) 39 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3767 (($ $ (-583 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 30 T ELT) (((-694) |#2| $) 37 T ELT)) (-3945 (((-772) $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3056 (((-85) $ $) 35 T ELT)) (-3956 (((-694) $) 18 T ELT)))
-(((-427 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3767 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#2| |#2|)) (-15 -3767 (|#1| |#1| (-249 |#2|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3245 ((-85) |#2| |#1|)) (-15 -1945 ((-694) |#2| |#1|)) (-15 -2608 ((-583 |#2|) |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3956 ((-694) |#1|))) (-428 |#2|) (-1128)) (T -427))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-428 |#1|) (-113) (-1128)) (T -428))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-428 *3)) (-4 *3 (-1128)))) (-1948 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3995)) (-4 *1 (-428 *3)) (-4 *3 (-1128)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4)) (-4 *4 (-1128)) (-5 *2 (-694)))) (-2889 (*1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))) (-2608 (*1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))) (-1945 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-3245 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3995)) (-15 -1948 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3994)) (PROGN (-15 -1947 ((-85) (-1 (-85) |t#1|) $)) (-15 -1946 ((-85) (-1 (-85) |t#1|) $)) (-15 -1945 ((-694) (-1 (-85) |t#1|) $)) (-15 -2889 ((-583 |t#1|) $)) (-15 -2608 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -1945 ((-694) |t#1| $)) (-15 -3245 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-3945 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
-(((-429 |#1|) (-113) (-1128)) (T -429))
-NIL
-(-13 (-552 |t#1|) (-555 |t#1|))
-(((-555 |#1|) . T) ((-552 |#1|) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1949 (($ (-1072)) 8 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 15 T ELT) (((-1072) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT)))
-(((-430) (-13 (-1013) (-552 (-1072)) (-10 -8 (-15 -1949 ($ (-1072)))))) (T -430))
-((-1949 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-430)))))
-((-3491 (($ $) 15 T ELT)) (-3489 (($ $) 24 T ELT)) (-3493 (($ $) 12 T ELT)) (-3494 (($ $) 10 T ELT)) (-3492 (($ $) 17 T ELT)) (-3490 (($ $) 22 T ELT)))
-(((-431 |#1|) (-10 -7 (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|))) (-432)) (T -431))
-NIL
-((-3491 (($ $) 11 T ELT)) (-3489 (($ $) 10 T ELT)) (-3493 (($ $) 9 T ELT)) (-3494 (($ $) 8 T ELT)) (-3492 (($ $) 7 T ELT)) (-3490 (($ $) 6 T ELT)))
-(((-432) (-113)) (T -432))
-((-3491 (*1 *1 *1) (-4 *1 (-432))) (-3489 (*1 *1 *1) (-4 *1 (-432))) (-3493 (*1 *1 *1) (-4 *1 (-432))) (-3494 (*1 *1 *1) (-4 *1 (-432))) (-3492 (*1 *1 *1) (-4 *1 (-432))) (-3490 (*1 *1 *1) (-4 *1 (-432))))
-(-13 (-10 -8 (-15 -3490 ($ $)) (-15 -3492 ($ $)) (-15 -3494 ($ $)) (-15 -3493 ($ $)) (-15 -3489 ($ $)) (-15 -3491 ($ $))))
-((-3731 (((-347 |#4|) |#4| (-1 (-347 |#2|) |#2|)) 54 T ELT)))
-(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4| (-1 (-347 |#2|) |#2|)))) (-312) (-1154 |#1|) (-13 (-312) (-120) (-661 |#1| |#2|)) (-1154 |#3|)) (T -433))
-((-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-661 *5 *6))) (-5 *2 (-347 *3)) (-5 *1 (-433 *5 *6 *7 *3)) (-4 *3 (-1154 *7)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1214 (((-583 $) (-1084 $) (-1089)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1215 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3188 (((-85) $) 39 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1950 (((-85) $ $) 72 T ELT)) (-1599 (((-583 (-550 $)) $) 49 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1603 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1216 (((-583 $) (-1084 $) (-1089)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3183 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3157 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3156 (((-550 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-349 (-484)) $) 54 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-349 (-484)))) (|:| |vec| (-1178 (-349 (-484))))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-349 (-484))) (-630 $)) NIL T ELT)) (-3841 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2573 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1598 (((-583 (-86)) $) NIL T ELT)) (-3594 (((-86) (-86)) NIL T ELT)) (-2410 (((-85) $) 42 T ELT)) (-2673 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2998 (((-1038 (-484) (-550 $)) $) 37 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3132 (((-1084 $) (-1084 $) (-550 $)) 86 T ELT) (((-1084 $) (-1084 $) (-583 (-550 $))) 61 T ELT) (($ $ (-550 $)) 75 T ELT) (($ $ (-583 (-550 $))) 76 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1596 (((-1084 $) (-550 $)) 73 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1601 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-349 (-484)))) (|:| |vec| (-1178 (-349 (-484))))) (-1178 $) $) NIL T ELT) (((-630 (-349 (-484))) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1600 (((-583 (-550 $)) $) NIL T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2633 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-2603 (((-694) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1597 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1602 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3757 (($ $) 36 T ELT) (($ $ (-694)) NIL T ELT)) (-2997 (((-1038 (-484) (-550 $)) $) 20 T ELT)) (-3185 (($ $) NIL (|has| $ (-961)) ELT)) (-3971 (((-329) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-329)) $) 116 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1038 (-484) (-550 $))) 21 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2590 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2254 (((-85) (-86)) 92 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 22 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) 24 T ELT)) (-3948 (($ $ $) 44 T ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-349 (-484))) NIL T ELT) (($ $ (-484)) 47 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT)))
-(((-434) (-13 (-254) (-27) (-950 (-484)) (-950 (-349 (-484))) (-580 (-484)) (-933) (-580 (-349 (-484))) (-120) (-553 (-142 (-329))) (-190) (-555 (-1038 (-484) (-550 $))) (-10 -8 (-15 -2998 ((-1038 (-484) (-550 $)) $)) (-15 -2997 ((-1038 (-484) (-550 $)) $)) (-15 -3841 ($ $)) (-15 -1950 ((-85) $ $)) (-15 -3132 ((-1084 $) (-1084 $) (-550 $))) (-15 -3132 ((-1084 $) (-1084 $) (-583 (-550 $)))) (-15 -3132 ($ $ (-550 $))) (-15 -3132 ($ $ (-583 (-550 $))))))) (T -434))
-((-2998 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-434)))) (-5 *1 (-434)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-434)))) (-5 *1 (-434)))) (-3841 (*1 *1 *1) (-5 *1 (-434))) (-1950 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-434)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-434))) (-5 *3 (-550 (-434))) (-5 *1 (-434)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-434))) (-5 *3 (-583 (-550 (-434)))) (-5 *1 (-434)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-434))) (-5 *1 (-434)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-434)))) (-5 *1 (-434)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 19 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 14 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 13 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) 9 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) 16 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-435 |#1| |#2|) (-19 |#1|) (-1128) (-484)) (T -435))
-NIL
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) 44 T ELT)) (-1256 (($ $ (-484) |#2|) NIL T ELT)) (-1255 (($ $ (-484) |#3|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3111 ((|#2| $ (-484)) 53 T ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) 43 T ELT)) (-3112 ((|#1| $ (-484) (-484)) 38 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3114 (((-694) $) 28 T ELT)) (-3613 (($ (-694) (-694) |#1|) 24 T ELT)) (-3113 (((-694) $) 30 T ELT)) (-3118 (((-484) $) 26 T ELT)) (-3116 (((-484) $) 27 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-3117 (((-484) $) 29 T ELT)) (-3115 (((-484) $) 31 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3242 (((-1072) $) 48 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 61 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 33 T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) (-484)) 41 T ELT) ((|#1| $ (-484) (-484) |#1|) 72 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-3399 (($ $) 59 T ELT)) (-3110 ((|#3| $ (-484)) 55 T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-436 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1128) (-323 |#1|) (-323 |#1|)) (T -436))
-NIL
-((-1952 (((-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694)) 32 T ELT)) (-1951 (((-583 (-1084 |#1|)) |#1| (-694) (-694) (-694)) 43 T ELT)) (-2077 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)) 107 T ELT)))
-(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -1951 ((-583 (-1084 |#1|)) |#1| (-694) (-694) (-694))) (-15 -1952 ((-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694))) (-15 -2077 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)))) (-299) (-1154 |#1|) (-1154 |#2|)) (T -437))
-((-2077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7))))) (-5 *5 (-694)) (-4 *8 (-1154 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7)))) (-5 *1 (-437 *6 *7 *8)))) (-1952 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-4 *5 (-299)) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6))))) (-5 *1 (-437 *5 *6 *7)) (-5 *3 (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6)))) (-4 *7 (-1154 *6)))) (-1951 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-694)) (-4 *3 (-299)) (-4 *5 (-1154 *3)) (-5 *2 (-583 (-1084 *3))) (-5 *1 (-437 *3 *5 *6)) (-4 *6 (-1154 *5)))))
-((-1958 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 70 T ELT)) (-1953 ((|#1| (-630 |#1|) |#1| (-694)) 24 T ELT)) (-1955 (((-694) (-694) (-694)) 34 T ELT)) (-1957 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 50 T ELT)) (-1956 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 58 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 55 T ELT)) (-1954 ((|#1| (-630 |#1|) (-630 |#1|) |#1| (-484)) 28 T ELT)) (-3328 ((|#1| (-630 |#1|)) 18 T ELT)))
-(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -3328 (|#1| (-630 |#1|))) (-15 -1953 (|#1| (-630 |#1|) |#1| (-694))) (-15 -1954 (|#1| (-630 |#1|) (-630 |#1|) |#1| (-484))) (-15 -1955 ((-694) (-694) (-694))) (-15 -1956 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1956 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -1957 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1958 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))) (-1154 |#1|) (-352 |#1| |#2|)) (T -438))
-((-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1956 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1954 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-484)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *5 (-1154 *2)) (-5 *1 (-438 *2 *5 *6)) (-4 *6 (-352 *2 *5)))) (-1953 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-694)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *5 (-1154 *2)) (-5 *1 (-438 *2 *5 *6)) (-4 *6 (-352 *2 *5)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *4 (-1154 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-5 *1 (-438 *2 *4 *5)) (-4 *5 (-352 *2 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 44 T ELT)) (-3321 (($ $ $) 41 T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1729 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3787 (((-85) $ (-1145 (-484)) (-85)) NIL (|has| $ (-6 -3995)) ELT) (((-85) $ (-484) (-85)) 43 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-3405 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-3841 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-1575 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-3112 (((-85) $ (-484)) NIL T ELT)) (-3418 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-1013)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2889 (((-583 (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2561 (($ $ $) 39 T ELT)) (-2560 (($ $) NIL T ELT)) (-1299 (($ $ $) NIL T ELT)) (-3613 (($ (-694) (-85)) 27 T ELT)) (-1300 (($ $ $) NIL T ELT)) (-2200 (((-484) $) 8 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL T ELT)) (-3517 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2608 (((-583 (-85)) $) NIL T ELT)) (-3245 (((-85) (-85) $) NIL (|has| (-85) (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL T ELT)) (-1948 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-85) $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2199 (($ $ (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3767 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-2205 (((-583 (-85)) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 29 T ELT)) (-3799 (($ $ (-1145 (-484))) NIL T ELT) (((-85) $ (-484)) 22 T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-85)) $) NIL T ELT) (((-694) (-85) $) NIL (|has| (-85) (-1013)) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 30 T ELT)) (-3971 (((-473) $) NIL (|has| (-85) (-553 (-473))) ELT)) (-3529 (($ (-583 (-85))) NIL T ELT)) (-3801 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3945 (((-772) $) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2562 (($ $ $) 37 T ELT)) (-2311 (($ $ $) 46 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 31 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 32 T ELT)) (-2312 (($ $ $) 45 T ELT)) (-3956 (((-694) $) 13 T ELT)))
-(((-439 |#1|) (-96) (-484)) (T -439))
-NIL
-((-1960 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1084 |#4|)) 35 T ELT)) (-1959 (((-1084 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1084 |#4|)) 22 T ELT)) (-1961 (((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1084 |#4|))) 46 T ELT)) (-1962 (((-1084 (-1084 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT)))
-(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1959 (|#2| (-1 |#1| |#4|) (-1084 |#4|))) (-15 -1959 ((-1084 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1960 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1084 |#4|))) (-15 -1961 ((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1084 |#4|)))) (-15 -1962 ((-1084 (-1084 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1154 |#1|) (-1154 |#2|) (-961)) (T -440))
-((-1962 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1154 *5)) (-5 *2 (-1084 (-1084 *7))) (-5 *1 (-440 *5 *6 *4 *7)) (-4 *4 (-1154 *6)))) (-1961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1084 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1154 *5)) (-5 *2 (-630 *6)) (-5 *1 (-440 *5 *6 *7 *8)) (-4 *7 (-1154 *6)))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1084 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1154 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1154 *2)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1154 *5)) (-5 *2 (-1084 *7)) (-5 *1 (-440 *5 *4 *6 *7)) (-4 *6 (-1154 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1084 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1154 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1154 *2)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1963 (((-1184) $) 25 T ELT)) (-3799 (((-1072) $ (-1089)) 30 T ELT)) (-3616 (((-1184) $) 20 T ELT)) (-3945 (((-772) $) 27 T ELT) (($ (-1072)) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 12 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 10 T ELT)))
-(((-441) (-13 (-756) (-555 (-1072)) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))) (T -441))
-((-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-441)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-441)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-441)))))
-((-3740 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3738 ((|#1| |#4|) 10 T ELT)) (-3739 ((|#3| |#4|) 17 T ELT)))
-(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 (|#1| |#4|)) (-15 -3739 (|#3| |#4|)) (-15 -3740 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-495) (-904 |#1|) (-323 |#1|) (-323 |#2|)) (T -442))
-((-3740 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *6 (-323 *4)) (-4 *3 (-323 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-4 *2 (-323 *4)) (-5 *1 (-442 *4 *5 *2 *3)) (-4 *3 (-323 *5)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-442 *2 *4 *5 *3)) (-4 *5 (-323 *2)) (-4 *3 (-323 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1973 (((-85) $ (-583 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3188 (((-85) $) 178 T ELT)) (-1965 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-583 |#3|)) 122 T ELT)) (-1964 (((-1079 (-583 (-857 |#1|)) (-583 (-249 (-857 |#1|)))) (-583 |#4|)) 171 (|has| |#3| (-553 (-1089))) ELT)) (-1972 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2410 (((-85) $) 177 T ELT)) (-1969 (($ $) 132 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3238 (($ $ $) 99 T ELT) (($ (-583 $)) 101 T ELT)) (-1974 (((-85) |#4| $) 130 T ELT)) (-1975 (((-85) $ $) 82 T ELT)) (-1968 (($ (-583 |#4|)) 106 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1967 (($ (-583 |#4|)) 175 T ELT)) (-1966 (((-85) $) 176 T ELT)) (-2251 (($ $) 85 T ELT)) (-2695 (((-583 |#4|) $) 73 T ELT)) (-1971 (((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL T ELT)) (-1976 (((-85) |#4| $) 89 T ELT)) (-3910 (((-484) $ (-583 |#3|)) 134 T ELT) (((-484) $) 135 T ELT)) (-3945 (((-772) $) 174 T ELT) (($ (-583 |#4|)) 102 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1970 (($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3056 (((-85) $ $) 84 T ELT)) (-3838 (($ $ $) 109 T ELT)) (** (($ $ (-694)) 115 T ELT)) (* (($ $ $) 113 T ELT)))
-(((-443 |#1| |#2| |#3| |#4|) (-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 -3838 ($ $ $)) (-15 -2410 ((-85) $)) (-15 -3188 ((-85) $)) (-15 -1976 ((-85) |#4| $)) (-15 -1975 ((-85) $ $)) (-15 -1974 ((-85) |#4| $)) (-15 -1973 ((-85) $ (-583 |#3|))) (-15 -1973 ((-85) $)) (-15 -3238 ($ $ $)) (-15 -3238 ($ (-583 $))) (-15 -1972 ($ $ $)) (-15 -1972 ($ $ |#4|)) (-15 -2251 ($ $)) (-15 -1971 ((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1970 ($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)))) (-15 -3910 ((-484) $ (-583 |#3|))) (-15 -3910 ((-484) $)) (-15 -1969 ($ $)) (-15 -1968 ($ (-583 |#4|))) (-15 -1967 ($ (-583 |#4|))) (-15 -1966 ((-85) $)) (-15 -2695 ((-583 |#4|) $)) (-15 -3945 ($ (-583 |#4|))) (-15 -1965 ($ $ |#4|)) (-15 -1965 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-553 (-1089))) (-15 -1964 ((-1079 (-583 (-857 |#1|)) (-583 (-249 (-857 |#1|)))) (-583 |#4|))) |%noBranch|))) (-312) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -443))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2410 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3188 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1975 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1974 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-583 (-443 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1972 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1972 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-2251 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4)) (|:| |genIdeal| (-443 *4 *5 *6 *7)))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3)) (|:| |genIdeal| (-443 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3910 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-484)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-3910 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1969 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1966 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-2695 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1965 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1965 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *1 (-443 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1089))) (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1079 (-583 (-857 *4)) (-583 (-249 (-857 *4))))) (-5 *1 (-443 *4 *5 *6 *7)))))
-((-1977 (((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) 178 T ELT)) (-1978 (((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) 179 T ELT)) (-1979 (((-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) 129 T ELT)) (-3722 (((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) NIL T ELT)) (-1980 (((-583 (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) 181 T ELT)) (-1981 (((-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-583 (-773 |#1|))) 197 T ELT)))
-(((-444 |#1| |#2|) (-10 -7 (-15 -1977 ((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -1978 ((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -3722 ((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -1979 ((-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -1980 ((-583 (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -1981 ((-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-583 (-773 |#1|))))) (-583 (-1089)) (-694)) (T -444))
-((-1981 (*1 *2 *2 *3) (-12 (-5 *2 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *1 (-444 *4 *5)))) (-1980 (*1 *2 *3) (-12 (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-583 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484)))))) (-5 *1 (-444 *4 *5)) (-5 *3 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-443 (-349 (-484)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-349 (-484))))) (-14 *3 (-583 (-1089))) (-14 *4 (-694)) (-5 *1 (-444 *3 *4)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))))
-((-3799 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-445 |#1|) (-113) (-72)) (T -445))
-NIL
-(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3056 (|f| |x| |x|) |x|))))))
-(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1982 (($) 6 T ELT)) (-3945 (((-772) $) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-446) (-13 (-1013) (-10 -8 (-15 -1982 ($))))) (T -446))
-((-1982 (*1 *1) (-5 *1 (-446))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 10 T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) 15 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 20 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 25 T ELT)))
-(((-447 |#1| |#2|) (-13 (-21) (-449 |#1| |#2|)) (-21) (-759)) (T -447))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 16 T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 13 T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) 39 T ELT)) (-1213 (((-85) $ $) 44 T ELT)) (-2893 (($ |#1| |#2|) 36 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) 41 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) 11 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) 30 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 35 T ELT)))
-(((-448 |#1| |#2|) (-13 (-23) (-449 |#1| |#2|)) (-23) (-759)) (T -448))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 16 T ELT)) (-3958 (($ $) 17 T ELT)) (-2893 (($ |#1| |#2|) 20 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1983 ((|#2| $) 18 T ELT)) (-3174 ((|#1| $) 19 T ELT)) (-3242 (((-1072) $) 15 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3243 (((-1033) $) 14 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) 22 T ELT)) (-3945 (((-772) $) 13 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-449 |#1| |#2|) (-113) (-72) (-759)) (T -449))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)))) (-2893 (*1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)) (-5 *2 (-583 (-453 *3 *4))))))
-(-13 (-72) (-557 (-583 (-453 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1013)) (IF (|has| |t#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -2893 ($ |t#1| |t#2|)) (-15 -3174 (|t#1| $)) (-15 -1983 (|t#2| $)) (-15 -3958 ($ $)) (-15 -3773 ((-583 (-453 |t#1| |t#2|)) $))))
-(((-72) . T) ((-552 (-772)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-557 (-583 (-453 |#1| |#2|))) . T) ((-13) . T) ((-1013) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 29 T ELT)) (-3958 (($ $) 23 T ELT)) (-2893 (($ |#1| |#2|) 19 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1983 ((|#2| $) 28 T ELT)) (-3174 ((|#1| $) 27 T ELT)) (-3242 (((-1072) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3243 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) 30 T ELT)) (-1984 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3945 (((-772) $) 17 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-450 |#1| |#2|) (-13 (-449 |#1| |#2|) (-10 -8 (-15 -1984 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-759)) (T -450))
-((-1984 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-450 *4 *5)) (-4 *5 (-759)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 10 T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT)))
-(((-451 |#1| |#2|) (-13 (-716) (-449 |#1| |#2|)) (-716) (-759)) (T -451))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) NIL T ELT)) (-2483 (($ $ $) 24 T ELT)) (-1311 (((-3 $ "failed") $ $) 20 T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT)))
-(((-452 |#1| |#2|) (-13 (-717) (-449 |#1| |#2|)) (-717) (-756)) (T -452))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-1985 (($ |#2| |#1|) 9 T ELT)) (-2400 ((|#2| $) 11 T ELT)) (-3945 (((-782 |#2| |#1|) $) 14 T ELT)) (-3676 ((|#1| $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-453 |#1| |#2|) (-13 (-72) (-552 (-782 |#2| |#1|)) (-10 -8 (-15 -1985 ($ |#2| |#1|)) (-15 -2400 (|#2| $)) (-15 -3676 (|#1| $)))) (-72) (-759)) (T -453))
-((-1985 (*1 *1 *2 *3) (-12 (-5 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-2400 (*1 *2 *1) (-12 (-4 *2 (-759)) (-5 *1 (-453 *3 *2)) (-4 *3 (-72)))) (-3676 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-453 *2 *3)) (-4 *3 (-759)))))
-((-3767 (($ $ (-583 |#2|) (-583 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
-(((-454 |#1| |#2| |#3|) (-10 -7 (-15 -3767 (|#1| |#1| |#2| |#3|)) (-15 -3767 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-455 |#2| |#3|) (-1013) (-1128)) (T -454))
-NIL
-((-3767 (($ $ (-583 |#1|) (-583 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
-(((-455 |#1| |#2|) (-113) (-1013) (-1128)) (T -455))
-((-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-455 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1128)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1128)))))
-(-13 (-10 -8 (-15 -3767 ($ $ |t#1| |t#2|)) (-15 -3767 ($ $ (-583 |t#1|) (-583 |t#2|)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 17 T ELT)) (-3773 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))) $) 19 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) 24 T ELT)) (-1621 ((|#2| $ (-484)) 22 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1620 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1619 (($ $ $) 55 (|has| |#2| (-716)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3676 ((|#2| |#1| $) 51 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 11 T CONST)) (-3056 (((-85) $ $) 30 T ELT)) (-3838 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
-(((-456 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1013) (-104) |#2|) (T -456))
-NIL
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1986 (((-85) (-85)) 32 T ELT)) (-3787 ((|#1| $ (-484) |#1|) 42 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-2368 (($ $) 83 (|has| |#1| (-1013)) ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1987 (($ $ (-484)) 19 T ELT)) (-1988 (((-694) $) 13 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 31 T ELT)) (-2200 (((-484) $) 29 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) 28 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3608 (($ $ $ (-484)) 75 T ELT) (($ |#1| $ (-484)) 59 T ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1989 (($ (-583 |#1|)) 43 T ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) 24 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 62 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 21 T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 55 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1570 (($ $ (-1145 (-484))) 73 T ELT) (($ $ (-484)) 67 T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1730 (($ $ $ (-484)) 63 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 53 T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3790 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 22 T ELT)))
-(((-457 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1989 ($ (-583 |#1|))) (-15 -1988 ((-694) $)) (-15 -1987 ($ $ (-484))) (-15 -1986 ((-85) (-85))))) (-1128) (-484)) (T -457))
-((-1989 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-457 *3 *4)) (-14 *4 (-484)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1991 (((-1048) $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1990 (((-1048) $) 14 T ELT)) (-3921 (((-1048) $) 10 T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-458) (-13 (-995) (-10 -8 (-15 -3921 ((-1048) $)) (-15 -1991 ((-1048) $)) (-15 -1990 ((-1048) $))))) (T -458))
-((-3921 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (((-517 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-517 |#1|) #1#) $) NIL T ELT)) (-3156 (((-517 |#1|) $) NIL T ELT)) (-1791 (($ (-1178 (-517 |#1|))) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1679 (((-85) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| (-517 |#1|) (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2011 (((-85) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3132 (((-517 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 (-517 |#1|)) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2010 (((-830) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1626 (((-1084 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1625 (((-1084 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-319)) ELT) (((-3 (-1084 (-517 |#1|)) #1#) $ $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1627 (($ $ (-1084 (-517 |#1|))) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-517 |#1|) (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| (-517 |#1|) (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| (-517 |#1|) (-319)) ELT) (($ $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 (-517 |#1|))) NIL T ELT)) (-1673 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1628 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3224 (((-1178 (-517 |#1|)) $) NIL T ELT) (((-630 (-517 |#1|)) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-517 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-517 |#1|) (-319)) ELT) (((-632 $) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| (-517 |#1|) (-319)) ELT) (($ $ (-694)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-517 |#1|) (-319)) ELT) (($ $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT) (($ (-517 |#1|) $) NIL T ELT)))
-(((-459 |#1| |#2|) (-280 (-517 |#1|)) (-830) (-830)) (T -459))
-NIL
-((-3109 ((|#4| |#4|) 38 T ELT)) (-3108 (((-694) |#4|) 45 T ELT)) (-3107 (((-694) |#4|) 46 T ELT)) (-3106 (((-583 |#3|) |#4|) 57 (|has| |#3| (-6 -3995)) ELT)) (-3589 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1992 ((|#4| |#4|) 61 T ELT)) (-3327 ((|#1| |#4|) 60 T ELT)))
-(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3109 (|#4| |#4|)) (-15 -3108 ((-694) |#4|)) (-15 -3107 ((-694) |#4|)) (IF (|has| |#3| (-6 -3995)) (-15 -3106 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -3327 (|#1| |#4|)) (-15 -1992 (|#4| |#4|)) (-15 -3589 ((-3 |#4| "failed") |#4|))) (-312) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|)) (T -460))
-((-3589 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-312)) (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3106 (*1 *2 *3) (-12 (|has| *6 (-6 -3995)) (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-583 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-((-3109 ((|#8| |#4|) 20 T ELT)) (-3106 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -3995)) ELT)) (-3589 (((-3 |#8| "failed") |#4|) 23 T ELT)))
-(((-461 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3109 (|#8| |#4|)) (-15 -3589 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3995)) (-15 -3106 ((-583 |#3|) |#4|)) |%noBranch|)) (-495) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|) (-904 |#1|) (-323 |#5|) (-323 |#5|) (-627 |#5| |#6| |#7|)) (T -461))
-((-3106 (*1 *2 *3) (-12 (|has| *9 (-6 -3995)) (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-904 *4)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)) (-5 *2 (-583 *6)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) (-4 *10 (-627 *7 *8 *9)))) (-3589 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1993 (((-583 (-1129)) $) 14 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (($ (-583 (-1129))) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-462) (-13 (-995) (-10 -8 (-15 -3945 ($ (-583 (-1129)))) (-15 -1993 ((-583 (-1129)) $))))) (T -462))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-462)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-462)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1994 (((-1048) $) 15 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3449 (((-446) $) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 22 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-463) (-13 (-995) (-10 -8 (-15 -3449 ((-446) $)) (-15 -1994 ((-1048) $))))) (T -463))
-((-3449 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-463)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-463)))))
-((-2000 (((-632 (-1137)) $) 15 T ELT)) (-1996 (((-632 (-1135)) $) 38 T ELT)) (-1998 (((-632 (-1134)) $) 29 T ELT)) (-2001 (((-632 (-488)) $) 12 T ELT)) (-1997 (((-632 (-486)) $) 42 T ELT)) (-1999 (((-632 (-485)) $) 33 T ELT)) (-1995 (((-694) $ (-102)) 54 T ELT)))
-(((-464 |#1|) (-10 -7 (-15 -1995 ((-694) |#1| (-102))) (-15 -1996 ((-632 (-1135)) |#1|)) (-15 -1997 ((-632 (-486)) |#1|)) (-15 -1998 ((-632 (-1134)) |#1|)) (-15 -1999 ((-632 (-485)) |#1|)) (-15 -2000 ((-632 (-1137)) |#1|)) (-15 -2001 ((-632 (-488)) |#1|))) (-465)) (T -464))
-NIL
-((-2000 (((-632 (-1137)) $) 12 T ELT)) (-1996 (((-632 (-1135)) $) 8 T ELT)) (-1998 (((-632 (-1134)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-1699 (($ $) 6 T ELT)))
-(((-465) (-113)) (T -465))
-((-2002 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-101))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-488))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1137))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-485))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1134))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-486))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1135))))) (-1995 (*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-694)))))
-(-13 (-147) (-10 -8 (-15 -2002 ((-632 (-101)) $)) (-15 -2001 ((-632 (-488)) $)) (-15 -2000 ((-632 (-1137)) $)) (-15 -1999 ((-632 (-485)) $)) (-15 -1998 ((-632 (-1134)) $)) (-15 -1997 ((-632 (-486)) $)) (-15 -1996 ((-632 (-1135)) $)) (-15 -1995 ((-694) $ (-102)))))
+((-1729 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-316 *3)))) (-3109 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-831)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1179 (-631 *4))))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1179 *4)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))) (-1722 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3467 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2406 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2405 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-1707 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-584 (-1179 *3))))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1085 *3)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1085 *3)))) (-1907 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) (-1906 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) (-1704 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1703 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1772 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))))
+(-13 (-684 |t#1|) (-10 -8 (-15 -1729 ((-1179 $))) (-15 -3109 ((-831))) (-15 -1892 ((-584 (-858 |t#1|)) (-1179 $))) (-15 -3224 ((-1179 (-631 |t#1|)) (-1179 $))) (-15 -1787 ((-631 |t#1|) $ (-1179 $))) (-15 -1786 ((-631 |t#1|) $ (-1179 $))) (-15 -1728 (|t#1| $)) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -1725 (|t#1| $)) (-15 -3225 ((-1179 |t#1|) $ (-1179 $))) (-15 -3225 ((-631 |t#1|) (-1179 $) (-1179 $))) (-15 -1792 ($ (-1179 |t#1|) (-1179 $))) (-15 -1791 (|t#1| (-1179 $))) (-15 -1790 (|t#1| (-1179 $))) (-15 -1789 ((-631 |t#1|) (-1179 $))) (-15 -1788 ((-631 |t#1|) (-1179 $))) (-15 -1724 ((-1085 |t#1|) $)) (-15 -1723 ((-1085 |t#1|) $)) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (IF (|has| |t#1| (-496)) (PROGN (-15 -3467 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -1707 ((-584 (-1179 |t#1|)))) (-15 -1706 ((-1085 |t#1|) $)) (-15 -1705 ((-1085 |t#1|) $)) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed"))) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed"))) (-15 -1704 ((-3 $ "failed"))) (-15 -1703 ((-3 $ "failed"))) (-15 -1772 ((-3 $ "failed"))) (-6 -3992)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-3403 (((-85) $) 13 T ELT)))
+(((-317 |#1| |#2|) (-10 -7 (-15 -3403 ((-85) |#1|))) (-318 |#2|) (-1129)) (T -317))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-318 |#1|) (-113) (-1129)) (T -318))
+((-3957 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-695)))) (-1948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-695)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-584 *3)))) (-1946 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-695)))) (-3246 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85)))))
+(-13 (-429 |t#1|) (-10 -8 (-6 -3995) (-15 -3957 ((-695) $)) (-15 -1948 ((-85) (-1 (-85) |t#1|) $)) (-15 -1947 ((-85) (-1 (-85) |t#1|) $)) (-15 -1946 ((-695) (-1 (-85) |t#1|) $)) (-15 -2609 ((-584 |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1946 ((-695) |t#1| $)) (-15 -3246 ((-85) |t#1| $))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2995 (($) 15 T ELT)))
+(((-319 |#1|) (-10 -7 (-15 -2995 (|#1|))) (-320)) (T -319))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3137 (((-695)) 20 T ELT)) (-2995 (($) 17 T ELT)) (-2011 (((-831) $) 18 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2401 (($ (-831)) 19 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-320) (-113)) (T -320))
+((-3137 (*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-695)))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-320)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-831)))) (-2995 (*1 *1) (-4 *1 (-320))))
+(-13 (-1014) (-10 -8 (-15 -3137 ((-695))) (-15 -2401 ($ (-831))) (-15 -2011 ((-831) $)) (-15 -2995 ($))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-1782 (((-631 |#2|) (-1179 $)) 45 T ELT)) (-1792 (($ (-1179 |#2|) (-1179 $)) 39 T ELT)) (-1781 (((-631 |#2|) $ (-1179 $)) 47 T ELT)) (-3757 ((|#2| (-1179 $)) 13 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-631 |#2|) (-1179 $) (-1179 $)) 27 T ELT)))
+(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -1782 ((-631 |#2|) (-1179 |#1|))) (-15 -3757 (|#2| (-1179 |#1|))) (-15 -1792 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3225 ((-631 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1781 ((-631 |#2|) |#1| (-1179 |#1|)))) (-322 |#2| |#3|) (-146) (-1155 |#2|)) (T -321))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1782 (((-631 |#1|) (-1179 $)) 61 T ELT)) (-3330 ((|#1| $) 67 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1792 (($ (-1179 |#1|) (-1179 $)) 63 T ELT)) (-1781 (((-631 |#1|) $ (-1179 $)) 68 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-831)) 69 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 66 T ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3757 ((|#1| (-1179 $)) 62 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-631 |#1|) (-1179 $) (-1179 $)) 64 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2703 (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
+(((-322 |#1| |#2|) (-113) (-146) (-1155 |t#1|)) (T -322))
+((-3109 (*1 *2) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-831)))) (-1781 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-631 *4)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) (-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *4)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-631 *4)))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4 *5)) (-4 *5 (-1155 *4)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1155 *2)) (-4 *2 (-146)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-631 *4)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1155 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3109 ((-831))) (-15 -1781 ((-631 |t#1|) $ (-1179 $))) (-15 -3330 (|t#1| $)) (-15 -3133 (|t#1| $)) (-15 -3225 ((-1179 |t#1|) $ (-1179 $))) (-15 -3225 ((-631 |t#1|) (-1179 $) (-1179 $))) (-15 -1792 ($ (-1179 |t#1|) (-1179 $))) (-15 -3757 (|t#1| (-1179 $))) (-15 -1782 ((-631 |t#1|) (-1179 $))) (-15 -2450 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2015 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-1732 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1730 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2910 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2299 (($ $) 25 T ELT)) (-3419 (((-485) (-1 (-85) |#2|) $) NIL T ELT) (((-485) |#2| $) 11 T ELT) (((-485) |#2| $ (-485)) NIL T ELT)) (-3518 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT)))
+(((-323 |#1| |#2|) (-10 -7 (-15 -1730 (|#1| |#1|)) (-15 -1730 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1732 ((-85) |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -3419 ((-485) |#2| |#1| (-485))) (-15 -3419 ((-485) |#2| |#1|)) (-15 -3419 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2910 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -3518 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-324 |#2|) (-1129)) (T -323))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) 44 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3996))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-757)) ELT)) (-3788 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2298 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) 110 T ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) 107 T ELT) (((-485) |#1| $) 106 (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) 105 (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1146 (-485))) 75 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1146 (-485))) 67 T ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-1731 (($ $ $ (-485)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-324 |#1|) (-113) (-1129)) (T -324))
+((-3518 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)))) (-2910 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-1732 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-3419 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) (-5 *2 (-485)))) (-3419 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-1014)) (-5 *2 (-485)))) (-3419 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-1014)))) (-3518 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-757)))) (-2910 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-757)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-757)) (-5 *2 (-85)))) (-1731 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (|has| *1 (-6 -3996)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-2298 (*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-324 *2)) (-4 *2 (-1129)))) (-1730 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3996)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-1730 (*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-757)))))
+(-13 (-594 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3518 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2299 ($ $)) (-15 -2910 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1732 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3419 ((-485) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3419 ((-485) |t#1| $)) (-15 -3419 ((-485) |t#1| $ (-485)))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-6 (-757)) (-15 -3518 ($ $ $)) (-15 -2910 ($ $)) (-15 -1732 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3996)) (PROGN (-15 -1731 ($ $ $ (-485))) (-15 -2298 ($ $)) (-15 -1730 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-15 -1730 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1129) . T))
+((-3841 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3842 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3958 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT)))
+(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3842 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3841 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1129) (-324 |#1|) (-1129) (-324 |#3|)) (T -325))
+((-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3934 (((-584 |#1|) $) 43 T ELT)) (-3947 (($ $ (-695)) 44 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3939 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 47 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3936 (($ $) 45 T ELT)) (-3940 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 48 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3768 (($ $ |#1| $) 42 T ELT) (($ $ (-584 |#1|) (-584 $)) 41 T ELT)) (-3948 (((-695) $) 49 T ELT)) (-3530 (($ $ $) 40 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1195 |#1| |#2|) $) 51 T ELT) (((-1204 |#1| |#2|) $) 50 T ELT)) (-3954 ((|#2| (-1204 |#1| |#2|) $) 53 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-1733 (($ (-615 |#1|)) 46 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
+(((-326 |#1| |#2|) (-113) (-757) (-146)) (T -326))
+((-3954 (*1 *2 *3 *1) (-12 (-5 *3 (-1204 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-757)) (-4 *2 (-146)))) (-3946 (*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1195 *3 *4)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1204 *3 *4)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695)))) (-3940 (*1 *2 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3939 (*1 *2 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))) (-3936 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3)))) (-3768 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-757)) (-4 *5 (-146)))))
+(-13 (-575 |t#2|) (-10 -8 (-15 -3954 (|t#2| (-1204 |t#1| |t#2|) $)) (-15 -3946 ($ |t#1|)) (-15 -3946 ((-1195 |t#1| |t#2|) $)) (-15 -3946 ((-1204 |t#1| |t#2|) $)) (-15 -3948 ((-695) $)) (-15 -3940 ((-1204 |t#1| |t#2|) (-1204 |t#1| |t#2|) $)) (-15 -3939 ((-1204 |t#1| |t#2|) (-1204 |t#1| |t#2|) $)) (-15 -1733 ($ (-615 |t#1|))) (-15 -3936 ($ $)) (-15 -3947 ($ $ (-695))) (-15 -3934 ((-584 |t#1|) $)) (-15 -3768 ($ $ |t#1| $)) (-15 -3768 ($ $ (-584 |t#1|) (-584 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-591 |#2|) . T) ((-575 |#2|) . T) ((-583 |#2|) . T) ((-655 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1129) . T))
+((-1736 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1734 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1735 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT)))
+(((-327 |#1| |#2|) (-10 -7 (-15 -1734 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1735 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1736 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1129) (-13 (-324 |#1|) (-10 -7 (-6 -3996)))) (T -327))
+((-1736 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))))) (-1735 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))))) (-1734 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))))))
+((-2280 (((-631 |#2|) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 22 T ELT) (((-631 (-485)) (-631 $)) 14 T ELT)))
+(((-328 |#1| |#2|) (-10 -7 (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-631 |#2|) (-631 |#1|)))) (-329 |#2|) (-962)) (T -328))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2280 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 35 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 47 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-631 $)) 46 (|has| |#1| (-581 (-485))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2281 (((-631 |#1|) (-1179 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 37 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 45 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-1179 $)) 44 (|has| |#1| (-581 (-485))) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
+(((-329 |#1|) (-113) (-962)) (T -329))
+NIL
+(-13 (-581 |t#1|) (-10 -7 (IF (|has| |t#1| (-581 (-485))) (-6 (-581 (-485))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 16 T ELT)) (-3130 (((-485) $) 44 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3771 (($ $) 120 T ELT)) (-3492 (($ $) 81 T ELT)) (-3639 (($ $) 72 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3038 (($ $) 28 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 79 T ELT)) (-3638 (($ $) 67 T ELT)) (-3623 (((-485) $) 60 T ELT)) (-2442 (($ $ (-485)) 55 T ELT)) (-3494 (($ $) NIL T ELT)) (-3637 (($ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3128 (($ $) 122 T ELT)) (-3158 (((-3 (-485) #1#) $) 217 T ELT) (((-3 (-350 (-485)) #1#) $) 213 T ELT)) (-3157 (((-485) $) 215 T ELT) (((-350 (-485)) $) 211 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-1745 (((-485) $ $) 110 T ELT)) (-3467 (((-3 $ #1#) $) 125 T ELT)) (-1744 (((-350 (-485)) $ (-695)) 218 T ELT) (((-350 (-485)) $ (-695) (-695)) 210 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-1768 (((-831)) 106 T ELT) (((-831) (-831)) 107 (|has| $ (-6 -3986)) ELT)) (-3187 (((-85) $) 38 T ELT)) (-3627 (($) 22 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL T ELT)) (-1737 (((-1185) (-695)) 177 T ELT)) (-1738 (((-1185)) 182 T ELT) (((-1185) (-695)) 183 T ELT)) (-1740 (((-1185)) 184 T ELT) (((-1185) (-695)) 185 T ELT)) (-1739 (((-1185)) 180 T ELT) (((-1185) (-695)) 181 T ELT)) (-3772 (((-485) $) 50 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 21 T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-2444 (($ $) 32 T ELT)) (-3133 (($ $) NIL T ELT)) (-3188 (((-85) $) 18 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL (-12 (-2561 (|has| $ (-6 -3978))) (-2561 (|has| $ (-6 -3986)))) ELT)) (-2858 (($ $ $) NIL T ELT) (($) NIL (-12 (-2561 (|has| $ (-6 -3978))) (-2561 (|has| $ (-6 -3986)))) ELT)) (-1770 (((-485) $) 112 T ELT)) (-1743 (($) 90 T ELT) (($ $) 97 T ELT)) (-1742 (($) 96 T ELT) (($ $) 98 T ELT)) (-3942 (($ $) 84 T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 127 T ELT)) (-1767 (((-831) (-485)) 27 (|has| $ (-6 -3986)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) 41 T ELT)) (-3131 (($ $) 119 T ELT)) (-3255 (($ (-485) (-485)) 115 T ELT) (($ (-485) (-485) (-831)) 116 T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2402 (((-485) $) 113 T ELT)) (-1741 (($) 99 T ELT)) (-3943 (($ $) 78 T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-831)) 108 T ELT) (((-831) (-831)) 109 (|has| $ (-6 -3986)) ELT)) (-3758 (($ $) 126 T ELT) (($ $ (-695)) NIL T ELT)) (-1766 (((-831) (-485)) 31 (|has| $ (-6 -3986)) ELT)) (-3495 (($ $) NIL T ELT)) (-3636 (($ $) NIL T ELT)) (-3493 (($ $) NIL T ELT)) (-3635 (($ $) NIL T ELT)) (-3491 (($ $) 80 T ELT)) (-3634 (($ $) 71 T ELT)) (-3972 (((-330) $) 202 T ELT) (((-179) $) 204 T ELT) (((-801 (-330)) $) NIL T ELT) (((-1073) $) 188 T ELT) (((-474) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3946 (((-773) $) 192 T ELT) (($ (-485)) 214 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) 214 T ELT) (($ (-350 (-485))) NIL T ELT) (((-179) $) 205 T ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (($ $) 121 T ELT)) (-1769 (((-831)) 42 T ELT) (((-831) (-831)) 62 (|has| $ (-6 -3986)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (((-831)) 111 T ELT)) (-3498 (($ $) 87 T ELT)) (-3486 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 85 T ELT)) (-3484 (($ $) 20 T ELT)) (-3500 (($ $) NIL T ELT)) (-3488 (($ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL T ELT)) (-3489 (($ $) NIL T ELT)) (-3499 (($ $) NIL T ELT)) (-3487 (($ $) NIL T ELT)) (-3497 (($ $) 86 T ELT)) (-3485 (($ $) 33 T ELT)) (-3383 (($ $) 39 T ELT)) (-2661 (($) 17 T CONST)) (-2667 (($) 24 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2567 (((-85) $ $) 189 T ELT)) (-2568 (((-85) $ $) 26 T ELT)) (-3057 (((-85) $ $) 37 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 43 T ELT)) (-3949 (($ $ $) 29 T ELT) (($ $ (-485)) 23 T ELT)) (-3837 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3839 (($ $ $) 54 T ELT)) (** (($ $ (-831)) 65 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 91 T ELT) (($ $ (-350 (-485))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-831) $) 61 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
+(((-330) (-13 (-347) (-190) (-554 (-1073)) (-553 (-179)) (-1115) (-554 (-474)) (-558 (-179)) (-10 -8 (-15 -3949 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -2444 ($ $)) (-15 -1745 ((-485) $ $)) (-15 -2442 ($ $ (-485))) (-15 -1744 ((-350 (-485)) $ (-695))) (-15 -1744 ((-350 (-485)) $ (-695) (-695))) (-15 -1743 ($)) (-15 -1742 ($)) (-15 -1741 ($)) (-15 -3486 ($ $ $)) (-15 -1743 ($ $)) (-15 -1742 ($ $)) (-15 -1740 ((-1185))) (-15 -1740 ((-1185) (-695))) (-15 -1739 ((-1185))) (-15 -1739 ((-1185) (-695))) (-15 -1738 ((-1185))) (-15 -1738 ((-1185) (-695))) (-15 -1737 ((-1185) (-695))) (-6 -3986) (-6 -3978)))) (T -330))
+((** (*1 *1 *1 *1) (-5 *1 (-330))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-2444 (*1 *1 *1) (-5 *1 (-330))) (-1745 (*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) (-1744 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) (-1743 (*1 *1) (-5 *1 (-330))) (-1742 (*1 *1) (-5 *1 (-330))) (-1741 (*1 *1) (-5 *1 (-330))) (-3486 (*1 *1 *1 *1) (-5 *1 (-330))) (-1743 (*1 *1 *1) (-5 *1 (-330))) (-1742 (*1 *1 *1) (-5 *1 (-330))) (-1740 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-330)))) (-1739 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-330)))) (-1738 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-330)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-330)))))
+((-1746 (((-584 (-249 (-858 (-142 |#1|)))) (-249 (-350 (-858 (-142 (-485))))) |#1|) 52 T ELT) (((-584 (-249 (-858 (-142 |#1|)))) (-350 (-858 (-142 (-485)))) |#1|) 51 T ELT) (((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-249 (-350 (-858 (-142 (-485)))))) |#1|) 48 T ELT) (((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-350 (-858 (-142 (-485))))) |#1|) 42 T ELT)) (-1747 (((-584 (-584 (-142 |#1|))) (-584 (-350 (-858 (-142 (-485))))) (-584 (-1090)) |#1|) 30 T ELT) (((-584 (-142 |#1|)) (-350 (-858 (-142 (-485)))) |#1|) 18 T ELT)))
+(((-331 |#1|) (-10 -7 (-15 -1746 ((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-350 (-858 (-142 (-485))))) |#1|)) (-15 -1746 ((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-249 (-350 (-858 (-142 (-485)))))) |#1|)) (-15 -1746 ((-584 (-249 (-858 (-142 |#1|)))) (-350 (-858 (-142 (-485)))) |#1|)) (-15 -1746 ((-584 (-249 (-858 (-142 |#1|)))) (-249 (-350 (-858 (-142 (-485))))) |#1|)) (-15 -1747 ((-584 (-142 |#1|)) (-350 (-858 (-142 (-485)))) |#1|)) (-15 -1747 ((-584 (-584 (-142 |#1|))) (-584 (-350 (-858 (-142 (-485))))) (-584 (-1090)) |#1|))) (-13 (-312) (-756))) (T -331))
+((-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *4 (-584 (-1090))) (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-312) (-756))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 (-142 (-485)))))) (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 (-142 (-485))))))) (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))))
+((-3573 (((-584 (-249 (-858 |#1|))) (-249 (-350 (-858 (-485)))) |#1|) 47 T ELT) (((-584 (-249 (-858 |#1|))) (-350 (-858 (-485))) |#1|) 46 T ELT) (((-584 (-584 (-249 (-858 |#1|)))) (-584 (-249 (-350 (-858 (-485))))) |#1|) 43 T ELT) (((-584 (-584 (-249 (-858 |#1|)))) (-584 (-350 (-858 (-485)))) |#1|) 37 T ELT)) (-1748 (((-584 |#1|) (-350 (-858 (-485))) |#1|) 20 T ELT) (((-584 (-584 |#1|)) (-584 (-350 (-858 (-485)))) (-584 (-1090)) |#1|) 30 T ELT)))
+(((-332 |#1|) (-10 -7 (-15 -3573 ((-584 (-584 (-249 (-858 |#1|)))) (-584 (-350 (-858 (-485)))) |#1|)) (-15 -3573 ((-584 (-584 (-249 (-858 |#1|)))) (-584 (-249 (-350 (-858 (-485))))) |#1|)) (-15 -3573 ((-584 (-249 (-858 |#1|))) (-350 (-858 (-485))) |#1|)) (-15 -3573 ((-584 (-249 (-858 |#1|))) (-249 (-350 (-858 (-485)))) |#1|)) (-15 -1748 ((-584 (-584 |#1|)) (-584 (-350 (-858 (-485)))) (-584 (-1090)) |#1|)) (-15 -1748 ((-584 |#1|) (-350 (-858 (-485))) |#1|))) (-13 (-756) (-312))) (T -332))
+((-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-1748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *4 (-584 (-1090))) (-5 *2 (-584 (-584 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-756) (-312))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 (-485))))) (-5 *2 (-584 (-249 (-858 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 (-249 (-858 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 (-485)))))) (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3774 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3972 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3946 (((-773) $) 34 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
+(((-333 |#1| |#2|) (-13 (-82 |#1| |#1|) (-450 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|))) (-962) (-760)) (T -333))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 29 T ELT)) (-3157 ((|#2| $) 31 T ELT)) (-3959 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2421 (((-695) $) 13 T ELT)) (-2822 (((-584 $) $) 23 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ |#2| |#1|) 21 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1749 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2895 ((|#2| $) 18 T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3817 (((-584 |#1|) $) 20 T ELT)) (-3677 ((|#1| $ |#2|) 54 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 32 T CONST)) (-2666 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT)))
+(((-334 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-962) (-757)) (T -334))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#2| "failed") $) 55 T ELT)) (-3157 ((|#2| $) 56 T ELT)) (-3959 (($ $) 41 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2421 (((-695) $) 45 T ELT)) (-2822 (((-584 $) $) 46 T ELT)) (-3937 (((-85) $) 49 T ELT)) (-3938 (($ |#2| |#1|) 50 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1749 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2895 ((|#2| $) 44 T ELT)) (-3175 ((|#1| $) 43 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3817 (((-584 |#1|) $) 47 T ELT)) (-3677 ((|#1| $ |#2|) 52 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2666 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT)))
+(((-335 |#1| |#2|) (-113) (-962) (-1014)) (T -335))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))) (-3677 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)))) (-3938 (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-85)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-335 *3 *4)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))))
+(-13 (-82 |t#1| |t#1|) (-951 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3677 (|t#1| $ |t#2|)) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (-15 -3938 ($ |t#2| |t#1|)) (-15 -3937 ((-85) $)) (-15 -2666 ((-584 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3817 ((-584 |t#1|) $)) (-15 -2822 ((-584 $) $)) (-15 -2421 ((-695) $)) (-15 -2895 (|t#2| $)) (-15 -3175 (|t#1| $)) (-15 -1749 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3959 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-951 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3137 (((-695) $) 40 T ELT)) (-3724 (($) 23 T CONST)) (-3939 (((-3 $ "failed") $ $) 43 T ELT)) (-3158 (((-3 |#1| "failed") $) 51 T ELT)) (-3157 ((|#1| $) 52 T ELT)) (-3467 (((-3 $ "failed") $) 20 T ELT)) (-1750 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-2300 ((|#1| $ (-485)) 37 T ELT)) (-2301 (((-695) $ (-485)) 38 T ELT)) (-2532 (($ $ $) 29 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 30 (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2292 (($ (-1 (-695) (-695)) $) 36 T ELT)) (-3940 (((-3 $ "failed") $ $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1751 (($ $ $) 45 T ELT)) (-1752 (($ $ $) 46 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1779 (((-584 (-2 (|:| |gen| |#1|) (|:| -3943 (-695)))) $) 39 T ELT)) (-2880 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-2567 (((-85) $ $) 31 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 33 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 32 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 34 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ |#1| (-695)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT)))
+(((-336 |#1|) (-113) (-1014)) (T -336))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-1752 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-1751 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-3940 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-3939 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-2880 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-1750 (*1 *2 *1 *1) (-12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 (-695))))))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *4)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-336 *3)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1014)))))
+(-13 (-664) (-951 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-695))) (-15 -1752 ($ $ $)) (-15 -1751 ($ $ $)) (-15 -3940 ((-3 $ "failed") $ $)) (-15 -3939 ((-3 $ "failed") $ $)) (-15 -2880 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1750 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3137 ((-695) $)) (-15 -1779 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3943 (-695)))) $)) (-15 -2301 ((-695) $ (-485))) (-15 -2300 (|t#1| $ (-485))) (-15 -2292 ($ (-1 (-695) (-695)) $)) (-15 -2291 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|)))
+(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 |#1|) . T) ((-1026) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695) $) 74 T ELT)) (-3724 (($) NIL T CONST)) (-3939 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1750 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2411 (((-85) $) 17 T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-695) $ (-485)) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2292 (($ (-1 (-695) (-695)) $) 37 T ELT)) (-3940 (((-3 $ #1#) $ $) 60 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1751 (($ $ $) 28 T ELT)) (-1752 (($ $ $) 26 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1779 (((-584 (-2 (|:| |gen| |#1|) (|:| -3943 (-695)))) $) 34 T ELT)) (-2880 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3946 (((-773) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 7 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
+(((-337 |#1|) (-336 |#1|) (-1014)) (T -337))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1753 (((-85) $) 25 T ELT)) (-1754 (((-85) $) 22 T ELT)) (-3614 (($ (-1073) (-1073) (-1073)) 26 T ELT)) (-3542 (((-1073) $) 16 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1758 (($ (-1073) (-1073) (-1073)) 14 T ELT)) (-1756 (((-1073) $) 17 T ELT)) (-1755 (((-85) $) 18 T ELT)) (-1757 (((-1073) $) 15 T ELT)) (-3946 (((-773) $) 12 T ELT) (($ (-1073)) 13 T ELT) (((-1073) $) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 7 T ELT)))
+(((-338) (-339)) (T -338))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-1753 (((-85) $) 20 T ELT)) (-1754 (((-85) $) 21 T ELT)) (-3614 (($ (-1073) (-1073) (-1073)) 19 T ELT)) (-3542 (((-1073) $) 24 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1758 (($ (-1073) (-1073) (-1073)) 26 T ELT)) (-1756 (((-1073) $) 23 T ELT)) (-1755 (((-85) $) 22 T ELT)) (-1757 (((-1073) $) 25 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-1073)) 28 T ELT) (((-1073) $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-339) (-113)) (T -339))
+((-1758 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-3614 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339)))))
+(-13 (-1014) (-430 (-1073)) (-10 -8 (-15 -1758 ($ (-1073) (-1073) (-1073))) (-15 -1757 ((-1073) $)) (-15 -3542 ((-1073) $)) (-15 -1756 ((-1073) $)) (-15 -1755 ((-85) $)) (-15 -1754 ((-85) $)) (-15 -1753 ((-85) $)) (-15 -3614 ($ (-1073) (-1073) (-1073)))))
+(((-72) . T) ((-556 (-1073)) . T) ((-553 (-773)) . T) ((-553 (-1073)) . T) ((-430 (-1073)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-1759 (((-773) $) 64 T ELT)) (-3724 (($) NIL T CONST)) (-2408 (($ $ (-831)) NIL T ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) 38 T ELT)) (-3911 (((-695)) 18 T ELT)) (-1760 (((-773) $) 66 T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 41 T ELT)) (-3837 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3839 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT)))
+(((-340 |#1| |#2| |#3|) (-13 (-684 |#3|) (-10 -8 (-15 -3911 ((-695))) (-15 -1760 ((-773) $)) (-15 -1759 ((-773) $)) (-15 -2410 ($ (-695))))) (-695) (-695) (-146)) (T -340))
+((-3911 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))))
+((-3772 (((-695) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT)))
+(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3772 ((-695) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-320) (-312)) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -341))
+((-3772 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-695)) (-5 *1 (-341 *4 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1762 ((|#2| $) 38 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1763 (($ (-350 |#2|)) 93 T ELT)) (-1761 (((-584 (-2 (|:| -2402 (-695)) (|:| -3773 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3758 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-3972 (((-350 |#2|) $) 49 T ELT)) (-3530 (($ (-584 (-2 (|:| -2402 (-695)) (|:| -3773 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3946 (((-773) $) 131 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2670 (($ $ (-695)) 37 T ELT) (($ $) 35 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3839 (($ |#2| $) 41 T ELT)))
+(((-342 |#1| |#2|) (-13 (-1014) (-189) (-554 (-350 |#2|)) (-10 -8 (-15 -3839 ($ |#2| $)) (-15 -1763 ($ (-350 |#2|))) (-15 -1762 (|#2| $)) (-15 -1761 ((-584 (-2 (|:| -2402 (-695)) (|:| -3773 |#2|) (|:| |num| |#2|))) $)) (-15 -3530 ($ (-584 (-2 (|:| -2402 (-695)) (|:| -3773 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1155 |#1|)) (T -342))
+((-3839 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1155 *3)))) (-1763 (*1 *1 *2) (-12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) (-1762 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1761 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3773 *4) (|:| |num| *4)))) (-5 *1 (-342 *3 *4)) (-4 *4 (-1155 *3)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3773 *4) (|:| |num| *4)))) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))))
+((-2569 (((-85) $ $) 10 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 16 (|has| |#1| (-797 (-330))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 15 (|has| |#1| (-797 (-485))) ELT)) (-3243 (((-1073) $) 14 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3244 (((-1034) $) 13 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3946 (((-773) $) 12 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-1265 (((-85) $ $) 11 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3057 (((-85) $ $) 9 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)))
+(((-343 |#1|) (-113) (-1129)) (T -343))
+NIL
+(-13 (-1129) (-10 -7 (IF (|has| |t#1| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) (IF (|has| |t#1| (-797 (-330))) (-6 (-797 (-330))) |%noBranch|)))
+(((-72) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-553 (-773)) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-13) . T) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-1014) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-1129) . T))
+((-1764 (($ $) 10 T ELT) (($ $ (-695)) 12 T ELT)))
+(((-344 |#1|) (-10 -7 (-15 -1764 (|#1| |#1| (-695))) (-15 -1764 (|#1| |#1|))) (-345)) (T -344))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1764 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-3772 (((-744 (-831)) $) 99 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1765 (((-3 (-695) "failed") $ $) 98 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-2703 (((-633 $) $) 100 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
+(((-345) (-113)) (T -345))
+((-3772 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-744 (-831))))) (-1765 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-695)))) (-1764 (*1 *1 *1) (-4 *1 (-345))) (-1764 (*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-695)))))
+(-13 (-312) (-118) (-10 -8 (-15 -3772 ((-744 (-831)) $)) (-15 -1765 ((-3 (-695) "failed") $ $)) (-15 -1764 ($ $)) (-15 -1764 ($ $ (-695)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) . T))
+((-3255 (($ (-485) (-485)) 11 T ELT) (($ (-485) (-485) (-831)) NIL T ELT)) (-2616 (((-831)) 19 T ELT) (((-831) (-831)) NIL T ELT)))
+(((-346 |#1|) (-10 -7 (-15 -2616 ((-831) (-831))) (-15 -2616 ((-831))) (-15 -3255 (|#1| (-485) (-485) (-831))) (-15 -3255 (|#1| (-485) (-485)))) (-347)) (T -346))
+((-2616 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 (((-485) $) 108 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3771 (($ $) 106 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 116 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3623 (((-485) $) 133 T ELT)) (-3724 (($) 23 T CONST)) (-3128 (($ $) 105 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-350 (-485)) #1#) $) 118 T ELT)) (-3157 (((-485) $) 122 T ELT) (((-350 (-485)) $) 119 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-1768 (((-831)) 149 T ELT) (((-831) (-831)) 146 (|has| $ (-6 -3986)) ELT)) (-3187 (((-85) $) 131 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 112 T ELT)) (-3772 (((-485) $) 155 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 115 T ELT)) (-3133 (($ $) 111 T ELT)) (-3188 (((-85) $) 132 T ELT)) (-1605 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2532 (($ $ $) 125 T ELT) (($) 143 (-12 (-2561 (|has| $ (-6 -3986))) (-2561 (|has| $ (-6 -3978)))) ELT)) (-2858 (($ $ $) 126 T ELT) (($) 142 (-12 (-2561 (|has| $ (-6 -3986))) (-2561 (|has| $ (-6 -3978)))) ELT)) (-1770 (((-485) $) 152 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-1767 (((-831) (-485)) 145 (|has| $ (-6 -3986)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3129 (($ $) 107 T ELT)) (-3131 (($ $) 109 T ELT)) (-3255 (($ (-485) (-485)) 157 T ELT) (($ (-485) (-485) (-831)) 156 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2402 (((-485) $) 153 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-2616 (((-831)) 150 T ELT) (((-831) (-831)) 147 (|has| $ (-6 -3986)) ELT)) (-1766 (((-831) (-485)) 144 (|has| $ (-6 -3986)) ELT)) (-3972 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-801 (-330)) $) 113 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-350 (-485))) 117 T ELT)) (-3127 (((-695)) 40 T CONST)) (-3132 (($ $) 110 T ELT)) (-1769 (((-831)) 151 T ELT) (((-831) (-831)) 148 (|has| $ (-6 -3986)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2695 (((-831)) 154 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3383 (($ $) 134 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 127 T ELT)) (-2568 (((-85) $ $) 129 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 128 T ELT)) (-2686 (((-85) $ $) 130 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
+(((-347) (-113)) (T -347))
+((-3255 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-347)))) (-3255 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-347)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-2695 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-1769 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-2616 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-1768 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3986)) (-4 *1 (-347)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3986)) (-4 *1 (-347)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3986)) (-4 *1 (-347)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3986)) (-4 *1 (-347)) (-5 *2 (-831)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3986)) (-4 *1 (-347)) (-5 *2 (-831)))) (-2532 (*1 *1) (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3986))) (-2561 (|has| *1 (-6 -3978))))) (-2858 (*1 *1) (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3986))) (-2561 (|has| *1 (-6 -3978))))))
+(-13 (-974) (-10 -8 (-6 -3770) (-15 -3255 ($ (-485) (-485))) (-15 -3255 ($ (-485) (-485) (-831))) (-15 -3772 ((-485) $)) (-15 -2695 ((-831))) (-15 -2402 ((-485) $)) (-15 -1770 ((-485) $)) (-15 -1769 ((-831))) (-15 -2616 ((-831))) (-15 -1768 ((-831))) (IF (|has| $ (-6 -3986)) (PROGN (-15 -1769 ((-831) (-831))) (-15 -2616 ((-831) (-831))) (-15 -1768 ((-831) (-831))) (-15 -1767 ((-831) (-485))) (-15 -1766 ((-831) (-485)))) |%noBranch|) (IF (|has| $ (-6 -3978)) |%noBranch| (IF (|has| $ (-6 -3986)) |%noBranch| (PROGN (-15 -2532 ($)) (-15 -2858 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-801 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-330)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-974) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 59 T ELT)) (-1771 (($ $) 77 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 189 T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) 48 T ELT)) (-1772 ((|#1| $) 16 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-1134)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-1134)) ELT)) (-1774 (($ |#1| (-485)) 42 T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 73 T ELT)) (-3467 (((-3 $ #1#) $) 163 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 84 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 80 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 82 (|has| |#1| (-484)) ELT)) (-1775 (($ |#1| (-485)) 44 T ELT)) (-3723 (((-85) $) 209 (|has| |#1| (-1134)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 61 T ELT)) (-1834 (((-695) $) 51 T ELT)) (-1776 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-485)) 174 T ELT)) (-2300 ((|#1| $ (-485)) 173 T ELT)) (-1777 (((-485) $ (-485)) 172 T ELT)) (-1780 (($ |#1| (-485)) 41 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1831 (($ |#1| (-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485))))) 78 T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1778 (($ |#1| (-485)) 43 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 190 (|has| |#1| (-392)) ELT)) (-1773 (($ |#1| (-485) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1779 (((-584 (-2 (|:| -3732 |#1|) (|:| -2402 (-485)))) $) 72 T ELT)) (-1952 (((-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $) 12 T ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-1134)) ELT)) (-3466 (((-3 $ #1#) $ $) 175 T ELT)) (-2402 (((-485) $) 166 T ELT)) (-3963 ((|#1| $) 74 T ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) 105 (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) $) NIL (|has| |#1| (-456 (-1090) $)) ELT) (($ $ (-584 (-1090)) (-584 $)) 106 (|has| |#1| (-456 (-1090) $)) ELT) (($ $ (-584 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-584 $) (-584 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3800 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-3972 (((-474) $) 39 (|has| |#1| (-554 (-474))) ELT) (((-330) $) 112 (|has| |#1| (-934)) ELT) (((-179) $) 118 (|has| |#1| (-934)) ELT)) (-3946 (((-773) $) 145 T ELT) (($ (-485)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT)) (-3127 (((-695)) 66 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 53 T CONST)) (-2667 (($) 52 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) 158 T ELT)) (-3837 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 179 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 124 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-348 |#1|) (-13 (-496) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-355 |#1|) (-10 -8 (-15 -3963 (|#1| $)) (-15 -2402 ((-485) $)) (-15 -1831 ($ |#1| (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))))) (-15 -1952 ((-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $)) (-15 -1780 ($ |#1| (-485))) (-15 -1779 ((-584 (-2 (|:| -3732 |#1|) (|:| -2402 (-485)))) $)) (-15 -1778 ($ |#1| (-485))) (-15 -1777 ((-485) $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -1776 ((-3 #1# #2# #3# #4#) $ (-485))) (-15 -1834 ((-695) $)) (-15 -1775 ($ |#1| (-485))) (-15 -1774 ($ |#1| (-485))) (-15 -1773 ($ |#1| (-485) (-3 #1# #2# #3# #4#))) (-15 -1772 (|#1| $)) (-15 -1771 ($ $)) (-15 -3958 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-392)) (-6 (-392)) |%noBranch|) (IF (|has| |#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |#1| (-1134)) (-6 (-1134)) |%noBranch|) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-456 (-1090) $)) (-6 (-456 (-1090) $)) |%noBranch|))) (-496)) (T -348))
+((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-348 *3)))) (-3963 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1831 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-485))))) (-4 *2 (-496)) (-5 *1 (-348 *2)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-485))))) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3732 *3) (|:| -2402 (-485))))) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1777 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1776 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *4)) (-4 *4 (-496)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1773 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1772 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1771 (*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3025 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))))
+((-3958 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 20 T ELT)))
+(((-349 |#1| |#2|) (-10 -7 (-15 -3958 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-496) (-496)) (T -349))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 13 T ELT)) (-3130 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| |#1| (-741)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1090) #1#) $) NIL (|has| |#1| (-951 (-1090))) ELT) (((-3 (-350 (-485)) #1#) $) 54 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-3157 ((|#1| $) 15 T ELT) (((-1090) $) NIL (|has| |#1| (-951 (-1090))) ELT) (((-350 (-485)) $) 51 (|has| |#1| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 32 T ELT)) (-2995 (($) NIL (|has| |#1| (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#1| (-797 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 38 T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#1| $) 55 T ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3188 (((-85) $) 22 (|has| |#1| (-741)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 82 T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3131 ((|#1| $) 26 (|has| |#1| (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 133 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 128 (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-456 (-1090) |#1|)) ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#1| $) 57 T ELT)) (-3972 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (((-330) $) NIL (|has| |#1| (-934)) ELT) (((-179) $) NIL (|has| |#1| (-934)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1090)) NIL (|has| |#1| (-951 (-1090))) ELT)) (-2703 (((-633 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 93 T CONST)) (-3132 ((|#1| $) 24 (|has| |#1| (-484)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| |#1| (-741)) ELT)) (-2661 (($) 28 T CONST)) (-2667 (($) 8 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 48 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3949 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3837 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3839 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 122 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT)))
+(((-350 |#1|) (-13 (-905 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3982)) (IF (|has| |#1| (-392)) (IF (|has| |#1| (-6 -3993)) (-6 -3982) |%noBranch|) |%noBranch|) |%noBranch|))) (-496)) (T -350))
+NIL
+((-3958 (((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)) 13 T ELT)))
+(((-351 |#1| |#2|) (-10 -7 (-15 -3958 ((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)))) (-496) (-496)) (T -351))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6)))))
+((-1782 (((-631 |#2|) (-1179 $)) NIL T ELT) (((-631 |#2|)) 18 T ELT)) (-1792 (($ (-1179 |#2|) (-1179 $)) NIL T ELT) (($ (-1179 |#2|)) 24 T ELT)) (-1781 (((-631 |#2|) $ (-1179 $)) NIL T ELT) (((-631 |#2|) $) 40 T ELT)) (-2015 ((|#3| $) 69 T ELT)) (-3757 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-631 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) 22 T ELT) (((-631 |#2|) (-1179 $)) 38 T ELT)) (-3972 (((-1179 |#2|) $) 11 T ELT) (($ (-1179 |#2|)) 13 T ELT)) (-2450 ((|#3| $) 55 T ELT)))
+(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1781 ((-631 |#2|) |#1|)) (-15 -3757 (|#2|)) (-15 -1782 ((-631 |#2|))) (-15 -3972 (|#1| (-1179 |#2|))) (-15 -3972 ((-1179 |#2|) |#1|)) (-15 -1792 (|#1| (-1179 |#2|))) (-15 -3225 ((-631 |#2|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1|)) (-15 -2015 (|#3| |#1|)) (-15 -2450 (|#3| |#1|)) (-15 -1782 ((-631 |#2|) (-1179 |#1|))) (-15 -3757 (|#2| (-1179 |#1|))) (-15 -1792 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3225 ((-631 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1781 ((-631 |#2|) |#1| (-1179 |#1|)))) (-353 |#2| |#3|) (-146) (-1155 |#2|)) (T -352))
+((-1782 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-631 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) (-3757 (*1 *2) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1782 (((-631 |#1|) (-1179 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3330 ((|#1| $) 67 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1792 (($ (-1179 |#1|) (-1179 $)) 63 T ELT) (($ (-1179 |#1|)) 80 T ELT)) (-1781 (((-631 |#1|) $ (-1179 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-831)) 69 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 66 T ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3757 ((|#1| (-1179 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-631 |#1|) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 |#1|) $) 82 T ELT) (((-631 |#1|) (-1179 $)) 81 T ELT)) (-3972 (((-1179 |#1|) $) 79 T ELT) (($ (-1179 |#1|)) 78 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2703 (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2013 (((-1179 $)) 83 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
+(((-353 |#1| |#2|) (-113) (-146) (-1155 |t#1|)) (T -353))
+((-2013 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *1)) (-4 *1 (-353 *3 *4)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-631 *4)))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1155 *3)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *3)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1155 *3)))) (-1782 (*1 *2) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-631 *3)))) (-3757 (*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-631 *3)))))
+(-13 (-322 |t#1| |t#2|) (-10 -8 (-15 -2013 ((-1179 $))) (-15 -3225 ((-1179 |t#1|) $)) (-15 -3225 ((-631 |t#1|) (-1179 $))) (-15 -1792 ($ (-1179 |t#1|))) (-15 -3972 ((-1179 |t#1|) $)) (-15 -3972 ($ (-1179 |t#1|))) (-15 -1782 ((-631 |t#1|))) (-15 -3757 (|t#1|)) (-15 -1781 ((-631 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-322 |#1| |#2|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) 27 T ELT) (((-3 (-485) #1#) $) 19 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) 24 T ELT) (((-485) $) 14 T ELT)) (-3946 (($ |#2|) NIL T ELT) (($ (-350 (-485))) 22 T ELT) (($ (-485)) 11 T ELT)))
+(((-354 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| (-485))) (-15 -3158 ((-3 (-485) #1="failed") |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3946 (|#1| |#2|))) (-355 |#2|) (-1129)) (T -354))
+NIL
+((-3158 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-350 (-485)) #1#) $) 16 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) 13 (|has| |#1| (-951 (-485))) ELT)) (-3157 ((|#1| $) 8 T ELT) (((-350 (-485)) $) 17 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 14 (|has| |#1| (-951 (-485))) ELT)) (-3946 (($ |#1|) 6 T ELT) (($ (-350 (-485))) 15 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ (-485)) 12 (|has| |#1| (-951 (-485))) ELT)))
+(((-355 |#1|) (-113) (-1129)) (T -355))
+NIL
+(-13 (-951 |t#1|) (-10 -7 (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-485))) |%noBranch|) (IF (|has| |t#1| (-951 (-350 (-485)))) (-6 (-951 (-350 (-485)))) |%noBranch|)))
+(((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) |has| |#1| (-951 (-485))) ((-556 |#1|) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-1783 ((|#4| (-695) (-1179 |#4|)) 55 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2999 (((-1179 |#4|) $) 15 T ELT)) (-3133 ((|#2| $) 53 T ELT)) (-1784 (($ $) 156 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 103 T ELT)) (-1969 (($ (-1179 |#4|)) 102 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2998 ((|#1| $) 16 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3946 (((-773) $) 147 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 |#4|) $) 140 T ELT)) (-2667 (($) 11 T CONST)) (-3057 (((-85) $ $) 39 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 133 T ELT)) (* (($ $ $) 130 T ELT)))
+(((-356 |#1| |#2| |#3| |#4|) (-13 (-413) (-10 -8 (-15 -1969 ($ (-1179 |#4|))) (-15 -2013 ((-1179 |#4|) $)) (-15 -3133 (|#2| $)) (-15 -2999 ((-1179 |#4|) $)) (-15 -2998 (|#1| $)) (-15 -1784 ($ $)) (-15 -1783 (|#4| (-695) (-1179 |#4|))))) (-258) (-905 |#1|) (-1155 |#2|) (-13 (-353 |#2| |#3|) (-951 |#2|))) (T -356))
+((-1969 (*1 *1 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))) (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) (-2013 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) (-3133 (*1 *2 *1) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-905 *3)) (-5 *1 (-356 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-951 *2))))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-905 *2)) (-4 *4 (-1155 *3)) (-4 *2 (-258)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) (-1784 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-905 *2)) (-4 *4 (-1155 *3)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) (-1783 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1179 *2)) (-4 *5 (-258)) (-4 *6 (-905 *5)) (-4 *2 (-13 (-353 *6 *7) (-951 *6))) (-5 *1 (-356 *5 *6 *7 *2)) (-4 *7 (-1155 *6)))))
+((-3958 (((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)) 35 T ELT)))
+(((-357 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3958 ((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)))) (-258) (-905 |#1|) (-1155 |#2|) (-13 (-353 |#2| |#3|) (-951 |#2|)) (-258) (-905 |#5|) (-1155 |#6|) (-13 (-353 |#6| |#7|) (-951 |#6|))) (T -357))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-905 *5)) (-4 *7 (-1155 *6)) (-4 *8 (-13 (-353 *6 *7) (-951 *6))) (-4 *9 (-258)) (-4 *10 (-905 *9)) (-4 *11 (-1155 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-353 *10 *11) (-951 *10))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3133 ((|#2| $) 69 T ELT)) (-1785 (($ (-1179 |#4|)) 27 T ELT) (($ (-356 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-951 |#2|)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 37 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 |#4|) $) 28 T ELT)) (-2667 (($) 26 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ $ $) 80 T ELT)))
+(((-358 |#1| |#2| |#3| |#4| |#5|) (-13 (-664) (-10 -8 (-15 -2013 ((-1179 |#4|) $)) (-15 -3133 (|#2| $)) (-15 -1785 ($ (-1179 |#4|))) (IF (|has| |#4| (-951 |#2|)) (-15 -1785 ($ (-356 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-905 |#1|) (-1155 |#2|) (-353 |#2| |#3|) (-1179 |#4|)) (T -358))
+((-2013 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) (-3133 (*1 *2 *1) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-905 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1179 *5)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-4 *6 (-353 *4 *5)) (-14 *7 (-1179 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)))))
+((-3958 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT)))
+(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#3| (-1 |#4| |#2|) |#1|))) (-361 |#2|) (-146) (-361 |#4|) (-146)) (T -359))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5)))))
+((-1772 (((-3 $ #1="failed")) 99 T ELT)) (-3224 (((-1179 (-631 |#2|)) (-1179 $)) NIL T ELT) (((-1179 (-631 |#2|))) 104 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 97 T ELT)) (-1703 (((-3 $ #1#)) 96 T ELT)) (-1788 (((-631 |#2|) (-1179 $)) NIL T ELT) (((-631 |#2|)) 115 T ELT)) (-1786 (((-631 |#2|) $ (-1179 $)) NIL T ELT) (((-631 |#2|) $) 123 T ELT)) (-1900 (((-1085 (-858 |#2|))) 64 T ELT)) (-1790 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1792 (($ (-1179 |#2|) (-1179 $)) NIL T ELT) (($ (-1179 |#2|)) 125 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 95 T ELT)) (-1704 (((-3 $ #1#)) 87 T ELT)) (-1789 (((-631 |#2|) (-1179 $)) NIL T ELT) (((-631 |#2|)) 113 T ELT)) (-1787 (((-631 |#2|) $ (-1179 $)) NIL T ELT) (((-631 |#2|) $) 121 T ELT)) (-1904 (((-1085 (-858 |#2|))) 63 T ELT)) (-1791 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-631 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) 124 T ELT) (((-631 |#2|) (-1179 $)) 133 T ELT)) (-3972 (((-1179 |#2|) $) 109 T ELT) (($ (-1179 |#2|)) 111 T ELT)) (-1892 (((-584 (-858 |#2|)) (-1179 $)) NIL T ELT) (((-584 (-858 |#2|))) 107 T ELT)) (-2546 (($ (-631 |#2|) $) 103 T ELT)))
+(((-360 |#1| |#2|) (-10 -7 (-15 -2546 (|#1| (-631 |#2|) |#1|)) (-15 -1900 ((-1085 (-858 |#2|)))) (-15 -1904 ((-1085 (-858 |#2|)))) (-15 -1786 ((-631 |#2|) |#1|)) (-15 -1787 ((-631 |#2|) |#1|)) (-15 -1788 ((-631 |#2|))) (-15 -1789 ((-631 |#2|))) (-15 -1790 (|#2|)) (-15 -1791 (|#2|)) (-15 -3972 (|#1| (-1179 |#2|))) (-15 -3972 ((-1179 |#2|) |#1|)) (-15 -1792 (|#1| (-1179 |#2|))) (-15 -1892 ((-584 (-858 |#2|)))) (-15 -3224 ((-1179 (-631 |#2|)))) (-15 -3225 ((-631 |#2|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1|)) (-15 -1772 ((-3 |#1| #1="failed"))) (-15 -1703 ((-3 |#1| #1#))) (-15 -1704 ((-3 |#1| #1#))) (-15 -1906 ((-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#))) (-15 -1907 ((-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#))) (-15 -1788 ((-631 |#2|) (-1179 |#1|))) (-15 -1789 ((-631 |#2|) (-1179 |#1|))) (-15 -1790 (|#2| (-1179 |#1|))) (-15 -1791 (|#2| (-1179 |#1|))) (-15 -1792 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3225 ((-631 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1786 ((-631 |#2|) |#1| (-1179 |#1|))) (-15 -1787 ((-631 |#2|) |#1| (-1179 |#1|))) (-15 -3224 ((-1179 (-631 |#2|)) (-1179 |#1|))) (-15 -1892 ((-584 (-858 |#2|)) (-1179 |#1|)))) (-361 |#2|) (-146)) (T -360))
+((-3224 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1179 (-631 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1892 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1791 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1790 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1789 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1788 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1904 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1900 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1772 (((-3 $ #1="failed")) 48 (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3224 (((-1179 (-631 |#1|)) (-1179 $)) 89 T ELT) (((-1179 (-631 |#1|))) 115 T ELT)) (-1729 (((-1179 $)) 92 T ELT)) (-3724 (($) 23 T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 51 (|has| |#1| (-496)) ELT)) (-1703 (((-3 $ #1#)) 49 (|has| |#1| (-496)) ELT)) (-1788 (((-631 |#1|) (-1179 $)) 76 T ELT) (((-631 |#1|)) 107 T ELT)) (-1727 ((|#1| $) 85 T ELT)) (-1786 (((-631 |#1|) $ (-1179 $)) 87 T ELT) (((-631 |#1|) $) 105 T ELT)) (-2405 (((-3 $ #1#) $) 56 (|has| |#1| (-496)) ELT)) (-1900 (((-1085 (-858 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-831)) 37 T ELT)) (-1725 ((|#1| $) 83 T ELT)) (-1705 (((-1085 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1790 ((|#1| (-1179 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1723 (((-1085 |#1|) $) 74 T ELT)) (-1717 (((-85)) 68 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) 80 T ELT) (($ (-1179 |#1|)) 113 T ELT)) (-3467 (((-3 $ #1#) $) 58 (|has| |#1| (-496)) ELT)) (-3109 (((-831)) 91 T ELT)) (-1714 (((-85)) 65 T ELT)) (-2434 (($ $ (-831)) 44 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-1710 (((-85)) 61 T ELT)) (-1708 (((-85)) 59 T ELT)) (-1712 (((-85)) 63 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 52 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) 50 (|has| |#1| (-496)) ELT)) (-1789 (((-631 |#1|) (-1179 $)) 77 T ELT) (((-631 |#1|)) 108 T ELT)) (-1728 ((|#1| $) 86 T ELT)) (-1787 (((-631 |#1|) $ (-1179 $)) 88 T ELT) (((-631 |#1|) $) 106 T ELT)) (-2406 (((-3 $ #1#) $) 57 (|has| |#1| (-496)) ELT)) (-1904 (((-1085 (-858 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-1726 ((|#1| $) 84 T ELT)) (-1706 (((-1085 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1791 ((|#1| (-1179 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1724 (((-1085 |#1|) $) 75 T ELT)) (-1718 (((-85)) 69 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1709 (((-85)) 60 T ELT)) (-1711 (((-85)) 62 T ELT)) (-1713 (((-85)) 64 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1716 (((-85)) 67 T ELT)) (-3800 ((|#1| $ (-485)) 119 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 82 T ELT) (((-631 |#1|) (-1179 $) (-1179 $)) 81 T ELT) (((-1179 |#1|) $) 117 T ELT) (((-631 |#1|) (-1179 $)) 116 T ELT)) (-3972 (((-1179 |#1|) $) 112 T ELT) (($ (-1179 |#1|)) 111 T ELT)) (-1892 (((-584 (-858 |#1|)) (-1179 $)) 90 T ELT) (((-584 (-858 |#1|))) 114 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-1722 (((-85)) 73 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2013 (((-1179 $)) 118 T ELT)) (-1707 (((-584 (-1179 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-1720 (((-85)) 71 T ELT)) (-2546 (($ (-631 |#1|) $) 102 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-1721 (((-85)) 72 T ELT)) (-1719 (((-85)) 70 T ELT)) (-1715 (((-85)) 66 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+(((-361 |#1|) (-113) (-146)) (T -361))
+((-2013 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-361 *3)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-3224 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 (-631 *3))))) (-1892 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3))))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-1791 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1790 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1789 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1788 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1904 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1085 (-858 *3))))) (-1900 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1085 (-858 *3))))) (-2546 (*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146)))))
+(-13 (-316 |t#1|) (-241 (-485) |t#1|) (-10 -8 (-15 -2013 ((-1179 $))) (-15 -3225 ((-1179 |t#1|) $)) (-15 -3225 ((-631 |t#1|) (-1179 $))) (-15 -3224 ((-1179 (-631 |t#1|)))) (-15 -1892 ((-584 (-858 |t#1|)))) (-15 -1792 ($ (-1179 |t#1|))) (-15 -3972 ((-1179 |t#1|) $)) (-15 -3972 ($ (-1179 |t#1|))) (-15 -1791 (|t#1|)) (-15 -1790 (|t#1|)) (-15 -1789 ((-631 |t#1|))) (-15 -1788 ((-631 |t#1|))) (-15 -1787 ((-631 |t#1|) $)) (-15 -1786 ((-631 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1904 ((-1085 (-858 |t#1|)))) (-15 -1900 ((-1085 (-858 |t#1|))))) |%noBranch|) (-15 -2546 ($ (-631 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-241 (-485) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-3135 (((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|)) 28 T ELT)) (-1793 (((-348 |#1|) (-348 |#1|) (-348 |#1|)) 17 T ELT)))
+(((-362 |#1|) (-10 -7 (-15 -3135 ((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|))) (-15 -1793 ((-348 |#1|) (-348 |#1|) (-348 |#1|)))) (-496)) (T -362))
+((-1793 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-5 *1 (-362 *3)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-496)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4)))))
+((-3082 (((-584 (-1090)) $) 81 T ELT)) (-3084 (((-350 (-1085 $)) $ (-551 $)) 313 T ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 277 T ELT)) (-3158 (((-3 (-551 $) #1="failed") $) NIL T ELT) (((-3 (-1090) #1#) $) 84 T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-350 (-858 |#2|)) #1#) $) 363 T ELT) (((-3 (-858 |#2|) #1#) $) 275 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3157 (((-551 $) $) NIL T ELT) (((-1090) $) 28 T ELT) (((-485) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-350 (-858 |#2|)) $) 345 T ELT) (((-858 |#2|) $) 272 T ELT) (((-350 (-485)) $) NIL T ELT)) (-3595 (((-86) (-86)) 47 T ELT)) (-2997 (($ $) 99 T ELT)) (-1602 (((-3 (-551 $) #1#) $) 268 T ELT)) (-1601 (((-584 (-551 $)) $) 269 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 287 T ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #1#) $) 294 T ELT)) (-2823 (((-3 (-584 $) #1#) $) 285 T ELT)) (-1794 (((-3 (-2 (|:| -3954 (-485)) (|:| |var| (-551 $))) #1#) $) 304 T ELT)) (-2825 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-1090)) 257 T ELT)) (-1797 (((-85) $) 17 T ELT)) (-1796 ((|#2| $) 19 T ELT)) (-3768 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 276 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ (-584 $)))) 109 T ELT) (($ $ (-1090) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1090)) 62 T ELT) (($ $ (-584 (-1090))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1090)) 65 T ELT) (($ $ (-584 (-86)) (-584 $) (-1090)) 72 T ELT) (($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ $))) 120 T ELT) (($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 282 T ELT) (($ $ (-1090) (-695) (-1 $ (-584 $))) 105 T ELT) (($ $ (-1090) (-695) (-1 $ $)) 104 T ELT)) (-3800 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) 119 T ELT)) (-3758 (($ $ (-1090)) 278 T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT)) (-2996 (($ $) 324 T ELT)) (-3972 (((-801 (-485)) $) 297 T ELT) (((-801 (-330)) $) 301 T ELT) (($ (-348 $)) 359 T ELT) (((-474) $) NIL T ELT)) (-3946 (((-773) $) 279 T ELT) (($ (-551 $)) 93 T ELT) (($ (-1090)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1039 |#2| (-551 $))) NIL T ELT) (($ (-350 |#2|)) 329 T ELT) (($ (-858 (-350 |#2|))) 368 T ELT) (($ (-350 (-858 (-350 |#2|)))) 341 T ELT) (($ (-350 (-858 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-858 |#2|)) 216 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) 373 T ELT)) (-3127 (((-695)) 88 T CONST)) (-2255 (((-85) (-86)) 42 T ELT)) (-1795 (($ (-1090) $) 31 T ELT) (($ (-1090) $ $) 32 T ELT) (($ (-1090) $ $ $) 33 T ELT) (($ (-1090) $ $ $ $) 34 T ELT) (($ (-1090) (-584 $)) 39 T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
+(((-363 |#1| |#2|) (-10 -7 (-15 * (|#1| (-831) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3158 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3946 (|#1| (-485))) (-15 -3127 ((-695)) -3952) (-15 * (|#1| |#2| |#1|)) (-15 -3972 ((-474) |#1|)) (-15 -3946 (|#1| (-858 |#2|))) (-15 -3158 ((-3 (-858 |#2|) #1#) |#1|)) (-15 -3157 ((-858 |#2|) |#1|)) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 * (|#1| |#1| |#2|)) (-15 -3946 (|#1| |#1|)) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3946 (|#1| (-350 (-858 |#2|)))) (-15 -3158 ((-3 (-350 (-858 |#2|)) #1#) |#1|)) (-15 -3157 ((-350 (-858 |#2|)) |#1|)) (-15 -3084 ((-350 (-1085 |#1|)) |#1| (-551 |#1|))) (-15 -3946 (|#1| (-350 (-858 (-350 |#2|))))) (-15 -3946 (|#1| (-858 (-350 |#2|)))) (-15 -3946 (|#1| (-350 |#2|))) (-15 -2996 (|#1| |#1|)) (-15 -3972 (|#1| (-348 |#1|))) (-15 -3768 (|#1| |#1| (-1090) (-695) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-1090) (-695) (-1 |#1| (-584 |#1|)))) (-15 -3768 (|#1| |#1| (-584 (-1090)) (-584 (-695)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3768 (|#1| |#1| (-584 (-1090)) (-584 (-695)) (-584 (-1 |#1| |#1|)))) (-15 -2826 ((-3 (-2 (|:| |val| |#1|) (|:| -2402 (-485))) #1#) |#1|)) (-15 -2825 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1| (-1090))) (-15 -2825 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1| (-86))) (-15 -2997 (|#1| |#1|)) (-15 -3946 (|#1| (-1039 |#2| (-551 |#1|)))) (-15 -1794 ((-3 (-2 (|:| -3954 (-485)) (|:| |var| (-551 |#1|))) #1#) |#1|)) (-15 -2823 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2825 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1|)) (-15 -2824 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -3768 (|#1| |#1| (-584 (-86)) (-584 |#1|) (-1090))) (-15 -3768 (|#1| |#1| (-86) |#1| (-1090))) (-15 -3768 (|#1| |#1|)) (-15 -3768 (|#1| |#1| (-584 (-1090)))) (-15 -3768 (|#1| |#1| (-1090))) (-15 -1795 (|#1| (-1090) (-584 |#1|))) (-15 -1795 (|#1| (-1090) |#1| |#1| |#1| |#1|)) (-15 -1795 (|#1| (-1090) |#1| |#1| |#1|)) (-15 -1795 (|#1| (-1090) |#1| |#1|)) (-15 -1795 (|#1| (-1090) |#1|)) (-15 -3082 ((-584 (-1090)) |#1|)) (-15 -1796 (|#2| |#1|)) (-15 -1797 ((-85) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3972 ((-801 (-330)) |#1|)) (-15 -3972 ((-801 (-485)) |#1|)) (-15 -3946 (|#1| (-1090))) (-15 -3158 ((-3 (-1090) #1#) |#1|)) (-15 -3157 ((-1090) |#1|)) (-15 -3768 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3768 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3768 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3768 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-1090) (-1 |#1| (-584 |#1|)))) (-15 -3768 (|#1| |#1| (-584 (-1090)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3768 (|#1| |#1| (-584 (-1090)) (-584 (-1 |#1| |#1|)))) (-15 -2255 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -1601 ((-584 (-551 |#1|)) |#1|)) (-15 -1602 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -1604 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1604 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -1604 (|#1| |#1| (-249 |#1|))) (-15 -3800 (|#1| (-86) (-584 |#1|))) (-15 -3800 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1|)) (-15 -3768 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3768 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3768 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3946 (|#1| (-551 |#1|))) (-15 -3158 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3157 ((-551 |#1|) |#1|)) (-15 -3946 ((-773) |#1|))) (-364 |#2|) (-1014)) (T -363))
+((-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1014)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) (-3127 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3082 (((-584 (-1090)) $) 222 T ELT)) (-3084 (((-350 (-1085 $)) $ (-551 $)) 190 (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 162 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 163 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 165 (|has| |#1| (-496)) ELT)) (-1600 (((-584 (-551 $)) $) 42 T ELT)) (-1312 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1604 (($ $ (-249 $)) 54 T ELT) (($ $ (-584 (-249 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3775 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3971 (((-348 $) $) 183 (|has| |#1| (-496)) ELT)) (-1608 (((-85) $ $) 173 (|has| |#1| (-496)) ELT)) (-3724 (($) 117 (OR (|has| |#1| (-1026)) (|has| |#1| (-25))) CONST)) (-3158 (((-3 (-551 $) #1="failed") $) 67 T ELT) (((-3 (-1090) #1#) $) 235 T ELT) (((-3 (-485) #1#) $) 229 (|has| |#1| (-951 (-485))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-350 (-858 |#1|)) #1#) $) 188 (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) 137 (|has| |#1| (-962)) ELT) (((-3 (-350 (-485)) #1#) $) 111 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3157 (((-551 $) $) 68 T ELT) (((-1090) $) 236 T ELT) (((-485) $) 228 (|has| |#1| (-951 (-485))) ELT) ((|#1| $) 227 T ELT) (((-350 (-858 |#1|)) $) 189 (|has| |#1| (-496)) ELT) (((-858 |#1|) $) 138 (|has| |#1| (-962)) ELT) (((-350 (-485)) $) 112 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2565 (($ $ $) 177 (|has| |#1| (-496)) ELT)) (-2280 (((-631 (-485)) (-631 $)) 155 (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 154 (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 153 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 152 (|has| |#1| (-962)) ELT)) (-3467 (((-3 $ "failed") $) 119 (|has| |#1| (-1026)) ELT)) (-2564 (($ $ $) 176 (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 171 (|has| |#1| (-496)) ELT)) (-3723 (((-85) $) 184 (|has| |#1| (-496)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 231 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 230 (|has| |#1| (-797 (-330))) ELT)) (-2574 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1214 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1599 (((-584 (-86)) $) 41 T ELT)) (-3595 (((-86) (-86)) 40 T ELT)) (-2411 (((-85) $) 118 (|has| |#1| (-1026)) ELT)) (-2674 (((-85) $) 20 (|has| $ (-951 (-485))) ELT)) (-2997 (($ $) 205 (|has| |#1| (-962)) ELT)) (-2999 (((-1039 |#1| (-551 $)) $) 206 (|has| |#1| (-962)) ELT)) (-1605 (((-3 (-584 $) #2="failed") (-584 $) $) 180 (|has| |#1| (-496)) ELT)) (-1597 (((-1085 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3958 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1602 (((-3 (-551 $) "failed") $) 44 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 157 (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 156 (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 151 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1179 $)) 150 (|has| |#1| (-962)) ELT)) (-1891 (($ (-584 $)) 169 (|has| |#1| (-496)) ELT) (($ $ $) 168 (|has| |#1| (-496)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1601 (((-584 (-551 $)) $) 43 T ELT)) (-2236 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2824 (((-3 (-584 $) "failed") $) 211 (|has| |#1| (-1026)) ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) "failed") $) 202 (|has| |#1| (-962)) ELT)) (-2823 (((-3 (-584 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1794 (((-3 (-2 (|:| -3954 (-485)) (|:| |var| (-551 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2825 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $) 210 (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-86)) 204 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-1090)) 203 (|has| |#1| (-962)) ELT)) (-2634 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1090)) 37 T ELT)) (-2485 (($ $) 121 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2604 (((-695) $) 45 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1797 (((-85) $) 224 T ELT)) (-1796 ((|#1| $) 223 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 170 (|has| |#1| (-496)) ELT)) (-3145 (($ (-584 $)) 167 (|has| |#1| (-496)) ELT) (($ $ $) 166 (|has| |#1| (-496)) ELT)) (-1598 (((-85) $ $) 33 T ELT) (((-85) $ (-1090)) 32 T ELT)) (-3732 (((-348 $) $) 181 (|has| |#1| (-496)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 178 (|has| |#1| (-496)) ELT)) (-3466 (((-3 $ "failed") $ $) 161 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 172 (|has| |#1| (-496)) ELT)) (-2675 (((-85) $) 21 (|has| $ (-951 (-485))) ELT)) (-3768 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1090) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1090) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1090)) 216 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1090))) 215 (|has| |#1| (-554 (-474))) ELT) (($ $) 214 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1090)) 213 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-86)) (-584 $) (-1090)) 212 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ $))) 201 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 200 (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695) (-1 $ (-584 $))) 199 (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695) (-1 $ $)) 198 (|has| |#1| (-962)) ELT)) (-1607 (((-695) $) 174 (|has| |#1| (-496)) ELT)) (-3800 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 175 (|has| |#1| (-496)) ELT)) (-1603 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3758 (($ $ (-1090)) 148 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090))) 146 (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695)) 145 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 144 (|has| |#1| (-962)) ELT)) (-2996 (($ $) 195 (|has| |#1| (-496)) ELT)) (-2998 (((-1039 |#1| (-551 $)) $) 196 (|has| |#1| (-496)) ELT)) (-3186 (($ $) 22 (|has| $ (-962)) ELT)) (-3972 (((-801 (-485)) $) 233 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 232 (|has| |#1| (-554 (-801 (-330)))) ELT) (($ (-348 $)) 197 (|has| |#1| (-496)) ELT) (((-474) $) 113 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $ $) 124 (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) 125 (|has| |#1| (-413)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT) (($ (-1090)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1039 |#1| (-551 $))) 207 (|has| |#1| (-962)) ELT) (($ (-350 |#1|)) 193 (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) 192 (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) 191 (|has| |#1| (-496)) ELT) (($ (-350 (-858 |#1|))) 187 (|has| |#1| (-496)) ELT) (($ $) 160 (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) 136 (|has| |#1| (-962)) ELT) (($ (-350 (-485))) 110 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ (-485)) 109 (OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485)))) ELT)) (-2703 (((-633 $) $) 158 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 140 (|has| |#1| (-962)) CONST)) (-2591 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2255 (((-85) (-86)) 39 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 164 (|has| |#1| (-496)) ELT)) (-1795 (($ (-1090) $) 221 T ELT) (($ (-1090) $ $) 220 T ELT) (($ (-1090) $ $ $) 219 T ELT) (($ (-1090) $ $ $ $) 218 T ELT) (($ (-1090) (-584 $)) 217 T ELT)) (-3126 (((-85) $ $) 139 (|has| |#1| (-962)) ELT)) (-2661 (($) 128 (|has| |#1| (-25)) CONST)) (-2667 (($) 116 (|has| |#1| (-1026)) CONST)) (-2670 (($ $ (-1090)) 147 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090))) 143 (|has| |#1| (-962)) ELT) (($ $ (-1090) (-695)) 142 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 141 (|has| |#1| (-962)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ (-1039 |#1| (-551 $)) (-1039 |#1| (-551 $))) 194 (|has| |#1| (-496)) ELT) (($ $ $) 122 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3837 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) 123 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 120 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 115 (|has| |#1| (-1026)) ELT)) (* (($ (-350 (-485)) $) 186 (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) 185 (|has| |#1| (-496)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-962)) ELT) (($ (-485) $) 133 (|has| |#1| (-21)) ELT) (($ (-695) $) 130 (|has| |#1| (-25)) ELT) (($ (-831) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1026)) ELT)))
+(((-364 |#1|) (-113) (-1014)) (T -364))
+((-1797 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1090))))) (-1795 (*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1795 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1795 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1795 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1795 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-584 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1090))) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474))))) (-3768 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1090)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-554 (-474))))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1090)) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-554 (-474))))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) (-1794 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| -3954 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-364 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1039 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1039 *3 (-551 *1))) (-4 *1 (-364 *3)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-962)))) (-2825 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) (-2825 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |val| *1) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1039 *3 (-551 *1))) (-4 *1 (-364 *3)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-496)))) (-3949 (*1 *1 *2 *2) (-12 (-5 *2 (-1039 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 *3))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-350 (-858 (-350 *3)))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-496)) (-5 *2 (-350 (-1085 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-1026)))))
+(-13 (-254) (-951 (-1090)) (-795 |t#1|) (-343 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1797 ((-85) $)) (-15 -1796 (|t#1| $)) (-15 -3082 ((-584 (-1090)) $)) (-15 -1795 ($ (-1090) $)) (-15 -1795 ($ (-1090) $ $)) (-15 -1795 ($ (-1090) $ $ $)) (-15 -1795 ($ (-1090) $ $ $ $)) (-15 -1795 ($ (-1090) (-584 $))) (IF (|has| |t#1| (-554 (-474))) (PROGN (-6 (-554 (-474))) (-15 -3768 ($ $ (-1090))) (-15 -3768 ($ $ (-584 (-1090)))) (-15 -3768 ($ $)) (-15 -3768 ($ $ (-86) $ (-1090))) (-15 -3768 ($ $ (-584 (-86)) (-584 $) (-1090)))) |%noBranch|) (IF (|has| |t#1| (-1026)) (PROGN (-6 (-664)) (-15 ** ($ $ (-695))) (-15 -2824 ((-3 (-584 $) "failed") $)) (-15 -2825 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-413)) (-6 (-413)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2823 ((-3 (-584 $) "failed") $)) (-15 -1794 ((-3 (-2 (|:| -3954 (-485)) (|:| |var| (-551 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-962)) (-6 (-951 (-858 |t#1|))) (-6 (-810 (-1090))) (-6 (-329 |t#1|)) (-15 -3946 ($ (-1039 |t#1| (-551 $)))) (-15 -2999 ((-1039 |t#1| (-551 $)) $)) (-15 -2997 ($ $)) (-15 -2825 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-86))) (-15 -2825 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-1090))) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) "failed") $)) (-15 -3768 ($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ $)))) (-15 -3768 ($ $ (-584 (-1090)) (-584 (-695)) (-584 (-1 $ (-584 $))))) (-15 -3768 ($ $ (-1090) (-695) (-1 $ (-584 $)))) (-15 -3768 ($ $ (-1090) (-695) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-312)) (-6 (-951 (-350 (-858 |t#1|)))) (-15 -3972 ($ (-348 $))) (-15 -2998 ((-1039 |t#1| (-551 $)) $)) (-15 -2996 ($ $)) (-15 -3949 ($ (-1039 |t#1| (-551 $)) (-1039 |t#1| (-551 $)))) (-15 -3946 ($ (-350 |t#1|))) (-15 -3946 ($ (-858 (-350 |t#1|)))) (-15 -3946 ($ (-350 (-858 (-350 |t#1|))))) (-15 -3084 ((-350 (-1085 $)) $ (-551 $))) (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-350 (-485)))) |%noBranch|)) |%noBranch|)))
+(((-21) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-350 (-485))) |has| |#1| (-496)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-496)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-496)) ((-104) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-496))) ((-556 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485))) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1090)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) |has| |#1| (-496)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-201) |has| |#1| (-496)) ((-246) |has| |#1| (-496)) ((-258) |has| |#1| (-496)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-496)) ((-329 |#1|) |has| |#1| (-962)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) |has| |#1| (-496)) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-496)) ((-589 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-591 (-350 (-485))) |has| |#1| (-496)) ((-591 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-583 (-350 (-485))) |has| |#1| (-496)) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-581 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-350 (-485))) |has| |#1| (-496)) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-807 $ (-1090)) |has| |#1| (-962)) ((-810 (-1090)) |has| |#1| (-962)) ((-812 (-1090)) |has| |#1| (-962)) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) |has| |#1| (-496)) ((-951 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1090)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-496)) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) |has| |#1| (-496)) ((-969 (-350 (-485))) |has| |#1| (-496)) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) |has| |#1| (-496)) ((-962) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-971) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1026) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1061) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1014) . T) ((-1129) . T) ((-1134) |has| |#1| (-496)))
+((-3958 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT)))
+(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-364 |#1|) (-962) (-364 |#3|)) (T -365))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5)))))
+((-1801 ((|#2| |#2|) 182 T ELT)) (-1798 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85)) 60 T ELT)))
+(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1798 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85))) (-15 -1801 (|#2| |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1115) (-364 |#1|)) (-1090) |#2|) (T -366))
+((-1801 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1115) (-364 *3))) (-14 *4 (-1090)) (-14 *5 *2))) (-1798 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-14 *6 (-1090)) (-14 *7 *3))))
+((-1801 ((|#2| |#2|) 105 T ELT)) (-1799 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073)) 52 T ELT)) (-1800 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073)) 169 T ELT)))
+(((-367 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1799 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073))) (-15 -1800 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073))) (-15 -1801 (|#2| |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1115) (-364 |#1|) (-10 -8 (-15 -3946 ($ |#3|)))) (-756) (-13 (-1158 |#2| |#3|) (-312) (-1115) (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $)))) (-897 |#4|) (-1090)) (T -367))
+((-1801 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *2 (-13 (-27) (-1115) (-364 *3) (-10 -8 (-15 -3946 ($ *4))))) (-4 *4 (-756)) (-4 *5 (-13 (-1158 *2 *4) (-312) (-1115) (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $))))) (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1090)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3946 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1158 *3 *7) (-312) (-1115) (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-897 *8)) (-14 *10 (-1090)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3946 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1158 *3 *7) (-312) (-1115) (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-897 *8)) (-14 *10 (-1090)))))
+((-1802 (($) 51 T ELT)) (-3235 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3237 (($ $ $) 46 T ELT)) (-3236 (((-85) $ $) 35 T ELT)) (-3137 (((-695)) 55 T ELT)) (-3240 (($ (-584 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2995 (($) 66 T ELT)) (-3242 (((-85) $ $) 15 T ELT)) (-2532 ((|#2| $) 77 T ELT)) (-2858 ((|#2| $) 75 T ELT)) (-2011 (((-831) $) 70 T ELT)) (-3239 (($ $ $) 42 T ELT)) (-2401 (($ (-831)) 60 T ELT)) (-3238 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1946 (((-695) |#2| $) 31 T ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3530 (($ (-584 |#2|)) 27 T ELT)) (-1803 (($ $) 53 T ELT)) (-3946 (((-773) $) 40 T ELT)) (-1804 (((-695) $) 24 T ELT)) (-3241 (($ (-584 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3057 (((-85) $ $) 19 T ELT)))
+(((-368 |#1| |#2|) (-10 -7 (-15 -3137 ((-695))) (-15 -2401 (|#1| (-831))) (-15 -2011 ((-831) |#1|)) (-15 -2995 (|#1|)) (-15 -2532 (|#2| |#1|)) (-15 -2858 (|#2| |#1|)) (-15 -1802 (|#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1804 ((-695) |#1|)) (-15 -1946 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-695) |#2| |#1|)) (-15 -3057 ((-85) |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -3242 ((-85) |#1| |#1|)) (-15 -3241 (|#1|)) (-15 -3241 (|#1| (-584 |#2|))) (-15 -3240 (|#1|)) (-15 -3240 (|#1| (-584 |#2|))) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3236 ((-85) |#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#2| |#1|)) (-15 -3530 (|#1| (-584 |#2|)))) (-369 |#2|) (-1014)) (T -368))
+((-3137 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))))
+((-2569 (((-85) $ $) 19 T ELT)) (-1802 (($) 72 (|has| |#1| (-320)) ELT)) (-3235 (($ |#1| $) 87 T ELT) (($ $ |#1|) 86 T ELT) (($ $ $) 85 T ELT)) (-3237 (($ $ $) 83 T ELT)) (-3236 (((-85) $ $) 84 T ELT)) (-3137 (((-695)) 66 (|has| |#1| (-320)) ELT)) (-3240 (($ (-584 |#1|)) 79 T ELT) (($) 78 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2995 (($) 69 (|has| |#1| (-320)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3242 (((-85) $ $) 75 T ELT)) (-2532 ((|#1| $) 70 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 71 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2011 (((-831) $) 68 (|has| |#1| (-320)) ELT)) (-3243 (((-1073) $) 22 T ELT)) (-3239 (($ $ $) 80 T ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-2401 (($ (-831)) 67 (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) 21 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3238 (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-1466 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 54 T ELT)) (-1803 (($ $) 73 (|has| |#1| (-320)) ELT)) (-3946 (((-773) $) 17 T ELT)) (-1804 (((-695) $) 74 T ELT)) (-3241 (($ (-584 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1265 (((-85) $ $) 20 T ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-369 |#1|) (-113) (-1014)) (T -369))
+((-1804 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1803 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-320)))) (-1802 (*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1014)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))))
+(-13 (-183 |t#1|) (-1012 |t#1|) (-318 |t#1|) (-10 -8 (-15 -1804 ((-695) $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-320)) (-15 -1803 ($ $)) (-15 -1802 ($))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2858 (|t#1| $)) (-15 -2532 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-320) |has| |#1| (-320)) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-3841 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3842 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3958 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT)))
+(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3842 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3841 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1014) (-369 |#1|) (-1014) (-369 |#3|)) (T -370))
+((-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5)))))
+((-1805 (((-520 |#2|) |#2| (-1090)) 36 T ELT)) (-2101 (((-520 |#2|) |#2| (-1090)) 21 T ELT)) (-2150 ((|#2| |#2| (-1090)) 26 T ELT)))
+(((-371 |#1| |#2|) (-10 -7 (-15 -2101 ((-520 |#2|) |#2| (-1090))) (-15 -1805 ((-520 |#2|) |#2| (-1090))) (-15 -2150 (|#2| |#2| (-1090)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1115) (-29 |#1|))) (T -371))
+((-2150 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1115) (-29 *4))))) (-1805 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1807 (($ |#2| |#1|) 37 T ELT)) (-1806 (($ |#2| |#1|) 35 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 16 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-372 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3982)) (IF (|has| |#1| (-6 -3982)) (-6 -3982) |%noBranch|) |%noBranch|) (-15 -3946 ($ |#1|)) (-15 -3946 ($ (-281 |#2|))) (-15 -1807 ($ |#2| |#1|)) (-15 -1806 ($ |#2| |#1|)))) (-13 (-146) (-38 (-350 (-485)))) (-13 (-757) (-21))) (T -372))
+((-3946 (*1 *1 *2) (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-485))))) (-4 *3 (-13 (-757) (-21))))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-372 *3 *4)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))))) (-1807 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) (-4 *2 (-13 (-757) (-21))))) (-1806 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) (-4 *2 (-13 (-757) (-21))))))
+((-3812 (((-3 |#2| (-584 |#2|)) |#2| (-1090)) 115 T ELT)))
+(((-373 |#1| |#2|) (-10 -7 (-15 -3812 ((-3 |#2| (-584 |#2|)) |#2| (-1090)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1115) (-872) (-29 |#1|))) (T -373))
+((-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1115) (-872) (-29 *5))))))
+((-3386 ((|#2| |#2| |#2|) 31 T ELT)) (-3595 (((-86) (-86)) 43 T ELT)) (-1809 ((|#2| |#2|) 63 T ELT)) (-1808 ((|#2| |#2|) 66 T ELT)) (-3385 ((|#2| |#2|) 30 T ELT)) (-3389 ((|#2| |#2| |#2|) 33 T ELT)) (-3391 ((|#2| |#2| |#2|) 35 T ELT)) (-3388 ((|#2| |#2| |#2|) 32 T ELT)) (-3390 ((|#2| |#2| |#2|) 34 T ELT)) (-2255 (((-85) (-86)) 41 T ELT)) (-3393 ((|#2| |#2|) 37 T ELT)) (-3392 ((|#2| |#2|) 36 T ELT)) (-3383 ((|#2| |#2|) 25 T ELT)) (-3387 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3384 ((|#2| |#2| |#2|) 29 T ELT)))
+(((-374 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -3383 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3384 (|#2| |#2| |#2|)) (-15 -3385 (|#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -1808 (|#2| |#2|)) (-15 -1809 (|#2| |#2|))) (-496) (-364 |#1|)) (T -374))
+((-1809 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-1808 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3385 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3384 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3383 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4)))))
+((-2834 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1085 |#2|)) (|:| |pol2| (-1085 |#2|)) (|:| |prim| (-1085 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1085 |#2|))) (|:| |prim| (-1085 |#2|))) (-584 |#2|)) 65 T ELT)))
+(((-375 |#1| |#2|) (-10 -7 (-15 -2834 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1085 |#2|))) (|:| |prim| (-1085 |#2|))) (-584 |#2|))) (IF (|has| |#2| (-27)) (-15 -2834 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1085 |#2|)) (|:| |pol2| (-1085 |#2|)) (|:| |prim| (-1085 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-496) (-120)) (-364 |#1|)) (T -375))
+((-2834 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1085 *3)) (|:| |pol2| (-1085 *3)) (|:| |prim| (-1085 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1085 *5))) (|:| |prim| (-1085 *5)))) (-5 *1 (-375 *4 *5)))))
+((-1811 (((-1185)) 18 T ELT)) (-1810 (((-1085 (-350 (-485))) |#2| (-551 |#2|)) 40 T ELT) (((-350 (-485)) |#2|) 27 T ELT)))
+(((-376 |#1| |#2|) (-10 -7 (-15 -1810 ((-350 (-485)) |#2|)) (-15 -1810 ((-1085 (-350 (-485))) |#2| (-551 |#2|))) (-15 -1811 ((-1185)))) (-13 (-496) (-951 (-485))) (-364 |#1|)) (T -376))
+((-1811 (*1 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *2 (-1185)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-1085 (-350 (-485)))) (-5 *1 (-376 *5 *3)))) (-1810 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4)))))
+((-3645 (((-85) $) 33 T ELT)) (-1812 (((-85) $) 35 T ELT)) (-3260 (((-85) $) 36 T ELT)) (-1814 (((-85) $) 39 T ELT)) (-1816 (((-85) $) 34 T ELT)) (-1815 (((-85) $) 38 T ELT)) (-3946 (((-773) $) 20 T ELT) (($ (-1073)) 32 T ELT) (($ (-1090)) 30 T ELT) (((-1090) $) 24 T ELT) (((-1016) $) 23 T ELT)) (-1813 (((-85) $) 37 T ELT)) (-3057 (((-85) $ $) 17 T ELT)))
+(((-377) (-13 (-553 (-773)) (-10 -8 (-15 -3946 ($ (-1073))) (-15 -3946 ($ (-1090))) (-15 -3946 ((-1090) $)) (-15 -3946 ((-1016) $)) (-15 -3645 ((-85) $)) (-15 -1816 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -1815 ((-85) $)) (-15 -1814 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -1812 ((-85) $)) (-15 -3057 ((-85) $ $))))) (T -377))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-377)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-377)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-377)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-377)))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3057 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
+((-1818 (((-3 (-348 (-1085 (-350 (-485)))) #1="failed") |#3|) 71 T ELT)) (-1817 (((-348 |#3|) |#3|) 34 T ELT)) (-1820 (((-3 (-348 (-1085 (-48))) #1#) |#3|) 29 (|has| |#2| (-951 (-48))) ELT)) (-1819 (((-3 (|:| |overq| (-1085 (-350 (-485)))) (|:| |overan| (-1085 (-48))) (|:| -2640 (-85))) |#3|) 37 T ELT)))
+(((-378 |#1| |#2| |#3|) (-10 -7 (-15 -1817 ((-348 |#3|) |#3|)) (-15 -1818 ((-3 (-348 (-1085 (-350 (-485)))) #1="failed") |#3|)) (-15 -1819 ((-3 (|:| |overq| (-1085 (-350 (-485)))) (|:| |overan| (-1085 (-48))) (|:| -2640 (-85))) |#3|)) (IF (|has| |#2| (-951 (-48))) (-15 -1820 ((-3 (-348 (-1085 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-496) (-951 (-485))) (-364 |#1|) (-1155 |#2|)) (T -378))
+((-1820 (*1 *2 *3) (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1085 (-48)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1819 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-3 (|:| |overq| (-1085 (-350 (-485)))) (|:| |overan| (-1085 (-48))) (|:| -2640 (-85)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1818 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1085 (-350 (-485))))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1817 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1830 (((-3 (|:| |fst| (-377)) (|:| -3910 #1="void")) $) 11 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1827 (($) 35 T ELT)) (-1824 (($) 41 T ELT)) (-1825 (($) 37 T ELT)) (-1822 (($) 39 T ELT)) (-1826 (($) 36 T ELT)) (-1823 (($) 38 T ELT)) (-1821 (($) 40 T ELT)) (-1828 (((-85) $) 8 T ELT)) (-1829 (((-584 (-858 (-485))) $) 19 T ELT)) (-3530 (($ (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-584 (-1090)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-584 (-858 (-485))) (-85)) 30 T ELT)) (-3946 (((-773) $) 24 T ELT) (($ (-377)) 32 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-379) (-13 (-1014) (-10 -8 (-15 -3946 ($ (-377))) (-15 -1830 ((-3 (|:| |fst| (-377)) (|:| -3910 #1="void")) $)) (-15 -1829 ((-584 (-858 (-485))) $)) (-15 -1828 ((-85) $)) (-15 -3530 ($ (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-584 (-1090)) (-85))) (-15 -3530 ($ (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-584 (-858 (-485))) (-85))) (-15 -1827 ($)) (-15 -1826 ($)) (-15 -1825 ($)) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($)) (-15 -1821 ($))))) (T -379))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1="void"))) (-5 *1 (-379)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-379)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *3 (-584 (-1090))) (-5 *4 (-85)) (-5 *1 (-379)))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-85)) (-5 *1 (-379)))) (-1827 (*1 *1) (-5 *1 (-379))) (-1826 (*1 *1) (-5 *1 (-379))) (-1825 (*1 *1) (-5 *1 (-379))) (-1824 (*1 *1) (-5 *1 (-379))) (-1823 (*1 *1) (-5 *1 (-379))) (-1822 (*1 *1) (-5 *1 (-379))) (-1821 (*1 *1) (-5 *1 (-379))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3542 (((-1090) $) 8 T ELT)) (-3243 (((-1073) $) 17 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 14 T ELT)))
+(((-380 |#1|) (-13 (-1014) (-10 -8 (-15 -3542 ((-1090) $)))) (-1090)) (T -380))
+((-3542 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-380 *3)) (-14 *3 *2))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3320 (((-1029) $) 7 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT)))
+(((-381) (-13 (-1014) (-10 -8 (-15 -3320 ((-1029) $))))) (T -381))
+((-3320 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-381)))))
+((-1836 (((-85)) 18 T ELT)) (-1837 (((-85) (-85)) 19 T ELT)) (-1838 (((-85)) 14 T ELT)) (-1839 (((-85) (-85)) 15 T ELT)) (-1841 (((-85)) 16 T ELT)) (-1842 (((-85) (-85)) 17 T ELT)) (-1833 (((-831) (-831)) 22 T ELT) (((-831)) 21 T ELT)) (-1834 (((-695) (-584 (-2 (|:| -3732 |#1|) (|:| -3948 (-485))))) 52 T ELT)) (-1832 (((-831) (-831)) 24 T ELT) (((-831)) 23 T ELT)) (-1835 (((-2 (|:| -2579 (-485)) (|:| -1779 (-584 |#1|))) |#1|) 94 T ELT)) (-1831 (((-348 |#1|) (-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485))))))) 176 T ELT)) (-3734 (((-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)) 209 T ELT)) (-3733 (((-348 |#1|) |#1| (-695) (-695)) 224 T ELT) (((-348 |#1|) |#1| (-584 (-695)) (-695)) 221 T ELT) (((-348 |#1|) |#1| (-584 (-695))) 223 T ELT) (((-348 |#1|) |#1| (-695)) 222 T ELT) (((-348 |#1|) |#1|) 220 T ELT)) (-1853 (((-3 |#1| #1="failed") (-831) |#1| (-584 (-695)) (-695) (-85)) 226 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695)) 227 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695))) 229 T ELT) (((-3 |#1| #1#) (-831) |#1| (-695)) 228 T ELT) (((-3 |#1| #1#) (-831) |#1|) 230 T ELT)) (-3732 (((-348 |#1|) |#1| (-695) (-695)) 219 T ELT) (((-348 |#1|) |#1| (-584 (-695)) (-695)) 215 T ELT) (((-348 |#1|) |#1| (-584 (-695))) 217 T ELT) (((-348 |#1|) |#1| (-695)) 216 T ELT) (((-348 |#1|) |#1|) 214 T ELT)) (-1840 (((-85) |#1|) 43 T ELT)) (-1852 (((-676 (-695)) (-584 (-2 (|:| -3732 |#1|) (|:| -3948 (-485))))) 99 T ELT)) (-1843 (((-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85) (-1010 (-695)) (-695)) 213 T ELT)))
+(((-382 |#1|) (-10 -7 (-15 -1831 ((-348 |#1|) (-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))))) (-15 -1852 ((-676 (-695)) (-584 (-2 (|:| -3732 |#1|) (|:| -3948 (-485)))))) (-15 -1832 ((-831))) (-15 -1832 ((-831) (-831))) (-15 -1833 ((-831))) (-15 -1833 ((-831) (-831))) (-15 -1834 ((-695) (-584 (-2 (|:| -3732 |#1|) (|:| -3948 (-485)))))) (-15 -1835 ((-2 (|:| -2579 (-485)) (|:| -1779 (-584 |#1|))) |#1|)) (-15 -1836 ((-85))) (-15 -1837 ((-85) (-85))) (-15 -1838 ((-85))) (-15 -1839 ((-85) (-85))) (-15 -1840 ((-85) |#1|)) (-15 -1841 ((-85))) (-15 -1842 ((-85) (-85))) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3732 ((-348 |#1|) |#1| (-695))) (-15 -3732 ((-348 |#1|) |#1| (-584 (-695)))) (-15 -3732 ((-348 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3732 ((-348 |#1|) |#1| (-695) (-695))) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1| (-695))) (-15 -3733 ((-348 |#1|) |#1| (-584 (-695)))) (-15 -3733 ((-348 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3733 ((-348 |#1|) |#1| (-695) (-695))) (-15 -1853 ((-3 |#1| #1="failed") (-831) |#1|)) (-15 -1853 ((-3 |#1| #1#) (-831) |#1| (-695))) (-15 -1853 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)))) (-15 -1853 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695))) (-15 -1853 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695) (-85))) (-15 -3734 ((-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85))) (-15 -1843 ((-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85) (-1010 (-695)) (-695)))) (-1155 (-485))) (T -382))
+((-1843 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1010 (-695))) (-5 *6 (-695)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1853 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-485))))) (-1853 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-485))))) (-1853 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-485))))) (-1853 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-485))))) (-1853 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-485))))) (-3733 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3733 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3732 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1841 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1840 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1838 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1836 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1835 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2579 (-485)) (|:| -1779 (-584 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3732 *4) (|:| -3948 (-485))))) (-4 *4 (-1155 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4)))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1833 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1832 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3732 *4) (|:| -3948 (-485))))) (-4 *4 (-1155 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| *4) (|:| -2396 (-485))))))) (-4 *4 (-1155 (-485))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4)))))
+((-1847 (((-485) |#2|) 52 T ELT) (((-485) |#2| (-695)) 51 T ELT)) (-1846 (((-485) |#2|) 64 T ELT)) (-1848 ((|#3| |#2|) 26 T ELT)) (-3133 ((|#3| |#2| (-831)) 15 T ELT)) (-3833 ((|#3| |#2|) 16 T ELT)) (-1849 ((|#3| |#2|) 9 T ELT)) (-2604 ((|#3| |#2|) 10 T ELT)) (-1845 ((|#3| |#2| (-831)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1844 (((-485) |#2|) 66 T ELT)))
+(((-383 |#1| |#2| |#3|) (-10 -7 (-15 -1844 ((-485) |#2|)) (-15 -1845 (|#3| |#2|)) (-15 -1845 (|#3| |#2| (-831))) (-15 -1846 ((-485) |#2|)) (-15 -1847 ((-485) |#2| (-695))) (-15 -1847 ((-485) |#2|)) (-15 -3133 (|#3| |#2| (-831))) (-15 -1848 (|#3| |#2|)) (-15 -1849 (|#3| |#2|)) (-15 -2604 (|#3| |#2|)) (-15 -3833 (|#3| |#2|))) (-962) (-1155 |#1|) (-13 (-347) (-951 |#1|) (-312) (-1115) (-239))) (T -383))
+((-3833 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-2604 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-347) (-951 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1155 *5)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1115) (-239))))) (-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6)) (-4 *3 (-1155 *5)) (-4 *6 (-13 (-347) (-951 *5) (-312) (-1115) (-239))))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1115) (-239))))) (-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-347) (-951 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1155 *5)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1115) (-239))))))
+((-3354 ((|#2| (-1179 |#1|)) 42 T ELT)) (-1851 ((|#2| |#2| |#1|) 58 T ELT)) (-1850 ((|#2| |#2| |#1|) 49 T ELT)) (-2299 ((|#2| |#2|) 44 T ELT)) (-3174 (((-85) |#2|) 32 T ELT)) (-1854 (((-584 |#2|) (-831) (-348 |#2|)) 21 T ELT)) (-1853 ((|#2| (-831) (-348 |#2|)) 25 T ELT)) (-1852 (((-676 (-695)) (-348 |#2|)) 29 T ELT)))
+(((-384 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#2|)) (-15 -3354 (|#2| (-1179 |#1|))) (-15 -2299 (|#2| |#2|)) (-15 -1850 (|#2| |#2| |#1|)) (-15 -1851 (|#2| |#2| |#1|)) (-15 -1852 ((-676 (-695)) (-348 |#2|))) (-15 -1853 (|#2| (-831) (-348 |#2|))) (-15 -1854 ((-584 |#2|) (-831) (-348 |#2|)))) (-962) (-1155 |#1|)) (T -384))
+((-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-348 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-962)) (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-348 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-384 *5 *2)) (-4 *5 (-962)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-962)) (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5)))) (-1851 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) (-1850 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-962)) (-4 *2 (-1155 *4)) (-5 *1 (-384 *4 *2)))) (-3174 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1155 *4)))))
+((-1857 (((-695)) 59 T ELT)) (-1861 (((-695)) 29 (|has| |#1| (-347)) ELT) (((-695) (-695)) 28 (|has| |#1| (-347)) ELT)) (-1860 (((-485) |#1|) 25 (|has| |#1| (-347)) ELT)) (-1859 (((-485) |#1|) 27 (|has| |#1| (-347)) ELT)) (-1856 (((-695)) 58 T ELT) (((-695) (-695)) 57 T ELT)) (-1855 ((|#1| (-695) (-485)) 37 T ELT)) (-1858 (((-1185)) 61 T ELT)))
+(((-385 |#1|) (-10 -7 (-15 -1855 (|#1| (-695) (-485))) (-15 -1856 ((-695) (-695))) (-15 -1856 ((-695))) (-15 -1857 ((-695))) (-15 -1858 ((-1185))) (IF (|has| |#1| (-347)) (PROGN (-15 -1859 ((-485) |#1|)) (-15 -1860 ((-485) |#1|)) (-15 -1861 ((-695) (-695))) (-15 -1861 ((-695)))) |%noBranch|)) (-962)) (T -385))
+((-1861 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1860 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1859 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1858 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1857 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1856 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962)))))
+((-1862 (((-584 (-485)) (-485)) 76 T ELT)) (-3723 (((-85) (-142 (-485))) 84 T ELT)) (-3732 (((-348 (-142 (-485))) (-142 (-485))) 75 T ELT)))
+(((-386) (-10 -7 (-15 -3732 ((-348 (-142 (-485))) (-142 (-485)))) (-15 -1862 ((-584 (-485)) (-485))) (-15 -3723 ((-85) (-142 (-485)))))) (T -386))
+((-3723 (*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-386)))) (-1862 (*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485)))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 (-142 (-485)))) (-5 *1 (-386)) (-5 *3 (-142 (-485))))))
+((-2947 ((|#4| |#4| (-584 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2252 (((-584 |#4|) (-584 |#4|) (-1073) (-1073)) 46 T ELT) (((-584 |#4|) (-584 |#4|) (-1073)) 45 T ELT) (((-584 |#4|) (-584 |#4|)) 34 T ELT)))
+(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2252 ((-584 |#4|) (-584 |#4|))) (-15 -2252 ((-584 |#4|) (-584 |#4|) (-1073))) (-15 -2252 ((-584 |#4|) (-584 |#4|) (-1073) (-1073))) (IF (|has| |#1| (-312)) (-15 -2947 (|#4| |#4| (-584 |#4|))) |%noBranch|)) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -387))
+((-2947 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))) (-2252 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1073)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2252 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1073)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))))
+((-1863 ((|#4| |#4| (-584 |#4|)) 82 T ELT)) (-1864 (((-584 |#4|) (-584 |#4|) (-1073) (-1073)) 22 T ELT) (((-584 |#4|) (-584 |#4|) (-1073)) 21 T ELT) (((-584 |#4|) (-584 |#4|)) 13 T ELT)))
+(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 (|#4| |#4| (-584 |#4|))) (-15 -1864 ((-584 |#4|) (-584 |#4|))) (-15 -1864 ((-584 |#4|) (-584 |#4|) (-1073))) (-15 -1864 ((-584 |#4|) (-584 |#4|) (-1073) (-1073)))) (-258) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -388))
+((-1864 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1073)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1864 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1073)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2)))))
+((-1866 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 90 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 89 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85)) 83 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-1865 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 56 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 78 T ELT)))
+(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1865 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1865 ((-584 (-584 |#4|)) (-584 |#4|) (-85))) (-15 -1866 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|))) (-15 -1866 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85))) (-15 -1866 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1866 ((-584 (-584 |#4|)) (-584 |#4|) (-85)))) (-13 (-258) (-120)) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -389))
+((-1866 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1866 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1866 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1865 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1865 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+((-1890 (((-695) |#4|) 12 T ELT)) (-1878 (((-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)))) 39 T ELT)) (-1880 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1879 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1868 ((|#4| |#4| (-584 |#4|)) 54 T ELT)) (-1876 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|)) 96 T ELT)) (-1883 (((-1185) |#4|) 59 T ELT)) (-1886 (((-1185) (-584 |#4|)) 69 T ELT)) (-1884 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485)) 66 T ELT)) (-1887 (((-1185) (-485)) 110 T ELT)) (-1881 (((-584 |#4|) (-584 |#4|)) 104 T ELT)) (-1889 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)) |#4| (-695)) 31 T ELT)) (-1882 (((-485) |#4|) 109 T ELT)) (-1877 ((|#4| |#4|) 37 T ELT)) (-1869 (((-584 |#4|) (-584 |#4|) (-485) (-485)) 74 T ELT)) (-1885 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485)) 123 T ELT)) (-1888 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1870 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1875 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1874 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1871 (((-85) |#2| |#2|) 75 T ELT)) (-1873 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1872 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1867 ((|#4| |#4| (-584 |#4|)) 97 T ELT)))
+(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1867 (|#4| |#4| (-584 |#4|))) (-15 -1868 (|#4| |#4| (-584 |#4|))) (-15 -1869 ((-584 |#4|) (-584 |#4|) (-485) (-485))) (-15 -1870 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1871 ((-85) |#2| |#2|)) (-15 -1872 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1873 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1874 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1875 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1876 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|))) (-15 -1877 (|#4| |#4|)) (-15 -1878 ((-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))))) (-15 -1879 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1880 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1881 ((-584 |#4|) (-584 |#4|))) (-15 -1882 ((-485) |#4|)) (-15 -1883 ((-1185) |#4|)) (-15 -1884 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485))) (-15 -1885 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485))) (-15 -1886 ((-1185) (-584 |#4|))) (-15 -1887 ((-1185) (-485))) (-15 -1888 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1889 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)) |#4| (-695))) (-15 -1890 ((-695) |#4|))) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -390))
+((-1890 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1889 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2005 *4))) (-5 *5 (-695)) (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-390 *6 *7 *8 *4)))) (-1888 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1885 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1884 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1882 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1881 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1880 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) (-4 *4 (-392)) (-4 *6 (-757)))) (-1878 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 *3)))) (-5 *4 (-695)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *3)))) (-1877 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1876 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-390 *5 *6 *7 *3)))) (-1875 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *4 *3 *5 *6)))) (-1874 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1873 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *3)))) (-1872 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1871 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1869 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))))
+((-1891 (($ $ $) 14 T ELT) (($ (-584 $)) 21 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 45 T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) 22 T ELT)))
+(((-391 |#1|) (-10 -7 (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -1891 (|#1| (-584 |#1|))) (-15 -1891 (|#1| |#1| |#1|)) (-15 -3145 (|#1| (-584 |#1|))) (-15 -3145 (|#1| |#1| |#1|))) (-392)) (T -391))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-392) (-113)) (T -392))
+((-3145 (*1 *1 *1 *1) (-4 *1 (-392))) (-3145 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-1891 (*1 *1 *1 *1) (-4 *1 (-392))) (-1891 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-392)))))
+(-13 (-496) (-10 -8 (-15 -3145 ($ $ $)) (-15 -3145 ($ (-584 $))) (-15 -1891 ($ $ $)) (-15 -1891 ($ (-584 $))) (-15 -2709 ((-1085 $) (-1085 $) (-1085 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-631 (-350 (-858 |#1|)))) (-1179 $)) NIL T ELT) (((-1179 (-631 (-350 (-858 |#1|))))) NIL T ELT)) (-1729 (((-1179 $)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL T ELT)) (-1703 (((-3 $ #1#)) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1788 (((-631 (-350 (-858 |#1|))) (-1179 $)) NIL T ELT) (((-631 (-350 (-858 |#1|)))) NIL T ELT)) (-1727 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1786 (((-631 (-350 (-858 |#1|))) $ (-1179 $)) NIL T ELT) (((-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1900 (((-1085 (-858 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-312)) ELT) (((-1085 (-350 (-858 |#1|)))) 89 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1725 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1705 (((-1085 (-350 (-858 |#1|))) $) 87 (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1790 (((-350 (-858 |#1|)) (-1179 $)) NIL T ELT) (((-350 (-858 |#1|))) NIL T ELT)) (-1723 (((-1085 (-350 (-858 |#1|))) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-1792 (($ (-1179 (-350 (-858 |#1|))) (-1179 $)) 111 T ELT) (($ (-1179 (-350 (-858 |#1|)))) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-3109 (((-831)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL T ELT)) (-1704 (((-3 $ #1#)) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1789 (((-631 (-350 (-858 |#1|))) (-1179 $)) NIL T ELT) (((-631 (-350 (-858 |#1|)))) NIL T ELT)) (-1728 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1787 (((-631 (-350 (-858 |#1|))) $ (-1179 $)) NIL T ELT) (((-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1904 (((-1085 (-858 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-312)) ELT) (((-1085 (-350 (-858 |#1|)))) 88 (|has| |#1| (-496)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1726 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1706 (((-1085 (-350 (-858 |#1|))) $) 84 (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1791 (((-350 (-858 |#1|)) (-1179 $)) NIL T ELT) (((-350 (-858 |#1|))) NIL T ELT)) (-1724 (((-1085 (-350 (-858 |#1|))) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1894 (((-350 (-858 |#1|)) $ $) 75 (|has| |#1| (-496)) ELT)) (-1898 (((-350 (-858 |#1|)) $) 74 (|has| |#1| (-496)) ELT)) (-1897 (((-350 (-858 |#1|)) $) 101 (|has| |#1| (-496)) ELT)) (-1899 (((-1085 (-350 (-858 |#1|))) $) 93 (|has| |#1| (-496)) ELT)) (-1893 (((-350 (-858 |#1|))) 76 (|has| |#1| (-496)) ELT)) (-1896 (((-350 (-858 |#1|)) $ $) 64 (|has| |#1| (-496)) ELT)) (-1902 (((-350 (-858 |#1|)) $) 63 (|has| |#1| (-496)) ELT)) (-1901 (((-350 (-858 |#1|)) $) 100 (|has| |#1| (-496)) ELT)) (-1903 (((-1085 (-350 (-858 |#1|))) $) 92 (|has| |#1| (-496)) ELT)) (-1895 (((-350 (-858 |#1|))) 73 (|has| |#1| (-496)) ELT)) (-1905 (($) 107 T ELT) (($ (-1090)) 115 T ELT) (($ (-1179 (-1090))) 114 T ELT) (($ (-1179 $)) 102 T ELT) (($ (-1090) (-1179 $)) 113 T ELT) (($ (-1179 (-1090)) (-1179 $)) 112 T ELT)) (-1716 (((-85)) NIL T ELT)) (-3800 (((-350 (-858 |#1|)) $ (-485)) NIL T ELT)) (-3225 (((-1179 (-350 (-858 |#1|))) $ (-1179 $)) 104 T ELT) (((-631 (-350 (-858 |#1|))) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 (-350 (-858 |#1|))) $) 44 T ELT) (((-631 (-350 (-858 |#1|))) (-1179 $)) NIL T ELT)) (-3972 (((-1179 (-350 (-858 |#1|))) $) NIL T ELT) (($ (-1179 (-350 (-858 |#1|)))) 41 T ELT)) (-1892 (((-584 (-858 (-350 (-858 |#1|)))) (-1179 $)) NIL T ELT) (((-584 (-858 (-350 (-858 |#1|))))) NIL T ELT) (((-584 (-858 |#1|)) (-1179 $)) 105 (|has| |#1| (-496)) ELT) (((-584 (-858 |#1|))) 106 (|has| |#1| (-496)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-1179 (-350 (-858 |#1|)))) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) 66 T ELT)) (-1707 (((-584 (-1179 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-2546 (($ (-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-858 |#1|))) NIL T ELT) (($ (-350 (-858 |#1|)) $) NIL T ELT) (($ (-1056 |#2| (-350 (-858 |#1|))) $) NIL T ELT)))
+(((-393 |#1| |#2| |#3| |#4|) (-13 (-361 (-350 (-858 |#1|))) (-591 (-1056 |#2| (-350 (-858 |#1|)))) (-10 -8 (-15 -3946 ($ (-1179 (-350 (-858 |#1|))))) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1="failed"))) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#))) (-15 -1905 ($)) (-15 -1905 ($ (-1090))) (-15 -1905 ($ (-1179 (-1090)))) (-15 -1905 ($ (-1179 $))) (-15 -1905 ($ (-1090) (-1179 $))) (-15 -1905 ($ (-1179 (-1090)) (-1179 $))) (IF (|has| |#1| (-496)) (PROGN (-15 -1904 ((-1085 (-350 (-858 |#1|))))) (-15 -1903 ((-1085 (-350 (-858 |#1|))) $)) (-15 -1902 ((-350 (-858 |#1|)) $)) (-15 -1901 ((-350 (-858 |#1|)) $)) (-15 -1900 ((-1085 (-350 (-858 |#1|))))) (-15 -1899 ((-1085 (-350 (-858 |#1|))) $)) (-15 -1898 ((-350 (-858 |#1|)) $)) (-15 -1897 ((-350 (-858 |#1|)) $)) (-15 -1896 ((-350 (-858 |#1|)) $ $)) (-15 -1895 ((-350 (-858 |#1|)))) (-15 -1894 ((-350 (-858 |#1|)) $ $)) (-15 -1893 ((-350 (-858 |#1|)))) (-15 -1892 ((-584 (-858 |#1|)) (-1179 $))) (-15 -1892 ((-584 (-858 |#1|))))) |%noBranch|))) (-146) (-831) (-584 (-1090)) (-1179 (-631 |#1|))) (T -393))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1179 (-350 (-858 *3)))) (-4 *3 (-146)) (-14 *6 (-1179 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))))) (-1907 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1906 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1905 (*1 *1) (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831)) (-14 *4 (-584 (-1090))) (-14 *5 (-1179 (-631 *2))))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1179 (-631 *3))))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-1179 (-1090))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-1179 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1905 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2)) (-14 *7 (-1179 (-631 *4))))) (-1905 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 (-1090))) (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1090))) (-14 *7 (-1179 (-631 *4))))) (-1904 (*1 *2) (-12 (-5 *2 (-1085 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-1085 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1900 (*1 *2) (-12 (-5 *2 (-1085 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-1085 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1896 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1895 (*1 *2) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1893 (*1 *2) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1090))) (-14 *7 (-1179 (-631 *4))))) (-1892 (*1 *2) (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 19 T ELT)) (-3082 (((-584 (-774 |#1|)) $) 88 T ELT)) (-3084 (((-1085 $) $ (-774 |#1|)) 53 T ELT) (((-1085 |#2|) $) 140 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) 28 T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) 49 T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1937 (($ $ (-584 (-485))) 95 T ELT)) (-3959 (($ $) 81 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1624 (($ $ |#2| |#3| $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 66 T ELT)) (-3085 (($ (-1085 |#2|) (-774 |#1|)) 145 T ELT) (($ (-1085 $) (-774 |#1|)) 59 T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) 69 T ELT)) (-2894 (($ |#2| |#3|) 36 T ELT) (($ $ (-774 |#1|) (-695)) 38 T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2821 ((|#3| $) NIL T ELT) (((-695) $ (-774 |#1|)) 57 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 64 T ELT)) (-1625 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-774 |#1|) #1#) $) 46 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) 48 T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) 47 T ELT)) (-1796 ((|#2| $) 138 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) 151 (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) 102 T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) 108 T ELT) (($ $ (-774 |#1|) $) 100 T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) 126 T ELT)) (-3757 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) 60 T ELT)) (-3948 ((|#3| $) 80 T ELT) (((-695) $ (-774 |#1|)) 43 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 63 T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) 147 (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3946 (((-773) $) 175 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-774 |#1|)) 40 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3817 (((-584 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ |#3|) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 23 T CONST)) (-2667 (($) 32 T CONST)) (-2670 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 133 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 131 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-394 |#1| |#2| |#3|) (-13 (-862 |#2| |#3| (-774 |#1|)) (-10 -8 (-15 -1937 ($ $ (-584 (-485)))))) (-584 (-1090)) (-962) (-196 (-3957 |#1|) (-695))) (T -394))
+((-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-14 *3 (-584 (-1090))) (-5 *1 (-394 *3 *4 *5)) (-4 *4 (-962)) (-4 *5 (-196 (-3957 *3) (-695))))))
+((-1911 (((-85) |#1| (-584 |#2|)) 90 T ELT)) (-1909 (((-3 (-1179 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|)) 99 T ELT)) (-1910 (((-3 (-584 |#2|) #1#) |#2| |#1| (-1179 (-584 |#2|))) 101 T ELT)) (-2038 ((|#2| |#2| |#1|) 35 T ELT)) (-1908 (((-695) |#2| (-584 |#2|)) 26 T ELT)))
+(((-395 |#1| |#2|) (-10 -7 (-15 -2038 (|#2| |#2| |#1|)) (-15 -1908 ((-695) |#2| (-584 |#2|))) (-15 -1909 ((-3 (-1179 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|))) (-15 -1910 ((-3 (-584 |#2|) #1#) |#2| |#1| (-1179 (-584 |#2|)))) (-15 -1911 ((-85) |#1| (-584 |#2|)))) (-258) (-1155 |#1|)) (T -395))
+((-1911 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-1155 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-395 *3 *5)))) (-1910 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1179 (-584 *3))) (-4 *4 (-258)) (-5 *2 (-584 *3)) (-5 *1 (-395 *4 *3)) (-4 *3 (-1155 *4)))) (-1909 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-258)) (-4 *6 (-1155 *4)) (-5 *2 (-1179 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-258)) (-5 *2 (-695)) (-5 *1 (-395 *5 *3)))) (-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1155 *3)))))
+((-3732 (((-348 |#5|) |#5|) 24 T ELT)))
+(((-396 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3732 ((-348 |#5|) |#5|))) (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090))))) (-718) (-496) (-496) (-862 |#4| |#2| |#1|)) (T -396))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090)))))) (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4)))))
+((-2701 ((|#3|) 43 T ELT)) (-2709 (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 34 T ELT)))
+(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2709 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2701 (|#3|))) (-718) (-757) (-822) (-862 |#3| |#1| |#2|)) (T -397))
+((-2701 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6)))))
+((-3732 (((-348 (-1085 |#1|)) (-1085 |#1|)) 43 T ELT)))
+(((-398 |#1|) (-10 -7 (-15 -3732 ((-348 (-1085 |#1|)) (-1085 |#1|)))) (-258)) (T -398))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1085 *4))) (-5 *1 (-398 *4)) (-5 *3 (-1085 *4)))))
+((-3729 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-695))) 44 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1146 (-695))) 43 T ELT) (((-51) |#2| (-1090) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 29 T ELT)) (-3818 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-485))) (-350 (-485))) 88 T ELT) (((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1146 (-350 (-485))) (-350 (-485))) 87 T ELT) (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-485))) 86 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1146 (-485))) 85 T ELT) (((-51) |#2| (-1090) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 79 T ELT)) (-3782 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-485))) (-350 (-485))) 74 T ELT) (((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1146 (-350 (-485))) (-350 (-485))) 72 T ELT)) (-3779 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-485))) 51 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1146 (-485))) 50 T ELT)))
+(((-399 |#1| |#2|) (-10 -7 (-15 -3729 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3729 ((-51) |#2| (-1090) (-249 |#2|))) (-15 -3729 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1146 (-695)))) (-15 -3729 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-695)))) (-15 -3779 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1146 (-485)))) (-15 -3779 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-485)))) (-15 -3782 ((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1146 (-350 (-485))) (-350 (-485)))) (-15 -3782 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-485))) (-350 (-485)))) (-15 -3818 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3818 ((-51) |#2| (-1090) (-249 |#2|))) (-15 -3818 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1146 (-485)))) (-15 -3818 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-485)))) (-15 -3818 ((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1146 (-350 (-485))) (-350 (-485)))) (-15 -3818 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-485))) (-350 (-485))))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1115) (-364 |#1|))) (T -399))
+((-3818 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-485)))) (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1115) (-364 *8))) (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3818 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1146 (-350 (-485)))) (-5 *6 (-350 (-485))) (-4 *8 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3818 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-485))) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-485))) (-4 *7 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))) (-3782 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-485)))) (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1115) (-364 *8))) (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3782 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1146 (-350 (-485)))) (-5 *6 (-350 (-485))) (-4 *8 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3779 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-485))) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-485))) (-4 *7 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3729 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-695))) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-695))) (-4 *7 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))))
+((-2038 ((|#2| |#2| |#1|) 15 T ELT)) (-1913 (((-584 |#2|) |#2| (-584 |#2|) |#1| (-831)) 82 T ELT)) (-1912 (((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831)) 71 T ELT)))
+(((-400 |#1| |#2|) (-10 -7 (-15 -1912 ((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831))) (-15 -1913 ((-584 |#2|) |#2| (-584 |#2|) |#1| (-831))) (-15 -2038 (|#2| |#2| |#1|))) (-258) (-1155 |#1|)) (T -400))
+((-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1155 *3)))) (-1913 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1155 *4)) (-4 *4 (-258)) (-5 *1 (-400 *4 *3)))) (-1912 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-831)) (-4 *5 (-258)) (-4 *3 (-1155 *5)) (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) (-5 *4 (-584 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 28 T ELT)) (-3707 (($ |#3|) 25 T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) 32 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1914 (($ |#2| |#4| $) 33 T ELT)) (-2894 (($ |#2| (-651 |#3| |#4| |#5|)) 24 T ELT)) (-2895 (((-651 |#3| |#4| |#5|) $) 15 T ELT)) (-1916 ((|#3| $) 19 T ELT)) (-1917 ((|#4| $) 17 T ELT)) (-3175 ((|#2| $) 29 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1915 (($ |#2| |#3| |#4|) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 36 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-401 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3175 (|#2| $)) (-15 -2895 ((-651 |#3| |#4| |#5|) $)) (-15 -1917 (|#4| $)) (-15 -1916 (|#3| $)) (-15 -3959 ($ $)) (-15 -2894 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -3707 ($ |#3|)) (-15 -1915 ($ |#2| |#3| |#4|)) (-15 -1914 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-584 (-1090)) (-146) (-757) (-196 (-3957 |#1|) (-695)) (-1 (-85) (-2 (|:| -2401 |#3|) (|:| -2402 |#4|)) (-2 (|:| -2401 |#3|) (|:| -2402 |#4|))) (-862 |#2| |#4| (-774 |#1|))) (T -401))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3957 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *2 (-862 *4 *6 (-774 *3))))) (-3175 (*1 *2 *1) (-12 (-14 *3 (-584 (-1090))) (-4 *5 (-196 (-3957 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) (-2 (|:| -2401 *4) (|:| -2402 *5)))) (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *2 *5 (-774 *3))))) (-2895 (*1 *2 *1) (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3957 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) (-4 *8 (-862 *4 *6 (-774 *3))))) (-1917 (*1 *2 *1) (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *2)) (-2 (|:| -2401 *5) (|:| -2402 *2)))) (-4 *2 (-196 (-3957 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))) (-1916 (*1 *2 *1) (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3957 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) (-2 (|:| -2401 *2) (|:| -2402 *5)))) (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-3959 (*1 *1 *1) (-12 (-14 *2 (-584 (-1090))) (-4 *3 (-146)) (-4 *5 (-196 (-3957 *2) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) (-2 (|:| -2401 *4) (|:| -2402 *5)))) (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *3 *5 (-774 *2))))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3957 *4) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-14 *4 (-584 (-1090))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) (-4 *8 (-862 *2 *6 (-774 *4))))) (-3707 (*1 *1 *2) (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3957 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) (-2 (|:| -2401 *2) (|:| -2402 *5)))) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-1915 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-584 (-1090))) (-4 *2 (-146)) (-4 *4 (-196 (-3957 *5) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *4)) (-2 (|:| -2401 *3) (|:| -2402 *4)))) (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) (-4 *7 (-862 *2 *4 (-774 *5))))) (-1914 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-584 (-1090))) (-4 *2 (-146)) (-4 *3 (-196 (-3957 *4) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *3)) (-2 (|:| -2401 *5) (|:| -2402 *3)))) (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *2 *3 (-774 *4))))))
+((-1918 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT)))
+(((-402 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1918 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-13 (-951 (-350 (-485))) (-312) (-10 -8 (-15 -3946 ($ |#4|)) (-15 -2999 (|#4| $)) (-15 -2998 (|#4| $))))) (T -402))
+((-1918 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496)) (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-951 (-350 (-485))) (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3082 (((-584 |#3|) $) 41 T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2905 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1="failed") (-584 |#4|)) 49 T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#4|) $) 18 (|has| $ (-6 -3995)) ELT)) (-3181 ((|#3| $) 47 T ELT)) (-2609 (((-584 |#4|) $) 14 T ELT)) (-3246 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 39 T ELT)) (-3565 (($) 17 T ELT)) (-1946 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) 16 T ELT)) (-3972 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT) (($ (-584 |#4|)) 51 T ELT)) (-3530 (($ (-584 |#4|)) 13 T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3946 (((-773) $) 38 T ELT) (((-584 |#4|) $) 50 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3057 (((-85) $ $) 30 T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-403 |#1| |#2| |#3| |#4|) (-13 (-890 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3972 ($ (-584 |#4|))) (-6 -3996))) (-962) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -403))
+((-3972 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6)))))
+((-2661 (($) 11 T CONST)) (-2667 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
+(((-404 |#1| |#2| |#3|) (-10 -7 (-15 -2667 (|#1|) -3952) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2661 (|#1|) -3952)) (-405 |#2| |#3|) (-146) (-23)) (T -404))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3158 (((-3 |#1| "failed") $) 30 T ELT)) (-3157 ((|#1| $) 31 T ELT)) (-3944 (($ $ $) 27 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3948 ((|#2| $) 23 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 22 T CONST)) (-2667 (($) 28 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
+(((-405 |#1| |#2|) (-113) (-146) (-23)) (T -405))
+((-2667 (*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3944 (*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
+(-13 (-410 |t#1| |t#2|) (-951 |t#1|) (-10 -8 (-15 -2667 ($) -3952) (-15 -3944 ($ $ $))))
+(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-410 |#1| |#2|) . T) ((-13) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-1919 (((-1179 (-1179 (-485))) (-1179 (-1179 (-485))) (-831)) 26 T ELT)) (-1920 (((-1179 (-1179 (-485))) (-831)) 21 T ELT)))
+(((-406) (-10 -7 (-15 -1919 ((-1179 (-1179 (-485))) (-1179 (-1179 (-485))) (-831))) (-15 -1920 ((-1179 (-1179 (-485))) (-831))))) (T -406))
+((-1920 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1179 (-1179 (-485)))) (-5 *1 (-406)))) (-1919 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-1179 (-485)))) (-5 *3 (-831)) (-5 *1 (-406)))))
+((-2771 (((-485) (-485)) 32 T ELT) (((-485)) 24 T ELT)) (-2775 (((-485) (-485)) 28 T ELT) (((-485)) 20 T ELT)) (-2773 (((-485) (-485)) 30 T ELT) (((-485)) 22 T ELT)) (-1922 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1921 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1923 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT)))
+(((-407) (-10 -7 (-15 -1921 ((-85))) (-15 -1922 ((-85))) (-15 -1921 ((-85) (-85))) (-15 -1922 ((-85) (-85))) (-15 -1923 ((-85))) (-15 -2773 ((-485))) (-15 -2775 ((-485))) (-15 -2771 ((-485))) (-15 -1923 ((-85) (-85))) (-15 -2773 ((-485) (-485))) (-15 -2775 ((-485) (-485))) (-15 -2771 ((-485) (-485))))) (T -407))
+((-2771 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-2771 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2775 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2773 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-1923 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1922 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1922 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1921 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3851 (((-584 (-330)) $) 34 T ELT) (((-584 (-330)) $ (-584 (-330))) 145 T ELT)) (-1928 (((-584 (-1002 (-330))) $) 16 T ELT) (((-584 (-1002 (-330))) $ (-584 (-1002 (-330)))) 142 T ELT)) (-1925 (((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784))) 58 T ELT)) (-1929 (((-584 (-584 (-855 (-179)))) $) 137 T ELT)) (-3706 (((-1185) $ (-855 (-179)) (-784)) 162 T ELT)) (-1930 (($ $) 136 T ELT) (($ (-584 (-584 (-855 (-179))))) 148 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831))) 147 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221))) 149 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3860 (((-485) $) 110 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1931 (($) 146 T ELT)) (-1924 (((-584 (-179)) (-584 (-584 (-855 (-179))))) 89 T ELT)) (-1927 (((-1185) $ (-584 (-855 (-179))) (-784) (-784) (-831)) 154 T ELT) (((-1185) $ (-855 (-179))) 156 T ELT) (((-1185) $ (-855 (-179)) (-784) (-784) (-831)) 155 T ELT)) (-3946 (((-773) $) 168 T ELT) (($ (-584 (-584 (-855 (-179))))) 163 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1926 (((-1185) $ (-855 (-179))) 161 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-408) (-13 (-1014) (-10 -8 (-15 -1931 ($)) (-15 -1930 ($ $)) (-15 -1930 ($ (-584 (-584 (-855 (-179)))))) (-15 -1930 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)))) (-15 -1930 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221)))) (-15 -1929 ((-584 (-584 (-855 (-179)))) $)) (-15 -3860 ((-485) $)) (-15 -1928 ((-584 (-1002 (-330))) $)) (-15 -1928 ((-584 (-1002 (-330))) $ (-584 (-1002 (-330))))) (-15 -3851 ((-584 (-330)) $)) (-15 -3851 ((-584 (-330)) $ (-584 (-330)))) (-15 -1927 ((-1185) $ (-584 (-855 (-179))) (-784) (-784) (-831))) (-15 -1927 ((-1185) $ (-855 (-179)))) (-15 -1927 ((-1185) $ (-855 (-179)) (-784) (-784) (-831))) (-15 -1926 ((-1185) $ (-855 (-179)))) (-15 -3706 ((-1185) $ (-855 (-179)) (-784))) (-15 -3946 ($ (-584 (-584 (-855 (-179)))))) (-15 -3946 ((-773) $)) (-15 -1925 ((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784)))) (-15 -1924 ((-584 (-179)) (-584 (-584 (-855 (-179))))))))) (T -408))
+((-3946 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408)))) (-1931 (*1 *1) (-5 *1 (-408))) (-1930 (*1 *1 *1) (-5 *1 (-408))) (-1930 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-1930 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *1 (-408)))) (-1930 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-408)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-408)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) (-1928 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) (-3851 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) (-1927 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1185)) (-5 *1 (-408)))) (-1927 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1185)) (-5 *1 (-408)))) (-1927 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1185)) (-5 *1 (-408)))) (-1926 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1185)) (-5 *1 (-408)))) (-3706 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1185)) (-5 *1 (-408)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-1925 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *1 (-408)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179))) (-5 *1 (-408)))))
+((-3837 (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
+(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|))) (-410 |#2| |#3|) (-146) (-23)) (T -409))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3948 ((|#2| $) 23 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 22 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
+(((-410 |#1| |#2|) (-113) (-146) (-23)) (T -410))
+((-3948 (*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2661 (*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
+(-13 (-1014) (-10 -8 (-15 -3948 (|t#2| $)) (-15 -2661 ($) -3952) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3837 ($ $)) (-15 -3839 ($ $ $)) (-15 -3837 ($ $ $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-1933 (((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|))) 135 T ELT)) (-1932 (((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 132 T ELT)) (-1934 (((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 87 T ELT)))
+(((-411 |#1| |#2| |#3|) (-10 -7 (-15 -1932 ((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1933 ((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1934 ((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))))) (-584 (-1090)) (-392) (-392)) (T -411))
+((-1934 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1090))) (-4 *6 (-392)) (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-485))))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))) (-1933 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1090))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) (-4 *6 (-392)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1090))) (-4 *6 (-392)) (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))))
+((-3467 (((-3 $ "failed") $) 11 T ELT)) (-3010 (($ $ $) 22 T ELT)) (-2436 (($ $ $) 23 T ELT)) (-3949 (($ $ $) 9 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 21 T ELT)))
+(((-412 |#1|) (-10 -7 (-15 -2436 (|#1| |#1| |#1|)) (-15 -3010 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3949 (|#1| |#1| |#1|)) (-15 -3467 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-413)) (T -412))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 20 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 30 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3010 (($ $ $) 27 T ELT)) (-2436 (($ $ $) 26 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-413) (-113)) (T -413))
+((-2485 (*1 *1 *1) (-4 *1 (-413))) (-3949 (*1 *1 *1 *1) (-4 *1 (-413))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-485)))) (-3010 (*1 *1 *1 *1) (-4 *1 (-413))) (-2436 (*1 *1 *1 *1) (-4 *1 (-413))))
+(-13 (-664) (-10 -8 (-15 -2485 ($ $)) (-15 -3949 ($ $ $)) (-15 ** ($ $ (-485))) (-6 -3992) (-15 -3010 ($ $ $)) (-15 -2436 ($ $ $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) 18 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-695) (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) NIL T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 29 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) 35 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 30 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-485))) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 28 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1176 |#2|)) 16 T ELT)) (-3948 (((-350 (-485)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1176 |#2|)) NIL T ELT) (($ (-1160 |#1| |#2| |#3|)) 9 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3773 ((|#1| $) 21 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-414 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-807 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1176 |#2|))) (-15 -3946 ($ (-1160 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-962) (-1090) |#1|) (T -414))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-414 *3 *4 *5)))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 18 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-773) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-415 |#1| |#2| |#3| |#4|) (-1107 |#1| |#2|) (-1014) (-1014) (-1107 |#1| |#2|) |#2|) (T -415))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3682 (((-584 $) (-584 |#4|)) NIL T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2905 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3689 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-3799 (((-3 $ #1#) $) 45 T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#4|)) (|:| -1702 (-584 |#4|))) $) NIL T ELT)) (-2890 (((-584 |#4|) $) 18 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 38 T ELT)) (-2609 (((-584 |#4|) $) 19 T ELT)) (-3246 (((-85) |#4| $) 27 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3798 (((-3 |#4| #1#) $) 42 T ELT)) (-3697 (((-584 |#4|) $) NIL T ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 40 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3769 (($ $ |#4|) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 14 T ELT)) (-3948 (((-695) $) NIL T ELT)) (-1946 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) 13 T ELT)) (-3972 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) 22 T ELT)) (-2911 (($ $ |#3|) 49 T ELT)) (-2913 (($ $ |#3|) 51 T ELT)) (-3684 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3946 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3678 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-584 |#3|) $) NIL T ELT)) (-3933 (((-85) |#3| $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-416 |#1| |#2| |#3| |#4|) (-1124 |#1| |#2| |#3| |#4|) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -416))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3627 (($) 17 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3972 (((-330) $) 21 T ELT) (((-179) $) 24 T ELT) (((-350 (-1085 (-485))) $) 18 T ELT) (((-474) $) 53 T ELT)) (-3946 (((-773) $) 51 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (((-179) $) 23 T ELT) (((-330) $) 20 T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 37 T CONST)) (-2667 (($) 8 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
+(((-417) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))) (-934) (-553 (-179)) (-553 (-330)) (-554 (-350 (-1085 (-485)))) (-554 (-474)) (-10 -8 (-15 -3627 ($))))) (T -417))
+((-3627 (*1 *1) (-5 *1 (-417))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3528 (((-1049) $) 12 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-418) (-13 (-996) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1049) $))))) (T -418))
+((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 16 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) 13 T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 19 T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-773) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-695) $) 15 T ELT)))
+(((-419 |#1| |#2| |#3|) (-1107 |#1| |#2|) (-1014) (-1014) (-1073)) (T -419))
+NIL
+((-1935 (((-485) (-485) (-485)) 19 T ELT)) (-1936 (((-85) (-485) (-485) (-485) (-485)) 28 T ELT)) (-3457 (((-1179 (-584 (-485))) (-695) (-695)) 42 T ELT)))
+(((-420) (-10 -7 (-15 -1935 ((-485) (-485) (-485))) (-15 -1936 ((-85) (-485) (-485) (-485) (-485))) (-15 -3457 ((-1179 (-584 (-485))) (-695) (-695))))) (T -420))
+((-3457 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1179 (-584 (-485)))) (-5 *1 (-420)))) (-1936 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-420)))) (-1935 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-420)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3084 (((-1085 $) $ (-774 |#1|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1937 (($ $ (-584 (-485))) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1624 (($ $ |#2| (-422 (-3957 |#1|) (-695)) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1085 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1085 $) (-774 |#1|)) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-422 (-3957 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2821 (((-422 (-3957 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1625 (($ (-1 (-422 (-3957 |#1|) (-695)) (-422 (-3957 |#1|) (-695))) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#2| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3757 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3948 (((-422 (-3957 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3817 (((-584 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-422 (-3957 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-421 |#1| |#2|) (-13 (-862 |#2| (-422 (-3957 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1937 ($ $ (-584 (-485)))))) (-584 (-1090)) (-962)) (T -421))
+((-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-14 *3 (-584 (-1090))) (-4 *4 (-962)))))
+((-2569 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3707 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-2484 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3137 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3788 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3157 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2995 (($) NIL (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ (-485)) 11 T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2890 (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-1949 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1179 $)) NIL (|has| |#2| (-962)) ELT)) (-3243 (((-1073) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3244 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3801 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3836 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1468 (($ (-1179 |#2|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1946 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3127 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2661 (($) NIL (|has| |#2| (-23)) CONST)) (-2667 (($) NIL (|has| |#2| (-962)) CONST)) (-2670 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) 17 (|has| |#2| (-757)) ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-422 |#1| |#2|) (-196 |#1| |#2|) (-695) (-718)) (T -422))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1938 (((-584 (-786)) $) 16 T ELT)) (-3542 (((-447) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1939 (($ (-447) (-584 (-786))) 12 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 23 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-423) (-13 (-996) (-10 -8 (-15 -1939 ($ (-447) (-584 (-786)))) (-15 -3542 ((-447) $)) (-15 -1938 ((-584 (-786)) $))))) (T -423))
+((-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-423)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-423)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3724 (($) NIL T CONST)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2857 (($ $ $) 48 T ELT)) (-3518 (($ $ $) 47 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 40 T ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 41 T ELT)) (-3609 (($ |#1| $) 18 T ELT)) (-1940 (($ (-584 |#1|)) 19 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 11 T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 29 T ELT)))
+(((-424 |#1|) (-13 (-882 |#1|) (-10 -8 (-15 -1940 ($ (-584 |#1|))))) (-757)) (T -424))
+((-1940 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3842 (($ $) 71 T ELT)) (-1637 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 45 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (((-3 |#4| #1#) $) 117 T ELT)) (-1638 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-485)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3435 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3946 (((-773) $) 110 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 32 T CONST)) (-3057 (((-85) $ $) 121 T ELT)) (-3837 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 72 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 77 T ELT)))
+(((-425 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -425))
+NIL
+((-1944 (((-485) (-584 (-485))) 53 T ELT)) (-1941 ((|#1| (-584 |#1|)) 94 T ELT)) (-1943 (((-584 |#1|) (-584 |#1|)) 95 T ELT)) (-1942 (((-584 |#1|) (-584 |#1|)) 97 T ELT)) (-3145 ((|#1| (-584 |#1|)) 96 T ELT)) (-2818 (((-584 (-485)) (-584 |#1|)) 56 T ELT)))
+(((-426 |#1|) (-10 -7 (-15 -3145 (|#1| (-584 |#1|))) (-15 -1941 (|#1| (-584 |#1|))) (-15 -1942 ((-584 |#1|) (-584 |#1|))) (-15 -1943 ((-584 |#1|) (-584 |#1|))) (-15 -2818 ((-584 (-485)) (-584 |#1|))) (-15 -1944 ((-485) (-584 (-485))))) (-1155 (-485))) (T -426))
+((-1944 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4)) (-4 *4 (-1155 *2)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1155 (-485))) (-5 *2 (-584 (-485))) (-5 *1 (-426 *4)))) (-1943 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1155 (-485))) (-5 *1 (-426 *3)))) (-1942 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1155 (-485))) (-5 *1 (-426 *3)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-485))))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-485))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-485) (-951 (-1090))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3157 (((-485) $) NIL T ELT) (((-1090) $) NIL (|has| (-485) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-485) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| (-485) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3958 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL T ELT) (((-631 (-485)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-485) (-1066)) CONST)) (-1945 (($ (-350 (-485))) 9 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3768 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1090)) (-584 (-485))) NIL (|has| (-485) (-456 (-1090) (-485))) ELT) (($ $ (-1090) (-485)) NIL (|has| (-485) (-456 (-1090) (-485))) ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-485) $) NIL T ELT)) (-3972 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1090)) NIL (|has| (-485) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 16) $) 10 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT)))
+(((-427) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 16)) (-10 -8 (-15 -3129 ((-350 (-485)) $)) (-15 -1945 ($ (-350 (-485))))))) (T -427))
+((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))))
+((-2609 (((-584 |#2|) $) 31 T ELT)) (-3246 (((-85) |#2| $) 39 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3768 (($ $ (-584 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-1946 (((-695) (-1 (-85) |#2|) $) 30 T ELT) (((-695) |#2| $) 37 T ELT)) (-3946 (((-773) $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3057 (((-85) $ $) 35 T ELT)) (-3957 (((-695) $) 18 T ELT)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -3768 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3768 (|#1| |#1| |#2| |#2|)) (-15 -3768 (|#1| |#1| (-249 |#2|))) (-15 -3768 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3246 ((-85) |#2| |#1|)) (-15 -1946 ((-695) |#2| |#1|)) (-15 -2609 ((-584 |#2|) |#1|)) (-15 -1946 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3957 ((-695) |#1|))) (-429 |#2|) (-1129)) (T -428))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-429 |#1|) (-113) (-1129)) (T -429))
+((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1129)))) (-1949 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1129)))) (-1948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4)) (-4 *4 (-1129)) (-5 *2 (-695)))) (-2890 (*1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-5 *2 (-584 *3)))) (-2609 (*1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-5 *2 (-584 *3)))) (-1946 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-695)))) (-3246 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |t#1| (-1014)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3996)) (-15 -1949 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3995)) (PROGN (-15 -1948 ((-85) (-1 (-85) |t#1|) $)) (-15 -1947 ((-85) (-1 (-85) |t#1|) $)) (-15 -1946 ((-695) (-1 (-85) |t#1|) $)) (-15 -2890 ((-584 |t#1|) $)) (-15 -2609 ((-584 |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1946 ((-695) |t#1| $)) (-15 -3246 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-3946 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
+(((-430 |#1|) (-113) (-1129)) (T -430))
+NIL
+(-13 (-553 |t#1|) (-556 |t#1|))
+(((-556 |#1|) . T) ((-553 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1950 (($ (-1073)) 8 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 15 T ELT) (((-1073) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-431) (-13 (-1014) (-553 (-1073)) (-10 -8 (-15 -1950 ($ (-1073)))))) (T -431))
+((-1950 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-431)))))
+((-3492 (($ $) 15 T ELT)) (-3490 (($ $) 24 T ELT)) (-3494 (($ $) 12 T ELT)) (-3495 (($ $) 10 T ELT)) (-3493 (($ $) 17 T ELT)) (-3491 (($ $) 22 T ELT)))
+(((-432 |#1|) (-10 -7 (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|))) (-433)) (T -432))
+NIL
+((-3492 (($ $) 11 T ELT)) (-3490 (($ $) 10 T ELT)) (-3494 (($ $) 9 T ELT)) (-3495 (($ $) 8 T ELT)) (-3493 (($ $) 7 T ELT)) (-3491 (($ $) 6 T ELT)))
+(((-433) (-113)) (T -433))
+((-3492 (*1 *1 *1) (-4 *1 (-433))) (-3490 (*1 *1 *1) (-4 *1 (-433))) (-3494 (*1 *1 *1) (-4 *1 (-433))) (-3495 (*1 *1 *1) (-4 *1 (-433))) (-3493 (*1 *1 *1) (-4 *1 (-433))) (-3491 (*1 *1 *1) (-4 *1 (-433))))
+(-13 (-10 -8 (-15 -3491 ($ $)) (-15 -3493 ($ $)) (-15 -3495 ($ $)) (-15 -3494 ($ $)) (-15 -3490 ($ $)) (-15 -3492 ($ $))))
+((-3732 (((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)) 54 T ELT)))
+(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)))) (-312) (-1155 |#1|) (-13 (-312) (-120) (-662 |#1| |#2|)) (-1155 |#3|)) (T -434))
+((-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-662 *5 *6))) (-5 *2 (-348 *3)) (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1155 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1215 (((-584 $) (-1085 $) (-1090)) NIL T ELT) (((-584 $) (-1085 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1216 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3189 (((-85) $) 39 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1951 (((-85) $ $) 72 T ELT)) (-1600 (((-584 (-551 $)) $) 49 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3038 (($ $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1217 (((-584 $) (-1085 $) (-1090)) NIL T ELT) (((-584 $) (-1085 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3184 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3158 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3157 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-350 (-485)) $) 54 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1179 (-350 (-485))))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-350 (-485))) (-631 $)) NIL T ELT)) (-3842 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2574 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1599 (((-584 (-86)) $) NIL T ELT)) (-3595 (((-86) (-86)) NIL T ELT)) (-2411 (((-85) $) 42 T ELT)) (-2674 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-2999 (((-1039 (-485) (-551 $)) $) 37 T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3133 (((-1085 $) (-1085 $) (-551 $)) 86 T ELT) (((-1085 $) (-1085 $) (-584 (-551 $))) 61 T ELT) (($ $ (-551 $)) 75 T ELT) (($ $ (-584 (-551 $))) 76 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1597 (((-1085 $) (-551 $)) 73 (|has| $ (-962)) ELT)) (-3958 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1602 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL T ELT) (((-631 (-485)) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1179 (-350 (-485))))) (-1179 $) $) NIL T ELT) (((-631 (-350 (-485))) (-1179 $)) NIL T ELT)) (-1891 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2634 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-2604 (((-695) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1598 (((-85) $ $) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3768 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1603 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3758 (($ $) 36 T ELT) (($ $ (-695)) NIL T ELT)) (-2998 (((-1039 (-485) (-551 $)) $) 20 T ELT)) (-3186 (($ $) NIL (|has| $ (-962)) ELT)) (-3972 (((-330) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-330)) $) 116 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1039 (-485) (-551 $))) 21 T ELT)) (-3127 (((-695)) NIL T CONST)) (-2591 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2255 (((-85) (-86)) 92 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 22 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) 24 T ELT)) (-3949 (($ $ $) 44 T ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-485))) NIL T ELT) (($ $ (-485)) 47 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
+(((-435) (-13 (-254) (-27) (-951 (-485)) (-951 (-350 (-485))) (-581 (-485)) (-934) (-581 (-350 (-485))) (-120) (-554 (-142 (-330))) (-190) (-556 (-1039 (-485) (-551 $))) (-10 -8 (-15 -2999 ((-1039 (-485) (-551 $)) $)) (-15 -2998 ((-1039 (-485) (-551 $)) $)) (-15 -3842 ($ $)) (-15 -1951 ((-85) $ $)) (-15 -3133 ((-1085 $) (-1085 $) (-551 $))) (-15 -3133 ((-1085 $) (-1085 $) (-584 (-551 $)))) (-15 -3133 ($ $ (-551 $))) (-15 -3133 ($ $ (-584 (-551 $))))))) (T -435))
+((-2999 (*1 *2 *1) (-12 (-5 *2 (-1039 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1039 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-3842 (*1 *1 *1) (-5 *1 (-435))) (-1951 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-435))) (-5 *1 (-435)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3788 ((|#1| $ (-485) |#1|) 19 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) 14 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 13 T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) 9 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 16 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) NIL T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-436 |#1| |#2|) (-19 |#1|) (-1129) (-485)) (T -436))
+NIL
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3788 ((|#1| $ (-485) (-485) |#1|) 44 T ELT)) (-1257 (($ $ (-485) |#2|) NIL T ELT)) (-1256 (($ $ (-485) |#3|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3112 ((|#2| $ (-485)) 53 T ELT)) (-1576 ((|#1| $ (-485) (-485) |#1|) 43 T ELT)) (-3113 ((|#1| $ (-485) (-485)) 38 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3115 (((-695) $) 28 T ELT)) (-3614 (($ (-695) (-695) |#1|) 24 T ELT)) (-3114 (((-695) $) 30 T ELT)) (-3119 (((-485) $) 26 T ELT)) (-3117 (((-485) $) 27 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) 29 T ELT)) (-3116 (((-485) $) 31 T ELT)) (-1949 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3243 (((-1073) $) 48 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 61 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 33 T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-485) (-485)) 41 T ELT) ((|#1| $ (-485) (-485) |#1|) 72 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) 59 T ELT)) (-3111 ((|#3| $ (-485)) 55 T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-437 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1129) (-324 |#1|) (-324 |#1|)) (T -437))
+NIL
+((-1953 (((-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695)) 32 T ELT)) (-1952 (((-584 (-1085 |#1|)) |#1| (-695) (-695) (-695)) 43 T ELT)) (-2078 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)) 107 T ELT)))
+(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1952 ((-584 (-1085 |#1|)) |#1| (-695) (-695) (-695))) (-15 -1953 ((-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695))) (-15 -2078 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)))) (-299) (-1155 |#1|) (-1155 |#2|)) (T -438))
+((-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))) (-5 *5 (-695)) (-4 *8 (-1155 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) (-5 *1 (-438 *6 *7 *8)))) (-1953 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-4 *5 (-299)) (-4 *6 (-1155 *5)) (-5 *2 (-584 (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) (-4 *7 (-1155 *6)))) (-1952 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-695)) (-4 *3 (-299)) (-4 *5 (-1155 *3)) (-5 *2 (-584 (-1085 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1155 *5)))))
+((-1959 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 70 T ELT)) (-1954 ((|#1| (-631 |#1|) |#1| (-695)) 24 T ELT)) (-1956 (((-695) (-695) (-695)) 34 T ELT)) (-1958 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 50 T ELT)) (-1957 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 58 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 55 T ELT)) (-1955 ((|#1| (-631 |#1|) (-631 |#1|) |#1| (-485)) 28 T ELT)) (-3329 ((|#1| (-631 |#1|)) 18 T ELT)))
+(((-439 |#1| |#2| |#3|) (-10 -7 (-15 -3329 (|#1| (-631 |#1|))) (-15 -1954 (|#1| (-631 |#1|) |#1| (-695))) (-15 -1955 (|#1| (-631 |#1|) (-631 |#1|) |#1| (-485))) (-15 -1956 ((-695) (-695) (-695))) (-15 -1957 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1957 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -1958 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1959 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))) (-1155 |#1|) (-353 |#1| |#2|)) (T -439))
+((-1959 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1955 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-485)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *5 (-1155 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-1954 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-695)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *5 (-1155 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *4 (-1155 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 44 T ELT)) (-3322 (($ $ $) 41 T ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1730 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2910 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3788 (((-85) $ (-1146 (-485)) (-85)) NIL (|has| $ (-6 -3996)) ELT) (((-85) $ (-485) (-85)) 43 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1014))) ELT)) (-3406 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1014))) ELT)) (-3842 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1014))) ELT)) (-1576 (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3996)) ELT)) (-3113 (((-85) $ (-485)) NIL T ELT)) (-3419 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-1014)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-1014)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2890 (((-584 (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-2562 (($ $ $) 39 T ELT)) (-2561 (($ $) NIL T ELT)) (-1300 (($ $ $) NIL T ELT)) (-3614 (($ (-695) (-85)) 27 T ELT)) (-1301 (($ $ $) NIL T ELT)) (-2201 (((-485) $) 8 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL T ELT)) (-3518 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2609 (((-584 (-85)) $) NIL T ELT)) (-3246 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL T ELT)) (-1949 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (((-85) $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2200 (($ $ (-85)) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3768 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1014))) ELT)) (-2206 (((-584 (-85)) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 29 T ELT)) (-3800 (($ $ (-1146 (-485))) NIL T ELT) (((-85) $ (-485)) 22 T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2306 (($ $ (-1146 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-85)) $) NIL T ELT) (((-695) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 30 T ELT)) (-3972 (((-474) $) NIL (|has| (-85) (-554 (-474))) ELT)) (-3530 (($ (-584 (-85))) NIL T ELT)) (-3802 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3946 (((-773) $) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2563 (($ $ $) 37 T ELT)) (-2312 (($ $ $) 46 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 31 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 32 T ELT)) (-2313 (($ $ $) 45 T ELT)) (-3957 (((-695) $) 13 T ELT)))
+(((-440 |#1|) (-96) (-485)) (T -440))
+NIL
+((-1961 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1085 |#4|)) 35 T ELT)) (-1960 (((-1085 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1085 |#4|)) 22 T ELT)) (-1962 (((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1085 |#4|))) 46 T ELT)) (-1963 (((-1085 (-1085 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT)))
+(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1960 (|#2| (-1 |#1| |#4|) (-1085 |#4|))) (-15 -1960 ((-1085 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1961 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1085 |#4|))) (-15 -1962 ((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1085 |#4|)))) (-15 -1963 ((-1085 (-1085 |#4|)) (-1 |#4| |#1|) |#3|))) (-962) (-1155 |#1|) (-1155 |#2|) (-962)) (T -441))
+((-1963 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1155 *5)) (-5 *2 (-1085 (-1085 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1155 *6)))) (-1962 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1085 *8))) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1155 *5)) (-5 *2 (-631 *6)) (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1155 *6)))) (-1961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1085 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1155 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1155 *2)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1155 *5)) (-5 *2 (-1085 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1155 *4)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1085 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1155 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1155 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1964 (((-1185) $) 25 T ELT)) (-3800 (((-1073) $ (-1090)) 30 T ELT)) (-3617 (((-1185) $) 20 T ELT)) (-3946 (((-773) $) 27 T ELT) (($ (-1073)) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 12 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 10 T ELT)))
+(((-442) (-13 (-757) (-556 (-1073)) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1964 ((-1185) $))))) (T -442))
+((-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-442)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-442)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-442)))))
+((-3741 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3739 ((|#1| |#4|) 10 T ELT)) (-3740 ((|#3| |#4|) 17 T ELT)))
+(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 (|#1| |#4|)) (-15 -3740 (|#3| |#4|)) (-15 -3741 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-496) (-905 |#1|) (-324 |#1|) (-324 |#2|)) (T -443))
+((-3741 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-324 *4)) (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1974 (((-85) $ (-584 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3189 (((-85) $) 178 T ELT)) (-1966 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-584 |#3|)) 122 T ELT)) (-1965 (((-1080 (-584 (-858 |#1|)) (-584 (-249 (-858 |#1|)))) (-584 |#4|)) 171 (|has| |#3| (-554 (-1090))) ELT)) (-1973 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2411 (((-85) $) 177 T ELT)) (-1970 (($ $) 132 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3239 (($ $ $) 99 T ELT) (($ (-584 $)) 101 T ELT)) (-1975 (((-85) |#4| $) 130 T ELT)) (-1976 (((-85) $ $) 82 T ELT)) (-1969 (($ (-584 |#4|)) 106 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1968 (($ (-584 |#4|)) 175 T ELT)) (-1967 (((-85) $) 176 T ELT)) (-2252 (($ $) 85 T ELT)) (-2696 (((-584 |#4|) $) 73 T ELT)) (-1972 (((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|)) NIL T ELT)) (-1977 (((-85) |#4| $) 89 T ELT)) (-3911 (((-485) $ (-584 |#3|)) 134 T ELT) (((-485) $) 135 T ELT)) (-3946 (((-773) $) 174 T ELT) (($ (-584 |#4|)) 102 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1971 (($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3057 (((-85) $ $) 84 T ELT)) (-3839 (($ $ $) 109 T ELT)) (** (($ $ (-695)) 115 T ELT)) (* (($ $ $) 113 T ELT)))
+(((-444 |#1| |#2| |#3| |#4|) (-13 (-1014) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 -3839 ($ $ $)) (-15 -2411 ((-85) $)) (-15 -3189 ((-85) $)) (-15 -1977 ((-85) |#4| $)) (-15 -1976 ((-85) $ $)) (-15 -1975 ((-85) |#4| $)) (-15 -1974 ((-85) $ (-584 |#3|))) (-15 -1974 ((-85) $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ (-584 $))) (-15 -1973 ($ $ $)) (-15 -1973 ($ $ |#4|)) (-15 -2252 ($ $)) (-15 -1972 ((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|))) (-15 -1971 ($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)))) (-15 -3911 ((-485) $ (-584 |#3|))) (-15 -3911 ((-485) $)) (-15 -1970 ($ $)) (-15 -1969 ($ (-584 |#4|))) (-15 -1968 ($ (-584 |#4|))) (-15 -1967 ((-85) $)) (-15 -2696 ((-584 |#4|) $)) (-15 -3946 ($ (-584 |#4|))) (-15 -1966 ($ $ |#4|)) (-15 -1966 ($ $ |#4| (-584 |#3|))) (IF (|has| |#3| (-554 (-1090))) (-15 -1965 ((-1080 (-584 (-858 |#1|)) (-584 (-249 (-858 |#1|)))) (-584 |#4|))) |%noBranch|))) (-312) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -444))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2411 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3189 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1977 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1976 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1975 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1973 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1973 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-2252 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) (|:| |genIdeal| (-444 *4 *5 *6 *7)))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) (|:| |genIdeal| (-444 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3911 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-3911 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1970 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1967 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-2696 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1966 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1966 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1090))) (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1080 (-584 (-858 *4)) (-584 (-249 (-858 *4))))) (-5 *1 (-444 *4 *5 *6 *7)))))
+((-1978 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 178 T ELT)) (-1979 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 179 T ELT)) (-1980 (((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 129 T ELT)) (-3723 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) NIL T ELT)) (-1981 (((-584 (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 181 T ELT)) (-1982 (((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-584 (-774 |#1|))) 197 T ELT)))
+(((-445 |#1| |#2|) (-10 -7 (-15 -1978 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1979 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -3723 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1980 ((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1981 ((-584 (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1982 ((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-584 (-774 |#1|))))) (-584 (-1090)) (-695)) (T -445))
+((-1982 (*1 *2 *2 *3) (-12 (-5 *2 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1090))) (-14 *5 (-695)) (-5 *1 (-445 *4 *5)))) (-1981 (*1 *2 *3) (-12 (-14 *4 (-584 (-1090))) (-14 *5 (-695)) (-5 *2 (-584 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))) (-5 *1 (-445 *4 *5)) (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-444 (-350 (-485)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-350 (-485))))) (-14 *3 (-584 (-1090))) (-14 *4 (-695)) (-5 *1 (-445 *3 *4)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1090))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1090))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1090))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))))
+((-3800 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-446 |#1|) (-113) (-72)) (T -446))
+NIL
+(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3057 (|f| |x| |x|) |x|))))))
+(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1983 (($) 6 T ELT)) (-3946 (((-773) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-447) (-13 (-1014) (-10 -8 (-15 -1983 ($))))) (T -447))
+((-1983 (*1 *1) (-5 *1 (-447))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3774 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3972 (($ (-584 (-454 |#1| |#2|))) 15 T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 20 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 25 T ELT)))
+(((-448 |#1| |#2|) (-13 (-21) (-450 |#1| |#2|)) (-21) (-760)) (T -448))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 16 T ELT)) (-3774 (((-584 (-454 |#1| |#2|)) $) 13 T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) 39 T ELT)) (-1214 (((-85) $ $) 44 T ELT)) (-2894 (($ |#1| |#2|) 36 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) 41 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3972 (($ (-584 (-454 |#1| |#2|))) 11 T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) 30 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 35 T ELT)))
+(((-449 |#1| |#2|) (-13 (-23) (-450 |#1| |#2|)) (-23) (-760)) (T -449))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3774 (((-584 (-454 |#1| |#2|)) $) 16 T ELT)) (-3959 (($ $) 17 T ELT)) (-2894 (($ |#1| |#2|) 20 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1984 ((|#2| $) 18 T ELT)) (-3175 ((|#1| $) 19 T ELT)) (-3243 (((-1073) $) 15 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3244 (((-1034) $) 14 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3972 (($ (-584 (-454 |#1| |#2|))) 22 T ELT)) (-3946 (((-773) $) 13 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-450 |#1| |#2|) (-113) (-72) (-760)) (T -450))
+((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)))) (-2894 (*1 *1 *2 *3) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)) (-5 *2 (-584 (-454 *3 *4))))))
+(-13 (-72) (-558 (-584 (-454 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1014)) (IF (|has| |t#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (-15 -2894 ($ |t#1| |t#2|)) (-15 -3175 (|t#1| $)) (-15 -1984 (|t#2| $)) (-15 -3959 ($ $)) (-15 -3774 ((-584 (-454 |t#1| |t#2|)) $))))
+(((-72) . T) ((-553 (-773)) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-558 (-584 (-454 |#1| |#2|))) . T) ((-13) . T) ((-1014) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3774 (((-584 (-454 |#1| |#2|)) $) 29 T ELT)) (-3959 (($ $) 23 T ELT)) (-2894 (($ |#1| |#2|) 19 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1984 ((|#2| $) 28 T ELT)) (-3175 ((|#1| $) 27 T ELT)) (-3243 (((-1073) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3244 (((-1034) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3972 (($ (-584 (-454 |#1| |#2|))) 30 T ELT)) (-1985 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3946 (((-773) $) 17 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-451 |#1| |#2|) (-13 (-450 |#1| |#2|) (-10 -8 (-15 -1985 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-760)) (T -451))
+((-1985 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-451 *4 *5)) (-4 *5 (-760)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3774 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3972 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 21 T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
+(((-452 |#1| |#2|) (-13 (-717) (-450 |#1| |#2|)) (-717) (-760)) (T -452))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3774 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-2484 (($ $ $) 24 T ELT)) (-1312 (((-3 $ "failed") $ $) 20 T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3972 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
+(((-453 |#1| |#2|) (-13 (-718) (-450 |#1| |#2|)) (-718) (-757)) (T -453))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1986 (($ |#2| |#1|) 9 T ELT)) (-2401 ((|#2| $) 11 T ELT)) (-3946 (((-783 |#2| |#1|) $) 14 T ELT)) (-3677 ((|#1| $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-454 |#1| |#2|) (-13 (-72) (-553 (-783 |#2| |#1|)) (-10 -8 (-15 -1986 ($ |#2| |#1|)) (-15 -2401 (|#2| $)) (-15 -3677 (|#1| $)))) (-72) (-760)) (T -454))
+((-1986 (*1 *1 *2 *3) (-12 (-5 *1 (-454 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-72)))) (-3677 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760)))))
+((-3768 (($ $ (-584 |#2|) (-584 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
+(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -3768 (|#1| |#1| |#2| |#3|)) (-15 -3768 (|#1| |#1| (-584 |#2|) (-584 |#3|)))) (-456 |#2| |#3|) (-1014) (-1129)) (T -455))
+NIL
+((-3768 (($ $ (-584 |#1|) (-584 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
+(((-456 |#1| |#2|) (-113) (-1014) (-1129)) (T -456))
+((-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1129)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1129)))))
+(-13 (-10 -8 (-15 -3768 ($ $ |t#1| |t#2|)) (-15 -3768 ($ $ (-584 |t#1|) (-584 |t#2|)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 17 T ELT)) (-3774 (((-584 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))) $) 19 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) 24 T ELT)) (-1622 ((|#2| $ (-485)) 22 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1621 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1620 (($ $ $) 55 (|has| |#2| (-717)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3677 ((|#2| |#1| $) 51 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 11 T CONST)) (-3057 (((-85) $ $) 30 T ELT)) (-3839 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
+(((-457 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1014) (-104) |#2|) (T -457))
+NIL
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1987 (((-85) (-85)) 32 T ELT)) (-3788 ((|#1| $ (-485) |#1|) 42 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-2369 (($ $) 83 (|has| |#1| (-1014)) ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3405 (($ |#1| $) NIL (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-1988 (($ $ (-485)) 19 T ELT)) (-1989 (((-695) $) 13 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) |#1|) 31 T ELT)) (-2201 (((-485) $) 29 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 28 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3609 (($ $ $ (-485)) 75 T ELT) (($ |#1| $ (-485)) 59 T ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1990 (($ (-584 |#1|)) 43 T ELT)) (-3801 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) 24 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 62 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 21 T ELT)) (-3800 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 55 T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-1571 (($ $ (-1146 (-485))) 73 T ELT) (($ $ (-485)) 67 T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-485)) 63 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 53 T ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) NIL T ELT)) (-3791 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) 22 T ELT)))
+(((-458 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1990 ($ (-584 |#1|))) (-15 -1989 ((-695) $)) (-15 -1988 ($ $ (-485))) (-15 -1987 ((-85) (-85))))) (-1129) (-485)) (T -458))
+((-1990 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-458 *3 *4)) (-14 *4 (-485)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-485)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1129)) (-14 *4 *2))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-485)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1992 (((-1049) $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1991 (((-1049) $) 14 T ELT)) (-3922 (((-1049) $) 10 T ELT)) (-3946 (((-773) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-459) (-13 (-996) (-10 -8 (-15 -3922 ((-1049) $)) (-15 -1992 ((-1049) $)) (-15 -1991 ((-1049) $))))) (T -459))
+((-3922 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-459)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-459)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-459)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-518 |#1|) #1#) $) NIL T ELT)) (-3157 (((-518 |#1|) $) NIL T ELT)) (-1792 (($ (-1179 (-518 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1764 (($ $ (-695)) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-831) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3133 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3445 (((-633 $) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 (-518 |#1|)) $) NIL T ELT) (((-1085 $) $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1627 (((-1085 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1626 (((-1085 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-3 (-1085 (-518 |#1|)) #1#) $ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-518 |#1|))) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-518 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-695) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3948 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1085 (-518 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3225 (((-1179 (-518 |#1|)) $) NIL T ELT) (((-631 (-518 |#1|)) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-518 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT) (((-1179 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT) (($ (-518 |#1|) $) NIL T ELT)))
+(((-460 |#1| |#2|) (-280 (-518 |#1|)) (-831) (-831)) (T -460))
+NIL
+((-3110 ((|#4| |#4|) 38 T ELT)) (-3109 (((-695) |#4|) 45 T ELT)) (-3108 (((-695) |#4|) 46 T ELT)) (-3107 (((-584 |#3|) |#4|) 57 (|has| |#3| (-6 -3996)) ELT)) (-3590 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1993 ((|#4| |#4|) 61 T ELT)) (-3328 ((|#1| |#4|) 60 T ELT)))
+(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3110 (|#4| |#4|)) (-15 -3109 ((-695) |#4|)) (-15 -3108 ((-695) |#4|)) (IF (|has| |#3| (-6 -3996)) (-15 -3107 ((-584 |#3|) |#4|)) |%noBranch|) (-15 -3328 (|#1| |#4|)) (-15 -1993 (|#4| |#4|)) (-15 -3590 ((-3 |#4| "failed") |#4|))) (-312) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -461))
+((-3590 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3107 (*1 *2 *3) (-12 (|has| *6 (-6 -3996)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+((-3110 ((|#8| |#4|) 20 T ELT)) (-3107 (((-584 |#3|) |#4|) 29 (|has| |#7| (-6 -3996)) ELT)) (-3590 (((-3 |#8| "failed") |#4|) 23 T ELT)))
+(((-462 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3110 (|#8| |#4|)) (-15 -3590 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3996)) (-15 -3107 ((-584 |#3|) |#4|)) |%noBranch|)) (-496) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|) (-905 |#1|) (-324 |#5|) (-324 |#5|) (-628 |#5| |#6| |#7|)) (T -462))
+((-3107 (*1 *2 *3) (-12 (|has| *9 (-6 -3996)) (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-584 *6)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) (-4 *10 (-628 *7 *8 *9)))) (-3590 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1994 (((-584 (-1130)) $) 14 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) (($ (-584 (-1130))) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-463) (-13 (-996) (-10 -8 (-15 -3946 ($ (-584 (-1130)))) (-15 -1994 ((-584 (-1130)) $))))) (T -463))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-463)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-463)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1995 (((-1049) $) 15 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3450 (((-447) $) 12 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 22 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-464) (-13 (-996) (-10 -8 (-15 -3450 ((-447) $)) (-15 -1995 ((-1049) $))))) (T -464))
+((-3450 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-464)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-464)))))
+((-2001 (((-633 (-1138)) $) 15 T ELT)) (-1997 (((-633 (-1136)) $) 38 T ELT)) (-1999 (((-633 (-1135)) $) 29 T ELT)) (-2002 (((-633 (-489)) $) 12 T ELT)) (-1998 (((-633 (-487)) $) 42 T ELT)) (-2000 (((-633 (-486)) $) 33 T ELT)) (-1996 (((-695) $ (-102)) 54 T ELT)))
+(((-465 |#1|) (-10 -7 (-15 -1996 ((-695) |#1| (-102))) (-15 -1997 ((-633 (-1136)) |#1|)) (-15 -1998 ((-633 (-487)) |#1|)) (-15 -1999 ((-633 (-1135)) |#1|)) (-15 -2000 ((-633 (-486)) |#1|)) (-15 -2001 ((-633 (-1138)) |#1|)) (-15 -2002 ((-633 (-489)) |#1|))) (-466)) (T -465))
+NIL
+((-2001 (((-633 (-1138)) $) 12 T ELT)) (-1997 (((-633 (-1136)) $) 8 T ELT)) (-1999 (((-633 (-1135)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-1700 (($ $) 6 T ELT)))
+(((-466) (-113)) (T -466))
+((-2003 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-101))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-489))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1138))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-486))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1135))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-487))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1136))))) (-1996 (*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-695)))))
+(-13 (-147) (-10 -8 (-15 -2003 ((-633 (-101)) $)) (-15 -2002 ((-633 (-489)) $)) (-15 -2001 ((-633 (-1138)) $)) (-15 -2000 ((-633 (-486)) $)) (-15 -1999 ((-633 (-1135)) $)) (-15 -1998 ((-633 (-487)) $)) (-15 -1997 ((-633 (-1136)) $)) (-15 -1996 ((-695) $ (-102)))))
(((-147) . T))
-((-2005 (((-1084 |#1|) (-694)) 114 T ELT)) (-3329 (((-1178 |#1|) (-1178 |#1|) (-830)) 107 T ELT)) (-2003 (((-1184) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) |#1|) 122 T ELT)) (-2007 (((-1178 |#1|) (-1178 |#1|) (-694)) 53 T ELT)) (-2994 (((-1178 |#1|) (-830)) 109 T ELT)) (-2009 (((-1178 |#1|) (-1178 |#1|) (-484)) 30 T ELT)) (-2004 (((-1084 |#1|) (-1178 |#1|)) 115 T ELT)) (-2013 (((-1178 |#1|) (-830)) 136 T ELT)) (-2011 (((-85) (-1178 |#1|)) 119 T ELT)) (-3132 (((-1178 |#1|) (-1178 |#1|) (-830)) 99 T ELT)) (-2014 (((-1084 |#1|) (-1178 |#1|)) 130 T ELT)) (-2010 (((-830) (-1178 |#1|)) 95 T ELT)) (-2484 (((-1178 |#1|) (-1178 |#1|)) 38 T ELT)) (-2400 (((-1178 |#1|) (-830) (-830)) 139 T ELT)) (-2008 (((-1178 |#1|) (-1178 |#1|) (-1033) (-1033)) 29 T ELT)) (-2006 (((-1178 |#1|) (-1178 |#1|) (-694) (-1033)) 54 T ELT)) (-2012 (((-1178 (-1178 |#1|)) (-830)) 135 T ELT)) (-3948 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 120 T ELT)) (** (((-1178 |#1|) (-1178 |#1|) (-484)) 67 T ELT)) (* (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 31 T ELT)))
-(((-466 |#1|) (-10 -7 (-15 -2003 ((-1184) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) |#1|)) (-15 -2994 ((-1178 |#1|) (-830))) (-15 -2400 ((-1178 |#1|) (-830) (-830))) (-15 -2004 ((-1084 |#1|) (-1178 |#1|))) (-15 -2005 ((-1084 |#1|) (-694))) (-15 -2006 ((-1178 |#1|) (-1178 |#1|) (-694) (-1033))) (-15 -2007 ((-1178 |#1|) (-1178 |#1|) (-694))) (-15 -2008 ((-1178 |#1|) (-1178 |#1|) (-1033) (-1033))) (-15 -2009 ((-1178 |#1|) (-1178 |#1|) (-484))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-484))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3948 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3132 ((-1178 |#1|) (-1178 |#1|) (-830))) (-15 -3329 ((-1178 |#1|) (-1178 |#1|) (-830))) (-15 -2484 ((-1178 |#1|) (-1178 |#1|))) (-15 -2010 ((-830) (-1178 |#1|))) (-15 -2011 ((-85) (-1178 |#1|))) (-15 -2012 ((-1178 (-1178 |#1|)) (-830))) (-15 -2013 ((-1178 |#1|) (-830))) (-15 -2014 ((-1084 |#1|) (-1178 |#1|)))) (-299)) (T -466))
-((-2014 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 (-1178 *4))) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-466 *4)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-830)) (-5 *1 (-466 *4)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (-3329 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-3948 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2008 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1033)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2007 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2006 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1178 *5)) (-5 *3 (-694)) (-5 *4 (-1033)) (-4 *5 (-299)) (-5 *1 (-466 *5)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))) (-2400 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-1184)) (-5 *1 (-466 *4)))))
-((-2000 (((-632 (-1137)) $) NIL T ELT)) (-1996 (((-632 (-1135)) $) NIL T ELT)) (-1998 (((-632 (-1134)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) NIL T ELT)) (-2002 (((-632 (-101)) $) 26 T ELT)) (-2015 (((-1033) $ (-1033)) 31 T ELT)) (-3418 (((-1033) $) 30 T ELT)) (-2558 (((-85) $) 20 T ELT)) (-2017 (($ (-337)) 14 T ELT) (($ (-1072)) 16 T ELT)) (-2016 (((-85) $) 27 T ELT)) (-3945 (((-772) $) 34 T ELT)) (-1699 (($ $) 28 T ELT)))
-(((-467) (-13 (-465) (-552 (-772)) (-10 -8 (-15 -2017 ($ (-337))) (-15 -2017 ($ (-1072))) (-15 -2016 ((-85) $)) (-15 -2558 ((-85) $)) (-15 -3418 ((-1033) $)) (-15 -2015 ((-1033) $ (-1033)))))) (T -467))
-((-2017 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-467)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-467)))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))) (-2015 (*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))))
-((-2019 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2018 (((-1 |#1| |#1|)) 10 T ELT)))
-(((-468 |#1|) (-10 -7 (-15 -2018 ((-1 |#1| |#1|))) (-15 -2019 ((-1 |#1| |#1|) |#1|))) (-13 (-663) (-25))) (T -468))
-((-2019 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))) (-2018 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 (-694) |#1|)) $) NIL T ELT)) (-2483 (($ $ $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ (-694) |#1|) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3957 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-1983 ((|#1| $) NIL T ELT)) (-3174 (((-694) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 (-694) |#1|))) NIL T ELT)) (-3945 (((-772) $) 28 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT)))
-(((-469 |#1|) (-13 (-717) (-449 (-694) |#1|)) (-756)) (T -469))
-NIL
-((-2021 (((-583 |#2|) (-1084 |#1|) |#3|) 98 T ELT)) (-2022 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-347 (-1084 |#1|)) (-1084 |#1|))) 114 T ELT)) (-2020 (((-1084 |#1|) (-630 |#1|)) 110 T ELT)))
-(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -2020 ((-1084 |#1|) (-630 |#1|))) (-15 -2021 ((-583 |#2|) (-1084 |#1|) |#3|)) (-15 -2022 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-347 (-1084 |#1|)) (-1084 |#1|))))) (-312) (-312) (-13 (-312) (-755))) (T -470))
-((-2022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-347 (-1084 *6)) (-1084 *6))) (-4 *6 (-312)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 *7)))))) (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *5)) (-4 *5 (-312)) (-5 *2 (-583 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *2 (-1084 *4)) (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-755))))))
-((-2555 (((-632 (-1137)) $ (-1137)) NIL T ELT)) (-2556 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2554 (((-694) $ (-102)) 39 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 40 T ELT)) (-2000 (((-632 (-1137)) $) NIL T ELT)) (-1996 (((-632 (-1135)) $) NIL T ELT)) (-1998 (((-632 (-1134)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) 35 T ELT)) (-2002 (((-632 (-101)) $) 37 T ELT)) (-2439 (((-85) $) 27 T ELT)) (-2440 (((-632 $) (-515) (-865)) 18 T ELT) (((-632 $) (-430) (-865)) 24 T ELT)) (-3945 (((-772) $) 48 T ELT)) (-1699 (($ $) 42 T ELT)))
-(((-471) (-13 (-691 (-515)) (-552 (-772)) (-10 -8 (-15 -2440 ((-632 $) (-430) (-865)))))) (T -471))
-((-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-430)) (-5 *4 (-865)) (-5 *2 (-632 (-471))) (-5 *1 (-471)))))
-((-2527 (((-750 (-484))) 12 T ELT)) (-2526 (((-750 (-484))) 14 T ELT)) (-2514 (((-743 (-484))) 9 T ELT)))
-(((-472) (-10 -7 (-15 -2514 ((-743 (-484)))) (-15 -2527 ((-750 (-484)))) (-15 -2526 ((-750 (-484)))))) (T -472))
-((-2526 (*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) (-2527 (*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) (-2514 (*1 *2) (-12 (-5 *2 (-743 (-484))) (-5 *1 (-472)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2026 (((-1072) $) 55 T ELT)) (-3260 (((-85) $) 51 T ELT)) (-3256 (((-1089) $) 52 T ELT)) (-3261 (((-85) $) 49 T ELT)) (-3534 (((-1072) $) 50 T ELT)) (-2025 (($ (-1072)) 56 T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2028 (($ $ (-583 (-1089))) 21 T ELT)) (-2031 (((-51) $) 23 T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2383 (($ $ (-583 (-1089)) (-1089)) 73 T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3254 (((-179) $) NIL T ELT)) (-2027 (($ $) 44 T ELT)) (-3253 (((-772) $) NIL T ELT)) (-3266 (((-85) $ $) NIL T ELT)) (-3799 (($ $ (-484)) NIL T ELT) (($ $ (-583 (-484))) NIL T ELT)) (-3257 (((-583 $) $) 30 T ELT)) (-2024 (((-1089) (-583 $)) 57 T ELT)) (-3971 (($ (-1072)) NIL T ELT) (($ (-1089)) 19 T ELT) (($ (-484)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) 65 T ELT) (((-1015) $) 12 T ELT) (($ (-1015)) 13 T ELT)) (-2023 (((-1089) (-1089) (-583 $)) 60 T ELT)) (-3945 (((-772) $) 54 T ELT)) (-3251 (($ $) 59 T ELT)) (-3252 (($ $) 58 T ELT)) (-2029 (($ $ (-583 $)) 66 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3264 (((-85) $) 29 T ELT)) (-2660 (($) 9 T CONST)) (-2666 (($) 11 T CONST)) (-3056 (((-85) $ $) 74 T ELT)) (-3948 (($ $ $) 82 T ELT)) (-3838 (($ $ $) 75 T ELT)) (** (($ $ (-694)) 81 T ELT) (($ $ (-484)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3956 (((-484) $) NIL T ELT)))
-(((-473) (-13 (-1016 (-1072) (-1089) (-484) (-179) (-772)) (-553 (-1015)) (-10 -8 (-15 -2031 ((-51) $)) (-15 -3971 ($ (-1015))) (-15 -2029 ($ $ (-583 $))) (-15 -2383 ($ $ (-583 (-1089)) (-1089))) (-15 -2028 ($ $ (-583 (-1089)))) (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 -3948 ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ (-484))) (-15 -2660 ($) -3951) (-15 -2666 ($) -3951) (-15 -2027 ($ $)) (-15 -2026 ((-1072) $)) (-15 -2025 ($ (-1072))) (-15 -2024 ((-1089) (-583 $))) (-15 -2023 ((-1089) (-1089) (-583 $)))))) (T -473))
-((-2031 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-473))) (-5 *1 (-473)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-1089)) (-5 *1 (-473)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-473)))) (-3838 (*1 *1 *1 *1) (-5 *1 (-473))) (* (*1 *1 *1 *1) (-5 *1 (-473))) (-3948 (*1 *1 *1 *1) (-5 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-473)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473)))) (-2660 (*1 *1) (-5 *1 (-473))) (-2666 (*1 *1) (-5 *1 (-473))) (-2027 (*1 *1 *1) (-5 *1 (-473))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-473))) (-5 *2 (-1089)) (-5 *1 (-473)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-583 (-473))) (-5 *1 (-473)))))
-((-2030 (((-473) (-1089)) 15 T ELT)) (-2031 ((|#1| (-473)) 20 T ELT)))
-(((-474 |#1|) (-10 -7 (-15 -2030 ((-473) (-1089))) (-15 -2031 (|#1| (-473)))) (-1128)) (T -474))
-((-2031 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1128)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1128)))))
-((-3452 ((|#2| |#2|) 17 T ELT)) (-3450 ((|#2| |#2|) 13 T ELT)) (-3453 ((|#2| |#2| (-484) (-484)) 20 T ELT)) (-3451 ((|#2| |#2|) 15 T ELT)))
-(((-475 |#1| |#2|) (-10 -7 (-15 -3450 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2| (-484) (-484)))) (-13 (-495) (-120)) (-1171 |#1|)) (T -475))
-((-3453 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2)) (-4 *2 (-1171 *4)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))))
-((-2034 (((-583 (-249 (-857 |#2|))) (-583 |#2|) (-583 (-1089))) 32 T ELT)) (-2032 (((-583 |#2|) (-857 |#1|) |#3|) 54 T ELT) (((-583 |#2|) (-1084 |#1|) |#3|) 53 T ELT)) (-2033 (((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089)) |#3|) 106 T ELT)))
-(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -2032 ((-583 |#2|) (-1084 |#1|) |#3|)) (-15 -2032 ((-583 |#2|) (-857 |#1|) |#3|)) (-15 -2033 ((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089)) |#3|)) (-15 -2034 ((-583 (-249 (-857 |#2|))) (-583 |#2|) (-583 (-1089))))) (-391) (-312) (-13 (-312) (-755))) (T -476))
-((-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1089))) (-4 *6 (-312)) (-5 *2 (-583 (-249 (-857 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-13 (-312) (-755))))) (-2033 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-4 *6 (-391)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-755))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-4 *5 (-391)) (-5 *2 (-583 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *5)) (-4 *5 (-391)) (-5 *2 (-583 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))))
-((-2037 ((|#2| |#2| |#1|) 17 T ELT)) (-2035 ((|#2| (-583 |#2|)) 30 T ELT)) (-2036 ((|#2| (-583 |#2|)) 51 T ELT)))
-(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2035 (|#2| (-583 |#2|))) (-15 -2036 (|#2| (-583 |#2|))) (-15 -2037 (|#2| |#2| |#1|))) (-258) (-1154 |#1|) |#1| (-1 |#1| |#1| (-694))) (T -477))
-((-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694))) (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1154 *3)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))))
-((-3731 (((-347 (-1084 |#4|)) (-1084 |#4|) (-1 (-347 (-1084 |#3|)) (-1084 |#3|))) 90 T ELT) (((-347 |#4|) |#4| (-1 (-347 (-1084 |#3|)) (-1084 |#3|))) 213 T ELT)))
-(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4| (-1 (-347 (-1084 |#3|)) (-1084 |#3|)))) (-15 -3731 ((-347 (-1084 |#4|)) (-1084 |#4|) (-1 (-347 (-1084 |#3|)) (-1084 |#3|))))) (-756) (-717) (-13 (-258) (-120)) (-861 |#3| |#2| |#1|)) (T -478))
-((-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-347 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5)) (-5 *2 (-347 (-1084 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1084 *8)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-347 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-347 *3)) (-5 *1 (-478 *5 *6 *7 *3)) (-4 *3 (-861 *7 *6 *5)))))
-((-3452 ((|#4| |#4|) 74 T ELT)) (-3450 ((|#4| |#4|) 70 T ELT)) (-3453 ((|#4| |#4| (-484) (-484)) 76 T ELT)) (-3451 ((|#4| |#4|) 72 T ELT)))
-(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3450 (|#4| |#4|)) (-15 -3451 (|#4| |#4|)) (-15 -3452 (|#4| |#4|)) (-15 -3453 (|#4| |#4| (-484) (-484)))) (-13 (-312) (-319) (-553 (-484))) (-1154 |#1|) (-661 |#1| |#2|) (-1171 |#3|)) (T -479))
-((-3453 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-319) (-553 *3))) (-4 *5 (-1154 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1171 *6)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))))
-((-3452 ((|#2| |#2|) 27 T ELT)) (-3450 ((|#2| |#2|) 23 T ELT)) (-3453 ((|#2| |#2| (-484) (-484)) 29 T ELT)) (-3451 ((|#2| |#2|) 25 T ELT)))
-(((-480 |#1| |#2|) (-10 -7 (-15 -3450 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2| (-484) (-484)))) (-13 (-312) (-319) (-553 (-484))) (-1171 |#1|)) (T -480))
-((-3453 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-319) (-553 *3))) (-5 *1 (-480 *4 *2)) (-4 *2 (-1171 *4)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))))
-((-2038 (((-3 (-484) #1="failed") |#2| |#1| (-1 (-3 (-484) #1#) |#1|)) 18 T ELT) (((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|)) 14 T ELT) (((-3 (-484) #1#) |#2| (-484) (-1 (-3 (-484) #1#) |#1|)) 30 T ELT)))
-(((-481 |#1| |#2|) (-10 -7 (-15 -2038 ((-3 (-484) #1="failed") |#2| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2038 ((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2038 ((-3 (-484) #1#) |#2| |#1| (-1 (-3 (-484) #1#) |#1|)))) (-961) (-1154 |#1|)) (T -481))
-((-2038 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1="failed") *4)) (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) (-2038 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) (-2038 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-484) #1#) *5)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1154 *5)))))
-((-2047 (($ $ $) 87 T ELT)) (-3970 (((-347 $) $) 50 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 62 T ELT)) (-3156 (((-484) $) 40 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 80 T ELT)) (-3023 (((-85) $) 24 T ELT)) (-3022 (((-349 (-484)) $) 78 T ELT)) (-3722 (((-85) $) 53 T ELT)) (-2040 (($ $ $ $) 94 T ELT)) (-1368 (($ $ $) 60 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 75 T ELT)) (-3444 (((-632 $) $) 70 T ELT)) (-2044 (($ $) 22 T ELT)) (-2039 (($ $ $) 92 T ELT)) (-3445 (($) 63 T CONST)) (-1366 (($ $) 56 T ELT)) (-3731 (((-347 $) $) 48 T ELT)) (-2674 (((-85) $) 15 T ELT)) (-1606 (((-694) $) 30 T ELT)) (-3757 (($ $) 11 T ELT) (($ $ (-694)) NIL T ELT)) (-3399 (($ $) 16 T ELT)) (-3971 (((-484) $) NIL T ELT) (((-473) $) 39 T ELT) (((-800 (-484)) $) 43 T ELT) (((-329) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3126 (((-694)) 9 T CONST)) (-2049 (((-85) $ $) 19 T ELT)) (-3101 (($ $ $) 58 T ELT)))
-(((-482 |#1|) (-10 -7 (-15 -2039 (|#1| |#1| |#1|)) (-15 -2040 (|#1| |#1| |#1| |#1|)) (-15 -2044 (|#1| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -3024 ((-3 (-349 (-484)) #1="failed") |#1|)) (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -2047 (|#1| |#1| |#1|)) (-15 -2049 ((-85) |#1| |#1|)) (-15 -2674 ((-85) |#1|)) (-15 -3445 (|#1|) -3951) (-15 -3444 ((-632 |#1|) |#1|)) (-15 -3971 ((-179) |#1|)) (-15 -3971 ((-329) |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3971 ((-484) |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -1606 ((-694) |#1|)) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -3722 ((-85) |#1|)) (-15 -3126 ((-694)) -3951)) (-483)) (T -482))
-((-3126 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-482 *3)) (-4 *3 (-483)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-2047 (($ $ $) 102 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2042 (($ $ $ $) 91 T ELT)) (-3774 (($ $) 66 T ELT)) (-3970 (((-347 $) $) 67 T ELT)) (-1607 (((-85) $ $) 145 T ELT)) (-3622 (((-484) $) 134 T ELT)) (-2441 (($ $ $) 105 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) "failed") $) 126 T ELT)) (-3156 (((-484) $) 127 T ELT)) (-2564 (($ $ $) 149 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 124 T ELT) (((-630 (-484)) (-630 $)) 123 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3024 (((-3 (-349 (-484)) "failed") $) 99 T ELT)) (-3023 (((-85) $) 101 T ELT)) (-3022 (((-349 (-484)) $) 100 T ELT)) (-2994 (($) 98 T ELT) (($ $) 97 T ELT)) (-2563 (($ $ $) 148 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 143 T ELT)) (-3722 (((-85) $) 68 T ELT)) (-2040 (($ $ $ $) 89 T ELT)) (-2048 (($ $ $) 103 T ELT)) (-3186 (((-85) $) 136 T ELT)) (-1368 (($ $ $) 114 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 117 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2673 (((-85) $) 109 T ELT)) (-3444 (((-632 $) $) 111 T ELT)) (-3187 (((-85) $) 135 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 152 T ELT)) (-2041 (($ $ $ $) 90 T ELT)) (-2531 (($ $ $) 142 T ELT)) (-2857 (($ $ $) 141 T ELT)) (-2044 (($ $) 93 T ELT)) (-3832 (($ $) 106 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 122 T ELT) (((-630 (-484)) (-1178 $)) 121 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2039 (($ $ $) 88 T ELT)) (-3445 (($) 110 T CONST)) (-2046 (($ $) 95 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1366 (($ $) 115 T ELT)) (-3731 (((-347 $) $) 65 T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 150 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 144 T ELT)) (-2674 (((-85) $) 108 T ELT)) (-1606 (((-694) $) 146 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 147 T ELT)) (-3757 (($ $) 132 T ELT) (($ $ (-694)) 130 T ELT)) (-2045 (($ $) 94 T ELT)) (-3399 (($ $) 96 T ELT)) (-3971 (((-484) $) 128 T ELT) (((-473) $) 119 T ELT) (((-800 (-484)) $) 118 T ELT) (((-329) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-484)) 125 T ELT)) (-3126 (((-694)) 40 T CONST)) (-2049 (((-85) $ $) 104 T ELT)) (-3101 (($ $ $) 116 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2694 (($) 107 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2043 (($ $ $ $) 92 T ELT)) (-3382 (($ $) 133 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $) 131 T ELT) (($ $ (-694)) 129 T ELT)) (-2566 (((-85) $ $) 140 T ELT)) (-2567 (((-85) $ $) 138 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 139 T ELT)) (-2685 (((-85) $ $) 137 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-484) $) 120 T ELT)))
-(((-483) (-113)) (T -483))
-((-2673 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2694 (*1 *1) (-4 *1 (-483))) (-3832 (*1 *1 *1) (-4 *1 (-483))) (-2441 (*1 *1 *1 *1) (-4 *1 (-483))) (-2049 (*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2048 (*1 *1 *1 *1) (-4 *1 (-483))) (-2047 (*1 *1 *1 *1) (-4 *1 (-483))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-349 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-349 (-484))))) (-2994 (*1 *1) (-4 *1 (-483))) (-2994 (*1 *1 *1) (-4 *1 (-483))) (-3399 (*1 *1 *1) (-4 *1 (-483))) (-2046 (*1 *1 *1) (-4 *1 (-483))) (-2045 (*1 *1 *1) (-4 *1 (-483))) (-2044 (*1 *1 *1) (-4 *1 (-483))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2040 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2039 (*1 *1 *1 *1) (-4 *1 (-483))))
-(-13 (-1133) (-258) (-740) (-190) (-553 (-484)) (-950 (-484)) (-580 (-484)) (-553 (-473)) (-553 (-800 (-484))) (-796 (-484)) (-116) (-933) (-120) (-1065) (-10 -8 (-15 -2673 ((-85) $)) (-15 -2674 ((-85) $)) (-6 -3993) (-15 -2694 ($)) (-15 -3832 ($ $)) (-15 -2441 ($ $ $)) (-15 -2049 ((-85) $ $)) (-15 -2048 ($ $ $)) (-15 -2047 ($ $ $)) (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $)) (-15 -2994 ($)) (-15 -2994 ($ $)) (-15 -3399 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $ $)) (-15 -2039 ($ $ $)) (-6 -3992)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-116) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-329)) . T) ((-553 (-473)) . T) ((-553 (-484)) . T) ((-553 (-800 (-484))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-484)) . T) ((-590 $) . T) ((-582 $) . T) ((-580 (-484)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-740) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-484)) . T) ((-832) . T) ((-933) . T) ((-950 (-484)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) . T) ((-1128) . T) ((-1133) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 8 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 77 T ELT)) (-2063 (($ $) 78 T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) 31 T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL T ELT)) (-2441 (($ $ $) 71 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT)) (-2564 (($ $ $) 45 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 53 T ELT) (((-630 (-484)) (-630 $)) 49 T ELT)) (-3466 (((-3 $ #1#) $) 74 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3023 (((-85) $) NIL T ELT)) (-3022 (((-349 (-484)) $) NIL T ELT)) (-2994 (($) 55 T ELT) (($ $) 56 T ELT)) (-2563 (($ $ $) 70 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) 46 T ELT)) (-3186 (((-85) $) 22 T ELT)) (-1368 (($ $ $) NIL T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-1213 (((-85) $ $) 110 T ELT)) (-2410 (((-85) $) 9 T ELT)) (-2673 (((-85) $) 64 T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-3187 (((-85) $) 21 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) 32 T ELT)) (-2531 (($ $ $) 67 T ELT)) (-2857 (($ $ $) 66 T ELT)) (-2044 (($ $) NIL T ELT)) (-3832 (($ $) 29 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) 44 T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2046 (($ $) 15 T ELT)) (-3243 (((-1033) $) 19 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 109 T ELT)) (-3144 (($ $ $) 75 T ELT) (($ (-583 $)) NIL T ELT)) (-1366 (($ $) NIL T ELT)) (-3731 (((-347 $) $) 95 T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) 93 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) 65 T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 69 T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) 17 T ELT)) (-3399 (($ $) 13 T ELT)) (-3971 (((-484) $) 28 T ELT) (((-473) $) 41 T ELT) (((-800 (-484)) $) NIL T ELT) (((-329) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3945 (((-772) $) 26 T ELT) (($ (-484)) 27 T ELT) (($ $) NIL T ELT) (($ (-484)) 27 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3101 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (($) 12 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) 112 T ELT)) (-2043 (($ $ $ $) 30 T ELT)) (-3382 (($ $) 54 T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 11 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) 59 T ELT)) (-2567 (((-85) $ $) 57 T ELT)) (-3056 (((-85) $ $) 7 T ELT)) (-2684 (((-85) $ $) 58 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-3836 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3838 (($ $ $) 14 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 63 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-484) $) 61 T ELT)))
-(((-484) (-13 (-483) (-10 -7 (-6 -3981) (-6 -3986) (-6 -3982)))) (T -484))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)))
-(((-485) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951)))) (T -485))
-((-3723 (*1 *1) (-5 *1 (-485))))
-((-484) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)))
-(((-486) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951)))) (T -486))
-((-3723 (*1 *1) (-5 *1 (-486))))
-((-484) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)))
-(((-487) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951)))) (T -487))
-((-3723 (*1 *1) (-5 *1 (-487))))
-((-484) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)))
-(((-488) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951)))) (T -488))
-((-3723 (*1 *1) (-5 *1 (-488))))
-((-484) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-489 |#1| |#2| |#3|) (-1106 |#1| |#2|) (-1013) (-1013) (-1106 |#1| |#2|)) (T -489))
-NIL
-((-2050 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1084 |#2|) (-1084 |#2|))) 50 T ELT)))
-(((-490 |#1| |#2|) (-10 -7 (-15 -2050 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1084 |#2|) (-1084 |#2|))))) (-495) (-13 (-27) (-363 |#1|))) (T -490))
-((-2050 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1084 *3) (-1084 *3))) (-4 *3 (-13 (-27) (-363 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3)) (-5 *1 (-490 *6 *3)))))
-((-2052 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2053 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2051 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT)))
-(((-491 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2051 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2052 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2053 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-495) (-950 (-484))) (-13 (-27) (-363 |#1|)) (-1154 |#2|) (-1154 (-349 |#3|)) (-291 |#2| |#3| |#4|)) (T -491))
-((-2053 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-27) (-363 *4))) (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *7 (-1154 (-349 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1154 (-349 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1154 (-349 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
-((-2056 (((-85) (-484) (-484)) 12 T ELT)) (-2054 (((-484) (-484)) 7 T ELT)) (-2055 (((-484) (-484) (-484)) 10 T ELT)))
-(((-492) (-10 -7 (-15 -2054 ((-484) (-484))) (-15 -2055 ((-484) (-484) (-484))) (-15 -2056 ((-85) (-484) (-484))))) (T -492))
-((-2056 (*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492)))) (-2055 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2604 ((|#1| $) 77 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3491 (($ $) 107 T ELT)) (-3638 (($ $) 90 T ELT)) (-2483 ((|#1| $) 78 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $) 89 T ELT)) (-3489 (($ $) 106 T ELT)) (-3637 (($ $) 91 T ELT)) (-3493 (($ $) 105 T ELT)) (-3636 (($ $) 92 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) "failed") $) 85 T ELT)) (-3156 (((-484) $) 86 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2059 (($ |#1| |#1|) 82 T ELT)) (-3186 (((-85) $) 76 T ELT)) (-3626 (($) 117 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 88 T ELT)) (-3187 (((-85) $) 75 T ELT)) (-2531 (($ $ $) 118 T ELT)) (-2857 (($ $ $) 119 T ELT)) (-3941 (($ $) 114 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2060 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-349 (-484))) 80 T ELT)) (-2058 ((|#1| $) 79 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3942 (($ $) 115 T ELT)) (-3494 (($ $) 104 T ELT)) (-3635 (($ $) 93 T ELT)) (-3492 (($ $) 103 T ELT)) (-3634 (($ $) 94 T ELT)) (-3490 (($ $) 102 T ELT)) (-3633 (($ $) 95 T ELT)) (-2057 (((-85) $ |#1|) 74 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-484)) 84 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 113 T ELT)) (-3485 (($ $) 101 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3495 (($ $) 112 T ELT)) (-3483 (($ $) 100 T ELT)) (-3499 (($ $) 111 T ELT)) (-3487 (($ $) 99 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 110 T ELT)) (-3488 (($ $) 98 T ELT)) (-3498 (($ $) 109 T ELT)) (-3486 (($ $) 97 T ELT)) (-3496 (($ $) 108 T ELT)) (-3484 (($ $) 96 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 120 T ELT)) (-2567 (((-85) $ $) 122 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 121 T ELT)) (-2685 (((-85) $ $) 123 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-349 (-484))) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-493 |#1|) (-113) (-13 (-346) (-1114))) (T -493))
-((-2060 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2059 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2060 (*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85)))) (-2057 (*1 *2 *1 *3) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85)))))
-(-13 (-391) (-756) (-1114) (-915) (-950 (-484)) (-10 -8 (-6 -3769) (-15 -2060 ($ |t#1| |t#1|)) (-15 -2059 ($ |t#1| |t#1|)) (-15 -2060 ($ |t#1|)) (-15 -2060 ($ (-349 (-484)))) (-15 -2058 (|t#1| $)) (-15 -2483 (|t#1| $)) (-15 -2604 (|t#1| $)) (-15 -3186 ((-85) $)) (-15 -3187 ((-85) $)) (-15 -2057 ((-85) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-391) . T) ((-432) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-756) . T) ((-759) . T) ((-915) . T) ((-950 (-484)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) . T) ((-1117) . T) ((-1128) . T))
-((-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 9 T ELT)) (-2063 (($ $) 11 T ELT)) (-2061 (((-85) $) 20 T ELT)) (-3466 (((-3 $ "failed") $) 16 T ELT)) (-2062 (((-85) $ $) 22 T ELT)))
-(((-494 |#1|) (-10 -7 (-15 -2061 ((-85) |#1|)) (-15 -2062 ((-85) |#1| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2064 ((-2 (|:| -1771 |#1|) (|:| -3981 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|))) (-495)) (T -494))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-495) (-113)) (T -495))
-((-3465 (*1 *1 *1 *1) (|partial| -4 *1 (-495))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1771 *1) (|:| -3981 *1) (|:| |associate| *1))) (-4 *1 (-495)))) (-2063 (*1 *1 *1) (-4 *1 (-495))) (-2062 (*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))))
-(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3465 ((-3 $ "failed") $ $)) (-15 -2064 ((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $)) (-15 -2063 ($ $)) (-15 -2062 ((-85) $ $)) (-15 -2061 ((-85) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2066 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1089) (-583 |#2|)) 38 T ELT)) (-2068 (((-519 |#2|) |#2| (-1089)) 63 T ELT)) (-2067 (((-3 |#2| #1#) |#2| (-1089)) 156 T ELT)) (-2069 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) (-550 |#2|) (-583 (-550 |#2|))) 159 T ELT)) (-2065 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) |#2|) 41 T ELT)))
-(((-496 |#1| |#2|) (-10 -7 (-15 -2065 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1089) |#2|)) (-15 -2066 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1089) (-583 |#2|))) (-15 -2067 ((-3 |#2| #1#) |#2| (-1089))) (-15 -2068 ((-519 |#2|) |#2| (-1089))) (-15 -2069 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) (-550 |#2|) (-583 (-550 |#2|))))) (-13 (-391) (-120) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -496))
-((-2069 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2067 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-496 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-2066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-496 *6 *3)))) (-2065 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))))
-((-3970 (((-347 |#1|) |#1|) 17 T ELT)) (-3731 (((-347 |#1|) |#1|) 32 T ELT)) (-2071 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2070 (((-347 |#1|) |#1|) 59 T ELT)))
-(((-497 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -2070 ((-347 |#1|) |#1|)) (-15 -2071 ((-3 |#1| "failed") |#1|))) (-483)) (T -497))
-((-2071 (*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483)))) (-2070 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3970 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))))
-((-3083 (((-1084 (-349 (-1084 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1084 |#2|)) 35 T ELT)) (-2074 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1084 |#2|)) 115 T ELT)) (-2072 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|))) 85 T ELT) (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1084 |#2|)) 55 T ELT)) (-2073 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-349 (-1084 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1084 |#2|)) 114 T ELT)) (-2075 (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) (-550 |#2|) |#2| (-349 (-1084 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) |#2| (-1084 |#2|)) 116 T ELT)) (-2076 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|))) 133 (|has| |#3| (-600 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1084 |#2|)) 132 (|has| |#3| (-600 |#2|)) ELT)) (-3084 ((|#2| (-1084 (-349 (-1084 |#2|))) (-550 |#2|) |#2|) 53 T ELT)) (-3079 (((-1084 (-349 (-1084 |#2|))) (-1084 |#2|) (-550 |#2|)) 34 T ELT)))
-(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2072 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1084 |#2|))) (-15 -2072 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|)))) (-15 -2073 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1084 |#2|))) (-15 -2073 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-349 (-1084 |#2|)))) (-15 -2074 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1084 |#2|))) (-15 -2074 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|)))) (-15 -2075 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) |#2| (-1084 |#2|))) (-15 -2075 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) (-550 |#2|) |#2| (-349 (-1084 |#2|)))) (-15 -3083 ((-1084 (-349 (-1084 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1084 |#2|))) (-15 -3084 (|#2| (-1084 (-349 (-1084 |#2|))) (-550 |#2|) |#2|)) (-15 -3079 ((-1084 (-349 (-1084 |#2|))) (-1084 |#2|) (-550 |#2|))) (IF (|has| |#3| (-600 |#2|)) (PROGN (-15 -2076 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1084 |#2|))) (-15 -2076 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|))))) |%noBranch|)) (-13 (-391) (-950 (-484)) (-120) (-580 (-484))) (-13 (-363 |#1|) (-27) (-1114)) (-1013)) (T -498))
-((-2076 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-349 (-1084 *4))) (-4 *4 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-2076 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1084 *4)) (-4 *4 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-1084 (-349 (-1084 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1084 *6)) (-4 *7 (-1013)))) (-3084 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1084 (-349 (-1084 *2)))) (-5 *4 (-550 *2)) (-4 *2 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013)))) (-3083 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-1084 (-349 (-1084 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1084 *3)) (-4 *7 (-1013)))) (-2075 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1089))) (-5 *5 (-349 (-1084 *2))) (-4 *2 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2075 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1089))) (-5 *5 (-1084 *2)) (-4 *2 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2074 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-349 (-1084 *3))) (-4 *3 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2074 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1084 *3)) (-4 *3 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-349 (-1084 *3))) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1084 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-349 (-1084 *3))) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1084 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))))
-((-2086 (((-484) (-484) (-694)) 87 T ELT)) (-2085 (((-484) (-484)) 85 T ELT)) (-2084 (((-484) (-484)) 82 T ELT)) (-2083 (((-484) (-484)) 89 T ELT)) (-2805 (((-484) (-484) (-484)) 67 T ELT)) (-2082 (((-484) (-484) (-484)) 64 T ELT)) (-2081 (((-349 (-484)) (-484)) 29 T ELT)) (-2080 (((-484) (-484)) 34 T ELT)) (-2079 (((-484) (-484)) 76 T ELT)) (-2802 (((-484) (-484)) 47 T ELT)) (-2078 (((-583 (-484)) (-484)) 81 T ELT)) (-2077 (((-484) (-484) (-484) (-484) (-484)) 60 T ELT)) (-2798 (((-349 (-484)) (-484)) 56 T ELT)))
-(((-499) (-10 -7 (-15 -2798 ((-349 (-484)) (-484))) (-15 -2077 ((-484) (-484) (-484) (-484) (-484))) (-15 -2078 ((-583 (-484)) (-484))) (-15 -2802 ((-484) (-484))) (-15 -2079 ((-484) (-484))) (-15 -2080 ((-484) (-484))) (-15 -2081 ((-349 (-484)) (-484))) (-15 -2082 ((-484) (-484) (-484))) (-15 -2805 ((-484) (-484) (-484))) (-15 -2083 ((-484) (-484))) (-15 -2084 ((-484) (-484))) (-15 -2085 ((-484) (-484))) (-15 -2086 ((-484) (-484) (-694))))) (T -499))
-((-2086 (*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-694)) (-5 *1 (-499)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2805 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2082 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2081 (*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2078 (*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2077 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))))
-((-2087 (((-2 (|:| |answer| |#4|) (|:| -2135 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT)))
-(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2087 ((-2 (|:| |answer| |#4|) (|:| -2135 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -500))
-((-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-4 *7 (-1154 (-349 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2135 *3))) (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))))
-((-2087 (((-2 (|:| |answer| (-349 |#2|)) (|:| -2135 (-349 |#2|)) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|)) 18 T ELT)))
-(((-501 |#1| |#2|) (-10 -7 (-15 -2087 ((-2 (|:| |answer| (-349 |#2|)) (|:| -2135 (-349 |#2|)) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|)))) (-312) (-1154 |#1|)) (T -501))
-((-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-349 *6)) (|:| -2135 (-349 *6)) (|:| |specpart| (-349 *6)) (|:| |polypart| *6))) (-5 *1 (-501 *5 *6)) (-5 *3 (-349 *6)))))
-((-2090 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|)) 195 T ELT)) (-2088 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|)) 97 T ELT)) (-2089 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2|) 191 T ELT)) (-2091 (((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089))) 200 T ELT)) (-2092 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1089)) 209 (|has| |#3| (-600 |#2|)) ELT)))
-(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2088 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|))) (-15 -2089 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2|)) (-15 -2090 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|))) (-15 -2091 ((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)))) (IF (|has| |#3| (-600 |#2|)) (-15 -2092 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1089))) |%noBranch|)) (-13 (-391) (-950 (-484)) (-120) (-580 (-484))) (-13 (-363 |#1|) (-27) (-1114)) (-1013)) (T -502))
-((-2092 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1089)) (-4 *4 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-2091 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1089))) (-4 *2 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013)))) (-2090 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013)))) (-2089 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))) (-2088 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))))
-((-2093 (((-2 (|:| -2338 |#2|) (|:| |nconst| |#2|)) |#2| (-1089)) 64 T ELT)) (-2095 (((-3 |#2| #1="failed") |#2| (-1089) (-750 |#2|) (-750 |#2|)) 174 (-12 (|has| |#2| (-1052)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)) 145 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT)) (-2094 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)) 156 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT)))
-(((-503 |#1| |#2|) (-10 -7 (-15 -2093 ((-2 (|:| -2338 |#2|) (|:| |nconst| |#2|)) |#2| (-1089))) (IF (|has| |#1| (-553 (-800 (-484)))) (IF (|has| |#1| (-796 (-484))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2094 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1089))) (-15 -2095 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)))) |%noBranch|) (IF (|has| |#2| (-1052)) (-15 -2095 ((-3 |#2| #1#) |#2| (-1089) (-750 |#2|) (-750 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-950 (-484)) (-391) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -503))
-((-2095 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-750 *2)) (-4 *2 (-1052)) (-4 *2 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) (-5 *1 (-503 *5 *2)))) (-2095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2094 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2093 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) (-5 *2 (-2 (|:| -2338 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))))
-((-2098 (((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1="failed") (-349 |#2|) (-583 (-349 |#2|))) 41 T ELT)) (-3811 (((-519 (-349 |#2|)) (-349 |#2|)) 28 T ELT)) (-2096 (((-3 (-349 |#2|) #1#) (-349 |#2|)) 17 T ELT)) (-2097 (((-3 (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-349 |#2|)) 48 T ELT)))
-(((-504 |#1| |#2|) (-10 -7 (-15 -3811 ((-519 (-349 |#2|)) (-349 |#2|))) (-15 -2096 ((-3 (-349 |#2|) #1="failed") (-349 |#2|))) (-15 -2097 ((-3 (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-349 |#2|))) (-15 -2098 ((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1#) (-349 |#2|) (-583 (-349 |#2|))))) (-13 (-312) (-120) (-950 (-484))) (-1154 |#1|)) (T -504))
-((-2098 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-349 *6))) (-5 *3 (-349 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *5 *6)))) (-2097 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2136 (-349 *5)) (|:| |coeff| (-349 *5)))) (-5 *1 (-504 *4 *5)) (-5 *3 (-349 *5)))) (-2096 (*1 *2 *2) (|partial| -12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120) (-950 (-484)))) (-5 *1 (-504 *3 *4)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-519 (-349 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-349 *5)))))
-((-2099 (((-3 (-484) "failed") |#1|) 14 T ELT)) (-3259 (((-85) |#1|) 13 T ELT)) (-3255 (((-484) |#1|) 9 T ELT)))
-(((-505 |#1|) (-10 -7 (-15 -3255 ((-484) |#1|)) (-15 -3259 ((-85) |#1|)) (-15 -2099 ((-3 (-484) "failed") |#1|))) (-950 (-484))) (T -505))
-((-2099 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))) (-3259 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-950 (-484))))) (-3255 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))))
-((-2102 (((-3 (-2 (|:| |mainpart| (-349 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 (-857 |#1|))) (|:| |logand| (-349 (-857 |#1|))))))) #1="failed") (-349 (-857 |#1|)) (-1089) (-583 (-349 (-857 |#1|)))) 48 T ELT)) (-2100 (((-519 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-1089)) 28 T ELT)) (-2101 (((-3 (-349 (-857 |#1|)) #1#) (-349 (-857 |#1|)) (-1089)) 23 T ELT)) (-2103 (((-3 (-2 (|:| -2136 (-349 (-857 |#1|))) (|:| |coeff| (-349 (-857 |#1|)))) #1#) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|))) 35 T ELT)))
-(((-506 |#1|) (-10 -7 (-15 -2100 ((-519 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-1089))) (-15 -2101 ((-3 (-349 (-857 |#1|)) #1="failed") (-349 (-857 |#1|)) (-1089))) (-15 -2102 ((-3 (-2 (|:| |mainpart| (-349 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 (-857 |#1|))) (|:| |logand| (-349 (-857 |#1|))))))) #1#) (-349 (-857 |#1|)) (-1089) (-583 (-349 (-857 |#1|))))) (-15 -2103 ((-3 (-2 (|:| -2136 (-349 (-857 |#1|))) (|:| |coeff| (-349 (-857 |#1|)))) #1#) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|))))) (-13 (-495) (-950 (-484)) (-120))) (T -506))
-((-2103 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-2 (|:| -2136 (-349 (-857 *5))) (|:| |coeff| (-349 (-857 *5))))) (-5 *1 (-506 *5)) (-5 *3 (-349 (-857 *5))))) (-2102 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 (-349 (-857 *6)))) (-5 *3 (-349 (-857 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *6)))) (-2101 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-349 (-857 *4))) (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-120))) (-5 *1 (-506 *4)))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-519 (-349 (-857 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-349 (-857 *5))))))
-((-2568 (((-85) $ $) 77 T ELT)) (-3188 (((-85) $) 49 T ELT)) (-2604 ((|#1| $) 39 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) 81 T ELT)) (-3491 (($ $) 142 T ELT)) (-3638 (($ $) 120 T ELT)) (-2483 ((|#1| $) 37 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL T ELT)) (-3489 (($ $) 144 T ELT)) (-3637 (($ $) 116 T ELT)) (-3493 (($ $) 146 T ELT)) (-3636 (($ $) 124 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) 95 T ELT)) (-3156 (((-484) $) 97 T ELT)) (-3466 (((-3 $ #1#) $) 80 T ELT)) (-2059 (($ |#1| |#1|) 35 T ELT)) (-3186 (((-85) $) 44 T ELT)) (-3626 (($) 106 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 56 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3187 (((-85) $) 46 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3941 (($ $) 108 T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2060 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-349 (-484))) 94 T ELT)) (-2058 ((|#1| $) 36 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) 83 T ELT) (($ (-583 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) 82 T ELT)) (-3942 (($ $) 110 T ELT)) (-3494 (($ $) 150 T ELT)) (-3635 (($ $) 122 T ELT)) (-3492 (($ $) 152 T ELT)) (-3634 (($ $) 126 T ELT)) (-3490 (($ $) 148 T ELT)) (-3633 (($ $) 118 T ELT)) (-2057 (((-85) $ |#1|) 42 T ELT)) (-3945 (((-772) $) 102 T ELT) (($ (-484)) 85 T ELT) (($ $) NIL T ELT) (($ (-484)) 85 T ELT)) (-3126 (((-694)) 104 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 164 T ELT)) (-3485 (($ $) 132 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 162 T ELT)) (-3483 (($ $) 128 T ELT)) (-3499 (($ $) 160 T ELT)) (-3487 (($ $) 140 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 158 T ELT)) (-3488 (($ $) 138 T ELT)) (-3498 (($ $) 156 T ELT)) (-3486 (($ $) 134 T ELT)) (-3496 (($ $) 154 T ELT)) (-3484 (($ $) 130 T ELT)) (-2660 (($) 30 T CONST)) (-2666 (($) 10 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 50 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 48 T ELT)) (-3836 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3838 (($ $ $) 53 T ELT)) (** (($ $ (-830)) 73 T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-349 (-484))) 166 T ELT)) (* (($ (-830) $) 67 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 62 T ELT)))
-(((-507 |#1|) (-493 |#1|) (-13 (-346) (-1114))) (T -507))
-NIL
-((-2704 (((-3 (-583 (-1084 (-484))) "failed") (-583 (-1084 (-484))) (-1084 (-484))) 27 T ELT)))
-(((-508) (-10 -7 (-15 -2704 ((-3 (-583 (-1084 (-484))) "failed") (-583 (-1084 (-484))) (-1084 (-484)))))) (T -508))
-((-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 (-484)))) (-5 *3 (-1084 (-484))) (-5 *1 (-508)))))
-((-2104 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1089)) 19 T ELT)) (-2107 (((-583 (-550 |#2|)) (-583 |#2|) (-1089)) 23 T ELT)) (-3234 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|))) 11 T ELT)) (-2108 ((|#2| |#2| (-1089)) 59 (|has| |#1| (-495)) ELT)) (-2109 ((|#2| |#2| (-1089)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-391))) ELT)) (-2106 (((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1089)) 25 T ELT)) (-2105 (((-550 |#2|) (-583 (-550 |#2|))) 24 T ELT)) (-2110 (((-519 |#2|) |#2| (-1089) (-1 (-519 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-569)) (|has| |#2| (-950 (-1089))) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-391)) (|has| |#1| (-796 (-484)))) ELT)))
-(((-509 |#1| |#2|) (-10 -7 (-15 -2104 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1089))) (-15 -2105 ((-550 |#2|) (-583 (-550 |#2|)))) (-15 -2106 ((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1089))) (-15 -3234 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|)))) (-15 -2107 ((-583 (-550 |#2|)) (-583 |#2|) (-1089))) (IF (|has| |#1| (-495)) (-15 -2108 (|#2| |#2| (-1089))) |%noBranch|) (IF (|has| |#1| (-391)) (IF (|has| |#2| (-239)) (PROGN (-15 -2109 (|#2| |#2| (-1089))) (IF (|has| |#1| (-553 (-800 (-484)))) (IF (|has| |#1| (-796 (-484))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-950 (-1089))) (-15 -2110 ((-519 |#2|) |#2| (-1089) (-1 (-519 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1013) (-363 |#1|)) (T -509))
-((-2110 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-519 *3) *3 (-1089))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1089))) (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-363 *7)) (-5 *4 (-1089)) (-4 *7 (-553 (-800 (-484)))) (-4 *7 (-391)) (-4 *7 (-796 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3)) (-5 *1 (-509 *7 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-391)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-239)) (-4 *2 (-363 *4)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-363 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1089)) (-4 *6 (-363 *5)) (-4 *5 (-1013)) (-5 *2 (-583 (-550 *6))) (-5 *1 (-509 *5 *6)))) (-3234 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-363 *3)) (-4 *3 (-1013)) (-5 *1 (-509 *3 *4)))) (-2106 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1089)) (-5 *2 (-550 *6)) (-4 *6 (-363 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1013)) (-5 *2 (-550 *5)) (-5 *1 (-509 *4 *5)) (-4 *5 (-363 *4)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1089)) (-4 *5 (-363 *4)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *5)))))
-((-2113 (((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1="failed") (-484) |#1| |#1|)) 199 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-349 |#2|))) 174 T ELT)) (-2119 (((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-583 (-349 |#2|))) 171 T ELT)) (-2120 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2111 (((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2118 (((-3 (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-349 |#2|)) 202 T ELT)) (-2114 (((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-349 |#2|)) 205 T ELT)) (-2122 (((-2 (|:| |ir| (-519 (-349 |#2|))) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2123 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-583 (-349 |#2|))) 178 T ELT)) (-2121 (((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 166 T ELT)) (-2112 (((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 189 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-349 |#2|)) 210 T ELT)))
-(((-510 |#1| |#2|) (-10 -7 (-15 -2111 ((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2112 ((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2113 ((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1#) (-484) |#1| |#1|))) (-15 -2114 ((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-349 |#2|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-349 |#2|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-349 |#2|)))) (-15 -2117 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-583 (-349 |#2|)))) (-15 -2118 ((-3 (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-349 |#2|))) (-15 -2119 ((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-583 (-349 |#2|)))) (-15 -2120 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2121 ((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2122 ((-2 (|:| |ir| (-519 (-349 |#2|))) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|))) (-15 -2123 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1154 |#1|)) (T -510))
-((-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-519 (-349 *6))) (|:| |specpart| (-349 *6)) (|:| |polypart| *6))) (-5 *1 (-510 *5 *6)) (-5 *3 (-349 *6)))) (-2121 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85))) (-484) *4)) (-4 *4 (-312)) (-4 *5 (-1154 *4)) (-5 *1 (-510 *4 *5)))) (-2120 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1154 *4)))) (-2119 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-349 *7))) (-4 *7 (-1154 *6)) (-5 *3 (-349 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *7)))) (-2118 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2136 (-349 *6)) (|:| |coeff| (-349 *6)))) (-5 *1 (-510 *5 *6)) (-5 *3 (-349 *6)))) (-2117 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3137 *7) (|:| |sol?| (-85))) (-484) *7)) (-5 *6 (-583 (-349 *8))) (-4 *7 (-312)) (-4 *8 (-1154 *7)) (-5 *3 (-349 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2116 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-583 (-349 *8))) (-4 *7 (-312)) (-4 *8 (-1154 *7)) (-5 *3 (-349 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2115 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6)) (-2 (|:| -2136 (-349 *7)) (|:| |coeff| (-349 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))) (-2114 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6)) (-2 (|:| -2136 (-349 *7)) (|:| |coeff| (-349 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-484) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))))
-((-2124 (((-3 |#2| "failed") |#2| (-1089) (-1089)) 10 T ELT)))
-(((-511 |#1| |#2|) (-10 -7 (-15 -2124 ((-3 |#2| "failed") |#2| (-1089) (-1089)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-871) (-1052) (-29 |#1|))) (T -511))
-((-2124 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-511 *4 *2)) (-4 *2 (-13 (-1114) (-871) (-1052) (-29 *4))))))
-((-2555 (((-632 (-1137)) $ (-1137)) 27 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 26 T ELT)) (-2554 (((-694) $ (-102)) 28 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 25 T ELT)) (-2000 (((-632 (-1137)) $) 12 T ELT)) (-1996 (((-632 (-1135)) $) 8 T ELT)) (-1998 (((-632 (-1134)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-1699 (($ $) 6 T ELT)))
-(((-512) (-113)) (T -512))
-NIL
-(-13 (-465) (-770))
-(((-147) . T) ((-465) . T) ((-770) . T))
-((-2555 (((-632 (-1137)) $ (-1137)) NIL T ELT)) (-2556 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2554 (((-694) $ (-102)) NIL T ELT)) (-2557 (((-632 (-101)) $ (-101)) NIL T ELT)) (-2000 (((-632 (-1137)) $) NIL T ELT)) (-1996 (((-632 (-1135)) $) NIL T ELT)) (-1998 (((-632 (-1134)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) NIL T ELT)) (-2002 (((-632 (-101)) $) NIL T ELT)) (-2558 (((-85) $) NIL T ELT)) (-2125 (($ (-337)) 14 T ELT) (($ (-1072)) 16 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1699 (($ $) NIL T ELT)))
-(((-513) (-13 (-512) (-552 (-772)) (-10 -8 (-15 -2125 ($ (-337))) (-15 -2125 ($ (-1072))) (-15 -2558 ((-85) $))))) (T -513))
-((-2125 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-513)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-513)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3459 (($) 7 T CONST)) (-3242 (((-1072) $) NIL T ELT)) (-2128 (($) 6 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 15 T ELT)) (-2126 (($) 9 T CONST)) (-2127 (($) 8 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT)))
-(((-514) (-13 (-1013) (-10 -8 (-15 -2128 ($) -3951) (-15 -3459 ($) -3951) (-15 -2127 ($) -3951) (-15 -2126 ($) -3951)))) (T -514))
-((-2128 (*1 *1) (-5 *1 (-514))) (-3459 (*1 *1) (-5 *1 (-514))) (-2127 (*1 *1) (-5 *1 (-514))) (-2126 (*1 *1) (-5 *1 (-514))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2129 (((-632 $) (-430)) 23 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2131 (($ (-1072)) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 33 T ELT)) (-2130 (((-166 4 (-101)) $) 24 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 26 T ELT)))
-(((-515) (-13 (-1013) (-10 -8 (-15 -2131 ($ (-1072))) (-15 -2130 ((-166 4 (-101)) $)) (-15 -2129 ((-632 $) (-430)))))) (T -515))
-((-2131 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-515)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-430)) (-5 *2 (-632 (-515))) (-5 *1 (-515)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $ (-484)) 73 T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2611 (($ (-1084 (-484)) (-484)) 79 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 64 T ELT)) (-2612 (($ $) 43 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3771 (((-694) $) 16 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 (((-484)) 37 T ELT)) (-2613 (((-484) $) 41 T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3768 (($ $ (-484)) 24 T ELT)) (-3465 (((-3 $ #1#) $ $) 70 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) 17 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 71 T ELT)) (-2615 (((-1068 (-484)) $) 19 T ELT)) (-2891 (($ $) 26 T ELT)) (-3945 (((-772) $) 100 T ELT) (($ (-484)) 59 T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) 15 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-484) $ (-484)) 46 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 44 T CONST)) (-2666 (($) 21 T CONST)) (-3056 (((-85) $ $) 51 T ELT)) (-3836 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3838 (($ $ $) 57 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 60 T ELT) (($ $ $) 61 T ELT)))
-(((-516 |#1| |#2|) (-779 |#1|) (-484) (-85)) (T -516))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 30 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (($ $ (-830)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 59 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 $ #1#) $) 95 T ELT)) (-3156 (($ $) 94 T ELT)) (-1791 (($ (-1178 $)) 93 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 47 T ELT)) (-2994 (($) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 61 T ELT)) (-1679 (((-85) $) NIL T ELT)) (-1763 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 49 (|has| $ (-319)) ELT)) (-2011 (((-85) $) NIL (|has| $ (-319)) ELT)) (-3132 (($ $ (-830)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 $) $ (-830)) NIL (|has| $ (-319)) ELT) (((-1084 $) $) 104 T ELT)) (-2010 (((-830) $) 67 T ELT)) (-1626 (((-1084 $) $) NIL (|has| $ (-319)) ELT)) (-1625 (((-3 (-1084 $) #1#) $ $) NIL (|has| $ (-319)) ELT) (((-1084 $) $) NIL (|has| $ (-319)) ELT)) (-1627 (($ $ (-1084 $)) NIL (|has| $ (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2400 (($ (-830)) 60 T ELT)) (-3930 (((-85) $) 87 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) 28 (|has| $ (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 54 T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-830)) 86 T ELT) (((-743 (-830))) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3947 (((-830) $) 85 T ELT) (((-743 (-830)) $) NIL T ELT)) (-3185 (((-1084 $)) 102 T ELT)) (-1673 (($) 66 T ELT)) (-1628 (($) 50 (|has| $ (-319)) ELT)) (-3224 (((-630 $) (-1178 $)) NIL T ELT) (((-1178 $) $) 91 T ELT)) (-3971 (((-484) $) 42 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 45 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3126 (((-694)) 51 T CONST)) (-1264 (((-85) $ $) 107 T ELT)) (-2012 (((-1178 $) (-830)) 97 T ELT) (((-1178 $)) 96 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) 31 T CONST)) (-2666 (($) 27 T CONST)) (-3927 (($ $ (-694)) NIL (|has| $ (-319)) ELT) (($ $) NIL (|has| $ (-319)) ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT)))
-(((-517 |#1|) (-13 (-299) (-280 $) (-553 (-484))) (-830)) (T -517))
-NIL
-((-2132 (((-1184) (-1072)) 10 T ELT)))
-(((-518) (-10 -7 (-15 -2132 ((-1184) (-1072))))) (T -518))
-((-2132 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-518)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 77 T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2136 ((|#1| $) 30 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2134 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2137 (($ |#1| (-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2135 (((-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) $) 31 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2832 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1089)) 49 (|has| |#1| (-950 (-1089))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2133 (((-85) $) 35 T ELT)) (-3757 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1089)) 90 (|has| |#1| (-809 (-1089))) ELT)) (-3945 (((-772) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 86 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 16 T ELT) (($ (-349 (-484)) $) 41 T ELT) (($ $ (-349 (-484))) NIL T ELT)))
-(((-519 |#1|) (-13 (-654 (-349 (-484))) (-950 |#1|) (-10 -8 (-15 -2137 ($ |#1| (-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2136 (|#1| $)) (-15 -2135 ((-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) $)) (-15 -2134 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2133 ((-85) $)) (-15 -2832 ($ |#1| |#1|)) (-15 -3757 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-809 (-1089))) (-15 -3757 (|#1| $ (-1089))) |%noBranch|) (IF (|has| |#1| (-950 (-1089))) (-15 -2832 ($ |#1| (-1089))) |%noBranch|))) (-312)) (T -519))
-((-2137 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 *2)) (|:| |logand| (-1084 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-519 *2)))) (-2136 (*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 *3)) (|:| |logand| (-1084 *3))))) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2832 (*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-3757 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-3757 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-809 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1089)))) (-2832 (*1 *1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *1 (-519 *2)) (-4 *2 (-950 *3)) (-4 *2 (-312)))))
-((-3957 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|)) 30 T ELT)))
-(((-520 |#1| |#2|) (-10 -7 (-15 -3957 ((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|))) (-15 -3957 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3957 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3957 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -520))
-((-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-520 *5 *6)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-520 *5 *2)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2136 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2136 *6) (|:| |coeff| *6))) (-5 *1 (-520 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6)))))
-((-3417 (((-519 |#2|) (-519 |#2|)) 42 T ELT)) (-3962 (((-583 |#2|) (-519 |#2|)) 44 T ELT)) (-2148 ((|#2| (-519 |#2|)) 50 T ELT)))
-(((-521 |#1| |#2|) (-10 -7 (-15 -3417 ((-519 |#2|) (-519 |#2|))) (-15 -3962 ((-583 |#2|) (-519 |#2|))) (-15 -2148 (|#2| (-519 |#2|)))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-29 |#1|) (-1114))) (T -521))
-((-2148 (*1 *2 *3) (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-521 *4 *2)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1114))) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 *5)) (-5 *1 (-521 *4 *5)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1114))) (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-521 *3 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2140 (($ (-446) (-532)) 14 T ELT)) (-2138 (($ (-446) (-532) $) 16 T ELT)) (-2139 (($ (-446) (-532)) 15 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1094)) 7 T ELT) (((-1094) $) 6 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-522) (-13 (-1013) (-429 (-1094)) (-10 -8 (-15 -2140 ($ (-446) (-532))) (-15 -2139 ($ (-446) (-532))) (-15 -2138 ($ (-446) (-532) $))))) (T -522))
-((-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2139 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2138 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))))
-((-2144 (((-85) |#1|) 16 T ELT)) (-2145 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2142 (((-2 (|:| -2694 |#1|) (|:| -2401 (-694))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-694)) 18 T ELT)) (-2141 (((-85) |#1| (-694)) 19 T ELT)) (-2146 ((|#1| |#1|) 41 T ELT)) (-2143 ((|#1| |#1| (-694)) 44 T ELT)))
-(((-523 |#1|) (-10 -7 (-15 -2141 ((-85) |#1| (-694))) (-15 -2142 ((-3 |#1| #1="failed") |#1| (-694))) (-15 -2142 ((-2 (|:| -2694 |#1|) (|:| -2401 (-694))) |#1|)) (-15 -2143 (|#1| |#1| (-694))) (-15 -2144 ((-85) |#1|)) (-15 -2145 ((-3 |#1| #1#) |#1|)) (-15 -2146 (|#1| |#1|))) (-483)) (T -523))
-((-2146 (*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2145 (*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2144 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2143 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2142 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2694 *3) (|:| -2401 (-694)))) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2142 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))))
-((-2147 (((-1084 |#1|) (-830)) 44 T ELT)))
-(((-524 |#1|) (-10 -7 (-15 -2147 ((-1084 |#1|) (-830)))) (-299)) (T -524))
-((-2147 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-524 *4)) (-4 *4 (-299)))))
-((-3417 (((-519 (-349 (-857 |#1|))) (-519 (-349 (-857 |#1|)))) 27 T ELT)) (-3811 (((-3 (-265 |#1|) (-583 (-265 |#1|))) (-349 (-857 |#1|)) (-1089)) 33 (|has| |#1| (-120)) ELT)) (-3962 (((-583 (-265 |#1|)) (-519 (-349 (-857 |#1|)))) 19 T ELT)) (-2149 (((-265 |#1|) (-349 (-857 |#1|)) (-1089)) 31 (|has| |#1| (-120)) ELT)) (-2148 (((-265 |#1|) (-519 (-349 (-857 |#1|)))) 21 T ELT)))
-(((-525 |#1|) (-10 -7 (-15 -3417 ((-519 (-349 (-857 |#1|))) (-519 (-349 (-857 |#1|))))) (-15 -3962 ((-583 (-265 |#1|)) (-519 (-349 (-857 |#1|))))) (-15 -2148 ((-265 |#1|) (-519 (-349 (-857 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3811 ((-3 (-265 |#1|) (-583 (-265 |#1|))) (-349 (-857 |#1|)) (-1089))) (-15 -2149 ((-265 |#1|) (-349 (-857 |#1|)) (-1089)))) |%noBranch|)) (-13 (-391) (-950 (-484)) (-580 (-484)))) (T -525))
-((-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *5)) (-5 *1 (-525 *5)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (-265 *5) (-583 (-265 *5)))) (-5 *1 (-525 *5)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-519 (-349 (-857 *4)))) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-525 *4)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-519 (-349 (-857 *4)))) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 (-265 *4))) (-5 *1 (-525 *4)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-519 (-349 (-857 *3)))) (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-525 *3)))))
-((-2151 (((-583 (-630 (-484))) (-583 (-830)) (-583 (-813 (-484)))) 80 T ELT) (((-583 (-630 (-484))) (-583 (-830))) 81 T ELT) (((-630 (-484)) (-583 (-830)) (-813 (-484))) 74 T ELT)) (-2150 (((-694) (-583 (-830))) 71 T ELT)))
-(((-526) (-10 -7 (-15 -2150 ((-694) (-583 (-830)))) (-15 -2151 ((-630 (-484)) (-583 (-830)) (-813 (-484)))) (-15 -2151 ((-583 (-630 (-484))) (-583 (-830)))) (-15 -2151 ((-583 (-630 (-484))) (-583 (-830)) (-583 (-813 (-484))))))) (T -526))
-((-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-484)))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-526)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-526)))))
-((-3213 (((-583 |#5|) |#5| (-85)) 97 T ELT)) (-2152 (((-85) |#5| (-583 |#5|)) 34 T ELT)))
-(((-527 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3213 ((-583 |#5|) |#5| (-85))) (-15 -2152 ((-85) |#5| (-583 |#5|)))) (-13 (-258) (-120)) (-717) (-756) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -527))
-((-2152 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3)) (-4 *3 (-1020 *5 *6 *7 *8)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1048) $) 12 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-528) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1048) $))))) (T -528))
-((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))))
-((-3531 (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|)) 32 T ELT)))
-(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3531 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|))) (-15 -3531 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|)) (T -529))
-((-3531 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-3531 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1001 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756)) (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *6 *4 *7 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 71 T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-484)) 58 T ELT) (($ $ (-484) (-484)) 59 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 65 T ELT)) (-2183 (($ $) 109 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2181 (((-772) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-939 (-750 (-484))) (-1089) |#1| (-349 (-484))) 232 T ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 36 T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3771 (((-484) $) 63 T ELT) (((-484) $ (-484)) 64 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3776 (($ $ (-830)) 83 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 80 T ELT)) (-3936 (((-85) $) 26 T ELT)) (-2893 (($ |#1| (-484)) 22 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2187 (($ (-939 (-750 (-484))) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 13 T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3811 (($ $) 120 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2184 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2182 (($ $ $) 116 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2185 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 15 T ELT)) (-2186 (((-939 (-750 (-484))) $) 14 T ELT)) (-3768 (($ $ (-484)) 47 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-3799 ((|#1| $ (-484)) 62 T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3947 (((-484) $) NIL T ELT)) (-2891 (($ $) 48 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 29 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ (-484)) 61 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 39 T CONST)) (-3772 ((|#1| $) NIL T ELT)) (-2162 (($ $) 192 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2174 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2164 (($ $) 189 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2176 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2160 (($ $) 194 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2172 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2179 (($ $ (-349 (-484))) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2180 (($ $ |#1|) 128 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2177 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2178 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2159 (($ $) 195 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2171 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2161 (($ $) 193 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2173 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2163 (($ $) 190 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2175 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2156 (($ $) 200 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2168 (($ $) 180 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2158 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2170 (($ $) 176 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2154 (($ $) 204 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2166 (($ $) 184 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2153 (($ $) 206 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2165 (($ $) 186 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2155 (($ $) 202 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2167 (($ $) 182 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2157 (($ $) 199 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2169 (($ $) 178 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3769 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 30 T CONST)) (-2666 (($) 40 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3056 (((-85) $ $) 73 T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3838 (($ $ $) 88 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 111 T ELT)) (* (($ (-830) $) 98 T ELT) (($ (-694) $) 96 T ELT) (($ (-484) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-530 |#1|) (-13 (-1157 |#1| (-484)) (-10 -8 (-15 -2187 ($ (-939 (-750 (-484))) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -2186 ((-939 (-750 (-484))) $)) (-15 -2185 ((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $)) (-15 -3817 ($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -3936 ((-85) $)) (-15 -3814 ($ (-1 |#1| (-484)) $)) (-15 -2184 ((-3 $ "failed") $ $ (-85))) (-15 -2183 ($ $)) (-15 -2182 ($ $ $)) (-15 -2181 ((-772) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-939 (-750 (-484))) (-1089) |#1| (-349 (-484)))) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $)) (-15 -2180 ($ $ |#1|)) (-15 -2179 ($ $ (-349 (-484)))) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $))) |%noBranch|))) (-961)) (T -530))
-((-3936 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2187 (*1 *1 *2 *3) (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-530 *4)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-3814 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-2184 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2183 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))) (-2182 (*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))) (-2181 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *6)))) (-5 *4 (-939 (-750 (-484)))) (-5 *5 (-1089)) (-5 *7 (-349 (-484))) (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-530 *6)))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2179 (*1 *1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2)) (-4 *3 (-961)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 62 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3817 (($ (-1068 |#1|)) 9 T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) 44 T ELT)) (-2892 (((-85) $) 56 T ELT)) (-3771 (((-694) $) 61 T ELT) (((-694) $ (-694)) 60 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) 46 (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-1068 |#1|) $) 25 T ELT)) (-3126 (((-694)) 55 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 14 T CONST)) (-3056 (((-85) $ $) 24 T ELT)) (-3836 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3838 (($ $ $) 27 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-484)) 38 T ELT)))
-(((-531 |#1|) (-13 (-961) (-82 |#1| |#1|) (-10 -8 (-15 -3816 ((-1068 |#1|) $)) (-15 -3817 ($ (-1068 |#1|))) (-15 -2892 ((-85) $)) (-15 -3771 ((-694) $)) (-15 -3771 ((-694) $ (-694))) (-15 * ($ $ (-484))) (IF (|has| |#1| (-495)) (-6 (-495)) |%noBranch|))) (-961)) (T -531))
-((-3816 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-531 *3)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3771 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-961)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2190 (($) 8 T CONST)) (-2191 (($) 7 T CONST)) (-2188 (($ $ (-583 $)) 16 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2192 (($) 6 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1094)) 15 T ELT) (((-1094) $) 10 T ELT)) (-2189 (($) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-532) (-13 (-1013) (-429 (-1094)) (-10 -8 (-15 -2192 ($) -3951) (-15 -2191 ($) -3951) (-15 -2190 ($) -3951) (-15 -2189 ($) -3951) (-15 -2188 ($ $ (-583 $)))))) (T -532))
-((-2192 (*1 *1) (-5 *1 (-532))) (-2191 (*1 *1) (-5 *1 (-532))) (-2190 (*1 *1) (-5 *1 (-532))) (-2189 (*1 *1) (-5 *1 (-532))) (-2188 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-532))) (-5 *1 (-532)))))
-((-3957 (((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|)) 15 T ELT)))
-(((-533 |#1| |#2|) (-13 (-1128) (-10 -7 (-15 -3957 ((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|))))) (-1128) (-1128)) (T -533))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6)))))
-((-3957 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1068 |#2|)) 20 T ELT) (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-536 |#2|)) 19 T ELT) (((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|)) 18 T ELT)))
-(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|))) (-15 -3957 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-536 |#2|))) (-15 -3957 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1068 |#2|)))) (-1128) (-1128) (-1128)) (T -534))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-536 *8)) (-5 *1 (-534 *6 *7 *8)))))
-((-2197 ((|#3| |#3| (-583 (-550 |#3|)) (-583 (-1089))) 57 T ELT)) (-2196 (((-142 |#2|) |#3|) 122 T ELT)) (-2193 ((|#3| (-142 |#2|)) 46 T ELT)) (-2194 ((|#2| |#3|) 21 T ELT)) (-2195 ((|#3| |#2|) 35 T ELT)))
-(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2193 (|#3| (-142 |#2|))) (-15 -2194 (|#2| |#3|)) (-15 -2195 (|#3| |#2|)) (-15 -2196 ((-142 |#2|) |#3|)) (-15 -2197 (|#3| |#3| (-583 (-550 |#3|)) (-583 (-1089))))) (-495) (-13 (-363 |#1|) (-915) (-1114)) (-13 (-363 (-142 |#1|)) (-915) (-1114))) (T -535))
-((-2197 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1089))) (-4 *2 (-13 (-363 (-142 *5)) (-915) (-1114))) (-4 *5 (-495)) (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-363 *5) (-915) (-1114))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3)) (-4 *5 (-13 (-363 *4) (-915) (-1114))) (-4 *3 (-13 (-363 (-142 *4)) (-915) (-1114))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-363 (-142 *4)) (-915) (-1114))) (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-363 *4) (-915) (-1114))))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-363 *4) (-915) (-1114))) (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-363 (-142 *4)) (-915) (-1114))))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-363 *4) (-915) (-1114))) (-4 *4 (-495)) (-4 *2 (-13 (-363 (-142 *4)) (-915) (-1114))) (-5 *1 (-535 *4 *5 *2)))))
-((-3709 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3456 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3455 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3454 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3529 (((-1068 |#1|) $) 20 T ELT)) (-3945 (((-772) $) 25 T ELT)))
-(((-536 |#1|) (-13 (-552 (-772)) (-10 -8 (-15 -3957 ($ (-1 |#1| |#1|) $)) (-15 -3455 ($ (-1 (-85) |#1|) $)) (-15 -3454 ($ (-1 (-85) |#1|) $)) (-15 -3709 ($ (-1 (-85) |#1|) $)) (-15 -3456 ($ (-1 |#1| |#1|) |#1|)) (-15 -3529 ((-1068 |#1|) $)))) (-1128)) (T -536))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3456 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1128)))))
-((-2198 (((-1184) $ |#2| |#2|) 35 T ELT)) (-2200 ((|#2| $) 23 T ELT)) (-2201 ((|#2| $) 21 T ELT)) (-1948 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3957 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3800 ((|#3| $) 26 T ELT)) (-2199 (($ $ |#3|) 33 T ELT)) (-2202 (((-85) |#3| $) 17 T ELT)) (-2205 (((-583 |#3|) $) 15 T ELT)) (-3799 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
-(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2198 ((-1184) |#1| |#2| |#2|)) (-15 -2199 (|#1| |#1| |#3|)) (-15 -3800 (|#3| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2202 ((-85) |#3| |#1|)) (-15 -2205 ((-583 |#3|) |#1|)) (-15 -3799 (|#3| |#1| |#2|)) (-15 -3799 (|#3| |#1| |#2| |#3|)) (-15 -1948 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3957 (|#1| (-1 |#3| |#3|) |#1|))) (-538 |#2| |#3|) (-1013) (-1128)) (T -537))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2198 (((-1184) $ |#1| |#1|) 44 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-1575 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) 55 T ELT)) (-2889 (((-583 |#2|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) 47 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#2|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 ((|#1| $) 48 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#2| (-1013)) ELT)) (-2203 (((-583 |#1|) $) 50 T ELT)) (-2204 (((-85) |#1| $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) 46 (|has| |#1| (-756)) ELT)) (-2199 (($ $ |#2|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-538 |#1| |#2|) (-113) (-1013) (-1128)) (T -538))
-((-2205 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-583 *4)))) (-2204 (*1 *2 *3 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-583 *3)))) (-2202 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-756)) (-4 *2 (-1128)))) (-2199 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-2198 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-1184)))))
-(-13 (-428 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2205 ((-583 |t#2|) $)) (-15 -2204 ((-85) |t#1| $)) (-15 -2203 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1013)) (IF (|has| $ (-6 -3994)) (-15 -2202 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2201 (|t#1| $)) (-15 -2200 (|t#1| $)) (-15 -3800 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3995)) (PROGN (-15 -2199 ($ $ |t#2|)) (-15 -2198 ((-1184) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-428 |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) |has| |#2| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (((-1129) $) 15 T ELT) (($ (-583 (-1129))) 14 T ELT)) (-2206 (((-583 (-1129)) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-539) (-13 (-995) (-552 (-1129)) (-10 -8 (-15 -3945 ($ (-583 (-1129)))) (-15 -2206 ((-583 (-1129)) $))))) (T -539))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-539)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-539)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 (-630 |#1|)) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 (((-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3723 (($) NIL T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1787 (((-630 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1785 (((-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1899 (((-1084 (-857 |#1|))) NIL (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1704 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1722 (((-1084 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (($ (-1178 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (($ (-1178 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3466 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-3108 (((-830)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 (((-630 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1786 (((-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1903 (((-1084 (-857 |#1|))) NIL (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1790 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1084 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3799 ((|#1| $ (-484)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-3224 (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1178 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3971 (($ (-1178 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1891 (((-583 (-857 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-583 (-857 |#1|)) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3945 (((-772) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1706 (((-583 (-1178 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2545 (($ (-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-540 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3945 ($ |#2|)) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -540))
-((-3945 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-541) (-13 (-1013) (-429 (-101)))) (T -541))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2208 (($) 10 T CONST)) (-2230 (($) 8 T CONST)) (-2207 (($) 11 T CONST)) (-2226 (($) 9 T CONST)) (-2223 (($) 12 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
-(((-542) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3951) (-15 -2226 ($) -3951) (-15 -2208 ($) -3951) (-15 -2207 ($) -3951) (-15 -2223 ($) -3951)))) (T -542))
-((-2230 (*1 *1) (-5 *1 (-542))) (-2226 (*1 *1) (-5 *1 (-542))) (-2208 (*1 *1) (-5 *1 (-542))) (-2207 (*1 *1) (-5 *1 (-542))) (-2223 (*1 *1) (-5 *1 (-542))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2219 (($) 11 T CONST)) (-2213 (($) 17 T CONST)) (-2209 (($) 21 T CONST)) (-2211 (($) 19 T CONST)) (-2216 (($) 14 T CONST)) (-2210 (($) 20 T CONST)) (-2218 (($) 12 T CONST)) (-2217 (($) 13 T CONST)) (-2212 (($) 18 T CONST)) (-2215 (($) 15 T CONST)) (-2214 (($) 16 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-543) (-13 (-1013) (-552 (-101)) (-10 -8 (-15 -2219 ($) -3951) (-15 -2218 ($) -3951) (-15 -2217 ($) -3951) (-15 -2216 ($) -3951) (-15 -2215 ($) -3951) (-15 -2214 ($) -3951) (-15 -2213 ($) -3951) (-15 -2212 ($) -3951) (-15 -2211 ($) -3951) (-15 -2210 ($) -3951) (-15 -2209 ($) -3951)))) (T -543))
-((-2219 (*1 *1) (-5 *1 (-543))) (-2218 (*1 *1) (-5 *1 (-543))) (-2217 (*1 *1) (-5 *1 (-543))) (-2216 (*1 *1) (-5 *1 (-543))) (-2215 (*1 *1) (-5 *1 (-543))) (-2214 (*1 *1) (-5 *1 (-543))) (-2213 (*1 *1) (-5 *1 (-543))) (-2212 (*1 *1) (-5 *1 (-543))) (-2211 (*1 *1) (-5 *1 (-543))) (-2210 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2221 (($) 13 T CONST)) (-2220 (($) 14 T CONST)) (-2227 (($) 11 T CONST)) (-2230 (($) 8 T CONST)) (-2228 (($) 10 T CONST)) (-2229 (($) 9 T CONST)) (-2226 (($) 12 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
-(((-544) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3951) (-15 -2229 ($) -3951) (-15 -2228 ($) -3951) (-15 -2227 ($) -3951) (-15 -2226 ($) -3951) (-15 -2221 ($) -3951) (-15 -2220 ($) -3951)))) (T -544))
-((-2230 (*1 *1) (-5 *1 (-544))) (-2229 (*1 *1) (-5 *1 (-544))) (-2228 (*1 *1) (-5 *1 (-544))) (-2227 (*1 *1) (-5 *1 (-544))) (-2226 (*1 *1) (-5 *1 (-544))) (-2221 (*1 *1) (-5 *1 (-544))) (-2220 (*1 *1) (-5 *1 (-544))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2225 (($) 13 T CONST)) (-2222 (($) 16 T CONST)) (-2227 (($) 11 T CONST)) (-2230 (($) 8 T CONST)) (-2228 (($) 10 T CONST)) (-2229 (($) 9 T CONST)) (-2224 (($) 14 T CONST)) (-2226 (($) 12 T CONST)) (-2223 (($) 15 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
-(((-545) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3951) (-15 -2229 ($) -3951) (-15 -2228 ($) -3951) (-15 -2227 ($) -3951) (-15 -2226 ($) -3951) (-15 -2225 ($) -3951) (-15 -2224 ($) -3951) (-15 -2223 ($) -3951) (-15 -2222 ($) -3951)))) (T -545))
-((-2230 (*1 *1) (-5 *1 (-545))) (-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2226 (*1 *1) (-5 *1 (-545))) (-2225 (*1 *1) (-5 *1 (-545))) (-2224 (*1 *1) (-5 *1 (-545))) (-2223 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 19 T ELT) (($ (-541)) 12 T ELT) (((-541) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-546) (-13 (-1013) (-429 (-541)) (-429 (-101)))) (T -546))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-1696 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) 40 T ELT)) (-3598 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2198 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ (-1072) |#1|) 50 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#1| #1="failed") (-1072) $) 53 T ELT)) (-3723 (($) NIL T CONST)) (-1700 (($ $ (-1072)) 25 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3404 (((-3 |#1| #1#) (-1072) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3405 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3841 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1697 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1575 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-1072)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2271 (($ $) 55 T ELT)) (-1701 (($ (-337)) 23 T ELT) (($ (-337) (-1072)) 22 T ELT)) (-3541 (((-337) $) 41 T ELT)) (-2200 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (((-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013)) ELT)) (-2201 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2232 (((-583 (-1072)) $) 46 T ELT)) (-2233 (((-85) (-1072) $) NIL T ELT)) (-1698 (((-1072) $) 42 T ELT)) (-1273 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2203 (((-583 (-1072)) $) NIL T ELT)) (-2204 (((-85) (-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $) NIL (|has| (-1072) (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 44 T ELT)) (-3799 ((|#1| $ (-1072) |#1|) NIL T ELT) ((|#1| $ (-1072)) 49 T ELT)) (-1465 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (((-694) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-3945 (((-772) $) 21 T ELT)) (-1699 (($ $) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1275 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3056 (((-85) $ $) 20 T ELT)) (-3956 (((-694) $) 48 T ELT)))
-(((-547 |#1|) (-13 (-314 (-337) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) (-1106 (-1072) |#1|) (-10 -8 (-15 -2271 ($ $)))) (-1013)) (T -547))
-((-2271 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1013)))))
-((-3245 (((-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 16 T ELT) (((-85) |#3| $) NIL T ELT)) (-2232 (((-583 |#2|) $) 20 T ELT)) (-2233 (((-85) |#2| $) 12 T ELT)) (-3799 ((|#3| $ |#2|) 21 T ELT) ((|#3| $ |#2| |#3|) 22 T ELT)))
-(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -2232 ((-583 |#2|) |#1|)) (-15 -2233 ((-85) |#2| |#1|)) (-15 -3245 ((-85) |#3| |#1|)) (-15 -3799 (|#3| |#1| |#2| |#3|)) (-15 -3799 (|#3| |#1| |#2|)) (-15 -3245 ((-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|))) (-549 |#2| |#3|) (-1013) (-1013)) (T -548))
-NIL
-((-2568 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2198 (((-1184) $ |#1| |#1|) 98 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| "failed") |#1| $) 68 T ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3994)) ELT) (((-3 |#2| "failed") |#1| $) 69 T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) 87 T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 77 (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) 95 (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 78 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 ((|#1| $) 94 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT)) (-3242 (((-1072) $) 22 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2232 (((-583 |#1|) $) 70 T ELT)) (-2233 (((-85) |#1| $) 71 T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2203 (((-583 |#1|) $) 92 T ELT)) (-2204 (((-85) |#1| $) 91 T ELT)) (-3243 (((-1033) $) 21 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3800 ((|#2| $) 96 (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2199 (($ $ |#2|) 97 (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 90 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) |#2| $) 79 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3945 (((-772) $) 17 (OR (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-1264 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-549 |#1| |#2|) (-113) (-1013) (-1013)) (T -549))
-((-2233 (*1 *2 *3 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) (-3404 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2231 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(-13 (-183 (-2 (|:| -3859 |t#1|) (|:| |entry| |t#2|))) (-538 |t#1| |t#2|) (-10 -8 (-15 -2233 ((-85) |t#1| $)) (-15 -2232 ((-583 |t#1|) $)) (-15 -3404 ((-3 |t#2| "failed") |t#1| $)) (-15 -2231 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-76 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-428 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-428 |#2|) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-2234 (((-3 (-1089) "failed") $) 46 T ELT)) (-1312 (((-1184) $ (-694)) 22 T ELT)) (-3418 (((-694) $) 20 T ELT)) (-3594 (((-86) $) 9 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2235 (($ (-86) (-583 |#1|) (-694)) 32 T ELT) (($ (-1089)) 33 T ELT)) (-2633 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1089)) 13 T ELT)) (-2603 (((-694) $) 17 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (((-800 (-484)) $) 99 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) 106 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-473) $) 92 (|has| |#1| (-553 (-473))) ELT)) (-3945 (((-772) $) 74 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2236 (((-583 |#1|) $) 19 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 51 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 53 T ELT)))
-(((-550 |#1|) (-13 (-105) (-756) (-794 |#1|) (-10 -8 (-15 -3594 ((-86) $)) (-15 -2236 ((-583 |#1|) $)) (-15 -2603 ((-694) $)) (-15 -2235 ($ (-86) (-583 |#1|) (-694))) (-15 -2235 ($ (-1089))) (-15 -2234 ((-3 (-1089) "failed") $)) (-15 -2633 ((-85) $ (-86))) (-15 -2633 ((-85) $ (-1089))) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) (-1013)) (T -550))
-((-3594 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2235 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1013)) (-5 *1 (-550 *5)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2234 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2633 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))) (-2633 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))))
-((-2237 (((-550 |#2|) |#1|) 17 T ELT)) (-2238 (((-3 |#1| "failed") (-550 |#2|)) 21 T ELT)))
-(((-551 |#1| |#2|) (-10 -7 (-15 -2237 ((-550 |#2|) |#1|)) (-15 -2238 ((-3 |#1| "failed") (-550 |#2|)))) (-1013) (-1013)) (T -551))
-((-2238 (*1 *2 *3) (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-551 *2 *4)))) (-2237 (*1 *2 *3) (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
-((-3945 ((|#1| $) 6 T ELT)))
-(((-552 |#1|) (-113) (-1128)) (T -552))
-((-3945 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1128)))))
-(-13 (-10 -8 (-15 -3945 (|t#1| $))))
-((-3971 ((|#1| $) 6 T ELT)))
-(((-553 |#1|) (-113) (-1128)) (T -553))
-((-3971 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1128)))))
-(-13 (-10 -8 (-15 -3971 (|t#1| $))))
-((-2239 (((-3 (-1084 (-349 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 (-347 |#2|) |#2|)) 15 T ELT) (((-3 (-1084 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|)) 16 T ELT)))
-(((-554 |#1| |#2|) (-10 -7 (-15 -2239 ((-3 (-1084 (-349 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|))) (-15 -2239 ((-3 (-1084 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 (-347 |#2|) |#2|)))) (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|)) (T -554))
-((-2239 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-1084 (-349 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-349 *6)))) (-2239 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-1084 (-349 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-349 *5)))))
-((-3945 (($ |#1|) 6 T ELT)))
-(((-555 |#1|) (-113) (-1128)) (T -555))
-((-3945 (*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1128)))))
-(-13 (-10 -8 (-15 -3945 ($ |t#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-2240 (($) 11 T CONST)) (-2855 (($) 13 T CONST)) (-3136 (((-694)) 36 T ELT)) (-2994 (($) NIL T ELT)) (-2561 (($ $ $) 25 T ELT)) (-2560 (($ $) 23 T ELT)) (-2010 (((-830) $) 43 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 42 T ELT)) (-2853 (($ $ $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2854 (($) 9 T CONST)) (-2852 (($ $ $) 27 T ELT)) (-3945 (((-772) $) 34 T ELT)) (-3565 (((-85) $ (|[\|\|]| -2854)) 20 T ELT) (((-85) $ (|[\|\|]| -2240)) 22 T ELT) (((-85) $ (|[\|\|]| -2855)) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) 24 T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) 16 T ELT)) (-2312 (($ $ $) NIL T ELT)))
-(((-556) (-13 (-880) (-319) (-10 -8 (-15 -2240 ($) -3951) (-15 -3565 ((-85) $ (|[\|\|]| -2854))) (-15 -3565 ((-85) $ (|[\|\|]| -2240))) (-15 -3565 ((-85) $ (|[\|\|]| -2855)))))) (T -556))
-((-2240 (*1 *1) (-5 *1 (-556))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2240)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-556)))))
-((-3971 (($ |#1|) 6 T ELT)))
-(((-557 |#1|) (-113) (-1128)) (T -557))
-((-3971 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1128)))))
-(-13 (-10 -8 (-15 -3971 ($ |t#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2998 ((|#1| $) 13 T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2997 ((|#3| $) 15 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3126 (((-694)) 20 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 12 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3948 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-558 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -3948 ($ $ |#3|)) (-15 -3948 ($ |#1| |#3|)) (-15 -2998 (|#1| $)) (-15 -2997 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -558))
-((-3948 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3948 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2997 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)))))
-((-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-559 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-560 |#2|) (-961)) (T -559))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT)))
-(((-560 |#1|) (-113) (-961)) (T -560))
-((-3945 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-590 |t#1|) (-10 -8 (-15 -3945 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2241 ((|#2| |#2| (-1089) (-1089)) 16 T ELT)))
-(((-561 |#1| |#2|) (-10 -7 (-15 -2241 (|#2| |#2| (-1089) (-1089)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-871) (-29 |#1|))) (T -561))
-((-2241 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1114) (-871) (-29 *4))))))
-((-2568 (((-85) $ $) 64 T ELT)) (-3188 (((-85) $) 58 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2242 ((|#1| $) 55 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3750 (((-2 (|:| -1761 $) (|:| -1760 (-349 |#2|))) (-349 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) 27 T ELT)) (-3466 (((-3 $ #1#) $) 88 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3771 (((-484) $) 22 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 40 T ELT)) (-2893 (($ |#1| (-484)) 24 T ELT)) (-3174 ((|#1| $) 57 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) 93 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-694) $) 115 (|has| |#1| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3947 (((-484) $) 38 T ELT)) (-3971 (((-349 |#2|) $) 47 T ELT)) (-3945 (((-772) $) 69 T ELT) (($ (-484)) 35 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3676 ((|#1| $ (-484)) 72 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 32 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 9 T CONST)) (-2666 (($) 14 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-3836 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 90 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 49 T ELT)))
-(((-562 |#1| |#2|) (-13 (-184 |#2|) (-495) (-553 (-349 |#2|)) (-354 |#1|) (-950 |#2|) (-10 -8 (-15 -3936 ((-85) $)) (-15 -3947 ((-484) $)) (-15 -3771 ((-484) $)) (-15 -3958 ($ $)) (-15 -3174 (|#1| $)) (-15 -2242 (|#1| $)) (-15 -3676 (|#1| $ (-484))) (-15 -2893 ($ |#1| (-484))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3750 ((-2 (|:| -1761 $) (|:| -1760 (-349 |#2|))) (-349 |#2|)))) |%noBranch|))) (-495) (-1154 |#1|)) (T -562))
-((-3936 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3)))) (-3947 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3)))) (-3771 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3)))) (-3958 (*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2)))) (-2242 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1154 *2)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1154 *2)))) (-3750 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-495)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -1761 (-562 *4 *5)) (|:| -1760 (-349 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-349 *5)))))
-((-3681 (((-583 |#6|) (-583 |#4|) (-85)) 54 T ELT)) (-2243 ((|#6| |#6|) 48 T ELT)))
-(((-563 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2243 (|#6| |#6|)) (-15 -3681 ((-583 |#6|) (-583 |#4|) (-85)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|) (-1020 |#1| |#2| |#3| |#4|)) (T -563))
-((-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *10 (-1020 *5 *6 *7 *8)))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1020 *3 *4 *5 *6)))))
-((-2244 (((-85) |#3| (-694) (-583 |#3|)) 30 T ELT)) (-2245 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1084 |#3|)))) "failed") |#3| (-583 (-1084 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1778 (-583 (-2 (|:| |irr| |#4|) (|:| -2395 (-484)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 68 T ELT)))
-(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2244 ((-85) |#3| (-694) (-583 |#3|))) (-15 -2245 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1084 |#3|)))) "failed") |#3| (-583 (-1084 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1778 (-583 (-2 (|:| |irr| |#4|) (|:| -2395 (-484)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-756) (-717) (-258) (-861 |#3| |#2| |#1|)) (T -564))
-((-2245 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1778 (-583 (-2 (|:| |irr| *10) (|:| -2395 (-484))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-258)) (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1084 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1084 *3))))) (-2244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-258)) (-4 *6 (-756)) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-861 *3 *7 *6)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1048) $) 12 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-565) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1048) $))))) (T -565))
-((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-565)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-565)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3935 (($ $) 77 T ELT)) (-3941 (((-606 |#1| |#2|) $) 60 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 81 T ELT)) (-2246 (((-583 (-249 |#2|)) $ $) 42 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3942 (($ (-606 |#1| |#2|)) 56 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 66 T ELT) (((-1194 |#1| |#2|) $) NIL T ELT) (((-1199 |#1| |#2|) $) 74 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 61 T CONST)) (-2247 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2248 (((-583 (-606 |#1| |#2|)) (-583 |#1|)) 73 T ELT)) (-2665 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3056 (((-85) $ $) 62 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 52 T ELT)))
-(((-566 |#1| |#2| |#3|) (-13 (-412) (-10 -8 (-15 -3942 ($ (-606 |#1| |#2|))) (-15 -3941 ((-606 |#1| |#2|) $)) (-15 -2665 ((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $)) (-15 -3945 ((-1194 |#1| |#2|) $)) (-15 -3945 ((-1199 |#1| |#2|) $)) (-15 -3935 ($ $)) (-15 -3933 ((-583 |#1|) $)) (-15 -2248 ((-583 (-606 |#1| |#2|)) (-583 |#1|))) (-15 -2247 ((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -2246 ((-583 (-249 |#2|)) $ $)))) (-756) (-13 (-146) (-654 (-349 (-484)))) (-830)) (T -566))
-((-3942 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-5 *1 (-566 *3 *4 *5)) (-14 *5 (-830)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-13 (-146) (-654 (-349 (-484))))) (-14 *4 (-830)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5))) (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-349 (-484))))) (-14 *6 (-830)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-2246 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-249 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))))
-((-3681 (((-583 (-1059 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 103 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 77 T ELT)) (-2249 (((-85) (-583 (-703 |#1| (-773 |#2|)))) 26 T ELT)) (-2253 (((-583 (-1059 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 102 T ELT)) (-2252 (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 76 T ELT)) (-2251 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) 30 T ELT)) (-2250 (((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|)))) 29 T ELT)))
-(((-567 |#1| |#2|) (-10 -7 (-15 -2249 ((-85) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2250 ((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|))))) (-15 -2251 ((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2252 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -2253 ((-583 (-1059 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3681 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3681 ((-583 (-1059 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)))) (-391) (-583 (-1089))) (T -567))
-((-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-1059 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-1059 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-391)) (-14 *4 (-583 (-1089))) (-5 *1 (-567 *3 *4)))) (-2250 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-391)) (-14 *4 (-583 (-1089))) (-5 *1 (-567 *3 *4)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-391)) (-14 *5 (-583 (-1089))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5)))))
-((-3594 (((-86) (-86)) 88 T ELT)) (-2257 ((|#2| |#2|) 28 T ELT)) (-2832 ((|#2| |#2| (-1004 |#2|)) 84 T ELT) ((|#2| |#2| (-1089)) 50 T ELT)) (-2255 ((|#2| |#2|) 27 T ELT)) (-2256 ((|#2| |#2|) 29 T ELT)) (-2254 (((-85) (-86)) 33 T ELT)) (-2259 ((|#2| |#2|) 24 T ELT)) (-2260 ((|#2| |#2|) 26 T ELT)) (-2258 ((|#2| |#2|) 25 T ELT)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2832 (|#2| |#2| (-1089))) (-15 -2832 (|#2| |#2| (-1004 |#2|)))) (-495) (-13 (-363 |#1|) (-915) (-1114))) (T -568))
-((-2832 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-363 *4) (-915) (-1114))) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)))) (-2832 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-363 *4) (-915) (-1114))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-568 *3 *4)) (-4 *4 (-13 (-363 *3) (-915) (-1114))))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)) (-4 *5 (-13 (-363 *4) (-915) (-1114))))))
-((-3491 (($ $) 38 T ELT)) (-3638 (($ $) 21 T ELT)) (-3489 (($ $) 37 T ELT)) (-3637 (($ $) 22 T ELT)) (-3493 (($ $) 36 T ELT)) (-3636 (($ $) 23 T ELT)) (-3626 (($) 48 T ELT)) (-3941 (($ $) 45 T ELT)) (-2257 (($ $) 17 T ELT)) (-2832 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1089)) 6 T ELT)) (-3942 (($ $) 46 T ELT)) (-2255 (($ $) 15 T ELT)) (-2256 (($ $) 16 T ELT)) (-3494 (($ $) 35 T ELT)) (-3635 (($ $) 24 T ELT)) (-3492 (($ $) 34 T ELT)) (-3634 (($ $) 25 T ELT)) (-3490 (($ $) 33 T ELT)) (-3633 (($ $) 26 T ELT)) (-3497 (($ $) 44 T ELT)) (-3485 (($ $) 32 T ELT)) (-3495 (($ $) 43 T ELT)) (-3483 (($ $) 31 T ELT)) (-3499 (($ $) 42 T ELT)) (-3487 (($ $) 30 T ELT)) (-3500 (($ $) 41 T ELT)) (-3488 (($ $) 29 T ELT)) (-3498 (($ $) 40 T ELT)) (-3486 (($ $) 28 T ELT)) (-3496 (($ $) 39 T ELT)) (-3484 (($ $) 27 T ELT)) (-2259 (($ $) 19 T ELT)) (-2260 (($ $) 20 T ELT)) (-2258 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
-(((-569) (-113)) (T -569))
-((-2260 (*1 *1 *1) (-4 *1 (-569))) (-2259 (*1 *1 *1) (-4 *1 (-569))) (-2258 (*1 *1 *1) (-4 *1 (-569))) (-2257 (*1 *1 *1) (-4 *1 (-569))) (-2256 (*1 *1 *1) (-4 *1 (-569))) (-2255 (*1 *1 *1) (-4 *1 (-569))))
-(-13 (-871) (-1114) (-10 -8 (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $))))
-(((-35) . T) ((-66) . T) ((-239) . T) ((-432) . T) ((-871) . T) ((-1114) . T) ((-1117) . T))
-((-2270 (((-420 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2263 (((-583 (-206 |#1| |#2|)) (-583 (-420 |#1| |#2|))) 90 T ELT)) (-2264 (((-420 |#1| |#2|) (-583 (-420 |#1| |#2|)) (-773 |#1|)) 92 T ELT) (((-420 |#1| |#2|) (-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|)) (-773 |#1|)) 91 T ELT)) (-2261 (((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-484)))) (-583 (-420 |#1| |#2|))) 136 T ELT)) (-2268 (((-583 (-420 |#1| |#2|)) (-773 |#1|) (-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|))) 105 T ELT)) (-2262 (((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-484)))) (-583 (-206 |#1| |#2|))) 147 T ELT)) (-2266 (((-1178 |#2|) (-420 |#1| |#2|) (-583 (-420 |#1| |#2|))) 70 T ELT)) (-2265 (((-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|))) 47 T ELT)) (-2269 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 61 T ELT)) (-2267 (((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 113 T ELT)))
-(((-570 |#1| |#2|) (-10 -7 (-15 -2261 ((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-484)))) (-583 (-420 |#1| |#2|)))) (-15 -2262 ((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-484)))) (-583 (-206 |#1| |#2|)))) (-15 -2263 ((-583 (-206 |#1| |#2|)) (-583 (-420 |#1| |#2|)))) (-15 -2264 ((-420 |#1| |#2|) (-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|)) (-773 |#1|))) (-15 -2264 ((-420 |#1| |#2|) (-583 (-420 |#1| |#2|)) (-773 |#1|))) (-15 -2265 ((-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|)))) (-15 -2266 ((-1178 |#2|) (-420 |#1| |#2|) (-583 (-420 |#1| |#2|)))) (-15 -2267 ((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2268 ((-583 (-420 |#1| |#2|)) (-773 |#1|) (-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|)))) (-15 -2269 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2270 ((-420 |#1| |#2|) (-206 |#1| |#2|)))) (-583 (-1089)) (-391)) (T -570))
-((-2270 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *2 (-420 *4 *5)) (-5 *1 (-570 *4 *5)))) (-2269 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *1 (-570 *4 *5)))) (-2268 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-420 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *1 (-570 *4 *5)))) (-2267 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-391)) (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1089))) (-5 *1 (-570 *5 *6)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-420 *5 *6))) (-5 *3 (-420 *5 *6)) (-14 *5 (-583 (-1089))) (-4 *6 (-391)) (-5 *2 (-1178 *6)) (-5 *1 (-570 *5 *6)))) (-2265 (*1 *2 *2) (-12 (-5 *2 (-583 (-420 *3 *4))) (-14 *3 (-583 (-1089))) (-4 *4 (-391)) (-5 *1 (-570 *3 *4)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-420 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1089))) (-5 *2 (-420 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-391)))) (-2264 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-420 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1089))) (-5 *2 (-420 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-391)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-583 (-420 *4 *5))) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5)))) (-2262 (*1 *2 *3) (-12 (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-484))))) (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5))))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-583 (-420 *4 *5))) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-484))))) (-5 *1 (-570 *4 *5)))))
-((-2568 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-2198 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3995)) ELT)) (-3787 (((-51) $ (-1072) (-51)) NIL (|has| $ (-6 -3995)) ELT) (((-51) $ (-1089) (-51)) 16 T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 (-51) #1="failed") (-1072) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 (-51) #1#) (-1072) $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 (((-51) $ (-1072) (-51)) NIL (|has| $ (-6 -3995)) ELT)) (-3112 (((-51) $ (-1072)) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2271 (($ $) NIL T ELT)) (-2200 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-51) (-1013))) ELT) (((-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013)) ELT)) (-2201 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2272 (($ (-337)) 8 T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-2232 (((-583 (-1072)) $) NIL T ELT)) (-2233 (((-85) (-1072) $) NIL T ELT)) (-1273 (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-2203 (((-583 (-1072)) $) NIL T ELT)) (-2204 (((-85) (-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-3800 (((-51) $) NIL (|has| (-1072) (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2199 (($ $ (-51)) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-583 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-51) (-1013))) ELT)) (-2205 (((-583 (-51)) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 (((-51) $ (-1072)) NIL T ELT) (((-51) $ (-1072) (-51)) NIL T ELT) (((-51) $ (-1089)) 14 T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-694) (-51) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-51) (-1013))) ELT) (((-694) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-552 (-772))) (|has| (-51) (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-571) (-13 (-1106 (-1072) (-51)) (-241 (-1089) (-51)) (-10 -8 (-15 -2272 ($ (-337))) (-15 -2271 ($ $)) (-15 -3787 ((-51) $ (-1089) (-51)))))) (T -571))
-((-2272 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-571)))) (-2271 (*1 *1 *1) (-5 *1 (-571))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-571)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 (-630 |#1|)) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 (((-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3723 (($) NIL T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1787 (((-630 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1785 (((-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1899 (((-1084 (-857 |#1|))) NIL (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1704 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1722 (((-1084 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (($ (-1178 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (($ (-1178 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3466 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-3108 (((-830)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 (((-630 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1786 (((-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1903 (((-1084 (-857 |#1|))) NIL (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1790 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1084 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3799 ((|#1| $ (-484)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-3224 (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1178 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3971 (($ (-1178 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1891 (((-583 (-857 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-583 (-857 |#1|)) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3945 (((-772) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1706 (((-583 (-1178 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2545 (($ (-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2660 (($) 18 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-572 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3945 ($ |#2|)) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -572))
-((-3945 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3)))))
-((-3948 (($ $ |#2|) 10 T ELT)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#1| |#2|))) (-574 |#2|) (-146)) (T -573))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3529 (($ $ $) 40 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-574 |#1|) (-113) (-146)) (T -574))
-((-3529 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
-(-13 (-654 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3529 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3948 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2274 (((-3 (-750 |#2|) #1="failed") |#2| (-249 |#2|) (-1072)) 105 T ELT) (((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-249 (-750 |#2|))) 130 T ELT)) (-2273 (((-3 (-743 |#2|) #1#) |#2| (-249 (-743 |#2|))) 135 T ELT)))
-(((-575 |#1| |#2|) (-10 -7 (-15 -2274 ((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-249 (-750 |#2|)))) (-15 -2273 ((-3 (-743 |#2|) #1#) |#2| (-249 (-743 |#2|)))) (-15 -2274 ((-3 (-750 |#2|) #1#) |#2| (-249 |#2|) (-1072)))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -575))
-((-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1072)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-750 *3)) (-5 *1 (-575 *6 *3)))) (-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-743 *3))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-743 *3)) (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-750 *3))) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) "failed")) (-5 *1 (-575 *5 *3)))))
-((-2274 (((-3 (-750 (-349 (-857 |#1|))) #1="failed") (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))) (-1072)) 86 T ELT) (((-3 (-750 (-349 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#))) #1#) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|)))) 20 T ELT) (((-3 (-750 (-349 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#))) #1#) (-349 (-857 |#1|)) (-249 (-750 (-857 |#1|)))) 35 T ELT)) (-2273 (((-743 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|)))) 23 T ELT) (((-743 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-249 (-743 (-857 |#1|)))) 43 T ELT)))
-(((-576 |#1|) (-10 -7 (-15 -2274 ((-3 (-750 (-349 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#))) #1#) (-349 (-857 |#1|)) (-249 (-750 (-857 |#1|))))) (-15 -2274 ((-3 (-750 (-349 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#))) #1#) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))))) (-15 -2273 ((-743 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-249 (-743 (-857 |#1|))))) (-15 -2273 ((-743 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))))) (-15 -2274 ((-3 (-750 (-349 (-857 |#1|))) #1#) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))) (-1072)))) (-391)) (T -576))
-((-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-349 (-857 *6)))) (-5 *5 (-1072)) (-5 *3 (-349 (-857 *6))) (-4 *6 (-391)) (-5 *2 (-750 *3)) (-5 *1 (-576 *6)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-391)) (-5 *2 (-743 *3)) (-5 *1 (-576 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-743 (-857 *5)))) (-4 *5 (-391)) (-5 *2 (-743 (-349 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-349 (-857 *5))))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-391)) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) #2="failed")) (-5 *1 (-576 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-750 (-857 *5)))) (-4 *5 (-391)) (-5 *2 (-3 (-750 (-349 (-857 *5))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 *5))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 *5))) #1#))) #2#)) (-5 *1 (-576 *5)) (-5 *3 (-349 (-857 *5))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 11 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2851 (($ (-168 |#1|)) 12 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-773 |#1|)) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)))
-(((-577 |#1|) (-13 (-752) (-555 (-773 |#1|)) (-10 -8 (-15 -2851 ($ (-168 |#1|))))) (-583 (-1089))) (T -577))
-((-2851 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1089))) (-5 *1 (-577 *3)))))
-((-2277 (((-3 (-1178 (-349 |#1|)) #1="failed") (-1178 |#2|) |#2|) 64 (-2560 (|has| |#1| (-312))) ELT) (((-3 (-1178 |#1|) #1#) (-1178 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2275 (((-85) (-1178 |#2|)) 33 T ELT)) (-2276 (((-3 (-1178 |#1|) #1#) (-1178 |#2|)) 40 T ELT)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -2275 ((-85) (-1178 |#2|))) (-15 -2276 ((-3 (-1178 |#1|) #1="failed") (-1178 |#2|))) (IF (|has| |#1| (-312)) (-15 -2277 ((-3 (-1178 |#1|) #1#) (-1178 |#2|) |#2|)) (-15 -2277 ((-3 (-1178 (-349 |#1|)) #1#) (-1178 |#2|) |#2|)))) (-495) (-13 (-961) (-580 |#1|))) (T -578))
-((-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-2560 (-4 *5 (-312))) (-4 *5 (-495)) (-5 *2 (-1178 (-349 *5))) (-5 *1 (-578 *5 *4)))) (-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-1178 *5)) (-5 *1 (-578 *5 *4)))) (-2276 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) (-5 *2 (-1178 *4)) (-5 *1 (-578 *4 *5)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-578 *4 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| (-577 |#2|))) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| (-577 |#2|)) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2278 (($ (-583 |#1|)) 25 T ELT)) (-1983 (((-577 |#2|) $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3910 (((-107)) 16 T ELT)) (-3224 (((-1178 |#1|) $) 44 T ELT)) (-3971 (($ (-583 (-453 |#1| (-577 |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-577 |#2|)) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 20 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 17 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-579 |#1| |#2|) (-13 (-1186 |#1|) (-555 (-577 |#2|)) (-449 |#1| (-577 |#2|)) (-10 -8 (-15 -2278 ($ (-583 |#1|))) (-15 -3224 ((-1178 |#1|) $)))) (-312) (-583 (-1089))) (T -579))
-((-2278 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-579 *3 *4)) (-14 *4 (-583 (-1089))))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-312)) (-14 *4 (-583 (-1089))))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2279 (((-630 |#1|) (-630 $)) 36 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 35 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2280 (((-630 |#1|) (-1178 $)) 38 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 37 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
-(((-580 |#1|) (-113) (-961)) (T -580))
-((-2280 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2280 (*1 *2 *3 *1) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1178 *4)))))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *1)) (-5 *4 (-1178 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1178 *5)))))))
-(-13 (-590 |t#1|) (-10 -8 (-15 -2280 ((-630 |t#1|) (-1178 $))) (-15 -2280 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1178 |t#1|))) (-1178 $) $)) (-15 -2279 ((-630 |t#1|) (-630 $))) (-15 -2279 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1178 |t#1|))) (-630 $) (-1178 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1213 (((-85) $ $) NIL T ELT)) (-2281 (($ (-583 |#1|)) 23 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ (-579 |#1| |#2|)) 46 T ELT)) (-3910 (((-107)) 13 T ELT)) (-3224 (((-1178 |#1|) $) 42 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 14 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-581 |#1| |#2|) (-13 (-1186 |#1|) (-241 (-579 |#1| |#2|) |#1|) (-10 -8 (-15 -2281 ($ (-583 |#1|))) (-15 -3224 ((-1178 |#1|) $)))) (-312) (-583 (-1089))) (T -581))
-((-2281 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) (-14 *4 (-583 (-1089))))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) (-14 *4 (-583 (-1089))))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT)))
-(((-582 |#1|) (-113) (-1025)) (T -582))
-NIL
-(-13 (-588 |t#1|) (-963 |t#1|))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 |#1|) . T) ((-963 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) NIL T ELT)) (-3794 ((|#1| $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 68 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1729 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3441 (((-85) $ (-694)) NIL T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 26 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 24 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-2284 (($ $ $) 74 (|has| |#1| (-1013)) ELT)) (-2283 (($ $ $) 75 (|has| |#1| (-1013)) ELT)) (-2282 (($ $ $) 79 (|has| |#1| (-1013)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) 31 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 32 T ELT)) (-3798 (($ $) 21 T ELT) (($ $ (-694)) 35 T ELT)) (-2368 (($ $) 63 (|has| |#1| (-1013)) ELT)) (-1352 (($ $) 73 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3405 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3442 (((-85) $) NIL T ELT)) (-3418 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2286 (((-85) $) 9 T ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2287 (($) 7 T CONST)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-3718 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) 34 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3517 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) 61 (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3533 (($ |#1|) NIL T ELT)) (-3715 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) 59 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3608 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 16 T ELT) (($ $ (-694)) NIL T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3443 (((-85) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 15 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) 20 T ELT)) (-3564 (($) 19 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) 78 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-1570 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-3789 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) NIL T ELT)) (-3793 (($ $) 40 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 36 T ELT)) (-3971 (((-473) $) 87 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 29 T ELT)) (-3460 (($ |#1| $) 10 T ELT)) (-3790 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3801 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3945 (((-772) $) 51 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2285 (($ $ $) 11 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 13 T ELT)))
-(((-583 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2287 ($) -3951) (-15 -2286 ((-85) $)) (-15 -3460 ($ |#1| $)) (-15 -2285 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -2284 ($ $ $)) (-15 -2283 ($ $ $)) (-15 -2282 ($ $ $))) |%noBranch|))) (-1128)) (T -583))
-((-2287 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1128)))) (-3460 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))) (-2282 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))))
-((-3840 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16 T ELT)) (-3841 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18 T ELT)) (-3957 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13 T ELT)))
-(((-584 |#1| |#2|) (-10 -7 (-15 -3840 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3841 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3957 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1128) (-1128)) (T -584))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-584 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5)))))
-((-3421 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12 T ELT)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -3421 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -3421 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -3421 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -3421 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -3421 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -3421 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1013) (-1128)) (T -585))
-((-3421 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-585 *5 *2)))) (-3421 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-585 *5 *6)))) (-3421 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-585 *5 *2)))) (-3421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1013)) (-4 *5 (-1128)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) (-3421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-585 *5 *2)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6)))))
-((-3957 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 21 T ELT)))
-(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1128) (-1128) (-1128)) (T -586))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-583 *8)) (-5 *1 (-586 *6 *7 *8)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-587 |#1|) (-13 (-995) (-552 |#1|)) (-1013)) (T -587))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT)))
-(((-588 |#1|) (-113) (-1025)) (T -588))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1025)))))
-(-13 (-1013) (-10 -8 (-15 * ($ |t#1| $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2288 (($ |#1| |#1| $) 45 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2368 (($ $) 47 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) 58 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 9 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 49 T ELT)) (-3608 (($ |#1| $) 30 T ELT) (($ |#1| $ (-694)) 44 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1274 ((|#1| $) 52 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 23 T ELT)) (-3564 (($) 29 T ELT)) (-2289 (((-85) $) 56 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 69 T ELT)) (-1465 (($) 26 T ELT) (($ (-583 |#1|)) 19 T ELT)) (-1945 (((-694) |#1| $) 65 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) 20 T ELT)) (-3971 (((-473) $) 36 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3945 (((-772) $) 14 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 24 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 17 T ELT)))
-(((-589 |#1|) (-13 (-634 |#1|) (-317 |#1|) (-10 -8 (-15 -2289 ((-85) $)) (-15 -2288 ($ |#1| |#1| $)))) (-1013)) (T -589))
-((-2289 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1013)))) (-2288 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1013)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
-(((-590 |#1|) (-113) (-970)) (T -590))
-NIL
-(-13 (-21) (-588 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694) $) 17 T ELT)) (-2295 (($ $ |#1|) 68 T ELT)) (-2297 (($ $) 39 T ELT)) (-2298 (($ $) 37 T ELT)) (-3157 (((-3 |#1| "failed") $) 60 T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2293 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3532 (((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-484)) 55 T ELT)) (-2299 ((|#1| $ (-484)) 35 T ELT)) (-2300 ((|#2| $ (-484)) 34 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2291 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2296 (($) 13 T ELT)) (-2302 (($ |#1| |#2|) 24 T ELT)) (-2301 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|)))) 25 T ELT)) (-2303 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))) $) 14 T ELT)) (-2294 (($ |#1| $) 69 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2292 (((-85) $ $) 74 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 27 T ELT)))
-(((-591 |#1| |#2| |#3|) (-13 (-1013) (-950 |#1|) (-10 -8 (-15 -3532 ((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-484))) (-15 -2303 ((-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))) $)) (-15 -2302 ($ |#1| |#2|)) (-15 -2301 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))))) (-15 -2300 (|#2| $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -2298 ($ $)) (-15 -2297 ($ $)) (-15 -3136 ((-694) $)) (-15 -2296 ($)) (-15 -2295 ($ $ |#1|)) (-15 -2294 ($ |#1| $)) (-15 -2293 ($ |#1| |#2| $)) (-15 -2293 ($ $ $)) (-15 -2292 ((-85) $ $)) (-15 -2291 ($ (-1 |#2| |#2|) $)) (-15 -2290 ($ (-1 |#1| |#1|) $)))) (-1013) (-23) |#2|) (T -591))
-((-3532 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-484)) (-5 *2 (-772)) (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2302 (*1 *1 *2 *3) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1013)) (-14 *5 *2))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2296 (*1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *2 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-((-2201 (((-484) $) 30 T ELT)) (-2304 (($ |#2| $ (-484)) 26 T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) 12 T ELT)) (-2204 (((-85) (-484) $) 17 T ELT)) (-3801 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)))
-(((-592 |#1| |#2|) (-10 -7 (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -3801 (|#1| (-583 |#1|))) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#2|)) (-15 -2201 ((-484) |#1|)) (-15 -2203 ((-583 (-484)) |#1|)) (-15 -2204 ((-85) (-484) |#1|))) (-593 |#2|) (-1128)) (T -592))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-593 |#1|) (-113) (-1128)) (T -593))
-((-3613 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-3801 (*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128)))) (-3801 (*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128)))) (-3801 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-2304 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-593 *2)) (-4 *2 (-1128)))) (-2304 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1145 (-484))) (|has| *1 (-6 -3995)) (-4 *1 (-593 *2)) (-4 *2 (-1128)))))
-(-13 (-538 (-484) |t#1|) (-124 |t#1|) (-241 (-1145 (-484)) $) (-10 -8 (-15 -3613 ($ (-694) |t#1|)) (-15 -3801 ($ $ |t#1|)) (-15 -3801 ($ |t#1| $)) (-15 -3801 ($ $ $)) (-15 -3801 ($ (-583 $))) (-15 -3957 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2305 ($ $ (-484))) (-15 -2305 ($ $ (-1145 (-484)))) (-15 -2304 ($ |t#1| $ (-484))) (-15 -2304 ($ $ $ (-484))) (IF (|has| $ (-6 -3995)) (-15 -3787 (|t#1| $ (-1145 (-484)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 15 T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-714)) ELT)) (-3723 (($) NIL T CONST)) (-3186 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2998 ((|#1| $) 23 T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-3242 (((-1072) $) 48 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2997 ((|#3| $) 24 T ELT)) (-3945 (((-772) $) 43 T ELT)) (-1264 (((-85) $ $) 22 T ELT)) (-3382 (($ $) NIL (|has| |#1| (-714)) ELT)) (-2660 (($) 10 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-3056 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2685 (((-85) $ $) 26 (|has| |#1| (-714)) ELT)) (-3948 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3836 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 29 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-594 |#1| |#2| |#3|) (-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-714)) (-6 (-714)) |%noBranch|) (-15 -3948 ($ $ |#3|)) (-15 -3948 ($ |#1| |#3|)) (-15 -2998 (|#1| $)) (-15 -2997 (|#3| $)))) (-654 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -594))
-((-3948 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3948 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2997 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)))))
-((-3572 (((-3 |#2| #1="failed") |#3| |#2| (-1089) |#2| (-583 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) #1#) |#3| |#2| (-1089)) 44 T ELT)))
-(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -3572 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) #1="failed") |#3| |#2| (-1089))) (-15 -3572 ((-3 |#2| #1#) |#3| |#2| (-1089) |#2| (-583 |#2|)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871)) (-600 |#2|)) (T -595))
-((-3572 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1089)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1114) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) 31 (|has| |#1| (-312)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3799 ((|#1| $ |#1|) 24 T ELT)) (-2310 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL T ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 8 T CONST)) (-2669 (($) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-596 |#1| |#2|) (-600 |#1|) (-961) (-1 |#1| |#1|)) (T -596))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) NIL (|has| |#1| (-312)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-597 |#1|) (-600 |#1|) (-190)) (T -597))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) NIL (|has| |#1| (-312)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-598 |#1| |#2|) (-13 (-600 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-590 |#1|) (-10 -8 (-15 -3757 ($ $))))) (T -598))
-NIL
-((-2306 (($ $) 29 T ELT)) (-2520 (($ $) 27 T ELT)) (-2669 (($) 13 T ELT)))
-(((-599 |#1| |#2|) (-10 -7 (-15 -2306 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2669 (|#1|))) (-600 |#2|) (-961)) (T -599))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2306 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) 97 (|has| |#1| (-312)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2536 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #2="failed") $) 88 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #2#) $) 85 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3156 (((-484) $) 87 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 84 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 83 T ELT)) (-3958 (($ $) 77 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 68 (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2893 (($ |#1| (-694)) 75 T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 71 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 79 T ELT)) (-2542 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) 78 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-495)) ELT)) (-3799 ((|#1| $ |#1|) 101 T ELT)) (-2310 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3947 (((-694) $) 80 T ELT)) (-2817 ((|#1| $) 69 (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 86 (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 81 T ELT)) (-3816 (((-583 |#1|) $) 74 T ELT)) (-3676 ((|#1| $ (-694)) 76 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2545 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2520 (($ $) 99 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($) 100 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
-(((-600 |#1|) (-113) (-961)) (T -600))
-((-2669 (*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2520 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2308 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-312)))) (-2306 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
-(-13 (-761 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2669 ($)) (-15 -2520 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2308 ($ $ $)) (-15 -2309 ($ $ (-694))) (-15 -2306 ($ $)) (-15 -2310 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-354 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-761 |#1|) . T))
-((-2307 (((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3731 (((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|)) 19 T ELT)))
-(((-601 |#1| |#2|) (-10 -7 (-15 -3731 ((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3731 ((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|)))) (-15 -2307 ((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|)) (T -601))
-((-2307 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-597 (-349 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-349 *5))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-597 (-349 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-349 *5))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-597 (-349 *6)))) (-5 *1 (-601 *5 *6)) (-5 *3 (-597 (-349 *6))))))
-((-2308 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2309 ((|#2| |#2| (-694) (-1 |#1| |#1|)) 45 T ELT)) (-2310 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT)))
-(((-602 |#1| |#2|) (-10 -7 (-15 -2308 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2309 (|#2| |#2| (-694) (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-600 |#1|)) (T -602))
-((-2310 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4)))) (-2309 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-602 *5 *2)) (-4 *2 (-600 *5)))) (-2308 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4)))))
-((-2311 (($ $ $) 9 T ELT)))
-(((-603 |#1|) (-10 -7 (-15 -2311 (|#1| |#1| |#1|))) (-604)) (T -603))
-NIL
-((-2313 (($ $) 8 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2312 (($ $ $) 7 T ELT)))
-(((-604) (-113)) (T -604))
-((-2313 (*1 *1 *1) (-4 *1 (-604))) (-2312 (*1 *1 *1 *1) (-4 *1 (-604))) (-2311 (*1 *1 *1 *1) (-4 *1 (-604))))
-(-13 (-1128) (-10 -8 (-15 -2313 ($ $)) (-15 -2312 ($ $ $)) (-15 -2311 ($ $ $))))
-(((-13) . T) ((-1128) . T))
-((-2314 (((-3 (-583 (-1084 |#1|)) "failed") (-583 (-1084 |#1|)) (-1084 |#1|)) 33 T ELT)))
-(((-605 |#1|) (-10 -7 (-15 -2314 ((-3 (-583 (-1084 |#1|)) "failed") (-583 (-1084 |#1|)) (-1084 |#1|)))) (-821)) (T -605))
-((-2314 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *4))) (-5 *3 (-1084 *4)) (-4 *4 (-821)) (-5 *1 (-605 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 |#1|) $) 85 T ELT)) (-3946 (($ $ (-694)) 95 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3938 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 50 T ELT)) (-3157 (((-3 (-614 |#1|) #1#) $) NIL T ELT)) (-3156 (((-614 |#1|) $) NIL T ELT)) (-3958 (($ $) 94 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-614 |#1|) |#2|) 70 T ELT)) (-3935 (($ $) 90 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3939 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 49 T ELT)) (-1748 (((-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2894 (((-614 |#1|) $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3767 (($ $ |#1| $) 32 T ELT) (($ $ (-583 |#1|) (-583 $)) 34 T ELT)) (-3947 (((-694) $) 92 T ELT)) (-3529 (($ $ $) 20 T ELT) (($ (-614 |#1|) (-614 |#1|)) 79 T ELT) (($ (-614 |#1|) $) 77 T ELT) (($ $ (-614 |#1|)) 78 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1194 |#1| |#2|) $) 60 T ELT) (((-1203 |#1| |#2|) $) 43 T ELT) (($ (-614 |#1|)) 27 T ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-614 |#1|)) NIL T ELT)) (-3953 ((|#2| (-1203 |#1| |#2|) $) 45 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 23 T CONST)) (-2665 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3944 (((-3 $ #1#) (-1194 |#1| |#2|)) 62 T ELT)) (-1732 (($ (-614 |#1|)) 14 T ELT)) (-3056 (((-85) $ $) 46 T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-614 |#1|)) NIL T ELT)))
-(((-606 |#1| |#2|) (-13 (-325 |#1| |#2|) (-334 |#2| (-614 |#1|)) (-10 -8 (-15 -3944 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -3529 ($ (-614 |#1|) (-614 |#1|))) (-15 -3529 ($ (-614 |#1|) $)) (-15 -3529 ($ $ (-614 |#1|))))) (-756) (-146)) (T -606))
-((-3944 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-606 *3 *4)))) (-3529 (*1 *1 *2 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3529 (*1 *1 *2 *1) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3529 (*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))))
-((-1731 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1729 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1569 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2297 (($ $) 65 T ELT)) (-2368 (($ $) 74 T ELT)) (-3404 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3841 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3418 (((-484) |#2| $ (-484)) 71 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) (-1 (-85) |#2|) $) 54 T ELT)) (-3613 (($ (-694) |#2|) 63 T ELT)) (-2856 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3517 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3533 (($ |#2|) 15 T ELT)) (-3608 (($ $ $ (-484)) 42 T ELT) (($ |#2| $ (-484)) 40 T ELT)) (-1353 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1570 (($ $ (-1145 (-484))) 51 T ELT) (($ $ (-484)) 44 T ELT)) (-1730 (($ $ $ (-484)) 70 T ELT)) (-3399 (($ $) 68 T ELT)) (-2685 (((-85) $ $) 76 T ELT)))
-(((-607 |#1| |#2|) (-10 -7 (-15 -3533 (|#1| |#2|)) (-15 -1570 (|#1| |#1| (-484))) (-15 -1570 (|#1| |#1| (-1145 (-484)))) (-15 -3404 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3608 (|#1| |#2| |#1| (-484))) (-15 -3608 (|#1| |#1| |#1| (-484))) (-15 -2856 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1569 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3404 (|#1| |#2| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2856 (|#1| |#1| |#1|)) (-15 -3517 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1731 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3418 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -3418 ((-484) |#2| |#1|)) (-15 -3418 ((-484) |#2| |#1| (-484))) (-15 -3517 (|#1| |#1| |#1|)) (-15 -1731 ((-85) |#1|)) (-15 -1730 (|#1| |#1| |#1| (-484))) (-15 -2297 (|#1| |#1|)) (-15 -1729 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1353 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3613 (|#1| (-694) |#2|)) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3399 (|#1| |#1|))) (-608 |#2|) (-1128)) (T -607))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3794 ((|#1| $) 71 T ELT)) (-3796 (($ $) 73 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 58 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) 154 (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-1729 (($ $) 158 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1| |#1|) $) 157 (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) 153 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-3441 (((-85) $ (-694)) 90 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 62 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) 60 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 141 T ELT)) (-3709 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3994)) ELT)) (-3795 ((|#1| $) 72 T ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 156 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 146 T ELT)) (-3798 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2368 (($ $) 143 (|has| |#1| (-1013)) ELT)) (-1352 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 142 (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 137 T ELT)) (-3405 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3994)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1575 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 97 T ELT)) (-3442 (((-85) $) 93 T ELT)) (-3418 (((-484) |#1| $ (-484)) 151 (|has| |#1| (-1013)) ELT) (((-484) |#1| $) 150 (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) 149 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) 119 T ELT)) (-3718 (((-85) $ (-694)) 91 T ELT)) (-2200 (((-484) $) 105 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 164 (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) 144 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 140 T ELT)) (-3517 (($ $ $) 152 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 145 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) 104 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 163 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3533 (($ |#1|) 134 T ELT)) (-3715 (((-85) $ (-694)) 92 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3608 (($ $ $ (-484)) 139 T ELT) (($ |#1| $ (-484)) 138 T ELT)) (-2304 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2203 (((-583 (-484)) $) 102 T ELT)) (-2204 (((-85) (-484) $) 101 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2199 (($ $ |#1|) 106 (|has| $ (-6 -3995)) ELT)) (-3443 (((-85) $) 94 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 100 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-1570 (($ $ (-1145 (-484))) 136 T ELT) (($ $ (-484)) 135 T ELT)) (-2305 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-3791 (($ $) 68 T ELT)) (-3789 (($ $) 65 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 69 T ELT)) (-3793 (($ $) 70 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT)) (-1730 (($ $ $ (-484)) 155 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 108 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 117 T ELT)) (-3790 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3801 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 162 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 160 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 161 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 159 (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-608 |#1|) (-113) (-1128)) (T -608))
-((-3533 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1128)))))
-(-13 (-1063 |t#1|) (-323 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3533 ($ |t#1|))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-237 |#1|) . T) ((-317 |#1|) . T) ((-323 |#1|) . T) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-923 |#1|) . T) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1063 |#1|) . T) ((-1128) . T) ((-1167 |#1|) . T))
-((-3572 (((-583 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2012 (-583 |#3|)))) |#4| (-583 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2012 (-583 |#3|))) |#4| |#3|) 60 T ELT)) (-3108 (((-694) |#4| |#3|) 18 T ELT)) (-3339 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2315 (((-85) |#4| |#3|) 14 T ELT)))
-(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3572 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|)) (-15 -3572 ((-583 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2012 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3339 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2315 ((-85) |#4| |#3|)) (-15 -3108 ((-694) |#4| |#3|))) (-312) (-13 (-323 |#1|) (-10 -7 (-6 -3995))) (-13 (-323 |#1|) (-10 -7 (-6 -3995))) (-627 |#1| |#2| |#3|)) (T -609))
-((-3108 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-694)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-2315 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-85)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3339 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-323 *4) (-10 -7 (-6 -3995)))) (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))) (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) (-3572 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-4 *7 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2012 (-583 *7))))) (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7)))) (-3572 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))))
-((-3572 (((-583 (-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2012 (-583 (-1178 |#1|))))) (-583 (-583 |#1|)) (-583 (-1178 |#1|))) 22 T ELT) (((-583 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|))))) (-630 |#1|) (-583 (-1178 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|)))) (-583 (-583 |#1|)) (-1178 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|)))) (-630 |#1|) (-1178 |#1|)) 14 T ELT)) (-3108 (((-694) (-630 |#1|) (-1178 |#1|)) 30 T ELT)) (-3339 (((-3 (-1178 |#1|) #1#) (-630 |#1|) (-1178 |#1|)) 24 T ELT)) (-2315 (((-85) (-630 |#1|) (-1178 |#1|)) 27 T ELT)))
-(((-610 |#1|) (-10 -7 (-15 -3572 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2012 (-583 (-1178 |#1|)))) (-630 |#1|) (-1178 |#1|))) (-15 -3572 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|)))) (-583 (-583 |#1|)) (-1178 |#1|))) (-15 -3572 ((-583 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|))))) (-630 |#1|) (-583 (-1178 |#1|)))) (-15 -3572 ((-583 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|))))) (-583 (-583 |#1|)) (-583 (-1178 |#1|)))) (-15 -3339 ((-3 (-1178 |#1|) #1#) (-630 |#1|) (-1178 |#1|))) (-15 -2315 ((-85) (-630 |#1|) (-1178 |#1|))) (-15 -3108 ((-694) (-630 |#1|) (-1178 |#1|)))) (-312)) (T -610))
-((-3108 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-5 *2 (-694)) (-5 *1 (-610 *5)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-610 *5)))) (-3339 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1178 *4)) (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *1 (-610 *4)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1178 *5) #1="failed")) (|:| -2012 (-583 (-1178 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1178 *5))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2012 (-583 (-1178 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1178 *5))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2012 (-583 (-1178 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1178 *5)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2012 (-583 (-1178 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1178 *5)))))
-((-2316 (((-2 (|:| |particular| (-3 (-1178 (-349 |#4|)) "failed")) (|:| -2012 (-583 (-1178 (-349 |#4|))))) (-583 |#4|) (-583 |#3|)) 51 T ELT)))
-(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2316 ((-2 (|:| |particular| (-3 (-1178 (-349 |#4|)) "failed")) (|:| -2012 (-583 (-1178 (-349 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-495) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -611))
-((-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 (-349 *8)) "failed")) (|:| -2012 (-583 (-1178 (-349 *8)))))) (-5 *1 (-611 *5 *6 *7 *8)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (|has| |#2| (-495)) ELT)) (-3329 ((|#2| $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 |#2|))) NIL T ELT) (((-1178 (-630 |#2|)) (-1178 $)) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1728 (((-1178 $)) 41 T ELT)) (-3332 (($ |#2|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3111 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1787 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1785 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1178 $)) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1899 (((-1084 (-857 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 ((|#2| $) NIL T ELT)) (-1704 (((-1084 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1789 ((|#2|) NIL T ELT) ((|#2| (-1178 $)) NIL T ELT)) (-1722 (((-1084 |#2|) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-1791 (($ (-1178 |#2|)) NIL T ELT) (($ (-1178 |#2|) (-1178 $)) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3108 (((-694) $) NIL (|has| |#2| (-495)) ELT) (((-830)) 42 T ELT)) (-3112 ((|#2| $ (-484) (-484)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3107 (((-694) $) NIL (|has| |#2| (-495)) ELT)) (-3106 (((-583 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3326 ((|#2| $) NIL (|has| |#2| (-6 (-3996 #2="*"))) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-1013)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#2|))) NIL T ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3593 (((-583 (-583 |#2|)) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1788 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1786 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1178 $)) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1903 (((-1084 (-857 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1705 (((-1084 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1790 ((|#2|) NIL T ELT) ((|#2| (-1178 $)) NIL T ELT)) (-1723 (((-1084 |#2|) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-3589 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) 27 T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3328 ((|#2| $) NIL T ELT)) (-3331 (($ (-583 |#2|)) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3330 (((-197 |#1| |#2|) $) NIL T ELT)) (-3327 ((|#2| $) NIL (|has| |#2| (-6 (-3996 #2#))) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) NIL T ELT) (((-694) |#2| $) NIL (|has| |#2| (-1013)) ELT)) (-3399 (($ $) NIL T ELT)) (-3224 (((-630 |#2|) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $ (-1178 $)) 30 T ELT)) (-3971 (($ (-1178 |#2|)) NIL T ELT) (((-1178 |#2|) $) NIL T ELT)) (-1891 (((-583 (-857 |#2|))) NIL T ELT) (((-583 (-857 |#2|)) (-1178 $)) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-3110 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 40 T ELT)) (-1706 (((-583 (-1178 |#2|))) NIL (|has| |#2| (-495)) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-2545 (($ (-630 |#2|) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-612 |#1| |#2|) (-13 (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-360 |#2|)) (-830) (-146)) (T -612))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3248 (((-583 (-1048)) $) 12 T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-613) (-13 (-995) (-10 -8 (-15 -3248 ((-583 (-1048)) $))))) (T -613))
-((-3248 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-613)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) NIL T ELT)) (-3137 (($ $) 62 T ELT)) (-2664 (((-85) $) NIL T ELT)) (-3157 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2319 (((-3 $ #1#) (-739 |#1|)) 28 T ELT)) (-2321 (((-85) (-739 |#1|)) 18 T ELT)) (-2320 (($ (-739 |#1|)) 29 T ELT)) (-2511 (((-85) $ $) 36 T ELT)) (-3832 (((-830) $) 43 T ELT)) (-3138 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3731 (((-583 $) (-739 |#1|)) 20 T ELT)) (-3945 (((-772) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-739 |#1|) $) 47 T ELT) (((-618 |#1|) $) 52 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2318 (((-58 (-583 $)) (-583 |#1|) (-830)) 67 T ELT)) (-2317 (((-583 $) (-583 |#1|) (-830)) 70 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 63 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 46 T ELT)))
-(((-614 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 -2664 ((-85) $)) (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3832 ((-830) $)) (-15 -2511 ((-85) $ $)) (-15 -3945 ((-739 |#1|) $)) (-15 -3945 ((-618 |#1|) $)) (-15 -3731 ((-583 $) (-739 |#1|))) (-15 -2321 ((-85) (-739 |#1|))) (-15 -2320 ($ (-739 |#1|))) (-15 -2319 ((-3 $ "failed") (-739 |#1|))) (-15 -3933 ((-583 |#1|) $)) (-15 -2318 ((-58 (-583 $)) (-583 |#1|) (-830))) (-15 -2317 ((-583 $) (-583 |#1|) (-830))))) (-756)) (T -614))
-((-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4))) (-5 *1 (-614 *4)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-2319 (*1 *1 *2) (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5))) (-5 *1 (-614 *5)))))
-((-3401 ((|#2| $) 100 T ELT)) (-3796 (($ $) 121 T ELT)) (-3441 (((-85) $ (-694)) 35 T ELT)) (-3798 (($ $) 109 T ELT) (($ $ (-694)) 112 T ELT)) (-3442 (((-85) $) 122 T ELT)) (-3031 (((-583 $) $) 96 T ELT)) (-3027 (((-85) $ $) 92 T ELT)) (-3718 (((-85) $ (-694)) 33 T ELT)) (-2200 (((-484) $) 66 T ELT)) (-2201 (((-484) $) 65 T ELT)) (-3715 (((-85) $ (-694)) 31 T ELT)) (-3526 (((-85) $) 98 T ELT)) (-3797 ((|#2| $) 113 T ELT) (($ $ (-694)) 117 T ELT)) (-2304 (($ $ $ (-484)) 83 T ELT) (($ |#2| $ (-484)) 82 T ELT)) (-2203 (((-583 (-484)) $) 64 T ELT)) (-2204 (((-85) (-484) $) 59 T ELT)) (-3800 ((|#2| $) NIL T ELT) (($ $ (-694)) 108 T ELT)) (-3768 (($ $ (-484)) 125 T ELT)) (-3443 (((-85) $) 124 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2205 (((-583 |#2|) $) 46 T ELT)) (-3799 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1145 (-484))) 79 T ELT) ((|#2| $ (-484)) 57 T ELT) ((|#2| $ (-484) |#2|) 58 T ELT)) (-3029 (((-484) $ $) 91 T ELT)) (-2305 (($ $ (-1145 (-484))) 78 T ELT) (($ $ (-484)) 72 T ELT)) (-3632 (((-85) $) 87 T ELT)) (-3791 (($ $) 105 T ELT)) (-3792 (((-694) $) 104 T ELT)) (-3793 (($ $) 103 T ELT)) (-3529 (($ (-583 |#2|)) 53 T ELT)) (-2891 (($ $) 126 T ELT)) (-3521 (((-583 $) $) 90 T ELT)) (-3028 (((-85) $ $) 89 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3056 (((-85) $ $) 20 T ELT)) (-3956 (((-694) $) 39 T ELT)))
-(((-615 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -2891 (|#1| |#1|)) (-15 -3768 (|#1| |#1| (-484))) (-15 -3441 ((-85) |#1| (-694))) (-15 -3718 ((-85) |#1| (-694))) (-15 -3715 ((-85) |#1| (-694))) (-15 -3442 ((-85) |#1|)) (-15 -3443 ((-85) |#1|)) (-15 -3799 (|#2| |#1| (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484))) (-15 -2205 ((-583 |#2|) |#1|)) (-15 -2204 ((-85) (-484) |#1|)) (-15 -2203 ((-583 (-484)) |#1|)) (-15 -2201 ((-484) |#1|)) (-15 -2200 ((-484) |#1|)) (-15 -3529 (|#1| (-583 |#2|))) (-15 -3799 (|#1| |#1| (-1145 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1145 (-484)))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -3791 (|#1| |#1|)) (-15 -3792 ((-694) |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3797 (|#1| |#1| (-694))) (-15 -3799 (|#2| |#1| "last")) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#1| |#1| (-694))) (-15 -3799 (|#1| |#1| "rest")) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1| (-694))) (-15 -3799 (|#2| |#1| "first")) (-15 -3800 (|#2| |#1|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3029 ((-484) |#1| |#1|)) (-15 -3632 ((-85) |#1|)) (-15 -3799 (|#2| |#1| "value")) (-15 -3401 (|#2| |#1|)) (-15 -3526 ((-85) |#1|)) (-15 -3031 ((-583 |#1|) |#1|)) (-15 -3521 ((-583 |#1|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3956 ((-694) |#1|))) (-616 |#2|) (-1128)) (T -615))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3794 ((|#1| $) 71 T ELT)) (-3796 (($ $) 73 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 58 (|has| $ (-6 -3995)) ELT)) (-3441 (((-85) $ (-694)) 90 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 62 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) 60 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3795 ((|#1| $) 72 T ELT)) (-3723 (($) 7 T CONST)) (-2323 (($ $) 135 T ELT)) (-3798 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1352 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1575 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 97 T ELT)) (-3442 (((-85) $) 93 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2322 (((-694) $) 134 T ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) 119 T ELT)) (-3718 (((-85) $ (-694)) 91 T ELT)) (-2200 (((-484) $) 105 (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 104 (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3715 (((-85) $ (-694)) 92 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-2325 (($ $) 137 T ELT)) (-2326 (((-85) $) 138 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2304 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2203 (((-583 (-484)) $) 102 T ELT)) (-2204 (((-85) (-484) $) 101 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2324 ((|#1| $) 136 T ELT)) (-3800 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2199 (($ $ |#1|) 106 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-484)) 133 T ELT)) (-3443 (((-85) $) 94 T ELT)) (-2327 (((-85) $) 139 T ELT)) (-2328 (((-85) $) 140 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 100 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-2305 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-3791 (($ $) 68 T ELT)) (-3789 (($ $) 65 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 69 T ELT)) (-3793 (($ $) 70 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 108 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 117 T ELT)) (-3790 (($ $ $) 67 (|has| $ (-6 -3995)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3995)) ELT)) (-3801 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2891 (($ $) 132 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-616 |#1|) (-113) (-1128)) (T -616))
-((-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1128)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1128)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))) (-2323 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-616 *3)) (-4 *3 (-1128)))) (-2891 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))))
-(-13 (-1063 |t#1|) (-10 -8 (-15 -3405 ($ (-1 (-85) |t#1|) $)) (-15 -3709 ($ (-1 (-85) |t#1|) $)) (-15 -2328 ((-85) $)) (-15 -2327 ((-85) $)) (-15 -2326 ((-85) $)) (-15 -2325 ($ $)) (-15 -2324 (|t#1| $)) (-15 -2323 ($ $)) (-15 -2322 ((-694) $)) (-15 -3768 ($ $ (-484))) (-15 -2891 ($ $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1063 |#1|) . T) ((-1128) . T) ((-1167 |#1|) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3178 (((-422) $) 15 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 17 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-617) (-13 (-995) (-10 -8 (-15 -3178 ((-422) $)) (-15 -3233 ((-1048) $))))) (T -617))
-((-3178 (*1 *2 *1) (-12 (-5 *2 (-422)) (-5 *1 (-617)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-617)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) 15 T ELT)) (-3137 (($ $) 19 T ELT)) (-2664 (((-85) $) 20 T ELT)) (-3157 (((-3 |#1| "failed") $) 23 T ELT)) (-3156 ((|#1| $) 21 T ELT)) (-3798 (($ $) 37 T ELT)) (-3935 (($ $) 25 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2511 (((-85) $ $) 46 T ELT)) (-3832 (((-830) $) 40 T ELT)) (-3138 (($ $) 18 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $) 36 T ELT)) (-3945 (((-772) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-739 |#1|) $) 28 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 13 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT)))
-(((-618 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3945 ((-739 |#1|) $)) (-15 -3800 (|#1| $)) (-15 -3138 ($ $)) (-15 -3832 ((-830) $)) (-15 -2511 ((-85) $ $)) (-15 -3935 ($ $)) (-15 -3798 ($ $)) (-15 -2664 ((-85) $)) (-15 -3137 ($ $)) (-15 -3933 ((-583 |#1|) $)))) (-756)) (T -618))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3800 (*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))))
-((-2337 ((|#1| (-1 |#1| (-694) |#1|) (-694) |#1|) 11 T ELT)) (-2329 ((|#1| (-1 |#1| |#1|) (-694) |#1|) 9 T ELT)))
-(((-619 |#1|) (-10 -7 (-15 -2329 (|#1| (-1 |#1| |#1|) (-694) |#1|)) (-15 -2337 (|#1| (-1 |#1| (-694) |#1|) (-694) |#1|))) (-1013)) (T -619))
-((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2)))) (-2329 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2)))))
-((-2331 ((|#2| |#1| |#2|) 9 T ELT)) (-2330 ((|#1| |#1| |#2|) 8 T ELT)))
-(((-620 |#1| |#2|) (-10 -7 (-15 -2330 (|#1| |#1| |#2|)) (-15 -2331 (|#2| |#1| |#2|))) (-1013) (-1013)) (T -620))
-((-2331 (*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-((-2332 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT)))
-(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2332 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1013) (-1013) (-1013)) (T -621))
-((-2332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-621 *5 *6 *2)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1129) $) 22 T ELT)) (-3317 (((-583 (-1129)) $) 20 T ELT)) (-2333 (($ (-583 (-1129)) (-1129)) 15 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 30 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (((-1129) $) 23 T ELT) (($ (-1028)) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-622) (-13 (-995) (-552 (-1129)) (-10 -8 (-15 -3945 ($ (-1028))) (-15 -2333 ($ (-583 (-1129)) (-1129))) (-15 -3317 ((-583 (-1129)) $)) (-15 -3318 ((-1129) $))))) (T -622))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-622)))) (-2333 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1129))) (-5 *3 (-1129)) (-5 *1 (-622)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-622)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-622)))))
-((-2337 (((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)) 26 T ELT)) (-2334 (((-1 |#1|) |#1|) 8 T ELT)) (-2336 ((|#1| |#1|) 19 T ELT)) (-2335 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-484)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3945 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-694)) 23 T ELT)))
-(((-623 |#1|) (-10 -7 (-15 -2334 ((-1 |#1|) |#1|)) (-15 -3945 ((-1 |#1|) |#1|)) (-15 -2335 (|#1| (-1 |#1| |#1|))) (-15 -2335 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-484))) (-15 -2336 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-694))) (-15 -2337 ((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)))) (-1013)) (T -623))
-((-2337 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1013)) (-5 *1 (-623 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1013)) (-5 *1 (-623 *4)))) (-2336 (*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1013)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-484)) (-5 *2 (-583 *5)) (-5 *1 (-623 *5)) (-4 *5 (-1013)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1013)))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))) (-2334 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))))
-((-2340 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2339 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3951 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2338 (((-1 |#2| |#1|) |#2|) 11 T ELT)))
-(((-624 |#1| |#2|) (-10 -7 (-15 -2338 ((-1 |#2| |#1|) |#2|)) (-15 -2339 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3951 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2340 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1013) (-1013)) (T -624))
-((-2340 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)) (-4 *4 (-1013)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) (-5 *1 (-624 *4 *5)))) (-2338 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1013)))))
-((-2345 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2341 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2342 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2343 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2344 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT)))
-(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -2341 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2342 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2343 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2345 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1013) (-1013) (-1013)) (T -625))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1013)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1013)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6)))))
-((-3837 (($ (-694) (-694)) 42 T ELT)) (-2350 (($ $ $) 73 T ELT)) (-3413 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3120 (((-85) $) 36 T ELT)) (-2349 (($ $ (-484) (-484)) 84 T ELT)) (-2348 (($ $ (-484) (-484)) 85 T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) 90 T ELT)) (-2352 (($ $) 71 T ELT)) (-3122 (((-85) $) 15 T ELT)) (-2346 (($ $ (-484) (-484) $) 91 T ELT)) (-3787 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) 89 T ELT)) (-3332 (($ (-694) |#2|) 55 T ELT)) (-3123 (($ (-583 (-583 |#2|))) 51 T ELT) (($ (-694) (-694) (-1 |#2| (-484) (-484))) 53 T ELT)) (-3593 (((-583 (-583 |#2|)) $) 80 T ELT)) (-2351 (($ $ $) 72 T ELT)) (-3465 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3799 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) 88 T ELT)) (-3331 (($ (-583 |#2|)) 56 T ELT) (($ (-583 $)) 58 T ELT)) (-3121 (((-85) $) 28 T ELT)) (-3945 (($ |#4|) 63 T ELT) (((-772) $) NIL T ELT)) (-3119 (((-85) $) 38 T ELT)) (-3948 (($ $ |#2|) 124 T ELT)) (-3836 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3838 (($ $ $) 93 T ELT)) (** (($ $ (-694)) 111 T ELT) (($ $ (-484)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-484) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
-(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3945 ((-772) |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3948 (|#1| |#1| |#2|)) (-15 -3465 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -2346 (|#1| |#1| (-484) (-484) |#1|)) (-15 -2347 (|#1| |#1| (-484) (-484) (-484) (-484))) (-15 -2348 (|#1| |#1| (-484) (-484))) (-15 -2349 (|#1| |#1| (-484) (-484))) (-15 -3787 (|#1| |#1| (-583 (-484)) (-583 (-484)) |#1|)) (-15 -3799 (|#1| |#1| (-583 (-484)) (-583 (-484)))) (-15 -3593 ((-583 (-583 |#2|)) |#1|)) (-15 -2350 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -3413 (|#1| |#1|)) (-15 -3413 (|#1| |#3|)) (-15 -3945 (|#1| |#4|)) (-15 -3331 (|#1| (-583 |#1|))) (-15 -3331 (|#1| (-583 |#2|))) (-15 -3332 (|#1| (-694) |#2|)) (-15 -3123 (|#1| (-694) (-694) (-1 |#2| (-484) (-484)))) (-15 -3123 (|#1| (-583 (-583 |#2|)))) (-15 -3837 (|#1| (-694) (-694))) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3787 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484) (-484)))) (-627 |#2| |#3| |#4|) (-961) (-323 |#2|) (-323 |#2|)) (T -626))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3837 (($ (-694) (-694)) 103 T ELT)) (-2350 (($ $ $) 92 T ELT)) (-3413 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3120 (((-85) $) 105 T ELT)) (-2349 (($ $ (-484) (-484)) 88 T ELT)) (-2348 (($ $ (-484) (-484)) 87 T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) 86 T ELT)) (-2352 (($ $) 94 T ELT)) (-3122 (((-85) $) 107 T ELT)) (-2346 (($ $ (-484) (-484) $) 85 T ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) 48 T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) 89 T ELT)) (-1256 (($ $ (-484) |#2|) 46 T ELT)) (-1255 (($ $ (-484) |#3|) 45 T ELT)) (-3332 (($ (-694) |#1|) 100 T ELT)) (-3723 (($) 7 T CONST)) (-3109 (($ $) 72 (|has| |#1| (-258)) ELT)) (-3111 ((|#2| $ (-484)) 50 T ELT)) (-3108 (((-694) $) 71 (|has| |#1| (-495)) ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3112 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3107 (((-694) $) 70 (|has| |#1| (-495)) ELT)) (-3106 (((-583 |#3|) $) 69 (|has| |#1| (-495)) ELT)) (-3114 (((-694) $) 55 T ELT)) (-3613 (($ (-694) (-694) |#1|) 61 T ELT)) (-3113 (((-694) $) 54 T ELT)) (-3326 ((|#1| $) 67 (|has| |#1| (-6 (-3996 #1="*"))) ELT)) (-3118 (((-484) $) 59 T ELT)) (-3116 (((-484) $) 57 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-3117 (((-484) $) 58 T ELT)) (-3115 (((-484) $) 56 T ELT)) (-3123 (($ (-583 (-583 |#1|))) 102 T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) 101 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3593 (((-583 (-583 |#1|)) $) 91 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3589 (((-3 $ "failed") $) 66 (|has| |#1| (-312)) ELT)) (-2351 (($ $ $) 93 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 60 T ELT)) (-3465 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT) (($ $ (-583 (-484)) (-583 (-484))) 90 T ELT)) (-3331 (($ (-583 |#1|)) 99 T ELT) (($ (-583 $)) 98 T ELT)) (-3121 (((-85) $) 106 T ELT)) (-3327 ((|#1| $) 68 (|has| |#1| (-6 (-3996 #1#))) ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT)) (-3399 (($ $) 10 T ELT)) (-3110 ((|#3| $ (-484)) 49 T ELT)) (-3945 (($ |#3|) 97 T ELT) (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3119 (((-85) $) 104 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3948 (($ $ |#1|) 73 (|has| |#1| (-312)) ELT)) (-3836 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3838 (($ $ $) 84 T ELT)) (** (($ $ (-694)) 75 T ELT) (($ $ (-484)) 65 (|has| |#1| (-312)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-484) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-627 |#1| |#2| |#3|) (-113) (-961) (-323 |t#1|) (-323 |t#1|)) (T -627))
-((-3122 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-85)))) (-3837 (*1 *1 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3123 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-961)) (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))) (-3332 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3945 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-323 *3)) (-4 *2 (-323 *3)))) (-3413 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-323 *3)) (-4 *4 (-323 *3)))) (-3413 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-2352 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-2350 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-583 (-583 *3))))) (-3799 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3787 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2349 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2348 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2347 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2346 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *2 (-323 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-323 *3)) (-4 *4 (-323 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-495)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-312)))) (-3109 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-258)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-583 *5)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (|has| *2 (-6 (-3996 #1="*"))) (-4 *2 (-961)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (|has| *2 (-6 (-3996 #1#))) (-4 *2 (-961)))) (-3589 (*1 *1 *1) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-312)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3837 ($ (-694) (-694))) (-15 -3123 ($ (-583 (-583 |t#1|)))) (-15 -3123 ($ (-694) (-694) (-1 |t#1| (-484) (-484)))) (-15 -3332 ($ (-694) |t#1|)) (-15 -3331 ($ (-583 |t#1|))) (-15 -3331 ($ (-583 $))) (-15 -3945 ($ |t#3|)) (-15 -3413 ($ |t#2|)) (-15 -3413 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $ $)) (-15 -2350 ($ $ $)) (-15 -3593 ((-583 (-583 |t#1|)) $)) (-15 -3799 ($ $ (-583 (-484)) (-583 (-484)))) (-15 -3787 ($ $ (-583 (-484)) (-583 (-484)) $)) (-15 -2349 ($ $ (-484) (-484))) (-15 -2348 ($ $ (-484) (-484))) (-15 -2347 ($ $ (-484) (-484) (-484) (-484))) (-15 -2346 ($ $ (-484) (-484) $)) (-15 -3838 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -3836 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-484) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-694))) (IF (|has| |t#1| (-495)) (-15 -3465 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3948 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3109 ($ $)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3108 ((-694) $)) (-15 -3107 ((-694) $)) (-15 -3106 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3996 "*"))) (PROGN (-15 -3327 (|t#1| $)) (-15 -3326 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3589 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-57 |#1| |#2| |#3|) . T) ((-1128) . T))
-((-3841 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3957 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT)))
-(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3957 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3841 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|) (-961) (-323 |#5|) (-323 |#5|) (-627 |#5| |#6| |#7|)) (T -628))
-((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *8 (-323 *2)) (-4 *9 (-323 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-323 *8)) (-4 *10 (-323 *8)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-323 *8)) (-4 *10 (-323 *8)))))
-((-3109 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3108 (((-694) |#4|) 92 (|has| |#1| (-495)) ELT)) (-3107 (((-694) |#4|) 94 (|has| |#1| (-495)) ELT)) (-3106 (((-583 |#3|) |#4|) 101 (|has| |#1| (-495)) ELT)) (-2380 (((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3326 ((|#1| |#4|) 52 T ELT)) (-2357 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-495)) ELT)) (-3589 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2356 ((|#4| |#4|) 76 (|has| |#1| (-495)) ELT)) (-2354 ((|#4| |#4| |#1| (-484) (-484)) 60 T ELT)) (-2353 ((|#4| |#4| (-484) (-484)) 55 T ELT)) (-2355 ((|#4| |#4| |#1| (-484) (-484)) 65 T ELT)) (-3327 ((|#1| |#4|) 96 T ELT)) (-2520 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-495)) ELT)))
-(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3327 (|#1| |#4|)) (-15 -3326 (|#1| |#4|)) (-15 -2353 (|#4| |#4| (-484) (-484))) (-15 -2354 (|#4| |#4| |#1| (-484) (-484))) (-15 -2355 (|#4| |#4| |#1| (-484) (-484))) (IF (|has| |#1| (-495)) (PROGN (-15 -3108 ((-694) |#4|)) (-15 -3107 ((-694) |#4|)) (-15 -3106 ((-583 |#3|) |#4|)) (-15 -2356 (|#4| |#4|)) (-15 -2357 ((-3 |#4| #1="failed") |#4|)) (-15 -2520 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3109 (|#4| |#4|)) (-15 -2380 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3589 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|)) (T -629))
-((-3589 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2380 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-629 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2520 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2357 (*1 *2 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2355 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2354 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2353 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3837 (($ (-694) (-694)) 63 T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3413 (($ (-1178 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2349 (($ $ (-484) (-484)) 21 T ELT)) (-2348 (($ $ (-484) (-484)) NIL T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2352 (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2346 (($ $ (-484) (-484) $) NIL T ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) NIL T ELT)) (-1256 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-1255 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-3332 (($ (-694) |#1|) 37 T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3111 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3108 (((-694) $) 48 (|has| |#1| (-495)) ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) 68 T ELT)) (-3112 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3107 (((-694) $) 50 (|has| |#1| (-495)) ELT)) (-3106 (((-583 (-1178 |#1|)) $) 53 (|has| |#1| (-495)) ELT)) (-3114 (((-694) $) 31 T ELT)) (-3613 (($ (-694) (-694) |#1|) 27 T ELT)) (-3113 (((-694) $) 32 T ELT)) (-3326 ((|#1| $) 44 (|has| |#1| (-6 (-3996 #1="*"))) ELT)) (-3118 (((-484) $) 9 T ELT)) (-3116 (((-484) $) 10 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-3117 (((-484) $) 13 T ELT)) (-3115 (((-484) $) 64 T ELT)) (-3123 (($ (-583 (-583 |#1|))) NIL T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3593 (((-583 (-583 |#1|)) $) 75 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3589 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2351 (($ $ $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-3465 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) NIL T ELT)) (-3331 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-1178 |#1|)) 69 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3327 ((|#1| $) 42 (|has| |#1| (-6 (-3996 #1#))) ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) 79 (|has| |#1| (-553 (-473))) ELT)) (-3110 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3945 (($ (-1178 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) 38 T ELT) (($ $ (-484)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1178 |#1|) $ (-1178 |#1|)) NIL T ELT) (((-1178 |#1|) (-1178 |#1|) $) NIL T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-630 |#1|) (-13 (-627 |#1| (-1178 |#1|) (-1178 |#1|)) (-10 -8 (-15 -3331 ($ (-1178 |#1|))) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3589 ((-3 $ "failed") $)) |%noBranch|))) (-961)) (T -630))
-((-3589 (*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-312)) (-4 *2 (-961)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3)))))
-((-2363 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 37 T ELT)) (-2362 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 32 T ELT)) (-2364 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694)) 43 T ELT)) (-2359 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 25 T ELT)) (-2360 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 29 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 27 T ELT)) (-2361 (((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|)) 31 T ELT)) (-2358 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 23 T ELT)) (** (((-630 |#1|) (-630 |#1|) (-694)) 46 T ELT)))
-(((-631 |#1|) (-10 -7 (-15 -2358 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2359 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2361 ((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|))) (-15 -2362 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -2363 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2364 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694))) (-15 ** ((-630 |#1|) (-630 |#1|) (-694)))) (-961)) (T -631))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2364 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2363 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2362 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2361 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2360 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2359 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2358 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-((-3157 (((-3 |#1| "failed") $) 18 T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2365 (($) 7 T CONST)) (-2366 (($ |#1|) 8 T ELT)) (-3945 (($ |#1|) 16 T ELT) (((-772) $) 23 T ELT)) (-3565 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2365)) 11 T ELT)) (-3571 ((|#1| $) 15 T ELT)))
-(((-632 |#1|) (-13 (-1174) (-950 |#1|) (-552 (-772)) (-10 -8 (-15 -2366 ($ |#1|)) (-15 -3565 ((-85) $ (|[\|\|]| |#1|))) (-15 -3565 ((-85) $ (|[\|\|]| -2365))) (-15 -3571 (|#1| $)) (-15 -2365 ($) -3951))) (-552 (-772))) (T -632))
-((-2366 (*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85)) (-5 *1 (-632 *4)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2365)) (-5 *2 (-85)) (-5 *1 (-632 *4)) (-4 *4 (-552 (-772))))) (-3571 (*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-2365 (*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))))
-((-3740 (((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)) 20 T ELT)) (-3738 ((|#1| (-630 |#2|)) 9 T ELT)) (-3739 (((-630 |#1|) (-630 |#2|)) 18 T ELT)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -3738 (|#1| (-630 |#2|))) (-15 -3739 ((-630 |#1|) (-630 |#2|))) (-15 -3740 ((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)))) (-495) (-904 |#1|)) (T -633))
-((-3740 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-630 *4)) (-5 *1 (-633 *4 *5)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-633 *2 *4)))))
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2368 (($ $) 66 T ELT)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 65 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-634 |#1|) (-113) (-1013)) (T -634))
-((-3608 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1013)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1013)))) (-2367 (*1 *2 *1) (-12 (-4 *1 (-634 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1945 (-694))))))))
-(-13 (-193 |t#1|) (-10 -8 (-15 -3608 ($ |t#1| $ (-694))) (-15 -2368 ($ $)) (-15 -2367 ((-583 (-2 (|:| |entry| |t#1|) (|:| -1945 (-694)))) $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2371 (((-583 |#1|) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))) (-484)) 66 T ELT)) (-2369 ((|#1| |#1| (-484)) 63 T ELT)) (-3144 ((|#1| |#1| |#1| (-484)) 46 T ELT)) (-3731 (((-583 |#1|) |#1| (-484)) 49 T ELT)) (-2372 ((|#1| |#1| (-484) |#1| (-484)) 40 T ELT)) (-2370 (((-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))) |#1| (-484)) 62 T ELT)))
-(((-635 |#1|) (-10 -7 (-15 -3144 (|#1| |#1| |#1| (-484))) (-15 -2369 (|#1| |#1| (-484))) (-15 -3731 ((-583 |#1|) |#1| (-484))) (-15 -2370 ((-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))) |#1| (-484))) (-15 -2371 ((-583 |#1|) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))) (-484))) (-15 -2372 (|#1| |#1| (-484) |#1| (-484)))) (-1154 (-484))) (T -635))
-((-2372 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3731 *5) (|:| -3947 (-484))))) (-5 *4 (-484)) (-4 *5 (-1154 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-583 (-2 (|:| -3731 *3) (|:| -3947 *4)))) (-5 *1 (-635 *3)) (-4 *3 (-1154 *4)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1154 *4)))) (-2369 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3)))) (-3144 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3)))))
-((-2376 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2373 (((-1046 (-179)) (-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 53 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 55 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 57 T ELT)) (-2375 (((-1046 (-179)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-583 (-221))) NIL T ELT)) (-2374 (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 58 T ELT)))
-(((-636) (-10 -7 (-15 -2373 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2373 ((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2373 ((-1046 (-179)) (-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2374 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2375 ((-1046 (-179)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2376 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -636))
-((-2376 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636)))) (-2375 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636)))) (-2374 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636)))) (-2373 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636)))) (-2373 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636)))) (-2373 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636)))))
-((-3731 (((-347 (-1084 |#4|)) (-1084 |#4|)) 87 T ELT) (((-347 |#4|) |#4|) 270 T ELT)))
-(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4|)) (-15 -3731 ((-347 (-1084 |#4|)) (-1084 |#4|)))) (-756) (-717) (-299) (-861 |#3| |#2| |#1|)) (T -637))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
-((-2379 (((-630 |#1|) (-630 |#1|) |#1| |#1|) 85 T ELT)) (-3109 (((-630 |#1|) (-630 |#1|) |#1|) 66 T ELT)) (-2378 (((-630 |#1|) (-630 |#1|) |#1|) 86 T ELT)) (-2377 (((-630 |#1|) (-630 |#1|)) 67 T ELT)) (-2380 (((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|) 84 T ELT)))
-(((-638 |#1|) (-10 -7 (-15 -2377 ((-630 |#1|) (-630 |#1|))) (-15 -3109 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2378 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2379 ((-630 |#1|) (-630 |#1|) |#1| |#1|)) (-15 -2380 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|))) (-258)) (T -638))
-((-2380 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-638 *3)) (-4 *3 (-258)))) (-2379 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-2378 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-3109 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-2377 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))))
-((-2386 (((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)) 19 T ELT)) (-2381 (((-1 |#4| |#2| |#3|) (-1089)) 12 T ELT)))
-(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2381 ((-1 |#4| |#2| |#3|) (-1089))) (-15 -2386 ((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)))) (-553 (-473)) (-1128) (-1128) (-1128)) (T -639))
-((-2386 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) (-4 *3 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) (-4 *4 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))))
-((-2382 (((-1 (-179) (-179) (-179)) |#1| (-1089) (-1089)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1089)) 48 T ELT)))
-(((-640 |#1|) (-10 -7 (-15 -2382 ((-1 (-179) (-179)) |#1| (-1089))) (-15 -2382 ((-1 (-179) (-179) (-179)) |#1| (-1089) (-1089)))) (-553 (-473))) (T -640))
-((-2382 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-473))))) (-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-473))))))
-((-2383 (((-1089) |#1| (-1089) (-583 (-1089))) 10 T ELT) (((-1089) |#1| (-1089) (-1089) (-1089)) 13 T ELT) (((-1089) |#1| (-1089) (-1089)) 12 T ELT) (((-1089) |#1| (-1089)) 11 T ELT)))
-(((-641 |#1|) (-10 -7 (-15 -2383 ((-1089) |#1| (-1089))) (-15 -2383 ((-1089) |#1| (-1089) (-1089))) (-15 -2383 ((-1089) |#1| (-1089) (-1089) (-1089))) (-15 -2383 ((-1089) |#1| (-1089) (-583 (-1089))))) (-553 (-473))) (T -641))
-((-2383 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1089))) (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))))
-((-2384 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
-(((-642 |#1| |#2|) (-10 -7 (-15 -2384 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1128) (-1128)) (T -642))
-((-2384 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) (-4 *3 (-1128)) (-4 *4 (-1128)))))
-((-2385 (((-1 |#3| |#2|) (-1089)) 11 T ELT)) (-2386 (((-1 |#3| |#2|) |#1| (-1089)) 21 T ELT)))
-(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -2385 ((-1 |#3| |#2|) (-1089))) (-15 -2386 ((-1 |#3| |#2|) |#1| (-1089)))) (-553 (-473)) (-1128) (-1128)) (T -643))
-((-2386 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) (-4 *3 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) (-4 *4 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
-((-2389 (((-3 (-583 (-1084 |#4|)) #1="failed") (-1084 |#4|) (-583 |#2|) (-583 (-1084 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1178 (-583 (-1084 |#3|))) |#3|) 92 T ELT)) (-2388 (((-3 (-583 (-1084 |#4|)) #1#) (-1084 |#4|) (-583 |#2|) (-583 (-1084 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|) 110 T ELT)) (-2387 (((-3 (-583 (-1084 |#4|)) #1#) (-1084 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1084 |#4|)) (-1178 (-583 (-1084 |#3|))) |#3|) 48 T ELT)))
-(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2387 ((-3 (-583 (-1084 |#4|)) #1="failed") (-1084 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1084 |#4|)) (-1178 (-583 (-1084 |#3|))) |#3|)) (-15 -2388 ((-3 (-583 (-1084 |#4|)) #1#) (-1084 |#4|) (-583 |#2|) (-583 (-1084 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|)) (-15 -2389 ((-3 (-583 (-1084 |#4|)) #1#) (-1084 |#4|) (-583 |#2|) (-583 (-1084 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1178 (-583 (-1084 |#3|))) |#3|))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -644))
-((-2389 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1084 *13))) (-5 *3 (-1084 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-694))) (-5 *9 (-1178 (-583 (-1084 *10)))) (-4 *12 (-756)) (-4 *10 (-258)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717)) (-5 *1 (-644 *11 *12 *10 *13)))) (-2388 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1084 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-258)) (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1084 *12))) (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1084 *12)))) (-2387 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1084 *11))) (-5 *3 (-1084 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694))) (-5 *7 (-1178 (-583 (-1084 *8)))) (-4 *10 (-756)) (-4 *8 (-258)) (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 56 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2893 (($ |#1| (-694)) 54 T ELT)) (-2820 (((-694) $) 58 T ELT)) (-3174 ((|#1| $) 57 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3947 (((-694) $) 59 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ (-694)) 55 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT)))
-(((-645 |#1|) (-113) (-961)) (T -645))
-((-3947 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3947 ((-694) $)) (-15 -2820 ((-694) $)) (-15 -3174 (|t#1| $)) (-15 -3958 ($ $)) (-15 -3676 (|t#1| $ (-694))) (-15 -2893 ($ |t#1| (-694)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3957 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT)))
-(((-646 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3957 (|#6| (-1 |#4| |#1|) |#3|))) (-495) (-1154 |#1|) (-1154 (-349 |#2|)) (-495) (-1154 |#4|) (-1154 (-349 |#5|))) (T -646))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1154 *5)) (-4 *2 (-1154 (-349 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1154 (-349 *6))) (-4 *8 (-1154 *7)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2390 (((-1072) (-772)) 36 T ELT)) (-3616 (((-1184) (-1072)) 29 T ELT)) (-2392 (((-1072) (-772)) 26 T ELT)) (-2391 (((-1072) (-772)) 27 T ELT)) (-3945 (((-772) $) NIL T ELT) (((-1072) (-772)) 25 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-647) (-13 (-1013) (-10 -7 (-15 -3945 ((-1072) (-772))) (-15 -2392 ((-1072) (-772))) (-15 -2391 ((-1072) (-772))) (-15 -2390 ((-1072) (-772))) (-15 -3616 ((-1184) (-1072)))))) (T -647))
-((-3945 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-647)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-3841 (($ |#1| |#2|) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 ((|#2| $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT)))
-(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2614 (|#2| $)) (-15 -3945 (|#1| $)) (-15 -3841 ($ |#1| |#2|)) (-15 -2402 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -648))
-((-2614 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3945 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 37 T ELT)) (-3766 (((-1178 |#1|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3764 (($ (-1084 |#1|)) NIL T ELT)) (-3083 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3136 (((-694)) 55 (|has| |#1| (-319)) ELT)) (-3760 (($ $ (-694)) NIL T ELT)) (-3759 (($ $ (-694)) NIL T ELT)) (-2399 ((|#2| |#2|) 51 T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-391)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3755 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) 72 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3841 (($ |#2|) 49 T ELT)) (-3466 (((-3 $ #1#) $) 98 T ELT)) (-2994 (($) 59 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ $) NIL T ELT)) (-3752 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-2395 (((-869 $)) 89 T ELT)) (-1623 (($ $ |#1| (-694) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-994) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3084 (($ (-1084 |#1|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3776 (($ $ (-694)) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 86 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2614 ((|#2|) 52 T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1624 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3765 (((-1084 |#1|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-3079 ((|#2| $) 48 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) 35 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (|has| |#1| (-1065)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2393 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-349 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#1| (-495)) ELT)) (-3763 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3947 (((-694) $) 39 T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-2394 (((-869 $)) 43 T ELT)) (-3753 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) 69 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-994)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) 71 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 26 T CONST)) (-2398 (((-1178 |#1|) $) 84 T ELT)) (-2397 (($ (-1178 |#1|)) 58 T ELT)) (-2666 (($) 9 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-2396 (((-1178 |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 77 T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 40 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 93 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-649 |#1| |#2|) (-13 (-1154 |#1|) (-555 |#2|) (-10 -8 (-15 -2399 (|#2| |#2|)) (-15 -2614 (|#2|)) (-15 -3841 ($ |#2|)) (-15 -3079 (|#2| $)) (-15 -2398 ((-1178 |#1|) $)) (-15 -2397 ($ (-1178 |#1|))) (-15 -2396 ((-1178 |#1|) $)) (-15 -2395 ((-869 $))) (-15 -2394 ((-869 $))) (IF (|has| |#1| (-299)) (-15 -2393 ($ $)) |%noBranch|) (IF (|has| |#1| (-319)) (-6 (-319)) |%noBranch|))) (-961) (-1154 |#1|)) (T -649))
-((-2399 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1154 *3)))) (-2614 (*1 *2) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-3841 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1154 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-2398 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1178 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2396 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1178 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2395 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2394 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2393 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1154 *2)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2401 ((|#2| $) 12 T ELT)) (-3529 (($ |#1| |#2|) 16 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) 15 T ELT) (((-2 (|:| -2400 |#1|) (|:| -2401 |#2|)) $) 14 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 11 T ELT)))
-(((-650 |#1| |#2| |#3|) (-13 (-756) (-429 (-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) (-10 -8 (-15 -2401 (|#2| $)) (-15 -2400 (|#1| $)) (-15 -3529 ($ |#1| |#2|)))) (-756) (-1013) (-1 (-85) (-2 (|:| -2400 |#1|) (|:| -2401 |#2|)) (-2 (|:| -2400 |#1|) (|:| -2401 |#2|)))) (T -650))
-((-2401 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *2)) (-2 (|:| -2400 *3) (|:| -2401 *2)))))) (-2400 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) (-2 (|:| -2400 *2) (|:| -2401 *3)))))) (-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) (-2 (|:| -2400 *2) (|:| -2401 *3)))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 66 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3466 (((-3 $ #1#) $) 102 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2516 ((|#2| (-86) |#2|) 93 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2515 (($ |#1| (-310 (-86))) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2517 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2518 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3799 ((|#2| $ |#2|) 33 T ELT)) (-2519 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3945 (((-772) $) 73 T ELT) (($ (-484)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 37 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 9 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 83 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) 64 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT)))
-(((-651 |#1| |#2|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2520 ($ $)) (-15 -2520 ($ $ $)) (-15 -2519 (|#1| |#1|))) |%noBranch|) (-15 -2518 ($ $ (-1 |#2| |#2|))) (-15 -2517 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2516 (|#2| (-86) |#2|)) (-15 -2515 ($ |#1| (-310 (-86)))))) (-961) (-590 |#1|)) (T -651))
-((-2520 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2519 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5)) (-4 *5 (-590 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3)))) (-2516 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4)))) (-2515 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4)) (-4 *4 (-590 *2)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 33 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3841 (($ |#1| |#2|) 25 T ELT)) (-3466 (((-3 $ #1#) $) 51 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 35 T ELT)) (-2614 ((|#2| $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 52 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) 50 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-484)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3126 (((-694)) 28 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 16 T CONST)) (-2666 (($) 30 T CONST)) (-3056 (((-85) $ $) 41 T ELT)) (-3836 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3838 (($ $ $) 43 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 21 T ELT) (($ $ $) 20 T ELT)))
-(((-652 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -2614 (|#2| $)) (-15 -3945 (|#1| $)) (-15 -3841 ($ |#1| |#2|)) (-15 -2402 ((-3 $ #1="failed") $ $)) (-15 -3466 ((-3 $ #1#) $)) (-15 -2484 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -652))
-((-3466 (*1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2614 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3945 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2484 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-((* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT)))
-(((-653 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-654 |#2|) (-146)) (T -653))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-654 |#1|) (-113) (-146)) (T -654))
-NIL
-(-13 (-82 |t#1| |t#1|) (-582 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-2441 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3846 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2403 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3767 ((|#1| $ |#1|) 24 T ELT) (((-743 |#1|) $ (-743 |#1|)) 32 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 39 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 9 T CONST)) (-3056 (((-85) $ $) 48 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 14 T ELT)))
-(((-655 |#1|) (-13 (-412) (-10 -8 (-15 -2403 ($ |#1| |#1| |#1| |#1|)) (-15 -2441 ($ |#1|)) (-15 -3846 ($ |#1|)) (-15 -3466 ($)) (-15 -2441 ($ $ |#1|)) (-15 -3846 ($ $ |#1|)) (-15 -3466 ($ $)) (-15 -3767 (|#1| $ |#1|)) (-15 -3767 ((-743 |#1|) $ (-743 |#1|))))) (-312)) (T -655))
-((-2403 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-2441 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3846 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3466 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3846 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3466 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3767 (*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3767 (*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-312)) (-5 *1 (-655 *3)))))
-((-2407 (($ $ (-830)) 19 T ELT)) (-2406 (($ $ (-830)) 20 T ELT)) (** (($ $ (-830)) 10 T ELT)))
-(((-656 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830))) (-15 -2406 (|#1| |#1| (-830))) (-15 -2407 (|#1| |#1| (-830)))) (-657)) (T -656))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-2407 (($ $ (-830)) 19 T ELT)) (-2406 (($ $ (-830)) 18 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 20 T ELT)))
-(((-657) (-113)) (T -657))
-((* (*1 *1 *1 *1) (-4 *1 (-657))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))))
-(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 -2407 ($ $ (-830))) (-15 -2406 ($ $ (-830))) (-15 ** ($ $ (-830)))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2407 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 18 T ELT)) (-2410 (((-85) $) 10 T ELT)) (-2406 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 19 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 16 T ELT)))
-(((-658 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-694))) (-15 -2406 (|#1| |#1| (-694))) (-15 -2407 (|#1| |#1| (-694))) (-15 -2410 ((-85) |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -2406 (|#1| |#1| (-830))) (-15 -2407 (|#1| |#1| (-830)))) (-659)) (T -658))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-2404 (((-3 $ "failed") $) 22 T ELT)) (-2407 (($ $ (-830)) 19 T ELT) (($ $ (-694)) 27 T ELT)) (-3466 (((-3 $ "failed") $) 24 T ELT)) (-2410 (((-85) $) 28 T ELT)) (-2405 (((-3 $ "failed") $) 23 T ELT)) (-2406 (($ $ (-830)) 18 T ELT) (($ $ (-694)) 26 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 29 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 25 T ELT)) (* (($ $ $) 20 T ELT)))
-(((-659) (-113)) (T -659))
-((-2666 (*1 *1) (-4 *1 (-659))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-3466 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2405 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2404 (*1 *1 *1) (|partial| -4 *1 (-659))))
-(-13 (-657) (-10 -8 (-15 -2666 ($) -3951) (-15 -2410 ((-85) $)) (-15 -2407 ($ $ (-694))) (-15 -2406 ($ $ (-694))) (-15 ** ($ $ (-694))) (-15 -3466 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-657) . T) ((-1013) . T) ((-1128) . T))
-((-3136 (((-694)) 39 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3841 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-349 |#3|)) 49 T ELT)) (-3466 (((-3 $ #1#) $) 69 T ELT)) (-2994 (($) 43 T ELT)) (-3132 ((|#2| $) 21 T ELT)) (-2409 (($) 18 T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2408 (((-630 |#2|) (-1178 $) (-1 |#2| |#2|)) 64 T ELT)) (-3971 (((-1178 |#2|) $) NIL T ELT) (($ (-1178 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2449 ((|#3| $) 36 T ELT)) (-2012 (((-1178 $)) 33 T ELT)))
-(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -2994 (|#1|)) (-15 -3136 ((-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2408 ((-630 |#2|) (-1178 |#1|) (-1 |#2| |#2|))) (-15 -3841 ((-3 |#1| #1="failed") (-349 |#3|))) (-15 -3971 (|#1| |#3|)) (-15 -3841 (|#1| |#3|)) (-15 -2409 (|#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3971 (|#3| |#1|)) (-15 -3971 (|#1| (-1178 |#2|))) (-15 -3971 ((-1178 |#2|) |#1|)) (-15 -2012 ((-1178 |#1|))) (-15 -2449 (|#3| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1|))) (-661 |#2| |#3|) (-146) (-1154 |#2|)) (T -660))
-((-3136 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2063 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2061 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1781 (((-630 |#1|) (-1178 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3329 ((|#1| $) 67 T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 167 (|has| |#1| (-299)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 135 (|has| |#1| (-312)) ELT)) (-1607 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3136 (((-694)) 108 (|has| |#1| (-319)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 194 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 192 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3156 (((-484) $) 193 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 191 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 190 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) 63 T ELT) (($ (-1178 |#1|)) 80 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 185 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3841 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-349 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-830)) 69 T ELT)) (-2994 (($) 111 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| |#1| (-312)) ELT)) (-2833 (($) 169 (|has| |#1| (-299)) ELT)) (-1679 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1763 (($ $ (-694)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3722 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3771 (((-830) $) 172 (|has| |#1| (-299)) ELT) (((-743 (-830)) $) 158 (|has| |#1| (-299)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 66 T ELT)) (-3444 (((-632 $) $) 162 (|has| |#1| (-299)) ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| |#1| (-312)) ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2010 (((-830) $) 110 (|has| |#1| (-319)) ELT)) (-3079 ((|#2| $) 176 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 182 T ELT) (((-630 |#1|) (-1178 $)) 181 T ELT)) (-1890 (($ (-583 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3445 (($) 163 (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (($) 180 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 122 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 166 (|has| |#1| (-299)) ELT)) (-3731 (((-347 $) $) 133 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 124 (|has| |#1| (-312)) ELT)) (-1606 (((-694) $) 126 (|has| |#1| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3756 ((|#1| (-1178 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1764 (((-694) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3757 (($ $ (-694)) 156 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 150 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1089) (-694)) 149 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089))) 148 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1089)) 146 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 144 (|has| |#1| (-312)) ELT)) (-2408 (((-630 |#1|) (-1178 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3185 ((|#2|) 179 T ELT)) (-1673 (($) 168 (|has| |#1| (-299)) ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 65 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 64 T ELT) (((-1178 |#1|) $) 82 T ELT) (((-630 |#1|) (-1178 $)) 81 T ELT)) (-3971 (((-1178 |#1|) $) 79 T ELT) (($ (-1178 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 165 (|has| |#1| (-299)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-349 (-484))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (($ $) 164 (|has| |#1| (-299)) ELT) (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 83 T ELT)) (-2062 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-694)) 157 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 153 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1089) (-694)) 152 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089))) 151 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1089)) 147 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 (|has| |#1| (-312)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-349 (-484)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-349 (-484))) 139 (|has| |#1| (-312)) ELT)))
-(((-661 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -661))
-((-2409 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1154 *2)))) (-3185 (*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-3841 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1154 *3)))) (-3971 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1154 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-3841 (*1 *1 *2) (|partial| -12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-661 *3 *4)))) (-2408 (*1 *2 *3 *4) (-12 (-5 *3 (-1178 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1154 *5)) (-5 *2 (-630 *5)))))
-(-13 (-352 |t#1| |t#2|) (-146) (-553 |t#2|) (-354 |t#1|) (-328 |t#1|) (-10 -8 (-15 -2409 ($)) (-15 -3185 (|t#2|)) (-15 -3841 ($ |t#2|)) (-15 -3971 ($ |t#2|)) (-15 -3079 (|t#2| $)) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3841 ((-3 $ "failed") (-349 |t#2|))) (-15 -2408 ((-630 |t#1|) (-1178 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-344) |has| |#1| (-299)) ((-319) OR (|has| |#1| (-299)) (|has| |#1| (-319))) ((-299) |has| |#1| (-299)) ((-321 |#1| |#2|) . T) ((-352 |#1| |#2|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-495) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))))) ((-809 (-1089)) -12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) ((-811 (-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))))) ((-832) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-299)) ((-1128) . T) ((-1133) OR (|has| |#1| (-299)) (|has| |#1| (-312))))
-((-3723 (($) 11 T CONST)) (-3466 (((-3 $ "failed") $) 14 T ELT)) (-2410 (((-85) $) 10 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 20 T ELT)))
-(((-662 |#1|) (-10 -7 (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 -2410 ((-85) |#1|)) (-15 -3723 (|#1|) -3951) (-15 ** (|#1| |#1| (-830)))) (-663)) (T -662))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 20 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-663) (-113)) (T -663))
-((-2666 (*1 *1) (-4 *1 (-663))) (-3723 (*1 *1) (-4 *1 (-663))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694)))) (-3466 (*1 *1 *1) (|partial| -4 *1 (-663))))
-(-13 (-1025) (-10 -8 (-15 -2666 ($) -3951) (-15 -3723 ($) -3951) (-15 -2410 ((-85) $)) (-15 ** ($ $ (-694))) (-15 -3466 ((-3 $ "failed") $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-2412 ((|#1| $) 16 T ELT)) (-2411 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3945 (((-772) $) NIL T ELT) (((-1022 |#1|) $) 17 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-664 |#1|) (-13 (-665 |#1|) (-1013) (-552 (-1022 |#1|)) (-10 -8 (-15 -2411 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -664))
-((-2411 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3)))))
-((-2412 ((|#1| $) 8 T ELT)) (-3799 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-665 |#1|) (-113) (-72)) (T -665))
-((-2412 (*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72)))))
-(-13 (-1023 |t#1|) (-10 -8 (-15 -2412 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3056 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3056 (|f| (-2412 |f|) |x|) |x|))))))))
-(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1023 |#1|) . T) ((-1128) . T))
-((-2413 (((-2 (|:| -3089 (-347 |#2|)) (|:| |special| (-347 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3417 (((-2 (|:| -3089 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2414 ((|#2| (-349 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3434 (((-2 (|:| |poly| |#2|) (|:| -3089 (-349 |#2|)) (|:| |special| (-349 |#2|))) (-349 |#2|) (-1 |#2| |#2|)) 48 T ELT)))
-(((-666 |#1| |#2|) (-10 -7 (-15 -3417 ((-2 (|:| -3089 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2413 ((-2 (|:| -3089 (-347 |#2|)) (|:| |special| (-347 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2414 (|#2| (-349 |#2|) (-1 |#2| |#2|))) (-15 -3434 ((-2 (|:| |poly| |#2|) (|:| -3089 (-349 |#2|)) (|:| |special| (-349 |#2|))) (-349 |#2|) (-1 |#2| |#2|)))) (-312) (-1154 |#1|)) (T -666))
-((-3434 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3089 (-349 *6)) (|:| |special| (-349 *6)))) (-5 *1 (-666 *5 *6)) (-5 *3 (-349 *6)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-349 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-666 *5 *2)) (-4 *5 (-312)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3089 (-347 *3)) (|:| |special| (-347 *3)))) (-5 *1 (-666 *5 *3)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3089 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3)))))
-((-2415 ((|#7| (-583 |#5|) |#6|) NIL T ELT)) (-3957 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT)))
-(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3957 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2415 (|#7| (-583 |#5|) |#6|))) (-756) (-717) (-717) (-961) (-961) (-861 |#4| |#2| |#1|) (-861 |#5| |#3| |#1|)) (T -667))
-((-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))))
-((-3957 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT)))
-(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3957 (|#7| (-1 |#2| |#1|) |#6|))) (-756) (-756) (-717) (-717) (-961) (-861 |#5| |#3| |#1|) (-861 |#5| |#4| |#2|)) (T -668))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717)) (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5)))))
-((-3731 (((-347 |#4|) |#4|) 42 T ELT)))
-(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089))))) (-258) (-861 (-857 |#3|) |#1| |#2|)) (T -669))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089)))))) (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-861 (-857 *6) *4 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3083 (((-1084 $) $ (-773 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| (-469 (-773 |#1|)) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1084 $) (-773 |#1|)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-469 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 (((-469 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1624 (($ (-1 (-469 (-773 |#1|)) (-469 (-773 |#1|))) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#2| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3756 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3947 (((-469 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-495)) ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-469 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-670 |#1| |#2|) (-861 |#2| (-469 (-773 |#1|)) (-773 |#1|)) (-583 (-1089)) (-961)) (T -670))
-NIL
-((-2416 (((-2 (|:| -2483 (-857 |#3|)) (|:| -2058 (-857 |#3|))) |#4|) 14 T ELT)) (-2986 ((|#4| |#4| |#2|) 33 T ELT)) (-2419 ((|#4| (-349 (-857 |#3|)) |#2|) 62 T ELT)) (-2418 ((|#4| (-1084 (-857 |#3|)) |#2|) 74 T ELT)) (-2417 ((|#4| (-1084 |#4|) |#2|) 49 T ELT)) (-2985 ((|#4| |#4| |#2|) 52 T ELT)) (-3731 (((-347 |#4|) |#4|) 40 T ELT)))
-(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-2 (|:| -2483 (-857 |#3|)) (|:| -2058 (-857 |#3|))) |#4|)) (-15 -2985 (|#4| |#4| |#2|)) (-15 -2417 (|#4| (-1084 |#4|) |#2|)) (-15 -2986 (|#4| |#4| |#2|)) (-15 -2418 (|#4| (-1084 (-857 |#3|)) |#2|)) (-15 -2419 (|#4| (-349 (-857 |#3|)) |#2|)) (-15 -3731 ((-347 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)))) (-495) (-861 (-349 (-857 |#3|)) |#1| |#2|)) (T -671))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *6 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-349 (-857 *6)) *4 *5)))) (-2419 (*1 *2 *3 *4) (-12 (-4 *6 (-495)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-5 *3 (-349 (-857 *6))) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 (-857 *6))) (-4 *6 (-495)) (-4 *2 (-861 (-349 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-349 (-857 *5)) *4 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-861 (-349 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *6 (-495)))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-349 (-857 *5)) *4 *3)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *6 (-495)) (-5 *2 (-2 (|:| -2483 (-857 *6)) (|:| -2058 (-857 *6)))) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-349 (-857 *6)) *4 *5)))))
-((-3731 (((-347 |#4|) |#4|) 54 T ELT)))
-(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4|))) (-717) (-756) (-13 (-258) (-120)) (-861 (-349 |#3|) |#1| |#2|)) (T -672))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-861 (-349 *6) *4 *5)))))
-((-3957 (((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)) 18 T ELT)))
-(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)))) (-961) (-961) (-663)) (T -673))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 36 T ELT)) (-3773 (((-583 (-2 (|:| -3953 |#1|) (|:| -3937 |#2|))) $) 37 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) 22 (-12 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3156 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) 99 (|has| |#2| (-756)) ELT)) (-3466 (((-3 $ #1#) $) 83 T ELT)) (-2994 (($) 48 (-12 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 70 T ELT)) (-2821 (((-583 $) $) 52 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| |#2|) 17 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2010 (((-830) $) 43 (-12 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-2894 ((|#2| $) 98 (|has| |#2| (-756)) ELT)) (-3174 ((|#1| $) 97 (|has| |#2| (-756)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 35 (-12 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 96 T ELT) (($ (-484)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-583 (-2 (|:| -3953 |#1|) (|:| -3937 |#2|)))) 11 T ELT)) (-3816 (((-583 |#1|) $) 54 T ELT)) (-3676 ((|#1| $ |#2|) 114 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-2666 (($) 44 T CONST)) (-3056 (((-85) $ $) 104 T ELT)) (-3836 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 33 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-674 |#1| |#2|) (-13 (-961) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -2893 ($ |#1| |#2|)) (-15 -3676 (|#1| $ |#2|)) (-15 -3945 ($ (-583 (-2 (|:| -3953 |#1|) (|:| -3937 |#2|))))) (-15 -3773 ((-583 (-2 (|:| -3953 |#1|) (|:| -3937 |#2|))) $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (-15 -3936 ((-85) $)) (-15 -3816 ((-583 |#1|) $)) (-15 -2821 ((-583 $) $)) (-15 -2420 ((-694) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#2| (-319)) (-6 (-319)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-756)) (PROGN (-15 -2894 (|#2| $)) (-15 -3174 (|#1| $)) (-15 -3958 ($ $))) |%noBranch|))) (-961) (-663)) (T -674))
-((-2893 (*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663)))) (-3676 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3953 *3) (|:| -3937 *4)))) (-4 *3 (-961)) (-4 *4 (-663)) (-5 *1 (-674 *3 *4)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3953 *3) (|:| -3937 *4)))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2894 (*1 *2 *1) (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663)))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3234 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3236 (($ $ $) 99 T ELT)) (-3235 (((-85) $ $) 107 T ELT)) (-3239 (($ (-583 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2368 (($ $) 88 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) 71 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT) (($ |#1| $ (-484)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 81 T ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ |#1| $ (-484)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 84 T ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 106 T ELT)) (-2421 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-583 |#1|)) 23 T ELT)) (-2608 (((-583 |#1|) $) 38 T ELT)) (-3245 (((-85) |#1| $) 66 (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3238 (($ $ $) 97 T ELT)) (-1273 ((|#1| $) 63 T ELT)) (-3608 (($ |#1| $) 64 T ELT) (($ |#1| $ (-694)) 89 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1274 ((|#1| $) 62 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 57 T ELT)) (-3564 (($) 14 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 56 T ELT)) (-3237 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1465 (($) 16 T ELT) (($ (-583 |#1|)) 25 T ELT)) (-1945 (((-694) |#1| $) 69 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) 82 T ELT)) (-3971 (((-473) $) 36 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 22 T ELT)) (-3945 (((-772) $) 50 T ELT)) (-3240 (($ (-583 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1275 (($ (-583 |#1|)) 24 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 103 T ELT)) (-3956 (((-694) $) 68 T ELT)))
-(((-675 |#1|) (-13 (-676 |#1|) (-317 |#1|) (-10 -8 (-6 -3995) (-15 -2421 ($)) (-15 -2421 ($ |#1|)) (-15 -2421 ($ (-583 |#1|))) (-15 -2608 ((-583 |#1|) $)) (-15 -3405 ($ |#1| $ (-484))) (-15 -3405 ($ (-1 (-85) |#1|) $ (-484))) (-15 -3404 ($ |#1| $ (-484))) (-15 -3404 ($ (-1 (-85) |#1|) $ (-484))))) (-1013)) (T -675))
-((-2608 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1013)))) (-2421 (*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-2421 (*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-2421 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-675 *3)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))) (-3404 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-3404 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))))
-((-2568 (((-85) $ $) 19 T ELT)) (-3234 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3236 (($ $ $) 77 T ELT)) (-3235 (((-85) $ $) 78 T ELT)) (-3239 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2368 (($ $) 66 T ELT)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 69 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 T ELT)) (-3238 (($ $ $) 74 T ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3243 (((-1033) $) 21 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 65 T ELT)) (-3237 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 T ELT)) (-3240 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1264 (((-85) $ $) 20 T ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-676 |#1|) (-113) (-1013)) (T -676))
-NIL
-(-13 (-634 |t#1|) (-1011 |t#1|))
-(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-634 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2422 (((-1184) (-1072)) 8 T ELT)))
-(((-677) (-10 -7 (-15 -2422 ((-1184) (-1072))))) (T -677))
-((-2422 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-677)))))
-((-2423 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 15 T ELT)))
-(((-678 |#1|) (-10 -7 (-15 -2423 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-756)) (T -678))
-((-2423 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#2|) $) 159 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 152 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 151 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 149 (|has| |#1| (-495)) ELT)) (-3491 (($ $) 108 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 91 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $) 90 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) 107 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 92 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3493 (($ $) 106 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 93 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 143 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3813 (((-857 |#1|) $ (-694)) 121 T ELT) (((-857 |#1|) $ (-694) (-694)) 120 T ELT)) (-2892 (((-85) $) 160 T ELT)) (-3626 (($) 118 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $ |#2|) 123 T ELT) (((-694) $ |#2| (-694)) 122 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 89 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3936 (((-85) $) 141 T ELT)) (-2893 (($ $ (-583 |#2|) (-583 (-469 |#2|))) 158 T ELT) (($ $ |#2| (-469 |#2|)) 157 T ELT) (($ |#1| (-469 |#2|)) 142 T ELT) (($ $ |#2| (-694)) 125 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 124 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3941 (($ $) 115 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 138 T ELT)) (-3174 ((|#1| $) 137 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3811 (($ $ |#2|) 119 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3768 (($ $ (-694)) 126 T ELT)) (-3465 (((-3 $ "failed") $ $) 153 (|has| |#1| (-495)) ELT)) (-3942 (($ $) 116 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (($ $ |#2| $) 134 T ELT) (($ $ (-583 |#2|) (-583 $)) 133 T ELT) (($ $ (-583 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-583 $) (-583 $)) 129 T ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) 52 T ELT) (($ $ |#2| (-694)) 51 T ELT) (($ $ (-583 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3947 (((-469 |#2|) $) 139 T ELT)) (-3494 (($ $) 105 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 94 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 104 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 95 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 103 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 96 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 161 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-495)) ELT) (($ (-349 (-484))) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3676 ((|#1| $ (-469 |#2|)) 144 T ELT) (($ $ |#2| (-694)) 128 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 127 T ELT)) (-2702 (((-632 $) $) 155 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 114 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 102 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 150 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 113 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 101 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 112 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 100 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 111 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 99 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 110 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 98 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 109 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 97 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) 55 T ELT) (($ $ |#2| (-694)) 54 T ELT) (($ $ (-583 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 88 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 148 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT)))
-(((-679 |#1| |#2|) (-113) (-961) (-756)) (T -679))
-((-3676 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-3676 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3771 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3813 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3811 (*1 *1 *1 *2) (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)) (-4 *3 (-38 (-349 (-484)))))))
-(-13 (-809 |t#2|) (-886 |t#1| (-469 |t#2|) |t#2|) (-455 |t#2| $) (-260 $) (-10 -8 (-15 -3676 ($ $ |t#2| (-694))) (-15 -3676 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3768 ($ $ (-694))) (-15 -2893 ($ $ |t#2| (-694))) (-15 -2893 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3771 ((-694) $ |t#2|)) (-15 -3771 ((-694) $ |t#2| (-694))) (-15 -3813 ((-857 |t#1|) $ (-694))) (-15 -3813 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $ |t#2|)) (-6 (-915)) (-6 (-1114))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-469 |#2|)) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-246) |has| |#1| (-495)) ((-260 $) . T) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-455 |#2| $) . T) ((-455 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ |#2|) . T) ((-809 |#2|) . T) ((-811 |#2|) . T) ((-886 |#1| (-469 |#2|) |#2|) . T) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T))
-((-3731 (((-347 (-1084 |#4|)) (-1084 |#4|)) 30 T ELT) (((-347 |#4|) |#4|) 26 T ELT)))
-(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4|)) (-15 -3731 ((-347 (-1084 |#4|)) (-1084 |#4|)))) (-756) (-717) (-13 (-258) (-120)) (-861 |#3| |#2| |#1|)) (T -680))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
-((-2426 (((-347 |#4|) |#4| |#2|) 142 T ELT)) (-2424 (((-347 |#4|) |#4|) NIL T ELT)) (-3970 (((-347 (-1084 |#4|)) (-1084 |#4|)) 129 T ELT) (((-347 |#4|) |#4|) 52 T ELT)) (-2428 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3731 (-1084 |#4|)) (|:| -2401 (-484)))))) (-1084 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 81 T ELT)) (-2432 (((-1084 |#3|) (-1084 |#3|) (-484)) 169 T ELT)) (-2431 (((-583 (-694)) (-1084 |#4|) (-583 |#2|) (-694)) 75 T ELT)) (-3079 (((-3 (-583 (-1084 |#4|)) "failed") (-1084 |#4|) (-1084 |#3|) (-1084 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|)) 79 T ELT)) (-2429 (((-2 (|:| |upol| (-1084 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484))))) (|:| |ctpol| |#3|)) (-1084 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 27 T ELT)) (-2427 (((-2 (|:| -2004 (-1084 |#4|)) (|:| |polval| (-1084 |#3|))) (-1084 |#4|) (-1084 |#3|) (-484)) 72 T ELT)) (-2425 (((-484) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484))))) 165 T ELT)) (-2430 ((|#4| (-484) (-347 |#4|)) 73 T ELT)) (-3356 (((-85) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484)))) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484))))) NIL T ELT)))
-(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3970 ((-347 |#4|) |#4|)) (-15 -3970 ((-347 (-1084 |#4|)) (-1084 |#4|))) (-15 -2424 ((-347 |#4|) |#4|)) (-15 -2425 ((-484) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484)))))) (-15 -2426 ((-347 |#4|) |#4| |#2|)) (-15 -2427 ((-2 (|:| -2004 (-1084 |#4|)) (|:| |polval| (-1084 |#3|))) (-1084 |#4|) (-1084 |#3|) (-484))) (-15 -2428 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3731 (-1084 |#4|)) (|:| -2401 (-484)))))) (-1084 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2429 ((-2 (|:| |upol| (-1084 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484))))) (|:| |ctpol| |#3|)) (-1084 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2430 (|#4| (-484) (-347 |#4|))) (-15 -3356 ((-85) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484)))) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484)))))) (-15 -3079 ((-3 (-583 (-1084 |#4|)) "failed") (-1084 |#4|) (-1084 |#3|) (-1084 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|))) (-15 -2431 ((-583 (-694)) (-1084 |#4|) (-583 |#2|) (-694))) (-15 -2432 ((-1084 |#3|) (-1084 |#3|) (-484)))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -681))
-((-2432 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 *6)) (-5 *3 (-484)) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-258)) (-5 *2 (-583 (-694))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694)))) (-3079 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1084 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694))) (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-258)) (-4 *9 (-717)) (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1084 *5))) (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1084 *5)))) (-3356 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3731 (-1084 *6)) (|:| -2401 (-484))))) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2430 (*1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-347 *2)) (-4 *2 (-861 *7 *5 *6)) (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-258)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |upol| (-1084 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3731 (-1084 *8)) (|:| -2401 (-484))))) (|:| |ctpol| *8))) (-5 *1 (-681 *6 *7 *8 *9)))) (-2428 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3731 (-1084 *9)) (|:| -2401 (-484))))))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1084 *9)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-484)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| -2004 (-1084 *9)) (|:| |polval| (-1084 *8)))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1084 *9)) (-5 *4 (-1084 *8)))) (-2426 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3731 (-1084 *6)) (|:| -2401 (-484))))) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))) (-3970 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3970 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))))
-((-2433 (($ $ (-830)) 17 T ELT)))
-(((-682 |#1| |#2|) (-10 -7 (-15 -2433 (|#1| |#1| (-830)))) (-683 |#2|) (-146)) (T -682))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2407 (($ $ (-830)) 37 T ELT)) (-2433 (($ $ (-830)) 44 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
-(((-683 |#1|) (-113) (-146)) (T -683))
-((-2433 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146)))))
-(-13 (-685) (-654 |t#1|) (-10 -8 (-15 -2433 ($ $ (-830)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2435 (($ $ $) 10 T ELT)) (-2436 (($ $ $ $) 9 T ELT)) (-2434 (($ $ $) 12 T ELT)))
-(((-684 |#1|) (-10 -7 (-15 -2434 (|#1| |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1| |#1|))) (-685)) (T -684))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2407 (($ $ (-830)) 37 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT)))
-(((-685) (-113)) (T -685))
-((-2436 (*1 *1 *1 *1 *1) (-4 *1 (-685))) (-2435 (*1 *1 *1 *1) (-4 *1 (-685))) (-2434 (*1 *1 *1 *1) (-4 *1 (-685))))
-(-13 (-21) (-657) (-10 -8 (-15 -2436 ($ $ $ $)) (-15 -2435 ($ $ $)) (-15 -2434 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-657) . T) ((-1013) . T) ((-1128) . T))
-((-3945 (((-772) $) NIL T ELT) (($ (-484)) 10 T ELT)))
-(((-686 |#1|) (-10 -7 (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-687)) (T -686))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2404 (((-3 $ #1="failed") $) 49 T ELT)) (-2407 (($ $ (-830)) 37 T ELT) (($ $ (-694)) 44 T ELT)) (-3466 (((-3 $ #1#) $) 47 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 43 T ELT)) (-2405 (((-3 $ #1#) $) 48 T ELT)) (-2406 (($ $ (-830)) 38 T ELT) (($ $ (-694)) 45 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 40 T ELT)) (-3126 (((-694)) 41 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 42 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT) (($ $ (-694)) 46 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT)))
-(((-687) (-113)) (T -687))
-((-3126 (*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-687)))))
-(-13 (-685) (-659) (-10 -8 (-15 -3126 ((-694)) -3951) (-15 -3945 ($ (-484)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-657) . T) ((-659) . T) ((-685) . T) ((-1013) . T) ((-1128) . T))
-((-2438 (((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-349 (-484)))) |#1|) 33 T ELT)) (-2437 (((-583 (-142 |#1|)) (-630 (-142 (-349 (-484)))) |#1|) 23 T ELT)) (-2449 (((-857 (-142 (-349 (-484)))) (-630 (-142 (-349 (-484)))) (-1089)) 20 T ELT) (((-857 (-142 (-349 (-484)))) (-630 (-142 (-349 (-484))))) 19 T ELT)))
-(((-688 |#1|) (-10 -7 (-15 -2449 ((-857 (-142 (-349 (-484)))) (-630 (-142 (-349 (-484)))))) (-15 -2449 ((-857 (-142 (-349 (-484)))) (-630 (-142 (-349 (-484)))) (-1089))) (-15 -2437 ((-583 (-142 |#1|)) (-630 (-142 (-349 (-484)))) |#1|)) (-15 -2438 ((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-349 (-484)))) |#1|))) (-13 (-312) (-755))) (T -688))
-((-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-583 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 *4))))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *4 (-1089)) (-5 *2 (-857 (-142 (-349 (-484))))) (-5 *1 (-688 *5)) (-4 *5 (-13 (-312) (-755))))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-857 (-142 (-349 (-484))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))))
-((-2616 (((-148 (-484)) |#1|) 27 T ELT)))
-(((-689 |#1|) (-10 -7 (-15 -2616 ((-148 (-484)) |#1|))) (-346)) (T -689))
-((-2616 (*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-689 *3)) (-4 *3 (-346)))))
-((-2542 ((|#1| |#1| |#1|) 28 T ELT)) (-2543 ((|#1| |#1| |#1|) 27 T ELT)) (-2532 ((|#1| |#1| |#1|) 38 T ELT)) (-2540 ((|#1| |#1| |#1|) 33 T ELT)) (-2541 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2548 (((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|) 26 T ELT)))
-(((-690 |#1| |#2|) (-10 -7 (-15 -2548 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|))) (-645 |#2|) (-312)) (T -690))
-((-2532 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2540 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2541 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2542 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2548 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4)))))
-((-2555 (((-632 (-1137)) $ (-1137)) 27 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 26 T ELT)) (-2554 (((-694) $ (-102)) 28 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 25 T ELT)) (-2000 (((-632 (-1137)) $) 12 T ELT)) (-1996 (((-632 (-1135)) $) 8 T ELT)) (-1998 (((-632 (-1134)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-2439 (((-85) $) 32 T ELT)) (-2440 (((-632 $) |#1| (-865)) 33 T ELT)) (-1699 (($ $) 6 T ELT)))
-(((-691 |#1|) (-113) (-1013)) (T -691))
-((-2440 (*1 *2 *3 *4) (-12 (-5 *4 (-865)) (-4 *3 (-1013)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3)))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
-(-13 (-512) (-10 -8 (-15 -2440 ((-632 $) |t#1| (-865))) (-15 -2439 ((-85) $))))
-(((-147) . T) ((-465) . T) ((-512) . T) ((-770) . T))
-((-3918 (((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))) (-484)) 72 T ELT)) (-3917 (((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484))))) 70 T ELT)) (-3756 (((-484)) 86 T ELT)))
-(((-692 |#1| |#2|) (-10 -7 (-15 -3756 ((-484))) (-15 -3917 ((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))))) (-15 -3918 ((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))) (-484)))) (-1154 (-484)) (-352 (-484) |#1|)) (T -692))
-((-3918 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-692 *4 *5)) (-4 *5 (-352 *3 *4)))) (-3917 (*1 *2) (-12 (-4 *3 (-1154 (-484))) (-5 *2 (-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484))))) (-5 *1 (-692 *3 *4)) (-4 *4 (-352 (-484) *3)))) (-3756 (*1 *2) (-12 (-4 *3 (-1154 *2)) (-5 *2 (-484)) (-5 *1 (-692 *3 *4)) (-4 *4 (-352 *2 *3)))))
-((-2508 (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|))) 19 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1089))) 18 T ELT)) (-3572 (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|))) 21 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1089))) 20 T ELT)))
-(((-693 |#1|) (-10 -7 (-15 -2508 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1089)))) (-15 -2508 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1089)))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|))))) (-495)) (T -693))
-((-3572 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-693 *4)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-693 *5)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-693 *4)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-693 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2483 (($ $ $) 10 T ELT)) (-1311 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2441 (($ $ (-484)) 11 T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3144 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 6 T CONST)) (-2666 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-694) (-13 (-717) (-663) (-10 -8 (-15 -2563 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -3144 ($ $ $)) (-15 -2879 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3465 ((-3 $ "failed") $ $)) (-15 -2441 ($ $ (-484))) (-15 -2994 ($ $)) (-6 (-3996 "*"))))) (T -694))
-((-2563 (*1 *1 *1 *1) (-5 *1 (-694))) (-2564 (*1 *1 *1 *1) (-5 *1 (-694))) (-3144 (*1 *1 *1 *1) (-5 *1 (-694))) (-2879 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1972 (-694)) (|:| -2902 (-694)))) (-5 *1 (-694)))) (-3465 (*1 *1 *1 *1) (|partial| -5 *1 (-694))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-694)))) (-2994 (*1 *1 *1) (-5 *1 (-694))))
-((-484) (|%not| (|%ilt| |#1| 0)))
-((-3572 (((-3 |#2| "failed") |#2| |#2| (-86) (-1089)) 37 T ELT)))
-(((-695 |#1| |#2|) (-10 -7 (-15 -3572 ((-3 |#2| "failed") |#2| |#2| (-86) (-1089)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871))) (T -695))
-((-3572 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-695 *5 *2)) (-4 *2 (-13 (-29 *5) (-1114) (-871))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT)))
-(((-696) (-1013)) (T -696))
-NIL
-((-3945 (((-696) |#1|) 8 T ELT)))
-(((-697 |#1|) (-10 -7 (-15 -3945 ((-696) |#1|))) (-1128)) (T -697))
-((-3945 (*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1128)))))
-((-3132 ((|#2| |#4|) 35 T ELT)))
-(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3132 (|#2| |#4|))) (-391) (-1154 |#1|) (-661 |#1| |#2|) (-1154 |#3|)) (T -698))
-((-3132 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1154 *5)))))
-((-3466 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2444 (((-1184) (-1072) (-1072) |#4| |#5|) 33 T ELT)) (-2442 ((|#4| |#4| |#5|) 74 T ELT)) (-2443 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|) 79 T ELT)) (-2445 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 16 T ELT)))
-(((-699 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3466 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2442 (|#4| |#4| |#5|)) (-15 -2443 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -2444 ((-1184) (-1072) (-1072) |#4| |#5|)) (-15 -2445 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -699))
-((-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2444 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1072)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1184)) (-5 *1 (-699 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4)))) (-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2442 (*1 *2 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))) (-3466 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
-((-3157 (((-3 (-1084 (-1084 |#1|)) "failed") |#4|) 53 T ELT)) (-2446 (((-583 |#4|) |#4|) 22 T ELT)) (-3927 ((|#4| |#4|) 17 T ELT)))
-(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2446 ((-583 |#4|) |#4|)) (-15 -3157 ((-3 (-1084 (-1084 |#1|)) "failed") |#4|)) (-15 -3927 (|#4| |#4|))) (-299) (-280 |#1|) (-1154 |#2|) (-1154 |#3|) (-830)) (T -700))
-((-3927 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1154 *4)) (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1154 *5)) (-14 *6 (-830)))) (-3157 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-830)))) (-2446 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-583 *3)) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-830)))))
-((-2447 (((-2 (|:| |deter| (-583 (-1084 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1084 |#5|) (-583 |#1|) (-583 |#5|)) 72 T ELT)) (-2448 (((-583 (-694)) |#1|) 20 T ELT)))
-(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2447 ((-2 (|:| |deter| (-583 (-1084 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1084 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -2448 ((-583 (-694)) |#1|))) (-1154 |#4|) (-717) (-756) (-258) (-861 |#4| |#2| |#3|)) (T -701))
-((-2448 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-583 (-694))) (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *6)) (-4 *7 (-861 *6 *4 *5)))) (-2447 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1154 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-258)) (-4 *10 (-861 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1084 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1084 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
-((-2451 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-349 (-484))) |#1|) 31 T ELT)) (-2450 (((-583 |#1|) (-630 (-349 (-484))) |#1|) 21 T ELT)) (-2449 (((-857 (-349 (-484))) (-630 (-349 (-484))) (-1089)) 18 T ELT) (((-857 (-349 (-484))) (-630 (-349 (-484)))) 17 T ELT)))
-(((-702 |#1|) (-10 -7 (-15 -2449 ((-857 (-349 (-484))) (-630 (-349 (-484))))) (-15 -2449 ((-857 (-349 (-484))) (-630 (-349 (-484))) (-1089))) (-15 -2450 ((-583 |#1|) (-630 (-349 (-484))) |#1|)) (-15 -2451 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-349 (-484))) |#1|))) (-13 (-312) (-755))) (T -702))
-((-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 *4)))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *4 (-1089)) (-5 *2 (-857 (-349 (-484)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-312) (-755))))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-857 (-349 (-484)))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 36 T ELT)) (-3081 (((-583 |#2|) $) NIL T ELT)) (-3083 (((-1084 $) $ |#2|) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) NIL T ELT)) (-3796 (($ $) 30 T ELT)) (-3166 (((-85) $ $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3754 (($ $ $) 110 (|has| |#1| (-495)) ELT)) (-3148 (((-583 $) $ $) 123 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-349 (-484)))) NIL (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089)))) ELT) (((-3 $ #1#) (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484)))))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))))) ELT) (((-3 $ #1#) (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-904 (-484)))))) ELT) (((-3 (-1038 |#1| |#2|) #1#) $) 21 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#2| $) NIL T ELT) (($ (-857 (-349 (-484)))) NIL (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089)))) ELT) (($ (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484)))))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))))) ELT) (($ (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-904 (-484)))))) ELT) (((-1038 |#1| |#2|) $) NIL T ELT)) (-3755 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-495)) ELT)) (-3958 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3172 (((-85) $) NIL T ELT)) (-3751 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 81 T ELT)) (-3143 (($ $) 136 (|has| |#1| (-391)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ |#2|) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-3154 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3155 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3165 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3164 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1623 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| |#1| (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 57 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3694 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3145 (($ $ $ $ $) 107 (|has| |#1| (-495)) ELT)) (-3180 ((|#2| $) 22 T ELT)) (-3084 (($ (-1084 |#1|) |#2|) NIL T ELT) (($ (-1084 $) |#2|) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 38 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3159 (($ $ $) 63 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-3173 (((-85) $) NIL T ELT)) (-2820 (((-469 |#2|) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3179 (((-694) $) 23 T ELT)) (-1624 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3082 (((-3 |#2| #1#) $) NIL T ELT)) (-3140 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3141 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3168 (((-583 $) $) NIL T ELT)) (-3171 (($ $) 39 T ELT)) (-3142 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3169 (((-583 $) $) 43 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-3170 (($ $) 41 T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3480 (-694))) $ $) 96 T ELT)) (-3160 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 78 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-3161 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $) NIL T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-3163 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3162 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3190 (($ $ $) 125 (|has| |#1| (-495)) ELT)) (-3176 (((-583 $) $) 32 T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3690 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3685 (($ $ $) NIL T ELT)) (-3445 (($ $) 24 T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-3691 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3686 (($ $ $) NIL T ELT)) (-3178 (($ $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3149 (((-2 (|:| -3144 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-495)) ELT)) (-3150 (((-2 (|:| -3144 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-495)) ELT)) (-1796 (((-85) $) 56 T ELT)) (-1795 ((|#1| $) 58 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 ((|#1| |#1| $) 133 (|has| |#1| (-391)) ELT) (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3151 (((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-495)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-495)) ELT)) (-3152 (($ $ |#1|) 129 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3153 (($ $ |#1|) 128 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-583 |#2|) (-583 $)) NIL T ELT)) (-3756 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3947 (((-469 |#2|) $) NIL T ELT) (((-694) $ |#2|) 45 T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3177 (($ $) NIL T ELT)) (-3175 (($ $) 35 T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT) (($ (-857 (-349 (-484)))) NIL (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089)))) ELT) (($ (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484)))))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))))) ELT) (($ (-857 |#1|)) NIL (|has| |#2| (-553 (-1089))) ELT) (((-1072) $) NIL (-12 (|has| |#1| (-950 (-484))) (|has| |#2| (-553 (-1089)))) ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1089))) ELT)) (-2817 ((|#1| $) 132 (|has| |#1| (-391)) ELT) (($ $ |#2|) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1089))) ELT) (((-1038 |#1| |#2|) $) 18 T ELT) (($ (-1038 |#1| |#2|)) 19 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 13 T CONST)) (-3167 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2666 (($) 37 T CONST)) (-3146 (($ $ $ $ (-694)) 105 (|has| |#1| (-495)) ELT)) (-3147 (($ $ $ (-694)) 104 (|has| |#1| (-495)) ELT)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3838 (($ $ $) 85 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 70 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-703 |#1| |#2|) (-13 (-977 |#1| (-469 |#2|) |#2|) (-552 (-1038 |#1| |#2|)) (-950 (-1038 |#1| |#2|))) (-961) (-756)) (T -703))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 12 T ELT)) (-3766 (((-1178 |#1|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3764 (($ (-1084 |#1|)) NIL T ELT)) (-3083 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2455 (((-583 $) $ $) 54 (|has| |#1| (-495)) ELT)) (-3754 (($ $ $) 50 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-694)) NIL T ELT)) (-3759 (($ $ (-694)) NIL T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-391)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT) (((-3 (-1084 |#1|) #1#) $) 10 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ $) NIL T ELT)) (-3752 (($ $ $) 87 (|has| |#1| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) 86 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-694) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-994) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3084 (($ (-1084 |#1|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3776 (($ $ (-694)) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3159 (($ $ $) 27 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1624 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3765 (((-1084 |#1|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3480 (-694))) $ $) 37 T ELT)) (-2457 (($ $ $) 41 T ELT)) (-2456 (($ $ $) 47 T ELT)) (-3160 (((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 46 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3190 (($ $ $) 56 (|has| |#1| (-495)) ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3149 (((-2 (|:| -3144 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-495)) ELT)) (-3150 (((-2 (|:| -3144 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-495)) ELT)) (-2452 (((-2 (|:| -3755 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2453 (((-2 (|:| -3755 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-495)) ELT)) (-1796 (((-85) $) 13 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3737 (($ $ (-694) |#1| $) 26 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3151 (((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-495)) ELT)) (-2454 (((-2 (|:| -3755 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-495)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-349 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#1| (-495)) ELT)) (-3763 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3947 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3753 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-994)) NIL T ELT) (((-1084 |#1|) $) 7 T ELT) (($ (-1084 |#1|)) 8 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 28 T CONST)) (-2666 (($) 32 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-704 |#1|) (-13 (-1154 |#1|) (-552 (-1084 |#1|)) (-950 (-1084 |#1|)) (-10 -8 (-15 -3737 ($ $ (-694) |#1| $)) (-15 -3159 ($ $ $)) (-15 -3158 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3480 (-694))) $ $)) (-15 -2457 ($ $ $)) (-15 -3160 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2456 ($ $ $)) (IF (|has| |#1| (-495)) (PROGN (-15 -2455 ((-583 $) $ $)) (-15 -3190 ($ $ $)) (-15 -3151 ((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3150 ((-2 (|:| -3144 $) (|:| |coef1| $)) $ $)) (-15 -3149 ((-2 (|:| -3144 $) (|:| |coef2| $)) $ $)) (-15 -2454 ((-2 (|:| -3755 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2453 ((-2 (|:| -3755 |#1|) (|:| |coef1| $)) $ $)) (-15 -2452 ((-2 (|:| -3755 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-961)) (T -704))
-((-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-3159 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3158 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3480 (-694)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2457 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3160 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3953 *3) (|:| |gap| (-694)) (|:| -1972 (-704 *3)) (|:| -2902 (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2456 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3190 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-495)) (-4 *2 (-961)))) (-3151 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3150 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3149 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))))
-((-3957 (((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)) 13 T ELT)))
-(((-705 |#1| |#2|) (-10 -7 (-15 -3957 ((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)))) (-961) (-961)) (T -705))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6)))))
-((-2459 ((|#1| (-694) |#1|) 33 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2801 ((|#1| (-694) |#1|) 23 T ELT)) (-2458 ((|#1| (-694) |#1|) 35 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-706 |#1|) (-10 -7 (-15 -2801 (|#1| (-694) |#1|)) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -2458 (|#1| (-694) |#1|)) (-15 -2459 (|#1| (-694) |#1|))) |%noBranch|)) (-146)) (T -706))
-((-2459 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-146)))) (-2458 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-146)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3687 ((|#4| |#4| $) 98 T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 134 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3723 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3798 (((-3 $ #1#) $) 88 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-1352 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3682 ((|#4| |#4| $) 93 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 111 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT)) (-3195 (((-85) |#4| $) 141 T ELT)) (-3198 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 135 T ELT)) (-3797 (((-3 |#4| #1#) $) 89 T ELT)) (-3192 (((-583 $) |#4| $) 137 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3238 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3439 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3696 (((-583 |#4|) $) 113 T ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3698 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| #1#) $) 90 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3768 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 50 T ELT)) (-3402 (((-85) $) 53 T ELT)) (-3564 (($) 52 T ELT)) (-3947 (((-694) $) 112 T ELT)) (-1945 (((-694) |#4| $) 48 (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3399 (($ $) 51 T ELT)) (-3971 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3683 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3677 (((-694) $) 82 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3189 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3679 (((-583 |#3|) $) 87 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3932 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 43 T ELT)))
-(((-707 |#1| |#2| |#3| |#4|) (-113) (-391) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -707))
-NIL
-(-13 (-983 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-317 |#4|) . T) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
-((-2462 (((-3 (-329) #1="failed") (-265 |#1|) (-830)) 60 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-329) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-329) #1#) (-349 (-857 |#1|)) (-830)) 39 (|has| |#1| (-495)) ELT) (((-3 (-329) #1#) (-349 (-857 |#1|))) 35 (|has| |#1| (-495)) ELT) (((-3 (-329) #1#) (-857 |#1|) (-830)) 30 (|has| |#1| (-961)) ELT) (((-3 (-329) #1#) (-857 |#1|)) 24 (|has| |#1| (-961)) ELT)) (-2460 (((-329) (-265 |#1|) (-830)) 92 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-329) (-265 |#1|)) 87 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-329) (-349 (-857 |#1|)) (-830)) 84 (|has| |#1| (-495)) ELT) (((-329) (-349 (-857 |#1|))) 81 (|has| |#1| (-495)) ELT) (((-329) (-857 |#1|) (-830)) 80 (|has| |#1| (-961)) ELT) (((-329) (-857 |#1|)) 77 (|has| |#1| (-961)) ELT) (((-329) |#1| (-830)) 73 T ELT) (((-329) |#1|) 22 T ELT)) (-2463 (((-3 (-142 (-329)) #1#) (-265 (-142 |#1|)) (-830)) 68 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-329)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-329)) #1#) (-265 |#1|) (-830)) 61 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-329)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-329)) #1#) (-349 (-857 (-142 |#1|))) (-830)) 44 (|has| |#1| (-495)) ELT) (((-3 (-142 (-329)) #1#) (-349 (-857 (-142 |#1|)))) 43 (|has| |#1| (-495)) ELT) (((-3 (-142 (-329)) #1#) (-349 (-857 |#1|)) (-830)) 38 (|has| |#1| (-495)) ELT) (((-3 (-142 (-329)) #1#) (-349 (-857 |#1|))) 37 (|has| |#1| (-495)) ELT) (((-3 (-142 (-329)) #1#) (-857 |#1|) (-830)) 28 (|has| |#1| (-961)) ELT) (((-3 (-142 (-329)) #1#) (-857 |#1|)) 26 (|has| |#1| (-961)) ELT) (((-3 (-142 (-329)) #1#) (-857 (-142 |#1|)) (-830)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-329)) #1#) (-857 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2461 (((-142 (-329)) (-265 (-142 |#1|)) (-830)) 95 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-329)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-329)) (-265 |#1|) (-830)) 93 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-329)) (-265 |#1|)) 91 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-329)) (-349 (-857 (-142 |#1|))) (-830)) 86 (|has| |#1| (-495)) ELT) (((-142 (-329)) (-349 (-857 (-142 |#1|)))) 85 (|has| |#1| (-495)) ELT) (((-142 (-329)) (-349 (-857 |#1|)) (-830)) 83 (|has| |#1| (-495)) ELT) (((-142 (-329)) (-349 (-857 |#1|))) 82 (|has| |#1| (-495)) ELT) (((-142 (-329)) (-857 |#1|) (-830)) 79 (|has| |#1| (-961)) ELT) (((-142 (-329)) (-857 |#1|)) 78 (|has| |#1| (-961)) ELT) (((-142 (-329)) (-857 (-142 |#1|)) (-830)) 75 (|has| |#1| (-146)) ELT) (((-142 (-329)) (-857 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-329)) (-142 |#1|) (-830)) 17 (|has| |#1| (-146)) ELT) (((-142 (-329)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-329)) |#1| (-830)) 27 T ELT) (((-142 (-329)) |#1|) 25 T ELT)))
-(((-708 |#1|) (-10 -7 (-15 -2460 ((-329) |#1|)) (-15 -2460 ((-329) |#1| (-830))) (-15 -2461 ((-142 (-329)) |#1|)) (-15 -2461 ((-142 (-329)) |#1| (-830))) (IF (|has| |#1| (-146)) (PROGN (-15 -2461 ((-142 (-329)) (-142 |#1|))) (-15 -2461 ((-142 (-329)) (-142 |#1|) (-830))) (-15 -2461 ((-142 (-329)) (-857 (-142 |#1|)))) (-15 -2461 ((-142 (-329)) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2460 ((-329) (-857 |#1|))) (-15 -2460 ((-329) (-857 |#1|) (-830))) (-15 -2461 ((-142 (-329)) (-857 |#1|))) (-15 -2461 ((-142 (-329)) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2460 ((-329) (-349 (-857 |#1|)))) (-15 -2460 ((-329) (-349 (-857 |#1|)) (-830))) (-15 -2461 ((-142 (-329)) (-349 (-857 |#1|)))) (-15 -2461 ((-142 (-329)) (-349 (-857 |#1|)) (-830))) (-15 -2461 ((-142 (-329)) (-349 (-857 (-142 |#1|))))) (-15 -2461 ((-142 (-329)) (-349 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2460 ((-329) (-265 |#1|))) (-15 -2460 ((-329) (-265 |#1|) (-830))) (-15 -2461 ((-142 (-329)) (-265 |#1|))) (-15 -2461 ((-142 (-329)) (-265 |#1|) (-830))) (-15 -2461 ((-142 (-329)) (-265 (-142 |#1|)))) (-15 -2461 ((-142 (-329)) (-265 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2463 ((-3 (-142 (-329)) #1="failed") (-857 (-142 |#1|)))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2462 ((-3 (-329) #1#) (-857 |#1|))) (-15 -2462 ((-3 (-329) #1#) (-857 |#1|) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-857 |#1|))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2462 ((-3 (-329) #1#) (-349 (-857 |#1|)))) (-15 -2462 ((-3 (-329) #1#) (-349 (-857 |#1|)) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-349 (-857 |#1|)))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-349 (-857 |#1|)) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-349 (-857 (-142 |#1|))))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-349 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2462 ((-3 (-329) #1#) (-265 |#1|))) (-15 -2462 ((-3 (-329) #1#) (-265 |#1|) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-265 |#1|))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-265 |#1|) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-265 (-142 |#1|)))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-265 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|)) (-553 (-329))) (T -708))
-((-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-349 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-142 (-329))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-329))))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-142 (-329))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-329))))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-329)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) (-2460 (*1 *2 *3) (-12 (-5 *2 (-329)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))))
-((-2467 (((-830) (-1072)) 90 T ELT)) (-2469 (((-3 (-329) "failed") (-1072)) 36 T ELT)) (-2468 (((-329) (-1072)) 34 T ELT)) (-2465 (((-830) (-1072)) 64 T ELT)) (-2466 (((-1072) (-830)) 74 T ELT)) (-2464 (((-1072) (-830)) 63 T ELT)))
-(((-709) (-10 -7 (-15 -2464 ((-1072) (-830))) (-15 -2465 ((-830) (-1072))) (-15 -2466 ((-1072) (-830))) (-15 -2467 ((-830) (-1072))) (-15 -2468 ((-329) (-1072))) (-15 -2469 ((-3 (-329) "failed") (-1072))))) (T -709))
-((-2469 (*1 *2 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-329)) (-5 *1 (-709)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-329)) (-5 *1 (-709)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1072)) (-5 *1 (-709)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1072)) (-5 *1 (-709)))))
-((-2472 (((-1184) (-1178 (-329)) (-484) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))) (-329) (-1178 (-329)) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329))) 54 T ELT) (((-1184) (-1178 (-329)) (-484) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))) (-329) (-1178 (-329)) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329))) 51 T ELT)) (-2473 (((-1184) (-1178 (-329)) (-484) (-329) (-329) (-484) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329))) 61 T ELT)) (-2471 (((-1184) (-1178 (-329)) (-484) (-329) (-329) (-329) (-329) (-484) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329))) 49 T ELT)) (-2470 (((-1184) (-1178 (-329)) (-484) (-329) (-329) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329))) 63 T ELT) (((-1184) (-1178 (-329)) (-484) (-329) (-329) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329))) 62 T ELT)))
-(((-710) (-10 -7 (-15 -2470 ((-1184) (-1178 (-329)) (-484) (-329) (-329) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)))) (-15 -2470 ((-1184) (-1178 (-329)) (-484) (-329) (-329) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)))) (-15 -2471 ((-1184) (-1178 (-329)) (-484) (-329) (-329) (-329) (-329) (-484) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)))) (-15 -2472 ((-1184) (-1178 (-329)) (-484) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))) (-329) (-1178 (-329)) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)))) (-15 -2472 ((-1184) (-1178 (-329)) (-484) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))) (-329) (-1178 (-329)) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)))) (-15 -2473 ((-1184) (-1178 (-329)) (-484) (-329) (-329) (-484) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)))))) (T -710))
-((-2473 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2472 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329)))) (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2472 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329)))) (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2471 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2470 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2470 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))))
-((-2482 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 65 T ELT)) (-2479 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 40 T ELT)) (-2481 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 64 T ELT)) (-2478 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 38 T ELT)) (-2480 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 63 T ELT)) (-2477 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 24 T ELT)) (-2476 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484)) 41 T ELT)) (-2475 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484)) 39 T ELT)) (-2474 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484)) 37 T ELT)))
-(((-711) (-10 -7 (-15 -2474 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484))) (-15 -2475 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484))) (-15 -2476 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484))) (-15 -2477 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2478 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2479 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2480 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2481 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2482 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))))) (T -711))
-((-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2474 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))))
-((-3704 (((-1124 |#1|) |#1| (-179) (-484)) 69 T ELT)))
-(((-712 |#1|) (-10 -7 (-15 -3704 ((-1124 |#1|) |#1| (-179) (-484)))) (-887)) (T -712))
-((-3704 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1124 *3)) (-5 *1 (-712 *3)) (-4 *3 (-887)))))
-((-3622 (((-484) $) 17 T ELT)) (-3187 (((-85) $) 10 T ELT)) (-3382 (($ $) 19 T ELT)))
-(((-713 |#1|) (-10 -7 (-15 -3382 (|#1| |#1|)) (-15 -3622 ((-484) |#1|)) (-15 -3187 ((-85) |#1|))) (-714)) (T -713))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-1311 (((-3 $ "failed") $ $) 35 T ELT)) (-3622 (((-484) $) 38 T ELT)) (-3723 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-3187 (((-85) $) 39 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3382 (($ $) 37 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3836 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-484) $) 40 T ELT)))
-(((-714) (-113)) (T -714))
-((-3187 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-484)))) (-3382 (*1 *1 *1) (-4 *1 (-714))))
-(-13 (-721) (-21) (-10 -8 (-15 -3187 ((-85) $)) (-15 -3622 ((-484) $)) (-15 -3382 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T))
-((-3186 (((-85) $) 10 T ELT)))
-(((-715 |#1|) (-10 -7 (-15 -3186 ((-85) |#1|))) (-716)) (T -715))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-3723 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT)))
-(((-716) (-113)) (T -716))
-((-3186 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))))
-(-13 (-718) (-23) (-10 -8 (-15 -3186 ((-85) $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-2483 (($ $ $) 36 T ELT)) (-1311 (((-3 $ "failed") $ $) 35 T ELT)) (-3723 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT)))
+((-2006 (((-1085 |#1|) (-695)) 114 T ELT)) (-3330 (((-1179 |#1|) (-1179 |#1|) (-831)) 107 T ELT)) (-2004 (((-1185) (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))) |#1|) 122 T ELT)) (-2008 (((-1179 |#1|) (-1179 |#1|) (-695)) 53 T ELT)) (-2995 (((-1179 |#1|) (-831)) 109 T ELT)) (-2010 (((-1179 |#1|) (-1179 |#1|) (-485)) 30 T ELT)) (-2005 (((-1085 |#1|) (-1179 |#1|)) 115 T ELT)) (-2014 (((-1179 |#1|) (-831)) 136 T ELT)) (-2012 (((-85) (-1179 |#1|)) 119 T ELT)) (-3133 (((-1179 |#1|) (-1179 |#1|) (-831)) 99 T ELT)) (-2015 (((-1085 |#1|) (-1179 |#1|)) 130 T ELT)) (-2011 (((-831) (-1179 |#1|)) 95 T ELT)) (-2485 (((-1179 |#1|) (-1179 |#1|)) 38 T ELT)) (-2401 (((-1179 |#1|) (-831) (-831)) 139 T ELT)) (-2009 (((-1179 |#1|) (-1179 |#1|) (-1034) (-1034)) 29 T ELT)) (-2007 (((-1179 |#1|) (-1179 |#1|) (-695) (-1034)) 54 T ELT)) (-2013 (((-1179 (-1179 |#1|)) (-831)) 135 T ELT)) (-3949 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 120 T ELT)) (** (((-1179 |#1|) (-1179 |#1|) (-485)) 67 T ELT)) (* (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 31 T ELT)))
+(((-467 |#1|) (-10 -7 (-15 -2004 ((-1185) (-1179 (-584 (-2 (|:| -3402 |#1|) (|:| -2401 (-1034))))) |#1|)) (-15 -2995 ((-1179 |#1|) (-831))) (-15 -2401 ((-1179 |#1|) (-831) (-831))) (-15 -2005 ((-1085 |#1|) (-1179 |#1|))) (-15 -2006 ((-1085 |#1|) (-695))) (-15 -2007 ((-1179 |#1|) (-1179 |#1|) (-695) (-1034))) (-15 -2008 ((-1179 |#1|) (-1179 |#1|) (-695))) (-15 -2009 ((-1179 |#1|) (-1179 |#1|) (-1034) (-1034))) (-15 -2010 ((-1179 |#1|) (-1179 |#1|) (-485))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-485))) (-15 * ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3949 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3133 ((-1179 |#1|) (-1179 |#1|) (-831))) (-15 -3330 ((-1179 |#1|) (-1179 |#1|) (-831))) (-15 -2485 ((-1179 |#1|) (-1179 |#1|))) (-15 -2011 ((-831) (-1179 |#1|))) (-15 -2012 ((-85) (-1179 |#1|))) (-15 -2013 ((-1179 (-1179 |#1|)) (-831))) (-15 -2014 ((-1179 |#1|) (-831))) (-15 -2015 ((-1085 |#1|) (-1179 |#1|)))) (-299)) (T -467))
+((-2015 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-467 *4)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1179 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-831)) (-5 *1 (-467 *4)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (-3330 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3949 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2010 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2009 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1034)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2007 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1179 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-299)) (-5 *1 (-467 *5)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1085 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-467 *4)))) (-2401 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1179 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1179 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-1185)) (-5 *1 (-467 *4)))))
+((-2001 (((-633 (-1138)) $) NIL T ELT)) (-1997 (((-633 (-1136)) $) NIL T ELT)) (-1999 (((-633 (-1135)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) NIL T ELT)) (-2003 (((-633 (-101)) $) 26 T ELT)) (-2016 (((-1034) $ (-1034)) 31 T ELT)) (-3419 (((-1034) $) 30 T ELT)) (-2559 (((-85) $) 20 T ELT)) (-2018 (($ (-338)) 14 T ELT) (($ (-1073)) 16 T ELT)) (-2017 (((-85) $) 27 T ELT)) (-3946 (((-773) $) 34 T ELT)) (-1700 (($ $) 28 T ELT)))
+(((-468) (-13 (-466) (-553 (-773)) (-10 -8 (-15 -2018 ($ (-338))) (-15 -2018 ($ (-1073))) (-15 -2017 ((-85) $)) (-15 -2559 ((-85) $)) (-15 -3419 ((-1034) $)) (-15 -2016 ((-1034) $ (-1034)))))) (T -468))
+((-2018 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-468)))) (-2018 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-468)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))) (-2016 (*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))))
+((-2020 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2019 (((-1 |#1| |#1|)) 10 T ELT)))
+(((-469 |#1|) (-10 -7 (-15 -2019 ((-1 |#1| |#1|))) (-15 -2020 ((-1 |#1| |#1|) |#1|))) (-13 (-664) (-25))) (T -469))
+((-2020 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))) (-2019 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3774 (((-584 (-454 (-695) |#1|)) $) NIL T ELT)) (-2484 (($ $ $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ (-695) |#1|) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3958 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-1984 ((|#1| $) NIL T ELT)) (-3175 (((-695) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3972 (($ (-584 (-454 (-695) |#1|))) NIL T ELT)) (-3946 (((-773) $) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
+(((-470 |#1|) (-13 (-718) (-450 (-695) |#1|)) (-757)) (T -470))
+NIL
+((-2022 (((-584 |#2|) (-1085 |#1|) |#3|) 98 T ELT)) (-2023 (((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-348 (-1085 |#1|)) (-1085 |#1|))) 114 T ELT)) (-2021 (((-1085 |#1|) (-631 |#1|)) 110 T ELT)))
+(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2021 ((-1085 |#1|) (-631 |#1|))) (-15 -2022 ((-584 |#2|) (-1085 |#1|) |#3|)) (-15 -2023 ((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-348 (-1085 |#1|)) (-1085 |#1|))))) (-312) (-312) (-13 (-312) (-756))) (T -471))
+((-2023 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-348 (-1085 *6)) (-1085 *6))) (-4 *6 (-312)) (-5 *2 (-584 (-2 (|:| |outval| *7) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *7)))))) (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *5)) (-4 *5 (-312)) (-5 *2 (-584 *6)) (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *2 (-1085 *4)) (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-756))))))
+((-2556 (((-633 (-1138)) $ (-1138)) NIL T ELT)) (-2557 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2555 (((-695) $ (-102)) 39 T ELT)) (-2558 (((-633 (-101)) $ (-101)) 40 T ELT)) (-2001 (((-633 (-1138)) $) NIL T ELT)) (-1997 (((-633 (-1136)) $) NIL T ELT)) (-1999 (((-633 (-1135)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) 35 T ELT)) (-2003 (((-633 (-101)) $) 37 T ELT)) (-2440 (((-85) $) 27 T ELT)) (-2441 (((-633 $) (-516) (-866)) 18 T ELT) (((-633 $) (-431) (-866)) 24 T ELT)) (-3946 (((-773) $) 48 T ELT)) (-1700 (($ $) 42 T ELT)))
+(((-472) (-13 (-692 (-516)) (-553 (-773)) (-10 -8 (-15 -2441 ((-633 $) (-431) (-866)))))) (T -472))
+((-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472)))))
+((-2528 (((-751 (-485))) 12 T ELT)) (-2527 (((-751 (-485))) 14 T ELT)) (-2515 (((-744 (-485))) 9 T ELT)))
+(((-473) (-10 -7 (-15 -2515 ((-744 (-485)))) (-15 -2528 ((-751 (-485)))) (-15 -2527 ((-751 (-485)))))) (T -473))
+((-2527 (*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2528 (*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2515 (*1 *2) (-12 (-5 *2 (-744 (-485))) (-5 *1 (-473)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2027 (((-1073) $) 55 T ELT)) (-3261 (((-85) $) 51 T ELT)) (-3257 (((-1090) $) 52 T ELT)) (-3262 (((-85) $) 49 T ELT)) (-3535 (((-1073) $) 50 T ELT)) (-2026 (($ (-1073)) 56 T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2029 (($ $ (-584 (-1090))) 21 T ELT)) (-2032 (((-51) $) 23 T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2384 (($ $ (-584 (-1090)) (-1090)) 73 T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-179) $) NIL T ELT)) (-2028 (($ $) 44 T ELT)) (-3254 (((-773) $) NIL T ELT)) (-3267 (((-85) $ $) NIL T ELT)) (-3800 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3258 (((-584 $) $) 30 T ELT)) (-2025 (((-1090) (-584 $)) 57 T ELT)) (-3972 (($ (-1073)) NIL T ELT) (($ (-1090)) 19 T ELT) (($ (-485)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) 65 T ELT) (((-1016) $) 12 T ELT) (($ (-1016)) 13 T ELT)) (-2024 (((-1090) (-1090) (-584 $)) 60 T ELT)) (-3946 (((-773) $) 54 T ELT)) (-3252 (($ $) 59 T ELT)) (-3253 (($ $) 58 T ELT)) (-2030 (($ $ (-584 $)) 66 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3265 (((-85) $) 29 T ELT)) (-2661 (($) 9 T CONST)) (-2667 (($) 11 T CONST)) (-3057 (((-85) $ $) 74 T ELT)) (-3949 (($ $ $) 82 T ELT)) (-3839 (($ $ $) 75 T ELT)) (** (($ $ (-695)) 81 T ELT) (($ $ (-485)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3957 (((-485) $) NIL T ELT)))
+(((-474) (-13 (-1017 (-1073) (-1090) (-485) (-179) (-773)) (-554 (-1016)) (-10 -8 (-15 -2032 ((-51) $)) (-15 -3972 ($ (-1016))) (-15 -2030 ($ $ (-584 $))) (-15 -2384 ($ $ (-584 (-1090)) (-1090))) (-15 -2029 ($ $ (-584 (-1090)))) (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 -3949 ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ (-485))) (-15 -2661 ($) -3952) (-15 -2667 ($) -3952) (-15 -2028 ($ $)) (-15 -2027 ((-1073) $)) (-15 -2026 ($ (-1073))) (-15 -2025 ((-1090) (-584 $))) (-15 -2024 ((-1090) (-1090) (-584 $)))))) (T -474))
+((-2032 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-474)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-474))) (-5 *1 (-474)))) (-2384 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-1090)) (-5 *1 (-474)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-474)))) (-3839 (*1 *1 *1 *1) (-5 *1 (-474))) (* (*1 *1 *1 *1) (-5 *1 (-474))) (-3949 (*1 *1 *1 *1) (-5 *1 (-474))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-474)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474)))) (-2661 (*1 *1) (-5 *1 (-474))) (-2667 (*1 *1) (-5 *1 (-474))) (-2028 (*1 *1 *1) (-5 *1 (-474))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-474)))) (-2026 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-474)))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-584 (-474))) (-5 *2 (-1090)) (-5 *1 (-474)))) (-2024 (*1 *2 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-584 (-474))) (-5 *1 (-474)))))
+((-2031 (((-474) (-1090)) 15 T ELT)) (-2032 ((|#1| (-474)) 20 T ELT)))
+(((-475 |#1|) (-10 -7 (-15 -2031 ((-474) (-1090))) (-15 -2032 (|#1| (-474)))) (-1129)) (T -475))
+((-2032 (*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1129)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1129)))))
+((-3453 ((|#2| |#2|) 17 T ELT)) (-3451 ((|#2| |#2|) 13 T ELT)) (-3454 ((|#2| |#2| (-485) (-485)) 20 T ELT)) (-3452 ((|#2| |#2|) 15 T ELT)))
+(((-476 |#1| |#2|) (-10 -7 (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2| (-485) (-485)))) (-13 (-496) (-120)) (-1172 |#1|)) (T -476))
+((-3454 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2)) (-4 *2 (-1172 *4)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1172 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1172 *3)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1172 *3)))))
+((-2035 (((-584 (-249 (-858 |#2|))) (-584 |#2|) (-584 (-1090))) 32 T ELT)) (-2033 (((-584 |#2|) (-858 |#1|) |#3|) 54 T ELT) (((-584 |#2|) (-1085 |#1|) |#3|) 53 T ELT)) (-2034 (((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1090)) |#3|) 106 T ELT)))
+(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2033 ((-584 |#2|) (-1085 |#1|) |#3|)) (-15 -2033 ((-584 |#2|) (-858 |#1|) |#3|)) (-15 -2034 ((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1090)) |#3|)) (-15 -2035 ((-584 (-249 (-858 |#2|))) (-584 |#2|) (-584 (-1090))))) (-392) (-312) (-13 (-312) (-756))) (T -477))
+((-2035 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1090))) (-4 *6 (-312)) (-5 *2 (-584 (-249 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-13 (-312) (-756))))) (-2034 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1090))) (-4 *6 (-392)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-756))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))))
+((-2038 ((|#2| |#2| |#1|) 17 T ELT)) (-2036 ((|#2| (-584 |#2|)) 30 T ELT)) (-2037 ((|#2| (-584 |#2|)) 51 T ELT)))
+(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2036 (|#2| (-584 |#2|))) (-15 -2037 (|#2| (-584 |#2|))) (-15 -2038 (|#2| |#2| |#1|))) (-258) (-1155 |#1|) |#1| (-1 |#1| |#1| (-695))) (T -478))
+((-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695))) (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1155 *3)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))))
+((-3732 (((-348 (-1085 |#4|)) (-1085 |#4|) (-1 (-348 (-1085 |#3|)) (-1085 |#3|))) 90 T ELT) (((-348 |#4|) |#4| (-1 (-348 (-1085 |#3|)) (-1085 |#3|))) 213 T ELT)))
+(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4| (-1 (-348 (-1085 |#3|)) (-1085 |#3|)))) (-15 -3732 ((-348 (-1085 |#4|)) (-1085 |#4|) (-1 (-348 (-1085 |#3|)) (-1085 |#3|))))) (-757) (-718) (-13 (-258) (-120)) (-862 |#3| |#2| |#1|)) (T -479))
+((-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) (-5 *2 (-348 (-1085 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1085 *8)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-479 *5 *6 *7 *3)) (-4 *3 (-862 *7 *6 *5)))))
+((-3453 ((|#4| |#4|) 74 T ELT)) (-3451 ((|#4| |#4|) 70 T ELT)) (-3454 ((|#4| |#4| (-485) (-485)) 76 T ELT)) (-3452 ((|#4| |#4|) 72 T ELT)))
+(((-480 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3451 (|#4| |#4|)) (-15 -3452 (|#4| |#4|)) (-15 -3453 (|#4| |#4|)) (-15 -3454 (|#4| |#4| (-485) (-485)))) (-13 (-312) (-320) (-554 (-485))) (-1155 |#1|) (-662 |#1| |#2|) (-1172 |#3|)) (T -480))
+((-3454 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-4 *5 (-1155 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1172 *6)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1155 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1155 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1155 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))))
+((-3453 ((|#2| |#2|) 27 T ELT)) (-3451 ((|#2| |#2|) 23 T ELT)) (-3454 ((|#2| |#2| (-485) (-485)) 29 T ELT)) (-3452 ((|#2| |#2|) 25 T ELT)))
+(((-481 |#1| |#2|) (-10 -7 (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2| (-485) (-485)))) (-13 (-312) (-320) (-554 (-485))) (-1172 |#1|)) (T -481))
+((-3454 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-5 *1 (-481 *4 *2)) (-4 *2 (-1172 *4)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1172 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1172 *3)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1172 *3)))))
+((-2039 (((-3 (-485) #1="failed") |#2| |#1| (-1 (-3 (-485) #1#) |#1|)) 18 T ELT) (((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|)) 14 T ELT) (((-3 (-485) #1#) |#2| (-485) (-1 (-3 (-485) #1#) |#1|)) 30 T ELT)))
+(((-482 |#1| |#2|) (-10 -7 (-15 -2039 ((-3 (-485) #1="failed") |#2| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2039 ((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2039 ((-3 (-485) #1#) |#2| |#1| (-1 (-3 (-485) #1#) |#1|)))) (-962) (-1155 |#1|)) (T -482))
+((-2039 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1="failed") *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1155 *4)))) (-2039 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1155 *4)))) (-2039 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-485) #1#) *5)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1155 *5)))))
+((-2048 (($ $ $) 87 T ELT)) (-3971 (((-348 $) $) 50 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 62 T ELT)) (-3157 (((-485) $) 40 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 80 T ELT)) (-3024 (((-85) $) 24 T ELT)) (-3023 (((-350 (-485)) $) 78 T ELT)) (-3723 (((-85) $) 53 T ELT)) (-2041 (($ $ $ $) 94 T ELT)) (-1369 (($ $ $) 60 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 75 T ELT)) (-3445 (((-633 $) $) 70 T ELT)) (-2045 (($ $) 22 T ELT)) (-2040 (($ $ $) 92 T ELT)) (-3446 (($) 63 T CONST)) (-1367 (($ $) 56 T ELT)) (-3732 (((-348 $) $) 48 T ELT)) (-2675 (((-85) $) 15 T ELT)) (-1607 (((-695) $) 30 T ELT)) (-3758 (($ $) 11 T ELT) (($ $ (-695)) NIL T ELT)) (-3400 (($ $) 16 T ELT)) (-3972 (((-485) $) NIL T ELT) (((-474) $) 39 T ELT) (((-801 (-485)) $) 43 T ELT) (((-330) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3127 (((-695)) 9 T CONST)) (-2050 (((-85) $ $) 19 T ELT)) (-3102 (($ $ $) 58 T ELT)))
+(((-483 |#1|) (-10 -7 (-15 -2040 (|#1| |#1| |#1|)) (-15 -2041 (|#1| |#1| |#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -3400 (|#1| |#1|)) (-15 -3025 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2050 ((-85) |#1| |#1|)) (-15 -2675 ((-85) |#1|)) (-15 -3446 (|#1|) -3952) (-15 -3445 ((-633 |#1|) |#1|)) (-15 -3972 ((-179) |#1|)) (-15 -3972 ((-330) |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1367 (|#1| |#1|)) (-15 -3102 (|#1| |#1| |#1|)) (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3972 ((-801 (-485)) |#1|)) (-15 -3972 ((-474) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3972 ((-485) |#1|)) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1|)) (-15 -1607 ((-695) |#1|)) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -3723 ((-85) |#1|)) (-15 -3127 ((-695)) -3952)) (-484)) (T -483))
+((-3127 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-2048 (($ $ $) 102 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2043 (($ $ $ $) 91 T ELT)) (-3775 (($ $) 66 T ELT)) (-3971 (((-348 $) $) 67 T ELT)) (-1608 (((-85) $ $) 145 T ELT)) (-3623 (((-485) $) 134 T ELT)) (-2442 (($ $ $) 105 T ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 (-485) "failed") $) 126 T ELT)) (-3157 (((-485) $) 127 T ELT)) (-2565 (($ $ $) 149 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 124 T ELT) (((-631 (-485)) (-631 $)) 123 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3025 (((-3 (-350 (-485)) "failed") $) 99 T ELT)) (-3024 (((-85) $) 101 T ELT)) (-3023 (((-350 (-485)) $) 100 T ELT)) (-2995 (($) 98 T ELT) (($ $) 97 T ELT)) (-2564 (($ $ $) 148 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 143 T ELT)) (-3723 (((-85) $) 68 T ELT)) (-2041 (($ $ $ $) 89 T ELT)) (-2049 (($ $ $) 103 T ELT)) (-3187 (((-85) $) 136 T ELT)) (-1369 (($ $ $) 114 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 117 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2674 (((-85) $) 109 T ELT)) (-3445 (((-633 $) $) 111 T ELT)) (-3188 (((-85) $) 135 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 152 T ELT)) (-2042 (($ $ $ $) 90 T ELT)) (-2532 (($ $ $) 142 T ELT)) (-2858 (($ $ $) 141 T ELT)) (-2045 (($ $) 93 T ELT)) (-3833 (($ $) 106 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 122 T ELT) (((-631 (-485)) (-1179 $)) 121 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2040 (($ $ $) 88 T ELT)) (-3446 (($) 110 T CONST)) (-2047 (($ $) 95 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1367 (($ $) 115 T ELT)) (-3732 (((-348 $) $) 65 T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 150 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 144 T ELT)) (-2675 (((-85) $) 108 T ELT)) (-1607 (((-695) $) 146 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 147 T ELT)) (-3758 (($ $) 132 T ELT) (($ $ (-695)) 130 T ELT)) (-2046 (($ $) 94 T ELT)) (-3400 (($ $) 96 T ELT)) (-3972 (((-485) $) 128 T ELT) (((-474) $) 119 T ELT) (((-801 (-485)) $) 118 T ELT) (((-330) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 125 T ELT)) (-3127 (((-695)) 40 T CONST)) (-2050 (((-85) $ $) 104 T ELT)) (-3102 (($ $ $) 116 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2695 (($) 107 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2044 (($ $ $ $) 92 T ELT)) (-3383 (($ $) 133 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $) 131 T ELT) (($ $ (-695)) 129 T ELT)) (-2567 (((-85) $ $) 140 T ELT)) (-2568 (((-85) $ $) 138 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 139 T ELT)) (-2686 (((-85) $ $) 137 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-485) $) 120 T ELT)))
+(((-484) (-113)) (T -484))
+((-2674 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2695 (*1 *1) (-4 *1 (-484))) (-3833 (*1 *1 *1) (-4 *1 (-484))) (-2442 (*1 *1 *1 *1) (-4 *1 (-484))) (-2050 (*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2049 (*1 *1 *1 *1) (-4 *1 (-484))) (-2048 (*1 *1 *1 *1) (-4 *1 (-484))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) (-2995 (*1 *1) (-4 *1 (-484))) (-2995 (*1 *1 *1) (-4 *1 (-484))) (-3400 (*1 *1 *1) (-4 *1 (-484))) (-2047 (*1 *1 *1) (-4 *1 (-484))) (-2046 (*1 *1 *1) (-4 *1 (-484))) (-2045 (*1 *1 *1) (-4 *1 (-484))) (-2044 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2040 (*1 *1 *1 *1) (-4 *1 (-484))))
+(-13 (-1134) (-258) (-741) (-190) (-554 (-485)) (-951 (-485)) (-581 (-485)) (-554 (-474)) (-554 (-801 (-485))) (-797 (-485)) (-116) (-934) (-120) (-1066) (-10 -8 (-15 -2674 ((-85) $)) (-15 -2675 ((-85) $)) (-6 -3994) (-15 -2695 ($)) (-15 -3833 ($ $)) (-15 -2442 ($ $ $)) (-15 -2050 ((-85) $ $)) (-15 -2049 ($ $ $)) (-15 -2048 ($ $ $)) (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $)) (-15 -2995 ($)) (-15 -2995 ($ $)) (-15 -3400 ($ $)) (-15 -2047 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $ $ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $)) (-6 -3993)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-116) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-474)) . T) ((-554 (-485)) . T) ((-554 (-801 (-485))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 $) . T) ((-581 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-741) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-485)) . T) ((-833) . T) ((-934) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1066) . T) ((-1129) . T) ((-1134) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 8 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 77 T ELT)) (-2064 (($ $) 78 T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) 31 T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL T ELT)) (-2442 (($ $ $) 71 T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL T ELT)) (-2565 (($ $ $) 45 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 53 T ELT) (((-631 (-485)) (-631 $)) 49 T ELT)) (-3467 (((-3 $ #1#) $) 74 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3024 (((-85) $) NIL T ELT)) (-3023 (((-350 (-485)) $) NIL T ELT)) (-2995 (($) 55 T ELT) (($ $) 56 T ELT)) (-2564 (($ $ $) 70 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) 46 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1214 (((-85) $ $) 110 T ELT)) (-2411 (((-85) $) 9 T ELT)) (-2674 (((-85) $) 64 T ELT)) (-3445 (((-633 $) $) NIL T ELT)) (-3188 (((-85) $) 21 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) 32 T ELT)) (-2532 (($ $ $) 67 T ELT)) (-2858 (($ $ $) 66 T ELT)) (-2045 (($ $) NIL T ELT)) (-3833 (($ $) 29 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL T ELT) (((-631 (-485)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) 44 T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2047 (($ $) 15 T ELT)) (-3244 (((-1034) $) 19 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 109 T ELT)) (-3145 (($ $ $) 75 T ELT) (($ (-584 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3732 (((-348 $) $) 95 T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) 93 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) 65 T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 69 T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) 17 T ELT)) (-3400 (($ $) 13 T ELT)) (-3972 (((-485) $) 28 T ELT) (((-474) $) 41 T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3946 (((-773) $) 26 T ELT) (($ (-485)) 27 T ELT) (($ $) NIL T ELT) (($ (-485)) 27 T ELT)) (-3127 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3102 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (($) 12 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) 112 T ELT)) (-2044 (($ $ $ $) 30 T ELT)) (-3383 (($ $) 54 T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 11 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2567 (((-85) $ $) 59 T ELT)) (-2568 (((-85) $ $) 57 T ELT)) (-3057 (((-85) $ $) 7 T ELT)) (-2685 (((-85) $ $) 58 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-3837 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3839 (($ $ $) 14 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 63 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-485) $) 61 T ELT)))
+(((-485) (-13 (-484) (-10 -7 (-6 -3982) (-6 -3987) (-6 -3983)))) (T -485))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-486) (-13 (-753) (-10 -8 (-15 -3724 ($) -3952)))) (T -486))
+((-3724 (*1 *1) (-5 *1 (-486))))
+((-485) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-487) (-13 (-753) (-10 -8 (-15 -3724 ($) -3952)))) (T -487))
+((-3724 (*1 *1) (-5 *1 (-487))))
+((-485) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-488) (-13 (-753) (-10 -8 (-15 -3724 ($) -3952)))) (T -488))
+((-3724 (*1 *1) (-5 *1 (-488))))
+((-485) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-489) (-13 (-753) (-10 -8 (-15 -3724 ($) -3952)))) (T -489))
+((-3724 (*1 *1) (-5 *1 (-489))))
+((-485) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-773) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-490 |#1| |#2| |#3|) (-1107 |#1| |#2|) (-1014) (-1014) (-1107 |#1| |#2|)) (T -490))
+NIL
+((-2051 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1085 |#2|) (-1085 |#2|))) 50 T ELT)))
+(((-491 |#1| |#2|) (-10 -7 (-15 -2051 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1085 |#2|) (-1085 |#2|))))) (-496) (-13 (-27) (-364 |#1|))) (T -491))
+((-2051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1085 *3) (-1085 *3))) (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3)) (-5 *1 (-491 *6 *3)))))
+((-2053 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2054 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2052 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT)))
+(((-492 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2052 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2053 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2054 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-496) (-951 (-485))) (-13 (-27) (-364 |#1|)) (-1155 |#2|) (-1155 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -492))
+((-2054 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *7 (-1155 (-350 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1155 (-350 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1155 (-350 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
+((-2057 (((-85) (-485) (-485)) 12 T ELT)) (-2055 (((-485) (-485)) 7 T ELT)) (-2056 (((-485) (-485) (-485)) 10 T ELT)))
+(((-493) (-10 -7 (-15 -2055 ((-485) (-485))) (-15 -2056 ((-485) (-485) (-485))) (-15 -2057 ((-85) (-485) (-485))))) (T -493))
+((-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493)))) (-2056 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))) (-2055 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2605 ((|#1| $) 77 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3492 (($ $) 107 T ELT)) (-3639 (($ $) 90 T ELT)) (-2484 ((|#1| $) 78 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $) 89 T ELT)) (-3490 (($ $) 106 T ELT)) (-3638 (($ $) 91 T ELT)) (-3494 (($ $) 105 T ELT)) (-3637 (($ $) 92 T ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 (-485) "failed") $) 85 T ELT)) (-3157 (((-485) $) 86 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2060 (($ |#1| |#1|) 82 T ELT)) (-3187 (((-85) $) 76 T ELT)) (-3627 (($) 117 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 88 T ELT)) (-3188 (((-85) $) 75 T ELT)) (-2532 (($ $ $) 118 T ELT)) (-2858 (($ $ $) 119 T ELT)) (-3942 (($ $) 114 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2061 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-350 (-485))) 80 T ELT)) (-2059 ((|#1| $) 79 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3943 (($ $) 115 T ELT)) (-3495 (($ $) 104 T ELT)) (-3636 (($ $) 93 T ELT)) (-3493 (($ $) 103 T ELT)) (-3635 (($ $) 94 T ELT)) (-3491 (($ $) 102 T ELT)) (-3634 (($ $) 95 T ELT)) (-2058 (((-85) $ |#1|) 74 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 84 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 113 T ELT)) (-3486 (($ $) 101 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3496 (($ $) 112 T ELT)) (-3484 (($ $) 100 T ELT)) (-3500 (($ $) 111 T ELT)) (-3488 (($ $) 99 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 110 T ELT)) (-3489 (($ $) 98 T ELT)) (-3499 (($ $) 109 T ELT)) (-3487 (($ $) 97 T ELT)) (-3497 (($ $) 108 T ELT)) (-3485 (($ $) 96 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 120 T ELT)) (-2568 (((-85) $ $) 122 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 121 T ELT)) (-2686 (((-85) $ $) 123 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-350 (-485))) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-494 |#1|) (-113) (-13 (-347) (-1115))) (T -494))
+((-2061 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2060 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2061 (*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2061 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1115))))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115))))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))) (-2058 (*1 *2 *1 *3) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))))
+(-13 (-392) (-757) (-1115) (-916) (-951 (-485)) (-10 -8 (-6 -3770) (-15 -2061 ($ |t#1| |t#1|)) (-15 -2060 ($ |t#1| |t#1|)) (-15 -2061 ($ |t#1|)) (-15 -2061 ($ (-350 (-485)))) (-15 -2059 (|t#1| $)) (-15 -2484 (|t#1| $)) (-15 -2605 (|t#1| $)) (-15 -3187 ((-85) $)) (-15 -3188 ((-85) $)) (-15 -2058 ((-85) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-392) . T) ((-433) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-757) . T) ((-760) . T) ((-916) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1115) . T) ((-1118) . T) ((-1129) . T))
+((-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 9 T ELT)) (-2064 (($ $) 11 T ELT)) (-2062 (((-85) $) 20 T ELT)) (-3467 (((-3 $ "failed") $) 16 T ELT)) (-2063 (((-85) $ $) 22 T ELT)))
+(((-495 |#1|) (-10 -7 (-15 -2062 ((-85) |#1|)) (-15 -2063 ((-85) |#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2065 ((-2 (|:| -1772 |#1|) (|:| -3982 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3467 ((-3 |#1| "failed") |#1|))) (-496)) (T -495))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-496) (-113)) (T -496))
+((-3466 (*1 *1 *1 *1) (|partial| -4 *1 (-496))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1772 *1) (|:| -3982 *1) (|:| |associate| *1))) (-4 *1 (-496)))) (-2064 (*1 *1 *1) (-4 *1 (-496))) (-2063 (*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))))
+(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3466 ((-3 $ "failed") $ $)) (-15 -2065 ((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $)) (-15 -2064 ($ $)) (-15 -2063 ((-85) $ $)) (-15 -2062 ((-85) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2067 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1090) (-584 |#2|)) 38 T ELT)) (-2069 (((-520 |#2|) |#2| (-1090)) 63 T ELT)) (-2068 (((-3 |#2| #1#) |#2| (-1090)) 156 T ELT)) (-2070 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1090) (-551 |#2|) (-584 (-551 |#2|))) 159 T ELT)) (-2066 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1090) |#2|) 41 T ELT)))
+(((-497 |#1| |#2|) (-10 -7 (-15 -2066 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1090) |#2|)) (-15 -2067 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1090) (-584 |#2|))) (-15 -2068 ((-3 |#2| #1#) |#2| (-1090))) (-15 -2069 ((-520 |#2|) |#2| (-1090))) (-15 -2070 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1090) (-551 |#2|) (-584 (-551 |#2|))))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1115) (-364 |#1|))) (T -497))
+((-2070 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1090)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2068 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-2067 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *6 *3)))) (-2066 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
+((-3971 (((-348 |#1|) |#1|) 17 T ELT)) (-3732 (((-348 |#1|) |#1|) 32 T ELT)) (-2072 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2071 (((-348 |#1|) |#1|) 59 T ELT)))
+(((-498 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -2071 ((-348 |#1|) |#1|)) (-15 -2072 ((-3 |#1| "failed") |#1|))) (-484)) (T -498))
+((-2072 (*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484)))) (-2071 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3971 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))))
+((-3084 (((-1085 (-350 (-1085 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1085 |#2|)) 35 T ELT)) (-2075 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-350 (-1085 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1085 |#2|)) 115 T ELT)) (-2073 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1085 |#2|))) 85 T ELT) (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1085 |#2|)) 55 T ELT)) (-2074 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-350 (-1085 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1085 |#2|)) 114 T ELT)) (-2076 (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) (-551 |#2|) |#2| (-350 (-1085 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) |#2| (-1085 |#2|)) 116 T ELT)) (-2077 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1085 |#2|))) 133 (|has| |#3| (-601 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1085 |#2|)) 132 (|has| |#3| (-601 |#2|)) ELT)) (-3085 ((|#2| (-1085 (-350 (-1085 |#2|))) (-551 |#2|) |#2|) 53 T ELT)) (-3080 (((-1085 (-350 (-1085 |#2|))) (-1085 |#2|) (-551 |#2|)) 34 T ELT)))
+(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -2073 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1085 |#2|))) (-15 -2073 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -2074 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1085 |#2|))) (-15 -2074 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -2075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1085 |#2|))) (-15 -2075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -2076 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) |#2| (-1085 |#2|))) (-15 -2076 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) (-551 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -3084 ((-1085 (-350 (-1085 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1085 |#2|))) (-15 -3085 (|#2| (-1085 (-350 (-1085 |#2|))) (-551 |#2|) |#2|)) (-15 -3080 ((-1085 (-350 (-1085 |#2|))) (-1085 |#2|) (-551 |#2|))) (IF (|has| |#3| (-601 |#2|)) (PROGN (-15 -2077 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1085 |#2|))) (-15 -2077 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1085 |#2|))))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-120) (-581 (-485))) (-13 (-364 |#1|) (-27) (-1115)) (-1014)) (T -499))
+((-2077 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-350 (-1085 *4))) (-4 *4 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2077 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1085 *4)) (-4 *4 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-1085 (-350 (-1085 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1085 *6)) (-4 *7 (-1014)))) (-3085 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1085 (-350 (-1085 *2)))) (-5 *4 (-551 *2)) (-4 *2 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014)))) (-3084 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-1085 (-350 (-1085 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1085 *3)) (-4 *7 (-1014)))) (-2076 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1090))) (-5 *5 (-350 (-1085 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2076 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1090))) (-5 *5 (-1085 *2)) (-4 *2 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-350 (-1085 *3))) (-4 *3 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1085 *3)) (-4 *3 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1085 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1085 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2073 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1085 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2073 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1085 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))))
+((-2087 (((-485) (-485) (-695)) 87 T ELT)) (-2086 (((-485) (-485)) 85 T ELT)) (-2085 (((-485) (-485)) 82 T ELT)) (-2084 (((-485) (-485)) 89 T ELT)) (-2806 (((-485) (-485) (-485)) 67 T ELT)) (-2083 (((-485) (-485) (-485)) 64 T ELT)) (-2082 (((-350 (-485)) (-485)) 29 T ELT)) (-2081 (((-485) (-485)) 34 T ELT)) (-2080 (((-485) (-485)) 76 T ELT)) (-2803 (((-485) (-485)) 47 T ELT)) (-2079 (((-584 (-485)) (-485)) 81 T ELT)) (-2078 (((-485) (-485) (-485) (-485) (-485)) 60 T ELT)) (-2799 (((-350 (-485)) (-485)) 56 T ELT)))
+(((-500) (-10 -7 (-15 -2799 ((-350 (-485)) (-485))) (-15 -2078 ((-485) (-485) (-485) (-485) (-485))) (-15 -2079 ((-584 (-485)) (-485))) (-15 -2803 ((-485) (-485))) (-15 -2080 ((-485) (-485))) (-15 -2081 ((-485) (-485))) (-15 -2082 ((-350 (-485)) (-485))) (-15 -2083 ((-485) (-485) (-485))) (-15 -2806 ((-485) (-485) (-485))) (-15 -2084 ((-485) (-485))) (-15 -2085 ((-485) (-485))) (-15 -2086 ((-485) (-485))) (-15 -2087 ((-485) (-485) (-695))))) (T -500))
+((-2087 (*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2806 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2083 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2082 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2079 (*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2078 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))))
+((-2088 (((-2 (|:| |answer| |#4|) (|:| -2136 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT)))
+(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2088 ((-2 (|:| |answer| |#4|) (|:| -2136 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -501))
+((-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-4 *7 (-1155 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2136 *3))) (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))))
+((-2088 (((-2 (|:| |answer| (-350 |#2|)) (|:| -2136 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 18 T ELT)))
+(((-502 |#1| |#2|) (-10 -7 (-15 -2088 ((-2 (|:| |answer| (-350 |#2|)) (|:| -2136 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1155 |#1|)) (T -502))
+((-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-350 *6)) (|:| -2136 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-502 *5 *6)) (-5 *3 (-350 *6)))))
+((-2091 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|)) 195 T ELT)) (-2089 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|)) 97 T ELT)) (-2090 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2|) 191 T ELT)) (-2092 (((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090))) 200 T ELT)) (-2093 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1090)) 209 (|has| |#3| (-601 |#2|)) ELT)))
+(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2089 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|))) (-15 -2090 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2|)) (-15 -2091 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|))) (-15 -2092 ((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)))) (IF (|has| |#3| (-601 |#2|)) (-15 -2093 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1090))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-120) (-581 (-485))) (-13 (-364 |#1|) (-27) (-1115)) (-1014)) (T -503))
+((-2093 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1090)) (-4 *4 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2092 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1090))) (-4 *2 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014)))) (-2091 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014)))) (-2090 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))) (-2089 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))))
+((-2094 (((-2 (|:| -2339 |#2|) (|:| |nconst| |#2|)) |#2| (-1090)) 64 T ELT)) (-2096 (((-3 |#2| #1="failed") |#2| (-1090) (-751 |#2|) (-751 |#2|)) 174 (-12 (|has| |#2| (-1053)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1090)) 145 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT)) (-2095 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1090)) 156 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT)))
+(((-504 |#1| |#2|) (-10 -7 (-15 -2094 ((-2 (|:| -2339 |#2|) (|:| |nconst| |#2|)) |#2| (-1090))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (PROGN (IF (|has| |#2| (-570)) (PROGN (-15 -2095 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1090))) (-15 -2096 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1090)))) |%noBranch|) (IF (|has| |#2| (-1053)) (-15 -2096 ((-3 |#2| #1#) |#2| (-1090) (-751 |#2|) (-751 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-951 (-485)) (-392) (-581 (-485))) (-13 (-27) (-1115) (-364 |#1|))) (T -504))
+((-2096 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-751 *2)) (-4 *2 (-1053)) (-4 *2 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *1 (-504 *5 *2)))) (-2096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2094 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| -2339 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
+((-2099 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1="failed") (-350 |#2|) (-584 (-350 |#2|))) 41 T ELT)) (-3812 (((-520 (-350 |#2|)) (-350 |#2|)) 28 T ELT)) (-2097 (((-3 (-350 |#2|) #1#) (-350 |#2|)) 17 T ELT)) (-2098 (((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|)) 48 T ELT)))
+(((-505 |#1| |#2|) (-10 -7 (-15 -3812 ((-520 (-350 |#2|)) (-350 |#2|))) (-15 -2097 ((-3 (-350 |#2|) #1="failed") (-350 |#2|))) (-15 -2098 ((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|))) (-15 -2099 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-584 (-350 |#2|))))) (-13 (-312) (-120) (-951 (-485))) (-1155 |#1|)) (T -505))
+((-2099 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-584 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *5 *6)))) (-2098 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2137 (-350 *5)) (|:| |coeff| (-350 *5)))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))) (-2097 (*1 *2 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120) (-951 (-485)))) (-5 *1 (-505 *3 *4)))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1155 *4)) (-5 *2 (-520 (-350 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))))
+((-2100 (((-3 (-485) "failed") |#1|) 14 T ELT)) (-3260 (((-85) |#1|) 13 T ELT)) (-3256 (((-485) |#1|) 9 T ELT)))
+(((-506 |#1|) (-10 -7 (-15 -3256 ((-485) |#1|)) (-15 -3260 ((-85) |#1|)) (-15 -2100 ((-3 (-485) "failed") |#1|))) (-951 (-485))) (T -506))
+((-2100 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))) (-3260 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485))))) (-3256 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))))
+((-2103 (((-3 (-2 (|:| |mainpart| (-350 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 (-858 |#1|))) (|:| |logand| (-350 (-858 |#1|))))))) #1="failed") (-350 (-858 |#1|)) (-1090) (-584 (-350 (-858 |#1|)))) 48 T ELT)) (-2101 (((-520 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-1090)) 28 T ELT)) (-2102 (((-3 (-350 (-858 |#1|)) #1#) (-350 (-858 |#1|)) (-1090)) 23 T ELT)) (-2104 (((-3 (-2 (|:| -2137 (-350 (-858 |#1|))) (|:| |coeff| (-350 (-858 |#1|)))) #1#) (-350 (-858 |#1|)) (-1090) (-350 (-858 |#1|))) 35 T ELT)))
+(((-507 |#1|) (-10 -7 (-15 -2101 ((-520 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-1090))) (-15 -2102 ((-3 (-350 (-858 |#1|)) #1="failed") (-350 (-858 |#1|)) (-1090))) (-15 -2103 ((-3 (-2 (|:| |mainpart| (-350 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 (-858 |#1|))) (|:| |logand| (-350 (-858 |#1|))))))) #1#) (-350 (-858 |#1|)) (-1090) (-584 (-350 (-858 |#1|))))) (-15 -2104 ((-3 (-2 (|:| -2137 (-350 (-858 |#1|))) (|:| |coeff| (-350 (-858 |#1|)))) #1#) (-350 (-858 |#1|)) (-1090) (-350 (-858 |#1|))))) (-13 (-496) (-951 (-485)) (-120))) (T -507))
+((-2104 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-2 (|:| -2137 (-350 (-858 *5))) (|:| |coeff| (-350 (-858 *5))))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))) (-2103 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-584 (-350 (-858 *6)))) (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-507 *6)))) (-2102 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)) (-120))) (-5 *1 (-507 *4)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-520 (-350 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))))
+((-2569 (((-85) $ $) 77 T ELT)) (-3189 (((-85) $) 49 T ELT)) (-2605 ((|#1| $) 39 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) 81 T ELT)) (-3492 (($ $) 142 T ELT)) (-3639 (($ $) 120 T ELT)) (-2484 ((|#1| $) 37 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL T ELT)) (-3490 (($ $) 144 T ELT)) (-3638 (($ $) 116 T ELT)) (-3494 (($ $) 146 T ELT)) (-3637 (($ $) 124 T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) 95 T ELT)) (-3157 (((-485) $) 97 T ELT)) (-3467 (((-3 $ #1#) $) 80 T ELT)) (-2060 (($ |#1| |#1|) 35 T ELT)) (-3187 (((-85) $) 44 T ELT)) (-3627 (($) 106 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 56 T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3188 (((-85) $) 46 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3942 (($ $) 108 T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2061 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-350 (-485))) 94 T ELT)) (-2059 ((|#1| $) 36 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) 83 T ELT) (($ (-584 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) 82 T ELT)) (-3943 (($ $) 110 T ELT)) (-3495 (($ $) 150 T ELT)) (-3636 (($ $) 122 T ELT)) (-3493 (($ $) 152 T ELT)) (-3635 (($ $) 126 T ELT)) (-3491 (($ $) 148 T ELT)) (-3634 (($ $) 118 T ELT)) (-2058 (((-85) $ |#1|) 42 T ELT)) (-3946 (((-773) $) 102 T ELT) (($ (-485)) 85 T ELT) (($ $) NIL T ELT) (($ (-485)) 85 T ELT)) (-3127 (((-695)) 104 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 164 T ELT)) (-3486 (($ $) 132 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 162 T ELT)) (-3484 (($ $) 128 T ELT)) (-3500 (($ $) 160 T ELT)) (-3488 (($ $) 140 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 158 T ELT)) (-3489 (($ $) 138 T ELT)) (-3499 (($ $) 156 T ELT)) (-3487 (($ $) 134 T ELT)) (-3497 (($ $) 154 T ELT)) (-3485 (($ $) 130 T ELT)) (-2661 (($) 30 T CONST)) (-2667 (($) 10 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 50 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 48 T ELT)) (-3837 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3839 (($ $ $) 53 T ELT)) (** (($ $ (-831)) 73 T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-350 (-485))) 166 T ELT)) (* (($ (-831) $) 67 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 62 T ELT)))
+(((-508 |#1|) (-494 |#1|) (-13 (-347) (-1115))) (T -508))
+NIL
+((-2705 (((-3 (-584 (-1085 (-485))) "failed") (-584 (-1085 (-485))) (-1085 (-485))) 27 T ELT)))
+(((-509) (-10 -7 (-15 -2705 ((-3 (-584 (-1085 (-485))) "failed") (-584 (-1085 (-485))) (-1085 (-485)))))) (T -509))
+((-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1085 (-485)))) (-5 *3 (-1085 (-485))) (-5 *1 (-509)))))
+((-2105 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1090)) 19 T ELT)) (-2108 (((-584 (-551 |#2|)) (-584 |#2|) (-1090)) 23 T ELT)) (-3235 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|))) 11 T ELT)) (-2109 ((|#2| |#2| (-1090)) 59 (|has| |#1| (-496)) ELT)) (-2110 ((|#2| |#2| (-1090)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-392))) ELT)) (-2107 (((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1090)) 25 T ELT)) (-2106 (((-551 |#2|) (-584 (-551 |#2|))) 24 T ELT)) (-2111 (((-520 |#2|) |#2| (-1090) (-1 (-520 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-570)) (|has| |#2| (-951 (-1090))) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-392)) (|has| |#1| (-797 (-485)))) ELT)))
+(((-510 |#1| |#2|) (-10 -7 (-15 -2105 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1090))) (-15 -2106 ((-551 |#2|) (-584 (-551 |#2|)))) (-15 -2107 ((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1090))) (-15 -3235 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|)))) (-15 -2108 ((-584 (-551 |#2|)) (-584 |#2|) (-1090))) (IF (|has| |#1| (-496)) (-15 -2109 (|#2| |#2| (-1090))) |%noBranch|) (IF (|has| |#1| (-392)) (IF (|has| |#2| (-239)) (PROGN (-15 -2110 (|#2| |#2| (-1090))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (IF (|has| |#2| (-570)) (IF (|has| |#2| (-951 (-1090))) (-15 -2111 ((-520 |#2|) |#2| (-1090) (-1 (-520 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1014) (-364 |#1|)) (T -510))
+((-2111 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-520 *3) *3 (-1090))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1090))) (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-364 *7)) (-5 *4 (-1090)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392)) (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3)) (-5 *1 (-510 *7 *3)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-364 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-1090)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6)))) (-3235 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1014)) (-5 *1 (-510 *3 *4)))) (-2107 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1090)) (-5 *2 (-551 *6)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5)) (-5 *1 (-510 *4 *5)) (-4 *5 (-364 *4)))) (-2105 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1090)) (-4 *5 (-364 *4)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *5)))))
+((-2114 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1="failed") (-485) |#1| |#1|)) 199 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-350 |#2|))) 174 T ELT)) (-2120 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-584 (-350 |#2|))) 171 T ELT)) (-2121 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2112 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2119 (((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|)) 202 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|)) 205 T ELT)) (-2123 (((-2 (|:| |ir| (-520 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2124 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2118 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-584 (-350 |#2|))) 178 T ELT)) (-2122 (((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 166 T ELT)) (-2113 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 189 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-350 |#2|)) 210 T ELT)))
+(((-511 |#1| |#2|) (-10 -7 (-15 -2112 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2113 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2114 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1#) (-485) |#1| |#1|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-350 |#2|))) (-15 -2117 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-350 |#2|)))) (-15 -2118 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-584 (-350 |#2|)))) (-15 -2119 ((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|))) (-15 -2120 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-584 (-350 |#2|)))) (-15 -2121 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2122 ((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2123 ((-2 (|:| |ir| (-520 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|))) (-15 -2124 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1155 |#1|)) (T -511))
+((-2124 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-520 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))) (-2122 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-563 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85))) (-485) *4)) (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *1 (-511 *4 *5)))) (-2121 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1155 *4)))) (-2120 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-350 *7))) (-4 *7 (-1155 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-511 *6 *7)))) (-2119 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2137 (-350 *6)) (|:| |coeff| (-350 *6)))) (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))) (-2118 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3138 *7) (|:| |sol?| (-85))) (-485) *7)) (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2117 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2116 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2115 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2114 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-485) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
+((-2125 (((-3 |#2| "failed") |#2| (-1090) (-1090)) 10 T ELT)))
+(((-512 |#1| |#2|) (-10 -7 (-15 -2125 ((-3 |#2| "failed") |#2| (-1090) (-1090)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1115) (-872) (-1053) (-29 |#1|))) (T -512))
+((-2125 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2)) (-4 *2 (-13 (-1115) (-872) (-1053) (-29 *4))))))
+((-2556 (((-633 (-1138)) $ (-1138)) 27 T ELT)) (-2557 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2555 (((-695) $ (-102)) 28 T ELT)) (-2558 (((-633 (-101)) $ (-101)) 25 T ELT)) (-2001 (((-633 (-1138)) $) 12 T ELT)) (-1997 (((-633 (-1136)) $) 8 T ELT)) (-1999 (((-633 (-1135)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-1700 (($ $) 6 T ELT)))
+(((-513) (-113)) (T -513))
+NIL
+(-13 (-466) (-771))
+(((-147) . T) ((-466) . T) ((-771) . T))
+((-2556 (((-633 (-1138)) $ (-1138)) NIL T ELT)) (-2557 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2555 (((-695) $ (-102)) NIL T ELT)) (-2558 (((-633 (-101)) $ (-101)) NIL T ELT)) (-2001 (((-633 (-1138)) $) NIL T ELT)) (-1997 (((-633 (-1136)) $) NIL T ELT)) (-1999 (((-633 (-1135)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) NIL T ELT)) (-2003 (((-633 (-101)) $) NIL T ELT)) (-2559 (((-85) $) NIL T ELT)) (-2126 (($ (-338)) 14 T ELT) (($ (-1073)) 16 T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1700 (($ $) NIL T ELT)))
+(((-514) (-13 (-513) (-553 (-773)) (-10 -8 (-15 -2126 ($ (-338))) (-15 -2126 ($ (-1073))) (-15 -2559 ((-85) $))))) (T -514))
+((-2126 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-514)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-514)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3460 (($) 7 T CONST)) (-3243 (((-1073) $) NIL T ELT)) (-2129 (($) 6 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 15 T ELT)) (-2127 (($) 9 T CONST)) (-2128 (($) 8 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-515) (-13 (-1014) (-10 -8 (-15 -2129 ($) -3952) (-15 -3460 ($) -3952) (-15 -2128 ($) -3952) (-15 -2127 ($) -3952)))) (T -515))
+((-2129 (*1 *1) (-5 *1 (-515))) (-3460 (*1 *1) (-5 *1 (-515))) (-2128 (*1 *1) (-5 *1 (-515))) (-2127 (*1 *1) (-5 *1 (-515))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2130 (((-633 $) (-431)) 23 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2132 (($ (-1073)) 16 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 33 T ELT)) (-2131 (((-166 4 (-101)) $) 24 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 26 T ELT)))
+(((-516) (-13 (-1014) (-10 -8 (-15 -2132 ($ (-1073))) (-15 -2131 ((-166 4 (-101)) $)) (-15 -2130 ((-633 $) (-431)))))) (T -516))
+((-2132 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-516)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $ (-485)) 73 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2612 (($ (-1085 (-485)) (-485)) 79 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 64 T ELT)) (-2613 (($ $) 43 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3772 (((-695) $) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 (((-485)) 37 T ELT)) (-2614 (((-485) $) 41 T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3769 (($ $ (-485)) 24 T ELT)) (-3466 (((-3 $ #1#) $ $) 70 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) 17 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 71 T ELT)) (-2616 (((-1069 (-485)) $) 19 T ELT)) (-2892 (($ $) 26 T ELT)) (-3946 (((-773) $) 100 T ELT) (($ (-485)) 59 T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) 15 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3770 (((-485) $ (-485)) 46 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 44 T CONST)) (-2667 (($) 21 T CONST)) (-3057 (((-85) $ $) 51 T ELT)) (-3837 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3839 (($ $ $) 57 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 60 T ELT) (($ $ $) 61 T ELT)))
+(((-517 |#1| |#2|) (-780 |#1|) (-485) (-85)) (T -517))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 30 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) 59 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 $ #1#) $) 95 T ELT)) (-3157 (($ $) 94 T ELT)) (-1792 (($ (-1179 $)) 93 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 47 T ELT)) (-2995 (($) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) 61 T ELT)) (-1680 (((-85) $) NIL T ELT)) (-1764 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 49 (|has| $ (-320)) ELT)) (-2012 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3133 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3445 (((-633 $) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 $) $ (-831)) NIL (|has| $ (-320)) ELT) (((-1085 $) $) 104 T ELT)) (-2011 (((-831) $) 67 T ELT)) (-1627 (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1626 (((-3 (-1085 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1628 (($ $ (-1085 $)) NIL (|has| $ (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2401 (($ (-831)) 60 T ELT)) (-3931 (((-85) $) 87 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) 28 (|has| $ (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) 54 T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-831)) 86 T ELT) (((-744 (-831))) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3948 (((-831) $) 85 T ELT) (((-744 (-831)) $) NIL T ELT)) (-3186 (((-1085 $)) 102 T ELT)) (-1674 (($) 66 T ELT)) (-1629 (($) 50 (|has| $ (-320)) ELT)) (-3225 (((-631 $) (-1179 $)) NIL T ELT) (((-1179 $) $) 91 T ELT)) (-3972 (((-485) $) 42 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) 45 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3127 (((-695)) 51 T CONST)) (-1265 (((-85) $ $) 107 T ELT)) (-2013 (((-1179 $) (-831)) 97 T ELT) (((-1179 $)) 96 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) 31 T CONST)) (-2667 (($) 27 T CONST)) (-3928 (($ $ (-695)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
+(((-518 |#1|) (-13 (-299) (-280 $) (-554 (-485))) (-831)) (T -518))
+NIL
+((-2133 (((-1185) (-1073)) 10 T ELT)))
+(((-519) (-10 -7 (-15 -2133 ((-1185) (-1073))))) (T -519))
+((-2133 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-519)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 77 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2137 ((|#1| $) 30 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2135 (((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2138 (($ |#1| (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2136 (((-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) $) 31 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2833 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1090)) 49 (|has| |#1| (-951 (-1090))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2134 (((-85) $) 35 T ELT)) (-3758 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1090)) 90 (|has| |#1| (-810 (-1090))) ELT)) (-3946 (((-773) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 86 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 16 T ELT) (($ (-350 (-485)) $) 41 T ELT) (($ $ (-350 (-485))) NIL T ELT)))
+(((-520 |#1|) (-13 (-655 (-350 (-485))) (-951 |#1|) (-10 -8 (-15 -2138 ($ |#1| (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2137 (|#1| $)) (-15 -2136 ((-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) $)) (-15 -2135 ((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2134 ((-85) $)) (-15 -2833 ($ |#1| |#1|)) (-15 -3758 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-810 (-1090))) (-15 -3758 (|#1| $ (-1090))) |%noBranch|) (IF (|has| |#1| (-951 (-1090))) (-15 -2833 ($ |#1| (-1090))) |%noBranch|))) (-312)) (T -520))
+((-2138 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1085 *2)) (|:| |logand| (-1085 *2))))) (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-520 *2)))) (-2137 (*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1085 *3)) (|:| |logand| (-1085 *3))))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2833 (*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3758 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3758 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1090)))) (-2833 (*1 *1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-312)))))
+((-3958 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|)) 30 T ELT)))
+(((-521 |#1| |#2|) (-10 -7 (-15 -3958 ((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|))) (-15 -3958 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3958 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3958 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -521))
+((-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-521 *5 *6)))) (-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-521 *5 *2)))) (-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2137 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2137 *6) (|:| |coeff| *6))) (-5 *1 (-521 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6)))))
+((-3418 (((-520 |#2|) (-520 |#2|)) 42 T ELT)) (-3963 (((-584 |#2|) (-520 |#2|)) 44 T ELT)) (-2149 ((|#2| (-520 |#2|)) 50 T ELT)))
+(((-522 |#1| |#2|) (-10 -7 (-15 -3418 ((-520 |#2|) (-520 |#2|))) (-15 -3963 ((-584 |#2|) (-520 |#2|))) (-15 -2149 (|#2| (-520 |#2|)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-29 |#1|) (-1115))) (T -522))
+((-2149 (*1 *2 *3) (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1115))) (-5 *1 (-522 *4 *2)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1115))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5)) (-5 *1 (-522 *4 *5)))) (-3418 (*1 *2 *2) (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1115))) (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2141 (($ (-447) (-533)) 14 T ELT)) (-2139 (($ (-447) (-533) $) 16 T ELT)) (-2140 (($ (-447) (-533)) 15 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-1095)) 7 T ELT) (((-1095) $) 6 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-523) (-13 (-1014) (-430 (-1095)) (-10 -8 (-15 -2141 ($ (-447) (-533))) (-15 -2140 ($ (-447) (-533))) (-15 -2139 ($ (-447) (-533) $))))) (T -523))
+((-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2139 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
+((-2145 (((-85) |#1|) 16 T ELT)) (-2146 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2143 (((-2 (|:| -2695 |#1|) (|:| -2402 (-695))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-695)) 18 T ELT)) (-2142 (((-85) |#1| (-695)) 19 T ELT)) (-2147 ((|#1| |#1|) 41 T ELT)) (-2144 ((|#1| |#1| (-695)) 44 T ELT)))
+(((-524 |#1|) (-10 -7 (-15 -2142 ((-85) |#1| (-695))) (-15 -2143 ((-3 |#1| #1="failed") |#1| (-695))) (-15 -2143 ((-2 (|:| -2695 |#1|) (|:| -2402 (-695))) |#1|)) (-15 -2144 (|#1| |#1| (-695))) (-15 -2145 ((-85) |#1|)) (-15 -2146 ((-3 |#1| #1#) |#1|)) (-15 -2147 (|#1| |#1|))) (-484)) (T -524))
+((-2147 (*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2146 (*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2145 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2144 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2143 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2695 *3) (|:| -2402 (-695)))) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2143 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))))
+((-2148 (((-1085 |#1|) (-831)) 44 T ELT)))
+(((-525 |#1|) (-10 -7 (-15 -2148 ((-1085 |#1|) (-831)))) (-299)) (T -525))
+((-2148 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299)))))
+((-3418 (((-520 (-350 (-858 |#1|))) (-520 (-350 (-858 |#1|)))) 27 T ELT)) (-3812 (((-3 (-265 |#1|) (-584 (-265 |#1|))) (-350 (-858 |#1|)) (-1090)) 33 (|has| |#1| (-120)) ELT)) (-3963 (((-584 (-265 |#1|)) (-520 (-350 (-858 |#1|)))) 19 T ELT)) (-2150 (((-265 |#1|) (-350 (-858 |#1|)) (-1090)) 31 (|has| |#1| (-120)) ELT)) (-2149 (((-265 |#1|) (-520 (-350 (-858 |#1|)))) 21 T ELT)))
+(((-526 |#1|) (-10 -7 (-15 -3418 ((-520 (-350 (-858 |#1|))) (-520 (-350 (-858 |#1|))))) (-15 -3963 ((-584 (-265 |#1|)) (-520 (-350 (-858 |#1|))))) (-15 -2149 ((-265 |#1|) (-520 (-350 (-858 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3812 ((-3 (-265 |#1|) (-584 (-265 |#1|))) (-350 (-858 |#1|)) (-1090))) (-15 -2150 ((-265 |#1|) (-350 (-858 |#1|)) (-1090)))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-581 (-485)))) (T -526))
+((-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *5)) (-5 *1 (-526 *5)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-265 *5) (-584 (-265 *5)))) (-5 *1 (-526 *5)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-520 (-350 (-858 *4)))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-526 *4)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-520 (-350 (-858 *4)))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-265 *4))) (-5 *1 (-526 *4)))) (-3418 (*1 *2 *2) (-12 (-5 *2 (-520 (-350 (-858 *3)))) (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3)))))
+((-2152 (((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-831))) 81 T ELT) (((-631 (-485)) (-584 (-831)) (-814 (-485))) 74 T ELT)) (-2151 (((-695) (-584 (-831))) 71 T ELT)))
+(((-527) (-10 -7 (-15 -2151 ((-695) (-584 (-831)))) (-15 -2152 ((-631 (-485)) (-584 (-831)) (-814 (-485)))) (-15 -2152 ((-584 (-631 (-485))) (-584 (-831)))) (-15 -2152 ((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485))))))) (T -527))
+((-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-527)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527)))))
+((-3214 (((-584 |#5|) |#5| (-85)) 97 T ELT)) (-2153 (((-85) |#5| (-584 |#5|)) 34 T ELT)))
+(((-528 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3214 ((-584 |#5|) |#5| (-85))) (-15 -2153 ((-85) |#5| (-584 |#5|)))) (-13 (-258) (-120)) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -528))
+((-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3)) (-4 *3 (-1021 *5 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3528 (((-1049) $) 12 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-529) (-13 (-996) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1049) $))))) (T -529))
+((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-529)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-529)))))
+((-3532 (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|)) 32 T ELT)))
+(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|))) (-15 -3532 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|)) (T -530))
+((-3532 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-3532 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *6 *4 *7 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 71 T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-485)) 58 T ELT) (($ $ (-485) (-485)) 59 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 65 T ELT)) (-2184 (($ $) 109 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2182 (((-773) (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1090) |#1| (-350 (-485))) 232 T ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 36 T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3772 (((-485) $) 63 T ELT) (((-485) $ (-485)) 64 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3777 (($ $ (-831)) 83 T ELT)) (-3815 (($ (-1 |#1| (-485)) $) 80 T ELT)) (-3937 (((-85) $) 26 T ELT)) (-2894 (($ |#1| (-485)) 22 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2188 (($ (-940 (-751 (-485))) (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 13 T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3812 (($ $) 120 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2185 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2183 (($ $ $) 116 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2186 (((-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 15 T ELT)) (-2187 (((-940 (-751 (-485))) $) 14 T ELT)) (-3769 (($ $ (-485)) 47 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-3800 ((|#1| $ (-485)) 62 T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3948 (((-485) $) NIL T ELT)) (-2892 (($ $) 48 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) 29 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ (-485)) 61 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 39 T CONST)) (-3773 ((|#1| $) NIL T ELT)) (-2163 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2175 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2165 (($ $) 189 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2177 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2161 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2173 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2180 (($ $ (-350 (-485))) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2181 (($ $ |#1|) 128 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2178 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2179 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2160 (($ $) 195 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2172 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2162 (($ $) 193 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2174 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2164 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2176 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2157 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2169 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2159 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2171 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2155 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2167 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2154 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2166 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2156 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2168 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2158 (($ $) 199 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2170 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 30 T CONST)) (-2667 (($) 40 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3057 (((-85) $ $) 73 T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3839 (($ $ $) 88 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 111 T ELT)) (* (($ (-831) $) 98 T ELT) (($ (-695) $) 96 T ELT) (($ (-485) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-531 |#1|) (-13 (-1158 |#1| (-485)) (-10 -8 (-15 -2188 ($ (-940 (-751 (-485))) (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -2187 ((-940 (-751 (-485))) $)) (-15 -2186 ((-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $)) (-15 -3818 ($ (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -3937 ((-85) $)) (-15 -3815 ($ (-1 |#1| (-485)) $)) (-15 -2185 ((-3 $ "failed") $ $ (-85))) (-15 -2184 ($ $)) (-15 -2183 ($ $ $)) (-15 -2182 ((-773) (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1090) |#1| (-350 (-485)))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3812 ($ $)) (-15 -2181 ($ $ |#1|)) (-15 -2180 ($ $ (-350 (-485)))) (-15 -2179 ($ $)) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $))) |%noBranch|))) (-962)) (T -531))
+((-3937 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2188 (*1 *1 *2 *3) (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *3 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962)) (-5 *1 (-531 *4)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-2185 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2184 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2183 (*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2182 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *6)))) (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1090)) (-5 *7 (-350 (-485))) (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6)))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2)) (-4 *3 (-962)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 62 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3818 (($ (-1069 |#1|)) 9 T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) 44 T ELT)) (-2893 (((-85) $) 56 T ELT)) (-3772 (((-695) $) 61 T ELT) (((-695) $ (-695)) 60 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) 46 (|has| |#1| (-496)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3817 (((-1069 |#1|) $) 25 T ELT)) (-3127 (((-695)) 55 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 14 T CONST)) (-3057 (((-85) $ $) 24 T ELT)) (-3837 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3839 (($ $ $) 27 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-485)) 38 T ELT)))
+(((-532 |#1|) (-13 (-962) (-82 |#1| |#1|) (-10 -8 (-15 -3817 ((-1069 |#1|) $)) (-15 -3818 ($ (-1069 |#1|))) (-15 -2893 ((-85) $)) (-15 -3772 ((-695) $)) (-15 -3772 ((-695) $ (-695))) (-15 * ($ $ (-485))) (IF (|has| |#1| (-496)) (-6 (-496)) |%noBranch|))) (-962)) (T -532))
+((-3817 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3772 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2191 (($) 8 T CONST)) (-2192 (($) 7 T CONST)) (-2189 (($ $ (-584 $)) 16 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2193 (($) 6 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-1095)) 15 T ELT) (((-1095) $) 10 T ELT)) (-2190 (($) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-533) (-13 (-1014) (-430 (-1095)) (-10 -8 (-15 -2193 ($) -3952) (-15 -2192 ($) -3952) (-15 -2191 ($) -3952) (-15 -2190 ($) -3952) (-15 -2189 ($ $ (-584 $)))))) (T -533))
+((-2193 (*1 *1) (-5 *1 (-533))) (-2192 (*1 *1) (-5 *1 (-533))) (-2191 (*1 *1) (-5 *1 (-533))) (-2190 (*1 *1) (-5 *1 (-533))) (-2189 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-533))) (-5 *1 (-533)))))
+((-3958 (((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|)) 15 T ELT)))
+(((-534 |#1| |#2|) (-13 (-1129) (-10 -7 (-15 -3958 ((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|))))) (-1129) (-1129)) (T -534))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6)))))
+((-3958 (((-1069 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1069 |#2|)) 20 T ELT) (((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-537 |#2|)) 19 T ELT) (((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|)) 18 T ELT)))
+(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|))) (-15 -3958 ((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-537 |#2|))) (-15 -3958 ((-1069 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1069 |#2|)))) (-1129) (-1129) (-1129)) (T -535))
+((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1069 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-537 *8)) (-5 *1 (-535 *6 *7 *8)))))
+((-2198 ((|#3| |#3| (-584 (-551 |#3|)) (-584 (-1090))) 57 T ELT)) (-2197 (((-142 |#2|) |#3|) 122 T ELT)) (-2194 ((|#3| (-142 |#2|)) 46 T ELT)) (-2195 ((|#2| |#3|) 21 T ELT)) (-2196 ((|#3| |#2|) 35 T ELT)))
+(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2194 (|#3| (-142 |#2|))) (-15 -2195 (|#2| |#3|)) (-15 -2196 (|#3| |#2|)) (-15 -2197 ((-142 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-584 (-551 |#3|)) (-584 (-1090))))) (-496) (-13 (-364 |#1|) (-916) (-1115)) (-13 (-364 (-142 |#1|)) (-916) (-1115))) (T -536))
+((-2198 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1090))) (-4 *2 (-13 (-364 (-142 *5)) (-916) (-1115))) (-4 *5 (-496)) (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-916) (-1115))))) (-2197 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3)) (-4 *5 (-13 (-364 *4) (-916) (-1115))) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1115))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1115))) (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-916) (-1115))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 *4) (-916) (-1115))) (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1115))))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1115))) (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1115))) (-5 *1 (-536 *4 *5 *2)))))
+((-3710 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3457 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3455 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3530 (((-1069 |#1|) $) 20 T ELT)) (-3946 (((-773) $) 25 T ELT)))
+(((-537 |#1|) (-13 (-553 (-773)) (-10 -8 (-15 -3958 ($ (-1 |#1| |#1|) $)) (-15 -3456 ($ (-1 (-85) |#1|) $)) (-15 -3455 ($ (-1 (-85) |#1|) $)) (-15 -3710 ($ (-1 (-85) |#1|) $)) (-15 -3457 ($ (-1 |#1| |#1|) |#1|)) (-15 -3530 ((-1069 |#1|) $)))) (-1129)) (T -537))
+((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3)))) (-3710 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3)))) (-3457 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1129)))))
+((-2199 (((-1185) $ |#2| |#2|) 35 T ELT)) (-2201 ((|#2| $) 23 T ELT)) (-2202 ((|#2| $) 21 T ELT)) (-1949 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3958 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3801 ((|#3| $) 26 T ELT)) (-2200 (($ $ |#3|) 33 T ELT)) (-2203 (((-85) |#3| $) 17 T ELT)) (-2206 (((-584 |#3|) $) 15 T ELT)) (-3800 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
+(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2199 ((-1185) |#1| |#2| |#2|)) (-15 -2200 (|#1| |#1| |#3|)) (-15 -3801 (|#3| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2203 ((-85) |#3| |#1|)) (-15 -2206 ((-584 |#3|) |#1|)) (-15 -3800 (|#3| |#1| |#2|)) (-15 -3800 (|#3| |#1| |#2| |#3|)) (-15 -1949 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3958 (|#1| (-1 |#3| |#3|) |#1|))) (-539 |#2| |#3|) (-1014) (-1129)) (T -538))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2199 (((-1185) $ |#1| |#1|) 44 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-1576 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) 55 T ELT)) (-2890 (((-584 |#2|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2201 ((|#1| $) 47 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#2|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#2| $) 27 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT)) (-2202 ((|#1| $) 48 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#2| (-1014)) ELT)) (-2204 (((-584 |#1|) $) 50 T ELT)) (-2205 (((-85) |#1| $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#2| (-1014)) ELT)) (-3801 ((|#2| $) 46 (|has| |#1| (-757)) ELT)) (-2200 (($ $ |#2|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1946 (((-695) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#2| $) 28 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#2| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-539 |#1| |#2|) (-113) (-1014) (-1129)) (T -539))
+((-2206 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1129)) (-5 *2 (-584 *4)))) (-2205 (*1 *2 *3 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1129)) (-5 *2 (-584 *3)))) (-2203 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1129)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-757)) (-4 *2 (-1129)))) (-2200 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1129)))) (-2199 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1129)) (-5 *2 (-1185)))))
+(-13 (-429 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2206 ((-584 |t#2|) $)) (-15 -2205 ((-85) |t#1| $)) (-15 -2204 ((-584 |t#1|) $)) (IF (|has| |t#2| (-1014)) (IF (|has| $ (-6 -3995)) (-15 -2203 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2202 (|t#1| $)) (-15 -2201 (|t#1| $)) (-15 -3801 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3996)) (PROGN (-15 -2200 ($ $ |t#2|)) (-15 -2199 ((-1185) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-429 |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-1014) |has| |#2| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) (((-1130) $) 15 T ELT) (($ (-584 (-1130))) 14 T ELT)) (-2207 (((-584 (-1130)) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-540) (-13 (-996) (-553 (-1130)) (-10 -8 (-15 -3946 ($ (-584 (-1130)))) (-15 -2207 ((-584 (-1130)) $))))) (T -540))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-540)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-540)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-631 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 (-631 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 (((-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3724 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1788 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1786 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1900 (((-1085 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1790 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1792 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1179 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3467 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-3109 (((-831)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1789 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1787 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1904 (((-1085 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1791 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3800 ((|#1| $ (-485)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3225 (((-631 |#1|) (-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1179 $) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1179 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3972 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1892 (((-584 (-858 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-584 (-858 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3946 (((-773) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1707 (((-584 (-1179 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2546 (($ (-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-541 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3946 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -541))
+((-3946 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-542) (-13 (-1014) (-430 (-101)))) (T -542))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2209 (($) 10 T CONST)) (-2231 (($) 8 T CONST)) (-2208 (($) 11 T CONST)) (-2227 (($) 9 T CONST)) (-2224 (($) 12 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
+(((-543) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3952) (-15 -2227 ($) -3952) (-15 -2209 ($) -3952) (-15 -2208 ($) -3952) (-15 -2224 ($) -3952)))) (T -543))
+((-2231 (*1 *1) (-5 *1 (-543))) (-2227 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543))) (-2208 (*1 *1) (-5 *1 (-543))) (-2224 (*1 *1) (-5 *1 (-543))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2220 (($) 11 T CONST)) (-2214 (($) 17 T CONST)) (-2210 (($) 21 T CONST)) (-2212 (($) 19 T CONST)) (-2217 (($) 14 T CONST)) (-2211 (($) 20 T CONST)) (-2219 (($) 12 T CONST)) (-2218 (($) 13 T CONST)) (-2213 (($) 18 T CONST)) (-2216 (($) 15 T CONST)) (-2215 (($) 16 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-544) (-13 (-1014) (-553 (-101)) (-10 -8 (-15 -2220 ($) -3952) (-15 -2219 ($) -3952) (-15 -2218 ($) -3952) (-15 -2217 ($) -3952) (-15 -2216 ($) -3952) (-15 -2215 ($) -3952) (-15 -2214 ($) -3952) (-15 -2213 ($) -3952) (-15 -2212 ($) -3952) (-15 -2211 ($) -3952) (-15 -2210 ($) -3952)))) (T -544))
+((-2220 (*1 *1) (-5 *1 (-544))) (-2219 (*1 *1) (-5 *1 (-544))) (-2218 (*1 *1) (-5 *1 (-544))) (-2217 (*1 *1) (-5 *1 (-544))) (-2216 (*1 *1) (-5 *1 (-544))) (-2215 (*1 *1) (-5 *1 (-544))) (-2214 (*1 *1) (-5 *1 (-544))) (-2213 (*1 *1) (-5 *1 (-544))) (-2212 (*1 *1) (-5 *1 (-544))) (-2211 (*1 *1) (-5 *1 (-544))) (-2210 (*1 *1) (-5 *1 (-544))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2222 (($) 13 T CONST)) (-2221 (($) 14 T CONST)) (-2228 (($) 11 T CONST)) (-2231 (($) 8 T CONST)) (-2229 (($) 10 T CONST)) (-2230 (($) 9 T CONST)) (-2227 (($) 12 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
+(((-545) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3952) (-15 -2230 ($) -3952) (-15 -2229 ($) -3952) (-15 -2228 ($) -3952) (-15 -2227 ($) -3952) (-15 -2222 ($) -3952) (-15 -2221 ($) -3952)))) (T -545))
+((-2231 (*1 *1) (-5 *1 (-545))) (-2230 (*1 *1) (-5 *1 (-545))) (-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545))) (-2221 (*1 *1) (-5 *1 (-545))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2226 (($) 13 T CONST)) (-2223 (($) 16 T CONST)) (-2228 (($) 11 T CONST)) (-2231 (($) 8 T CONST)) (-2229 (($) 10 T CONST)) (-2230 (($) 9 T CONST)) (-2225 (($) 14 T CONST)) (-2227 (($) 12 T CONST)) (-2224 (($) 15 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
+(((-546) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3952) (-15 -2230 ($) -3952) (-15 -2229 ($) -3952) (-15 -2228 ($) -3952) (-15 -2227 ($) -3952) (-15 -2226 ($) -3952) (-15 -2225 ($) -3952) (-15 -2224 ($) -3952) (-15 -2223 ($) -3952)))) (T -546))
+((-2231 (*1 *1) (-5 *1 (-546))) (-2230 (*1 *1) (-5 *1 (-546))) (-2229 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546))) (-2227 (*1 *1) (-5 *1 (-546))) (-2226 (*1 *1) (-5 *1 (-546))) (-2225 (*1 *1) (-5 *1 (-546))) (-2224 (*1 *1) (-5 *1 (-546))) (-2223 (*1 *1) (-5 *1 (-546))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 19 T ELT) (($ (-542)) 12 T ELT) (((-542) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-547) (-13 (-1014) (-430 (-542)) (-430 (-101)))) (T -547))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1697 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) 40 T ELT)) (-3599 (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2199 (((-1185) $ (-1073) (-1073)) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ (-1073) |#1|) 50 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#1| #1="failed") (-1073) $) 53 T ELT)) (-3724 (($) NIL T CONST)) (-1701 (($ $ (-1073)) 25 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT)) (-3405 (((-3 |#1| #1#) (-1073) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3406 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT)) (-3842 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1698 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1576 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-1073)) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2272 (($ $) 55 T ELT)) (-1702 (($ (-338)) 23 T ELT) (($ (-338) (-1073)) 22 T ELT)) (-3542 (((-338) $) 41 T ELT)) (-2201 (((-1073) $) NIL (|has| (-1073) (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT) (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) ELT)) (-2202 (((-1073) $) NIL (|has| (-1073) (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2233 (((-584 (-1073)) $) 46 T ELT)) (-2234 (((-85) (-1073) $) NIL T ELT)) (-1699 (((-1073) $) 42 T ELT)) (-1274 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2204 (((-584 (-1073)) $) NIL T ELT)) (-2205 (((-85) (-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#1| $) NIL (|has| (-1073) (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 44 T ELT)) (-3800 ((|#1| $ (-1073) |#1|) NIL T ELT) ((|#1| $ (-1073)) 49 T ELT)) (-1466 (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT) (((-695) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-3946 (((-773) $) 21 T ELT)) (-1700 (($ $) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3057 (((-85) $ $) 20 T ELT)) (-3957 (((-695) $) 48 T ELT)))
+(((-548 |#1|) (-13 (-314 (-338) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) (-1107 (-1073) |#1|) (-10 -8 (-15 -2272 ($ $)))) (-1014)) (T -548))
+((-2272 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1014)))))
+((-3246 (((-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 16 T ELT) (((-85) |#3| $) NIL T ELT)) (-2233 (((-584 |#2|) $) 20 T ELT)) (-2234 (((-85) |#2| $) 12 T ELT)) (-3800 ((|#3| $ |#2|) 21 T ELT) ((|#3| $ |#2| |#3|) 22 T ELT)))
+(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2233 ((-584 |#2|) |#1|)) (-15 -2234 ((-85) |#2| |#1|)) (-15 -3246 ((-85) |#3| |#1|)) (-15 -3800 (|#3| |#1| |#2| |#3|)) (-15 -3800 (|#3| |#1| |#2|)) (-15 -3246 ((-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|))) (-550 |#2| |#3|) (-1014) (-1014)) (T -549))
+NIL
+((-2569 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2199 (((-1185) $ |#1| |#1|) 98 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#2| "failed") |#1| $) 68 T ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3995)) ELT) (((-3 |#2| "failed") |#1| $) 69 T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) 87 T ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) 77 (|has| $ (-6 -3995)) ELT)) (-2201 ((|#1| $) 95 (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) 78 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT)) (-2202 ((|#1| $) 94 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT)) (-3243 (((-1073) $) 22 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2233 (((-584 |#1|) $) 70 T ELT)) (-2234 (((-85) |#1| $) 71 T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2204 (((-584 |#1|) $) 92 T ELT)) (-2205 (((-85) |#1| $) 91 T ELT)) (-3244 (((-1034) $) 21 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3801 ((|#2| $) 96 (|has| |#1| (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2200 (($ $ |#2|) 97 (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) 90 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT)) (-1466 (($) 53 T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-695) |#2| $) 79 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-695) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3995)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 63 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3946 (((-773) $) 17 (OR (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1265 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-550 |#1| |#2|) (-113) (-1014) (-1014)) (T -550))
+((-2234 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-85)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-3405 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2232 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(-13 (-183 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))) (-539 |t#1| |t#2|) (-10 -8 (-15 -2234 ((-85) |t#1| $)) (-15 -2233 ((-584 |t#1|) $)) (-15 -3405 ((-3 |t#2| "failed") |t#1| $)) (-15 -2232 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-76 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-429 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-1014) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2235 (((-3 (-1090) "failed") $) 46 T ELT)) (-1313 (((-1185) $ (-695)) 22 T ELT)) (-3419 (((-695) $) 20 T ELT)) (-3595 (((-86) $) 9 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2236 (($ (-86) (-584 |#1|) (-695)) 32 T ELT) (($ (-1090)) 33 T ELT)) (-2634 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1090)) 13 T ELT)) (-2604 (((-695) $) 17 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3972 (((-801 (-485)) $) 99 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 106 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) 92 (|has| |#1| (-554 (-474))) ELT)) (-3946 (((-773) $) 74 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2237 (((-584 |#1|) $) 19 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 51 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 53 T ELT)))
+(((-551 |#1|) (-13 (-105) (-757) (-795 |#1|) (-10 -8 (-15 -3595 ((-86) $)) (-15 -2237 ((-584 |#1|) $)) (-15 -2604 ((-695) $)) (-15 -2236 ($ (-86) (-584 |#1|) (-695))) (-15 -2236 ($ (-1090))) (-15 -2235 ((-3 (-1090) "failed") $)) (-15 -2634 ((-85) $ (-86))) (-15 -2634 ((-85) $ (-1090))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-1014)) (T -551))
+((-3595 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014)) (-5 *1 (-551 *5)))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2235 (*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))))
+((-2238 (((-551 |#2|) |#1|) 17 T ELT)) (-2239 (((-3 |#1| "failed") (-551 |#2|)) 21 T ELT)))
+(((-552 |#1| |#2|) (-10 -7 (-15 -2238 ((-551 |#2|) |#1|)) (-15 -2239 ((-3 |#1| "failed") (-551 |#2|)))) (-1014) (-1014)) (T -552))
+((-2239 (*1 *2 *3) (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-552 *2 *4)))) (-2238 (*1 *2 *3) (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+((-3946 ((|#1| $) 6 T ELT)))
+(((-553 |#1|) (-113) (-1129)) (T -553))
+((-3946 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1129)))))
+(-13 (-10 -8 (-15 -3946 (|t#1| $))))
+((-3972 ((|#1| $) 6 T ELT)))
+(((-554 |#1|) (-113) (-1129)) (T -554))
+((-3972 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1129)))))
+(-13 (-10 -8 (-15 -3972 (|t#1| $))))
+((-2240 (((-3 (-1085 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)) 15 T ELT) (((-3 (-1085 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 16 T ELT)))
+(((-555 |#1| |#2|) (-10 -7 (-15 -2240 ((-3 (-1085 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|))) (-15 -2240 ((-3 (-1085 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)))) (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485)))) (-1155 |#1|)) (T -555))
+((-2240 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-1085 (-350 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-350 *6)))) (-2240 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1155 *4)) (-5 *2 (-1085 (-350 *5))) (-5 *1 (-555 *4 *5)) (-5 *3 (-350 *5)))))
+((-3946 (($ |#1|) 6 T ELT)))
+(((-556 |#1|) (-113) (-1129)) (T -556))
+((-3946 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1129)))))
+(-13 (-10 -8 (-15 -3946 ($ |t#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-2241 (($) 11 T CONST)) (-2856 (($) 13 T CONST)) (-3137 (((-695)) 36 T ELT)) (-2995 (($) NIL T ELT)) (-2562 (($ $ $) 25 T ELT)) (-2561 (($ $) 23 T ELT)) (-2011 (((-831) $) 43 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) 42 T ELT)) (-2854 (($ $ $) 26 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2855 (($) 9 T CONST)) (-2853 (($ $ $) 27 T ELT)) (-3946 (((-773) $) 34 T ELT)) (-3566 (((-85) $ (|[\|\|]| -2855)) 20 T ELT) (((-85) $ (|[\|\|]| -2241)) 22 T ELT) (((-85) $ (|[\|\|]| -2856)) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) 24 T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) 16 T ELT)) (-2313 (($ $ $) NIL T ELT)))
+(((-557) (-13 (-881) (-320) (-10 -8 (-15 -2241 ($) -3952) (-15 -3566 ((-85) $ (|[\|\|]| -2855))) (-15 -3566 ((-85) $ (|[\|\|]| -2241))) (-15 -3566 ((-85) $ (|[\|\|]| -2856)))))) (T -557))
+((-2241 (*1 *1) (-5 *1 (-557))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2241)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-557)))))
+((-3972 (($ |#1|) 6 T ELT)))
+(((-558 |#1|) (-113) (-1129)) (T -558))
+((-3972 (*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1129)))))
+(-13 (-10 -8 (-15 -3972 ($ |t#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2999 ((|#1| $) 13 T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2998 ((|#3| $) 15 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3127 (((-695)) 20 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 12 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3949 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-559 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (-15 -3949 ($ $ |#3|)) (-15 -3949 ($ |#1| |#3|)) (-15 -2999 (|#1| $)) (-15 -2998 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -559))
+((-3949 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3949 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2998 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)))))
+((-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((-560 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| (-485))) (-15 -3946 ((-773) |#1|))) (-561 |#2|) (-962)) (T -560))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT)))
+(((-561 |#1|) (-113) (-962)) (T -561))
+((-3946 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962)))))
+(-13 (-962) (-591 |t#1|) (-10 -8 (-15 -3946 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2242 ((|#2| |#2| (-1090) (-1090)) 16 T ELT)))
+(((-562 |#1| |#2|) (-10 -7 (-15 -2242 (|#2| |#2| (-1090) (-1090)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1115) (-872) (-29 |#1|))) (T -562))
+((-2242 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1115) (-872) (-29 *4))))))
+((-2569 (((-85) $ $) 64 T ELT)) (-3189 (((-85) $) 58 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2243 ((|#1| $) 55 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3751 (((-2 (|:| -1762 $) (|:| -1761 (-350 |#2|))) (-350 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) 27 T ELT)) (-3467 (((-3 $ #1#) $) 88 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3772 (((-485) $) 22 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 40 T ELT)) (-2894 (($ |#1| (-485)) 24 T ELT)) (-3175 ((|#1| $) 57 T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) 93 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-695) $) 115 (|has| |#1| (-312)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT)) (-3948 (((-485) $) 38 T ELT)) (-3972 (((-350 |#2|) $) 47 T ELT)) (-3946 (((-773) $) 69 T ELT) (($ (-485)) 35 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3677 ((|#1| $ (-485)) 72 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 32 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 9 T CONST)) (-2667 (($) 14 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-3837 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 90 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 29 T ELT) (($ $ $) 49 T ELT)))
+(((-563 |#1| |#2|) (-13 (-184 |#2|) (-496) (-554 (-350 |#2|)) (-355 |#1|) (-951 |#2|) (-10 -8 (-15 -3937 ((-85) $)) (-15 -3948 ((-485) $)) (-15 -3772 ((-485) $)) (-15 -3959 ($ $)) (-15 -3175 (|#1| $)) (-15 -2243 (|#1| $)) (-15 -3677 (|#1| $ (-485))) (-15 -2894 ($ |#1| (-485))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3751 ((-2 (|:| -1762 $) (|:| -1761 (-350 |#2|))) (-350 |#2|)))) |%noBranch|))) (-496) (-1155 |#1|)) (T -563))
+((-3937 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1155 *3)))) (-3948 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1155 *3)))) (-3772 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1155 *3)))) (-3959 (*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1155 *2)))) (-3175 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1155 *2)))) (-2243 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1155 *2)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1155 *2)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1155 *2)))) (-3751 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -1762 (-563 *4 *5)) (|:| -1761 (-350 *5)))) (-5 *1 (-563 *4 *5)) (-5 *3 (-350 *5)))))
+((-3682 (((-584 |#6|) (-584 |#4|) (-85)) 54 T ELT)) (-2244 ((|#6| |#6|) 48 T ELT)))
+(((-564 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2244 (|#6| |#6|)) (-15 -3682 ((-584 |#6|) (-584 |#4|) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|) (-1021 |#1| |#2| |#3| |#4|)) (T -564))
+((-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *10 (-1021 *5 *6 *7 *8)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *2 (-1021 *3 *4 *5 *6)))))
+((-2245 (((-85) |#3| (-695) (-584 |#3|)) 30 T ELT)) (-2246 (((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1085 |#3|)))) "failed") |#3| (-584 (-1085 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1779 (-584 (-2 (|:| |irr| |#4|) (|:| -2396 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)) 68 T ELT)))
+(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2245 ((-85) |#3| (-695) (-584 |#3|))) (-15 -2246 ((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1085 |#3|)))) "failed") |#3| (-584 (-1085 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1779 (-584 (-2 (|:| |irr| |#4|) (|:| -2396 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)))) (-757) (-718) (-258) (-862 |#3| |#2| |#1|)) (T -565))
+((-2246 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1779 (-584 (-2 (|:| |irr| *10) (|:| -2396 (-485))))))) (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-258)) (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) (-5 *2 (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) (|:| |corrfact| (-584 (-1085 *3))))) (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1085 *3))))) (-2245 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-258)) (-4 *6 (-757)) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8)) (-4 *8 (-862 *3 *7 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3528 (((-1049) $) 12 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-566) (-13 (-996) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1049) $))))) (T -566))
+((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-566)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-566)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3934 (((-584 |#1|) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3936 (($ $) 77 T ELT)) (-3942 (((-607 |#1| |#2|) $) 60 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 81 T ELT)) (-2247 (((-584 (-249 |#2|)) $ $) 42 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3943 (($ (-607 |#1| |#2|)) 56 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3946 (((-773) $) 66 T ELT) (((-1195 |#1| |#2|) $) NIL T ELT) (((-1200 |#1| |#2|) $) 74 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 61 T CONST)) (-2248 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2249 (((-584 (-607 |#1| |#2|)) (-584 |#1|)) 73 T ELT)) (-2666 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3057 (((-85) $ $) 62 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 52 T ELT)))
+(((-567 |#1| |#2| |#3|) (-13 (-413) (-10 -8 (-15 -3943 ($ (-607 |#1| |#2|))) (-15 -3942 ((-607 |#1| |#2|) $)) (-15 -2666 ((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $)) (-15 -3946 ((-1195 |#1| |#2|) $)) (-15 -3946 ((-1200 |#1| |#2|) $)) (-15 -3936 ($ $)) (-15 -3934 ((-584 |#1|) $)) (-15 -2249 ((-584 (-607 |#1| |#2|)) (-584 |#1|))) (-15 -2248 ((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $)) (-15 -2247 ((-584 (-249 |#2|)) $ $)))) (-757) (-13 (-146) (-655 (-350 (-485)))) (-831)) (T -567))
+((-3943 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-831)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1200 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-13 (-146) (-655 (-350 (-485))))) (-14 *4 (-831)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-350 (-485))))) (-14 *6 (-831)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2247 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-249 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))))
+((-3682 (((-584 (-1060 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 103 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 77 T ELT)) (-2250 (((-85) (-584 (-704 |#1| (-774 |#2|)))) 26 T ELT)) (-2254 (((-584 (-1060 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 102 T ELT)) (-2253 (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 76 T ELT)) (-2252 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) 30 T ELT)) (-2251 (((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|)))) 29 T ELT)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2251 ((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|))))) (-15 -2252 ((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2253 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -2254 ((-584 (-1060 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3682 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3682 ((-584 (-1060 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)))) (-392) (-584 (-1090))) (T -568))
+((-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1090))) (-5 *2 (-584 (-1060 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1090))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1090))) (-5 *2 (-584 (-1060 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1090))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-14 *4 (-584 (-1090))) (-5 *1 (-568 *3 *4)))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-14 *4 (-584 (-1090))) (-5 *1 (-568 *3 *4)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392)) (-14 *5 (-584 (-1090))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)))))
+((-3595 (((-86) (-86)) 88 T ELT)) (-2258 ((|#2| |#2|) 28 T ELT)) (-2833 ((|#2| |#2| (-1005 |#2|)) 84 T ELT) ((|#2| |#2| (-1090)) 50 T ELT)) (-2256 ((|#2| |#2|) 27 T ELT)) (-2257 ((|#2| |#2|) 29 T ELT)) (-2255 (((-85) (-86)) 33 T ELT)) (-2260 ((|#2| |#2|) 24 T ELT)) (-2261 ((|#2| |#2|) 26 T ELT)) (-2259 ((|#2| |#2|) 25 T ELT)))
+(((-569 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -2261 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2833 (|#2| |#2| (-1090))) (-15 -2833 (|#2| |#2| (-1005 |#2|)))) (-496) (-13 (-364 |#1|) (-916) (-1115))) (T -569))
+((-2833 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1115))) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)))) (-2833 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1115))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1115))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1115))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1115))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1115))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1115))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1115))))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4)) (-4 *4 (-13 (-364 *3) (-916) (-1115))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1115))))))
+((-3492 (($ $) 38 T ELT)) (-3639 (($ $) 21 T ELT)) (-3490 (($ $) 37 T ELT)) (-3638 (($ $) 22 T ELT)) (-3494 (($ $) 36 T ELT)) (-3637 (($ $) 23 T ELT)) (-3627 (($) 48 T ELT)) (-3942 (($ $) 45 T ELT)) (-2258 (($ $) 17 T ELT)) (-2833 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1090)) 6 T ELT)) (-3943 (($ $) 46 T ELT)) (-2256 (($ $) 15 T ELT)) (-2257 (($ $) 16 T ELT)) (-3495 (($ $) 35 T ELT)) (-3636 (($ $) 24 T ELT)) (-3493 (($ $) 34 T ELT)) (-3635 (($ $) 25 T ELT)) (-3491 (($ $) 33 T ELT)) (-3634 (($ $) 26 T ELT)) (-3498 (($ $) 44 T ELT)) (-3486 (($ $) 32 T ELT)) (-3496 (($ $) 43 T ELT)) (-3484 (($ $) 31 T ELT)) (-3500 (($ $) 42 T ELT)) (-3488 (($ $) 30 T ELT)) (-3501 (($ $) 41 T ELT)) (-3489 (($ $) 29 T ELT)) (-3499 (($ $) 40 T ELT)) (-3487 (($ $) 28 T ELT)) (-3497 (($ $) 39 T ELT)) (-3485 (($ $) 27 T ELT)) (-2260 (($ $) 19 T ELT)) (-2261 (($ $) 20 T ELT)) (-2259 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
+(((-570) (-113)) (T -570))
+((-2261 (*1 *1 *1) (-4 *1 (-570))) (-2260 (*1 *1 *1) (-4 *1 (-570))) (-2259 (*1 *1 *1) (-4 *1 (-570))) (-2258 (*1 *1 *1) (-4 *1 (-570))) (-2257 (*1 *1 *1) (-4 *1 (-570))) (-2256 (*1 *1 *1) (-4 *1 (-570))))
+(-13 (-872) (-1115) (-10 -8 (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $))))
+(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-872) . T) ((-1115) . T) ((-1118) . T))
+((-2271 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2264 (((-584 (-206 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 90 T ELT)) (-2265 (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 92 T ELT) (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 91 T ELT)) (-2262 (((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|))) 136 T ELT)) (-2269 (((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 105 T ELT)) (-2263 (((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-206 |#1| |#2|))) 147 T ELT)) (-2267 (((-1179 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|))) 70 T ELT)) (-2266 (((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 47 T ELT)) (-2270 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 61 T ELT)) (-2268 (((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 113 T ELT)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -2262 ((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|)))) (-15 -2263 ((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-206 |#1| |#2|)))) (-15 -2264 ((-584 (-206 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2265 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-15 -2265 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-15 -2266 ((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2267 ((-1179 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|)))) (-15 -2268 ((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2269 ((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2270 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2271 ((-421 |#1| |#2|) (-206 |#1| |#2|)))) (-584 (-1090)) (-392)) (T -571))
+((-2271 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-392)) (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5)))) (-2270 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2269 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1090))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2268 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-392)) (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1090))) (-5 *1 (-571 *5 *6)))) (-2267 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-584 (-1090))) (-4 *6 (-392)) (-5 *2 (-1179 *6)) (-5 *1 (-571 *5 *6)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-584 (-421 *3 *4))) (-14 *3 (-584 (-1090))) (-4 *4 (-392)) (-5 *1 (-571 *3 *4)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1090))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2265 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1090))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1090))) (-4 *5 (-392)) (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2263 (*1 *2 *3) (-12 (-14 *4 (-584 (-1090))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-485))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5))))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1090))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-485))))) (-5 *1 (-571 *4 *5)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-2199 (((-1185) $ (-1073) (-1073)) NIL (|has| $ (-6 -3996)) ELT)) (-3788 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -3996)) ELT) (((-51) $ (-1090) (-51)) 16 T ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 (-51) #1="failed") (-1073) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT)) (-3405 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 (-51) #1#) (-1073) $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -3996)) ELT)) (-3113 (((-51) $ (-1073)) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2272 (($ $) NIL T ELT)) (-2201 (((-1073) $) NIL (|has| (-1073) (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-51) (-72))) ELT) (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72)) ELT)) (-2202 (((-1073) $) NIL (|has| (-1073) (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2273 (($ (-338)) 8 T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-51) (-1014)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT)) (-2233 (((-584 (-1073)) $) NIL T ELT)) (-2234 (((-85) (-1073) $) NIL T ELT)) (-1274 (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL T ELT)) (-2204 (((-584 (-1073)) $) NIL T ELT)) (-2205 (((-85) (-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-51) (-1014)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT)) (-3801 (((-51) $) NIL (|has| (-1073) (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2200 (($ $ (-51)) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-51)) (-584 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-584 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-51) (-1014))) ELT)) (-2206 (((-584 (-51)) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 (((-51) $ (-1073)) NIL T ELT) (((-51) $ (-1073) (-51)) NIL T ELT) (((-51) $ (-1090)) 14 T ELT)) (-1466 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT) (((-695) (-51) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-51) (-72))) ELT) (((-695) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-3946 (((-773) $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-553 (-773))) (|has| (-51) (-553 (-773)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-572) (-13 (-1107 (-1073) (-51)) (-241 (-1090) (-51)) (-10 -8 (-15 -2273 ($ (-338))) (-15 -2272 ($ $)) (-15 -3788 ((-51) $ (-1090) (-51)))))) (T -572))
+((-2273 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-572)))) (-2272 (*1 *1 *1) (-5 *1 (-572))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-572)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-631 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 (-631 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 (((-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3724 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1788 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1786 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1900 (((-1085 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1790 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1792 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1179 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3467 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-3109 (((-831)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1789 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1787 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1904 (((-1085 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1791 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3800 ((|#1| $ (-485)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3225 (((-631 |#1|) (-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1179 $) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1179 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3972 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1892 (((-584 (-858 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-584 (-858 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3946 (((-773) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1707 (((-584 (-1179 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2546 (($ (-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2661 (($) 18 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-573 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3946 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -573))
+((-3946 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3)))))
+((-3949 (($ $ |#2|) 10 T ELT)))
+(((-574 |#1| |#2|) (-10 -7 (-15 -3949 (|#1| |#1| |#2|))) (-575 |#2|) (-146)) (T -574))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3530 (($ $ $) 40 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-575 |#1|) (-113) (-146)) (T -575))
+((-3530 (*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)))) (-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
+(-13 (-655 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3530 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3949 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2275 (((-3 (-751 |#2|) #1="failed") |#2| (-249 |#2|) (-1073)) 105 T ELT) (((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-249 (-751 |#2|))) 130 T ELT)) (-2274 (((-3 (-744 |#2|) #1#) |#2| (-249 (-744 |#2|))) 135 T ELT)))
+(((-576 |#1| |#2|) (-10 -7 (-15 -2275 ((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-249 (-751 |#2|)))) (-15 -2274 ((-3 (-744 |#2|) #1#) |#2| (-249 (-744 |#2|)))) (-15 -2275 ((-3 (-751 |#2|) #1#) |#2| (-249 |#2|) (-1073)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1115) (-364 |#1|))) (T -576))
+((-2275 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1073)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3)) (-5 *1 (-576 *6 *3)))) (-2274 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-744 *3))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-751 *3))) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) "failed")) (-5 *1 (-576 *5 *3)))))
+((-2275 (((-3 (-751 (-350 (-858 |#1|))) #1="failed") (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))) (-1073)) 86 T ELT) (((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 20 T ELT) (((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-751 (-858 |#1|)))) 35 T ELT)) (-2274 (((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 23 T ELT) (((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-744 (-858 |#1|)))) 43 T ELT)))
+(((-577 |#1|) (-10 -7 (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-751 (-858 |#1|))))) (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -2274 ((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-744 (-858 |#1|))))) (-15 -2274 ((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))) (-1073)))) (-392)) (T -577))
+((-2275 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-350 (-858 *6)))) (-5 *5 (-1073)) (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3)) (-5 *1 (-577 *6)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-744 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-744 (-350 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) #2="failed")) (-5 *1 (-577 *5)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-751 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-3 (-751 (-350 (-858 *5))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 *5))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 *5))) #1#))) #2#)) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) 11 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2852 (($ (-168 |#1|)) 12 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-774 |#1|)) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-578 |#1|) (-13 (-753) (-556 (-774 |#1|)) (-10 -8 (-15 -2852 ($ (-168 |#1|))))) (-584 (-1090))) (T -578))
+((-2852 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1090))) (-5 *1 (-578 *3)))))
+((-2278 (((-3 (-1179 (-350 |#1|)) #1="failed") (-1179 |#2|) |#2|) 64 (-2561 (|has| |#1| (-312))) ELT) (((-3 (-1179 |#1|) #1#) (-1179 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2276 (((-85) (-1179 |#2|)) 33 T ELT)) (-2277 (((-3 (-1179 |#1|) #1#) (-1179 |#2|)) 40 T ELT)))
+(((-579 |#1| |#2|) (-10 -7 (-15 -2276 ((-85) (-1179 |#2|))) (-15 -2277 ((-3 (-1179 |#1|) #1="failed") (-1179 |#2|))) (IF (|has| |#1| (-312)) (-15 -2278 ((-3 (-1179 |#1|) #1#) (-1179 |#2|) |#2|)) (-15 -2278 ((-3 (-1179 (-350 |#1|)) #1#) (-1179 |#2|) |#2|)))) (-496) (-13 (-962) (-581 |#1|))) (T -579))
+((-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-2561 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1179 (-350 *5))) (-5 *1 (-579 *5 *4)))) (-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1179 *5)) (-5 *1 (-579 *5 *4)))) (-2277 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-1179 *4)) (-5 *1 (-579 *4 *5)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-579 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3774 (((-584 (-454 |#1| (-578 |#2|))) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| (-578 |#2|)) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2279 (($ (-584 |#1|)) 25 T ELT)) (-1984 (((-578 |#2|) $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3911 (((-107)) 16 T ELT)) (-3225 (((-1179 |#1|) $) 44 T ELT)) (-3972 (($ (-584 (-454 |#1| (-578 |#2|)))) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-578 |#2|)) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 20 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 17 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-580 |#1| |#2|) (-13 (-1187 |#1|) (-556 (-578 |#2|)) (-450 |#1| (-578 |#2|)) (-10 -8 (-15 -2279 ($ (-584 |#1|))) (-15 -3225 ((-1179 |#1|) $)))) (-312) (-584 (-1090))) (T -580))
+((-2279 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4)) (-14 *4 (-584 (-1090))))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312)) (-14 *4 (-584 (-1090))))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2280 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 35 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2281 (((-631 |#1|) (-1179 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 37 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
+(((-581 |#1|) (-113) (-962)) (T -581))
+((-2281 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2281 (*1 *2 *3 *1) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1179 *4)))))) (-2280 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2280 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *1)) (-5 *4 (-1179 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1179 *5)))))))
+(-13 (-591 |t#1|) (-10 -8 (-15 -2281 ((-631 |t#1|) (-1179 $))) (-15 -2281 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1179 |t#1|))) (-1179 $) $)) (-15 -2280 ((-631 |t#1|) (-631 $))) (-15 -2280 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1179 |t#1|))) (-631 $) (-1179 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1214 (((-85) $ $) NIL T ELT)) (-2282 (($ (-584 |#1|)) 23 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 ((|#1| $ (-580 |#1| |#2|)) 46 T ELT)) (-3911 (((-107)) 13 T ELT)) (-3225 (((-1179 |#1|) $) 42 T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 14 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-582 |#1| |#2|) (-13 (-1187 |#1|) (-241 (-580 |#1| |#2|) |#1|) (-10 -8 (-15 -2282 ($ (-584 |#1|))) (-15 -3225 ((-1179 |#1|) $)))) (-312) (-584 (-1090))) (T -582))
+((-2282 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-582 *3 *4)) (-14 *4 (-584 (-1090))))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-312)) (-14 *4 (-584 (-1090))))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT)))
+(((-583 |#1|) (-113) (-1026)) (T -583))
+NIL
+(-13 (-589 |t#1|) (-964 |t#1|))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 |#1|) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) NIL T ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-485)) 68 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1730 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-6 -3996)) ELT)) (-2910 (($ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3442 (((-85) $ (-695)) NIL T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 26 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 24 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3996)) ELT)) (-2285 (($ $ $) 74 (|has| |#1| (-1014)) ELT)) (-2284 (($ $ $) 75 (|has| |#1| (-1014)) ELT)) (-2283 (($ $ $) 79 (|has| |#1| (-1014)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) 31 (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) 32 T ELT)) (-3799 (($ $) 21 T ELT) (($ $ (-695)) 35 T ELT)) (-2369 (($ $) 63 (|has| |#1| (-1014)) ELT)) (-1353 (($ $) 73 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3405 (($ |#1| $) NIL (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-1576 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-3419 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2287 (((-85) $) 9 T ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-2288 (($) 7 T CONST)) (-3614 (($ (-695) |#1|) NIL T ELT)) (-3719 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) 34 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3518 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) 61 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3534 (($ |#1|) NIL T ELT)) (-3716 (((-85) $ (-695)) NIL T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) 59 (|has| |#1| (-1014)) ELT)) (-3798 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3609 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 16 T ELT) (($ $ (-695)) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3444 (((-85) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 15 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) 20 T ELT)) (-3565 (($) 19 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT) ((|#1| $ (-485)) 78 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-1571 (($ $ (-1146 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-1146 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-3792 (($ $) NIL T ELT)) (-3790 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-3793 (((-695) $) NIL T ELT)) (-3794 (($ $) 40 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 36 T ELT)) (-3972 (((-474) $) 87 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 29 T ELT)) (-3461 (($ |#1| $) 10 T ELT)) (-3791 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3802 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3946 (((-773) $) 51 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2286 (($ $ $) 11 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) 13 T ELT)))
+(((-584 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -2288 ($) -3952) (-15 -2287 ((-85) $)) (-15 -3461 ($ |#1| $)) (-15 -2286 ($ $ $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -2285 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -2283 ($ $ $))) |%noBranch|))) (-1129)) (T -584))
+((-2288 (*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1129)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1129)))) (-3461 (*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1129)))) (-2286 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1129)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1129)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1129)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1129)))))
+((-3841 (((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 16 T ELT)) (-3842 ((|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 18 T ELT)) (-3958 (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 13 T ELT)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -3841 ((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3842 (|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3958 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)))) (-1129) (-1129)) (T -585))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-585 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5)))))
+((-3422 ((|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|) 17 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|)) 12 T ELT)))
+(((-586 |#1| |#2|) (-10 -7 (-15 -3422 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|))) (-15 -3422 (|#2| (-584 |#1|) (-584 |#2|) |#1|)) (-15 -3422 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|)) (-15 -3422 (|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|)) (-15 -3422 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|))) (-15 -3422 (|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)))) (-1014) (-1129)) (T -586))
+((-3422 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014)) (-4 *2 (-1129)) (-5 *1 (-586 *5 *2)))) (-3422 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1129)) (-5 *1 (-586 *5 *6)))) (-3422 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1129)) (-5 *1 (-586 *5 *2)))) (-3422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1129)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-3422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1129)) (-5 *1 (-586 *5 *2)))) (-3422 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1129)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))))
+((-3958 (((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)) 21 T ELT)))
+(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)))) (-1129) (-1129) (-1129)) (T -587))
+((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-584 *8)) (-5 *1 (-587 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 11 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-588 |#1|) (-13 (-996) (-553 |#1|)) (-1014)) (T -588))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT)))
+(((-589 |#1|) (-113) (-1026)) (T -589))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1026)))))
+(-13 (-1014) (-10 -8 (-15 * ($ |t#1| $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2289 (($ |#1| |#1| $) 45 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2369 (($ $) 47 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3405 (($ |#1| $) 58 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#1|) $) 9 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 49 T ELT)) (-3609 (($ |#1| $) 30 T ELT) (($ |#1| $ (-695)) 44 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1275 ((|#1| $) 52 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 23 T ELT)) (-3565 (($) 29 T ELT)) (-2290 (((-85) $) 56 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1946 (-695)))) $) 69 T ELT)) (-1466 (($) 26 T ELT) (($ (-584 |#1|)) 19 T ELT)) (-1946 (((-695) |#1| $) 65 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 20 T ELT)) (-3972 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) NIL T ELT)) (-3946 (((-773) $) 14 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 24 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 17 T ELT)))
+(((-590 |#1|) (-13 (-635 |#1|) (-318 |#1|) (-10 -8 (-15 -2290 ((-85) $)) (-15 -2289 ($ |#1| |#1| $)))) (-1014)) (T -590))
+((-2290 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1014)))) (-2289 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1014)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
+(((-591 |#1|) (-113) (-971)) (T -591))
+NIL
+(-13 (-21) (-589 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695) $) 17 T ELT)) (-2296 (($ $ |#1|) 68 T ELT)) (-2298 (($ $) 39 T ELT)) (-2299 (($ $) 37 T ELT)) (-3158 (((-3 |#1| "failed") $) 60 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2294 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3533 (((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485)) 55 T ELT)) (-2300 ((|#1| $ (-485)) 35 T ELT)) (-2301 ((|#2| $ (-485)) 34 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2292 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2297 (($) 13 T ELT)) (-2303 (($ |#1| |#2|) 24 T ELT)) (-2302 (($ (-584 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|)))) 25 T ELT)) (-2304 (((-584 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))) $) 14 T ELT)) (-2295 (($ |#1| $) 69 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2293 (((-85) $ $) 74 T ELT)) (-3946 (((-773) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 27 T ELT)))
+(((-592 |#1| |#2| |#3|) (-13 (-1014) (-951 |#1|) (-10 -8 (-15 -3533 ((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485))) (-15 -2304 ((-584 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))) $)) (-15 -2303 ($ |#1| |#2|)) (-15 -2302 ($ (-584 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))))) (-15 -2301 (|#2| $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -2299 ($ $)) (-15 -2298 ($ $)) (-15 -3137 ((-695) $)) (-15 -2297 ($)) (-15 -2296 ($ $ |#1|)) (-15 -2295 ($ |#1| $)) (-15 -2294 ($ |#1| |#2| $)) (-15 -2294 ($ $ $)) (-15 -2293 ((-85) $ $)) (-15 -2292 ($ (-1 |#2| |#2|) $)) (-15 -2291 ($ (-1 |#1| |#1|) $)))) (-1014) (-23) |#2|) (T -592))
+((-3533 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2303 (*1 *1 *2 *3) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2302 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 *4)))) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014)) (-14 *5 *2))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2299 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2297 (*1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2296 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+((-2202 (((-485) $) 30 T ELT)) (-2305 (($ |#2| $ (-485)) 26 T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) 12 T ELT)) (-2205 (((-85) (-485) $) 17 T ELT)) (-3802 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)))
+(((-593 |#1| |#2|) (-10 -7 (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -3802 (|#1| (-584 |#1|))) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#2|)) (-15 -2202 ((-485) |#1|)) (-15 -2204 ((-584 (-485)) |#1|)) (-15 -2205 ((-85) (-485) |#1|))) (-594 |#2|) (-1129)) (T -593))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) 44 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1146 (-485))) 75 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1146 (-485))) 67 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-594 |#1|) (-113) (-1129)) (T -594))
+((-3614 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1129)))) (-3802 (*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1129)))) (-3802 (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1129)))) (-3802 (*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1129)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1129)))) (-3958 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1129)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1129)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1129)))) (-2305 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1129)))) (-2305 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1146 (-485))) (|has| *1 (-6 -3996)) (-4 *1 (-594 *2)) (-4 *2 (-1129)))))
+(-13 (-539 (-485) |t#1|) (-124 |t#1|) (-241 (-1146 (-485)) $) (-10 -8 (-15 -3614 ($ (-695) |t#1|)) (-15 -3802 ($ $ |t#1|)) (-15 -3802 ($ |t#1| $)) (-15 -3802 ($ $ $)) (-15 -3802 ($ (-584 $))) (-15 -3958 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2306 ($ $ (-485))) (-15 -2306 ($ $ (-1146 (-485)))) (-15 -2305 ($ |t#1| $ (-485))) (-15 -2305 ($ $ $ (-485))) (IF (|has| $ (-6 -3996)) (-15 -3788 (|t#1| $ (-1146 (-485)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 15 T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| |#1| (-715)) ELT)) (-3724 (($) NIL T CONST)) (-3187 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2999 ((|#1| $) 23 T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-3243 (((-1073) $) 48 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2998 ((|#3| $) 24 T ELT)) (-3946 (((-773) $) 43 T ELT)) (-1265 (((-85) $ $) 22 T ELT)) (-3383 (($ $) NIL (|has| |#1| (-715)) ELT)) (-2661 (($) 10 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-3057 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2686 (((-85) $ $) 26 (|has| |#1| (-715)) ELT)) (-3949 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3837 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 29 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-595 |#1| |#2| |#3|) (-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-715)) (-6 (-715)) |%noBranch|) (-15 -3949 ($ $ |#3|)) (-15 -3949 ($ |#1| |#3|)) (-15 -2999 (|#1| $)) (-15 -2998 (|#3| $)))) (-655 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -595))
+((-3949 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3949 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2998 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)))))
+((-3573 (((-3 |#2| #1="failed") |#3| |#2| (-1090) |#2| (-584 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) #1#) |#3| |#2| (-1090)) 44 T ELT)))
+(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3573 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) #1="failed") |#3| |#2| (-1090))) (-15 -3573 ((-3 |#2| #1#) |#3| |#2| (-1090) |#2| (-584 |#2|)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1115) (-872)) (-601 |#2|)) (T -596))
+((-3573 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1115) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1115) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) 31 (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3800 ((|#1| $ |#1|) 24 T ELT)) (-2311 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3948 (((-695) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-773) $) 20 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL T ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 8 T CONST)) (-2670 (($) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-597 |#1| |#2|) (-601 |#1|) (-962) (-1 |#1| |#1|)) (T -597))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) NIL (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3948 (((-695) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-598 |#1|) (-601 |#1|) (-190)) (T -598))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) NIL (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3948 (((-695) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-599 |#1| |#2|) (-13 (-601 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-591 |#1|) (-10 -8 (-15 -3758 ($ $))))) (T -599))
+NIL
+((-2307 (($ $) 29 T ELT)) (-2521 (($ $) 27 T ELT)) (-2670 (($) 13 T ELT)))
+(((-600 |#1| |#2|) (-10 -7 (-15 -2307 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2670 (|#1|))) (-601 |#2|) (-962)) (T -600))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2307 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) 97 (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2537 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #2="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #2#) $) 85 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3157 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 84 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3959 (($ $) 77 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2894 (($ |#1| (-695)) 75 T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 79 T ELT)) (-2543 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) 78 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3466 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3800 ((|#1| $ |#1|) 101 T ELT)) (-2311 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3948 (((-695) $) 80 T ELT)) (-2818 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 86 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3817 (((-584 |#1|) $) 74 T ELT)) (-3677 ((|#1| $ (-695)) 76 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2546 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2521 (($ $) 99 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($) 100 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
+(((-601 |#1|) (-113) (-962)) (T -601))
+((-2670 (*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2309 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-312)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2311 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+(-13 (-762 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2670 ($)) (-15 -2521 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2309 ($ $ $)) (-15 -2310 ($ $ (-695))) (-15 -2307 ($ $)) (-15 -2311 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-355 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-762 |#1|) . T))
+((-2308 (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3732 (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 19 T ELT)))
+(((-602 |#1| |#2|) (-10 -7 (-15 -3732 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3732 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)))) (-15 -2308 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1155 |#1|)) (T -602))
+((-2308 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1155 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-350 *5))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1155 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-350 *5))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1155 *5)) (-5 *2 (-584 (-598 (-350 *6)))) (-5 *1 (-602 *5 *6)) (-5 *3 (-598 (-350 *6))))))
+((-2309 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2310 ((|#2| |#2| (-695) (-1 |#1| |#1|)) 45 T ELT)) (-2311 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT)))
+(((-603 |#1| |#2|) (-10 -7 (-15 -2309 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| (-695) (-1 |#1| |#1|))) (-15 -2311 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-601 |#1|)) (T -603))
+((-2311 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))) (-2310 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-603 *5 *2)) (-4 *2 (-601 *5)))) (-2309 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))))
+((-2312 (($ $ $) 9 T ELT)))
+(((-604 |#1|) (-10 -7 (-15 -2312 (|#1| |#1| |#1|))) (-605)) (T -604))
+NIL
+((-2314 (($ $) 8 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-2313 (($ $ $) 7 T ELT)))
+(((-605) (-113)) (T -605))
+((-2314 (*1 *1 *1) (-4 *1 (-605))) (-2313 (*1 *1 *1 *1) (-4 *1 (-605))) (-2312 (*1 *1 *1 *1) (-4 *1 (-605))))
+(-13 (-1129) (-10 -8 (-15 -2314 ($ $)) (-15 -2313 ($ $ $)) (-15 -2312 ($ $ $))))
+(((-13) . T) ((-1129) . T))
+((-2315 (((-3 (-584 (-1085 |#1|)) "failed") (-584 (-1085 |#1|)) (-1085 |#1|)) 33 T ELT)))
+(((-606 |#1|) (-10 -7 (-15 -2315 ((-3 (-584 (-1085 |#1|)) "failed") (-584 (-1085 |#1|)) (-1085 |#1|)))) (-822)) (T -606))
+((-2315 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1085 *4))) (-5 *3 (-1085 *4)) (-4 *4 (-822)) (-5 *1 (-606 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3934 (((-584 |#1|) $) 85 T ELT)) (-3947 (($ $ (-695)) 95 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3939 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 50 T ELT)) (-3158 (((-3 (-615 |#1|) #1#) $) NIL T ELT)) (-3157 (((-615 |#1|) $) NIL T ELT)) (-3959 (($ $) 94 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-615 |#1|) |#2|) 70 T ELT)) (-3936 (($ $) 90 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3940 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 49 T ELT)) (-1749 (((-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2895 (((-615 |#1|) $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3768 (($ $ |#1| $) 32 T ELT) (($ $ (-584 |#1|) (-584 $)) 34 T ELT)) (-3948 (((-695) $) 92 T ELT)) (-3530 (($ $ $) 20 T ELT) (($ (-615 |#1|) (-615 |#1|)) 79 T ELT) (($ (-615 |#1|) $) 77 T ELT) (($ $ (-615 |#1|)) 78 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1195 |#1| |#2|) $) 60 T ELT) (((-1204 |#1| |#2|) $) 43 T ELT) (($ (-615 |#1|)) 27 T ELT)) (-3817 (((-584 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-615 |#1|)) NIL T ELT)) (-3954 ((|#2| (-1204 |#1| |#2|) $) 45 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 23 T CONST)) (-2666 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3945 (((-3 $ #1#) (-1195 |#1| |#2|)) 62 T ELT)) (-1733 (($ (-615 |#1|)) 14 T ELT)) (-3057 (((-85) $ $) 46 T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-615 |#1|)) NIL T ELT)))
+(((-607 |#1| |#2|) (-13 (-326 |#1| |#2|) (-335 |#2| (-615 |#1|)) (-10 -8 (-15 -3945 ((-3 $ "failed") (-1195 |#1| |#2|))) (-15 -3530 ($ (-615 |#1|) (-615 |#1|))) (-15 -3530 ($ (-615 |#1|) $)) (-15 -3530 ($ $ (-615 |#1|))))) (-757) (-146)) (T -607))
+((-3945 (*1 *1 *2) (|partial| -12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-607 *3 *4)))) (-3530 (*1 *1 *2 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3530 (*1 *1 *2 *1) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3530 (*1 *1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))))
+((-1732 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1730 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1570 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2298 (($ $) 65 T ELT)) (-2369 (($ $) 74 T ELT)) (-3405 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3842 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3419 (((-485) |#2| $ (-485)) 71 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) (-1 (-85) |#2|) $) 54 T ELT)) (-3614 (($ (-695) |#2|) 63 T ELT)) (-2857 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3518 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3534 (($ |#2|) 15 T ELT)) (-3609 (($ $ $ (-485)) 42 T ELT) (($ |#2| $ (-485)) 40 T ELT)) (-1354 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1571 (($ $ (-1146 (-485))) 51 T ELT) (($ $ (-485)) 44 T ELT)) (-1731 (($ $ $ (-485)) 70 T ELT)) (-3400 (($ $) 68 T ELT)) (-2686 (((-85) $ $) 76 T ELT)))
+(((-608 |#1| |#2|) (-10 -7 (-15 -3534 (|#1| |#2|)) (-15 -1571 (|#1| |#1| (-485))) (-15 -1571 (|#1| |#1| (-1146 (-485)))) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3609 (|#1| |#2| |#1| (-485))) (-15 -3609 (|#1| |#1| |#1| (-485))) (-15 -2857 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1570 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -3518 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3419 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -3419 ((-485) |#2| |#1|)) (-15 -3419 ((-485) |#2| |#1| (-485))) (-15 -3518 (|#1| |#1| |#1|)) (-15 -1732 ((-85) |#1|)) (-15 -1731 (|#1| |#1| |#1| (-485))) (-15 -2298 (|#1| |#1|)) (-15 -1730 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1354 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3614 (|#1| (-695) |#2|)) (-15 -3958 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3400 (|#1| |#1|))) (-609 |#2|) (-1129)) (T -608))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3795 ((|#1| $) 71 T ELT)) (-3797 (($ $) 73 T ELT)) (-2199 (((-1185) $ (-485) (-485)) 107 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-485)) 58 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) 154 (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-1730 (($ $) 158 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1| |#1|) $) 157 (|has| $ (-6 -3996)) ELT)) (-2910 (($ $) 153 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-3442 (((-85) $ (-695)) 90 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 62 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) 60 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 127 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-485) |#1|) 96 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 141 T ELT)) (-3710 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3995)) ELT)) (-3796 ((|#1| $) 72 T ELT)) (-3724 (($) 7 T CONST)) (-2298 (($ $) 156 (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) 146 T ELT)) (-3799 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-2369 (($ $) 143 (|has| |#1| (-1014)) ELT)) (-1353 (($ $) 109 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 142 (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) 137 T ELT)) (-3406 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3995)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-1576 ((|#1| $ (-485) |#1|) 95 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 97 T ELT)) (-3443 (((-85) $) 93 T ELT)) (-3419 (((-485) |#1| $ (-485)) 151 (|has| |#1| (-1014)) ELT) (((-485) |#1| $) 150 (|has| |#1| (-1014)) ELT) (((-485) (-1 (-85) |#1|) $) 149 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-3614 (($ (-695) |#1|) 119 T ELT)) (-3719 (((-85) $ (-695)) 91 T ELT)) (-2201 (((-485) $) 105 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 164 (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) 144 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 140 T ELT)) (-3518 (($ $ $) 152 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 145 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 104 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 163 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3534 (($ |#1|) 134 T ELT)) (-3716 (((-85) $ (-695)) 92 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3798 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-3609 (($ $ $ (-485)) 139 T ELT) (($ |#1| $ (-485)) 138 T ELT)) (-2305 (($ $ $ (-485)) 126 T ELT) (($ |#1| $ (-485)) 125 T ELT)) (-2204 (((-584 (-485)) $) 102 T ELT)) (-2205 (((-85) (-485) $) 101 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2200 (($ $ |#1|) 106 (|has| $ (-6 -3996)) ELT)) (-3444 (((-85) $) 94 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 100 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1146 (-485))) 118 T ELT) ((|#1| $ (-485)) 99 T ELT) ((|#1| $ (-485) |#1|) 98 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-1571 (($ $ (-1146 (-485))) 136 T ELT) (($ $ (-485)) 135 T ELT)) (-2306 (($ $ (-1146 (-485))) 124 T ELT) (($ $ (-485)) 123 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-3792 (($ $) 68 T ELT)) (-3790 (($ $) 65 (|has| $ (-6 -3996)) ELT)) (-3793 (((-695) $) 69 T ELT)) (-3794 (($ $) 70 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-485)) 155 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 108 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 117 T ELT)) (-3791 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3802 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 162 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 160 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 161 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 159 (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-609 |#1|) (-113) (-1129)) (T -609))
+((-3534 (*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1129)))))
+(-13 (-1064 |t#1|) (-324 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3534 ($ |t#1|))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-237 |#1|) . T) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-924 |#1|) . T) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1064 |#1|) . T) ((-1129) . T) ((-1168 |#1|) . T))
+((-3573 (((-584 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2013 (-584 |#3|)))) |#4| (-584 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2013 (-584 |#3|))) |#4| |#3|) 60 T ELT)) (-3109 (((-695) |#4| |#3|) 18 T ELT)) (-3340 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2316 (((-85) |#4| |#3|) 14 T ELT)))
+(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3573 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|)) (-15 -3573 ((-584 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2013 (-584 |#3|)))) |#4| (-584 |#3|))) (-15 -3340 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2316 ((-85) |#4| |#3|)) (-15 -3109 ((-695) |#4| |#3|))) (-312) (-13 (-324 |#1|) (-10 -7 (-6 -3996))) (-13 (-324 |#1|) (-10 -7 (-6 -3996))) (-628 |#1| |#2| |#3|)) (T -610))
+((-3109 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-695)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-2316 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-85)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3340 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-10 -7 (-6 -3996)))) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))) (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-628 *4 *5 *2)))) (-3573 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-4 *7 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2013 (-584 *7))))) (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) (-3573 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))))
+((-3573 (((-584 (-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2013 (-584 (-1179 |#1|))))) (-584 (-584 |#1|)) (-584 (-1179 |#1|))) 22 T ELT) (((-584 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2013 (-584 (-1179 |#1|))))) (-631 |#1|) (-584 (-1179 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2013 (-584 (-1179 |#1|)))) (-584 (-584 |#1|)) (-1179 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2013 (-584 (-1179 |#1|)))) (-631 |#1|) (-1179 |#1|)) 14 T ELT)) (-3109 (((-695) (-631 |#1|) (-1179 |#1|)) 30 T ELT)) (-3340 (((-3 (-1179 |#1|) #1#) (-631 |#1|) (-1179 |#1|)) 24 T ELT)) (-2316 (((-85) (-631 |#1|) (-1179 |#1|)) 27 T ELT)))
+(((-611 |#1|) (-10 -7 (-15 -3573 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2013 (-584 (-1179 |#1|)))) (-631 |#1|) (-1179 |#1|))) (-15 -3573 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2013 (-584 (-1179 |#1|)))) (-584 (-584 |#1|)) (-1179 |#1|))) (-15 -3573 ((-584 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2013 (-584 (-1179 |#1|))))) (-631 |#1|) (-584 (-1179 |#1|)))) (-15 -3573 ((-584 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2013 (-584 (-1179 |#1|))))) (-584 (-584 |#1|)) (-584 (-1179 |#1|)))) (-15 -3340 ((-3 (-1179 |#1|) #1#) (-631 |#1|) (-1179 |#1|))) (-15 -2316 ((-85) (-631 |#1|) (-1179 |#1|))) (-15 -3109 ((-695) (-631 |#1|) (-1179 |#1|)))) (-312)) (T -611))
+((-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-695)) (-5 *1 (-611 *5)))) (-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-611 *5)))) (-3340 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1179 *4)) (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *1 (-611 *4)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1179 *5) #1="failed")) (|:| -2013 (-584 (-1179 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1179 *5))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2013 (-584 (-1179 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1179 *5))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2013 (-584 (-1179 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1179 *5)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2013 (-584 (-1179 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1179 *5)))))
+((-2317 (((-2 (|:| |particular| (-3 (-1179 (-350 |#4|)) "failed")) (|:| -2013 (-584 (-1179 (-350 |#4|))))) (-584 |#4|) (-584 |#3|)) 51 T ELT)))
+(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2317 ((-2 (|:| |particular| (-3 (-1179 (-350 |#4|)) "failed")) (|:| -2013 (-584 (-1179 (-350 |#4|))))) (-584 |#4|) (-584 |#3|)))) (-496) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -612))
+((-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 (-350 *8)) "failed")) (|:| -2013 (-584 (-1179 (-350 *8)))))) (-5 *1 (-612 *5 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (|has| |#2| (-496)) ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-631 |#2|))) NIL T ELT) (((-1179 (-631 |#2|)) (-1179 $)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-1729 (((-1179 $)) 41 T ELT)) (-3333 (($ |#2|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3110 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1788 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1786 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1179 $)) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1900 (((-1085 (-858 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1705 (((-1085 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1790 ((|#2|) NIL T ELT) ((|#2| (-1179 $)) NIL T ELT)) (-1723 (((-1085 |#2|) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-1792 (($ (-1179 |#2|)) NIL T ELT) (($ (-1179 |#2|) (-1179 $)) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3109 (((-695) $) NIL (|has| |#2| (-496)) ELT) (((-831)) 42 T ELT)) (-3113 ((|#2| $ (-485) (-485)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-2890 (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3108 (((-695) $) NIL (|has| |#2| (-496)) ELT)) (-3107 (((-584 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-496)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3327 ((|#2| $) NIL (|has| |#2| (-6 (-3997 #2="*"))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-3124 (($ (-584 (-584 |#2|))) NIL T ELT)) (-1949 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3594 (((-584 (-584 |#2|)) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1789 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1787 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1179 $)) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1904 (((-1085 (-858 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1706 (((-1085 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1791 ((|#2|) NIL T ELT) ((|#2| (-1179 $)) NIL T ELT)) (-1724 (((-1085 |#2|) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-3590 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) 27 T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT)) (-3329 ((|#2| $) NIL T ELT)) (-3332 (($ (-584 |#2|)) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3331 (((-197 |#1| |#2|) $) NIL T ELT)) (-3328 ((|#2| $) NIL (|has| |#2| (-6 (-3997 #2#))) ELT)) (-1946 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3225 (((-631 |#2|) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) NIL T ELT) (((-631 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $ (-1179 $)) 30 T ELT)) (-3972 (($ (-1179 |#2|)) NIL T ELT) (((-1179 |#2|) $) NIL T ELT)) (-1892 (((-584 (-858 |#2|))) NIL T ELT) (((-584 (-858 |#2|)) (-1179 $)) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-3111 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) 40 T ELT)) (-1707 (((-584 (-1179 |#2|))) NIL (|has| |#2| (-496)) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-2546 (($ (-631 |#2|) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-613 |#1| |#2|) (-13 (-1037 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-361 |#2|)) (-831) (-146)) (T -613))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3249 (((-584 (-1049)) $) 12 T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-614) (-13 (-996) (-10 -8 (-15 -3249 ((-584 (-1049)) $))))) (T -614))
+((-3249 (*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-614)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3934 (((-584 |#1|) $) NIL T ELT)) (-3138 (($ $) 62 T ELT)) (-2665 (((-85) $) NIL T ELT)) (-3158 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2320 (((-3 $ #1#) (-740 |#1|)) 28 T ELT)) (-2322 (((-85) (-740 |#1|)) 18 T ELT)) (-2321 (($ (-740 |#1|)) 29 T ELT)) (-2512 (((-85) $ $) 36 T ELT)) (-3833 (((-831) $) 43 T ELT)) (-3139 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3732 (((-584 $) (-740 |#1|)) 20 T ELT)) (-3946 (((-773) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-740 |#1|) $) 47 T ELT) (((-619 |#1|) $) 52 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2319 (((-58 (-584 $)) (-584 |#1|) (-831)) 67 T ELT)) (-2318 (((-584 $) (-584 |#1|) (-831)) 70 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 63 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 46 T ELT)))
+(((-615 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 -2665 ((-85) $)) (-15 -3139 ($ $)) (-15 -3138 ($ $)) (-15 -3833 ((-831) $)) (-15 -2512 ((-85) $ $)) (-15 -3946 ((-740 |#1|) $)) (-15 -3946 ((-619 |#1|) $)) (-15 -3732 ((-584 $) (-740 |#1|))) (-15 -2322 ((-85) (-740 |#1|))) (-15 -2321 ($ (-740 |#1|))) (-15 -2320 ((-3 $ "failed") (-740 |#1|))) (-15 -3934 ((-584 |#1|) $)) (-15 -2319 ((-58 (-584 $)) (-584 |#1|) (-831))) (-15 -2318 ((-584 $) (-584 |#1|) (-831))))) (-757)) (T -615))
+((-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) (-5 *1 (-615 *4)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-2320 (*1 *1 *2) (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) (-5 *1 (-615 *5)))))
+((-3402 ((|#2| $) 100 T ELT)) (-3797 (($ $) 121 T ELT)) (-3442 (((-85) $ (-695)) 35 T ELT)) (-3799 (($ $) 109 T ELT) (($ $ (-695)) 112 T ELT)) (-3443 (((-85) $) 122 T ELT)) (-3032 (((-584 $) $) 96 T ELT)) (-3028 (((-85) $ $) 92 T ELT)) (-3719 (((-85) $ (-695)) 33 T ELT)) (-2201 (((-485) $) 66 T ELT)) (-2202 (((-485) $) 65 T ELT)) (-3716 (((-85) $ (-695)) 31 T ELT)) (-3527 (((-85) $) 98 T ELT)) (-3798 ((|#2| $) 113 T ELT) (($ $ (-695)) 117 T ELT)) (-2305 (($ $ $ (-485)) 83 T ELT) (($ |#2| $ (-485)) 82 T ELT)) (-2204 (((-584 (-485)) $) 64 T ELT)) (-2205 (((-85) (-485) $) 59 T ELT)) (-3801 ((|#2| $) NIL T ELT) (($ $ (-695)) 108 T ELT)) (-3769 (($ $ (-485)) 125 T ELT)) (-3444 (((-85) $) 124 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2206 (((-584 |#2|) $) 46 T ELT)) (-3800 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1146 (-485))) 79 T ELT) ((|#2| $ (-485)) 57 T ELT) ((|#2| $ (-485) |#2|) 58 T ELT)) (-3030 (((-485) $ $) 91 T ELT)) (-2306 (($ $ (-1146 (-485))) 78 T ELT) (($ $ (-485)) 72 T ELT)) (-3633 (((-85) $) 87 T ELT)) (-3792 (($ $) 105 T ELT)) (-3793 (((-695) $) 104 T ELT)) (-3794 (($ $) 103 T ELT)) (-3530 (($ (-584 |#2|)) 53 T ELT)) (-2892 (($ $) 126 T ELT)) (-3522 (((-584 $) $) 90 T ELT)) (-3029 (((-85) $ $) 89 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3057 (((-85) $ $) 20 T ELT)) (-3957 (((-695) $) 39 T ELT)))
+(((-616 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -3769 (|#1| |#1| (-485))) (-15 -3442 ((-85) |#1| (-695))) (-15 -3719 ((-85) |#1| (-695))) (-15 -3716 ((-85) |#1| (-695))) (-15 -3443 ((-85) |#1|)) (-15 -3444 ((-85) |#1|)) (-15 -3800 (|#2| |#1| (-485) |#2|)) (-15 -3800 (|#2| |#1| (-485))) (-15 -2206 ((-584 |#2|) |#1|)) (-15 -2205 ((-85) (-485) |#1|)) (-15 -2204 ((-584 (-485)) |#1|)) (-15 -2202 ((-485) |#1|)) (-15 -2201 ((-485) |#1|)) (-15 -3530 (|#1| (-584 |#2|))) (-15 -3800 (|#1| |#1| (-1146 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1146 (-485)))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -3792 (|#1| |#1|)) (-15 -3793 ((-695) |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3798 (|#1| |#1| (-695))) (-15 -3800 (|#2| |#1| "last")) (-15 -3798 (|#2| |#1|)) (-15 -3799 (|#1| |#1| (-695))) (-15 -3800 (|#1| |#1| "rest")) (-15 -3799 (|#1| |#1|)) (-15 -3801 (|#1| |#1| (-695))) (-15 -3800 (|#2| |#1| "first")) (-15 -3801 (|#2| |#1|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3030 ((-485) |#1| |#1|)) (-15 -3633 ((-85) |#1|)) (-15 -3800 (|#2| |#1| "value")) (-15 -3402 (|#2| |#1|)) (-15 -3527 ((-85) |#1|)) (-15 -3032 ((-584 |#1|) |#1|)) (-15 -3522 ((-584 |#1|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3957 ((-695) |#1|))) (-617 |#2|) (-1129)) (T -616))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3795 ((|#1| $) 71 T ELT)) (-3797 (($ $) 73 T ELT)) (-2199 (((-1185) $ (-485) (-485)) 107 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-485)) 58 (|has| $ (-6 -3996)) ELT)) (-3442 (((-85) $ (-695)) 90 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 62 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) 60 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 127 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-485) |#1|) 96 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3796 ((|#1| $) 72 T ELT)) (-3724 (($) 7 T CONST)) (-2324 (($ $) 135 T ELT)) (-3799 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-1353 (($ $) 109 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 110 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-1576 ((|#1| $ (-485) |#1|) 95 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 97 T ELT)) (-3443 (((-85) $) 93 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2323 (((-695) $) 134 T ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-3614 (($ (-695) |#1|) 119 T ELT)) (-3719 (((-85) $ (-695)) 91 T ELT)) (-2201 (((-485) $) 105 (|has| (-485) (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-2202 (((-485) $) 104 (|has| (-485) (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3716 (((-85) $ (-695)) 92 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-2326 (($ $) 137 T ELT)) (-2327 (((-85) $) 138 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3798 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-2305 (($ $ $ (-485)) 126 T ELT) (($ |#1| $ (-485)) 125 T ELT)) (-2204 (((-584 (-485)) $) 102 T ELT)) (-2205 (((-85) (-485) $) 101 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-2325 ((|#1| $) 136 T ELT)) (-3801 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2200 (($ $ |#1|) 106 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-485)) 133 T ELT)) (-3444 (((-85) $) 94 T ELT)) (-2328 (((-85) $) 139 T ELT)) (-2329 (((-85) $) 140 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 100 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1146 (-485))) 118 T ELT) ((|#1| $ (-485)) 99 T ELT) ((|#1| $ (-485) |#1|) 98 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-2306 (($ $ (-1146 (-485))) 124 T ELT) (($ $ (-485)) 123 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-3792 (($ $) 68 T ELT)) (-3790 (($ $) 65 (|has| $ (-6 -3996)) ELT)) (-3793 (((-695) $) 69 T ELT)) (-3794 (($ $) 70 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 108 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 117 T ELT)) (-3791 (($ $ $) 67 (|has| $ (-6 -3996)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3996)) ELT)) (-3802 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2892 (($ $) 132 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-617 |#1|) (-113) (-1129)) (T -617))
+((-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1129)))) (-3710 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1129)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2326 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1129)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1129)))) (-2324 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1129)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1129)) (-5 *2 (-695)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1129)))) (-2892 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1129)))))
+(-13 (-1064 |t#1|) (-10 -8 (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -3710 ($ (-1 (-85) |t#1|) $)) (-15 -2329 ((-85) $)) (-15 -2328 ((-85) $)) (-15 -2327 ((-85) $)) (-15 -2326 ($ $)) (-15 -2325 (|t#1| $)) (-15 -2324 ($ $)) (-15 -2323 ((-695) $)) (-15 -3769 ($ $ (-485))) (-15 -2892 ($ $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1064 |#1|) . T) ((-1129) . T) ((-1168 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3179 (((-423) $) 15 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 24 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 17 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-618) (-13 (-996) (-10 -8 (-15 -3179 ((-423) $)) (-15 -3234 ((-1049) $))))) (T -618))
+((-3179 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-618)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-618)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3934 (((-584 |#1|) $) 15 T ELT)) (-3138 (($ $) 19 T ELT)) (-2665 (((-85) $) 20 T ELT)) (-3158 (((-3 |#1| "failed") $) 23 T ELT)) (-3157 ((|#1| $) 21 T ELT)) (-3799 (($ $) 37 T ELT)) (-3936 (($ $) 25 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2512 (((-85) $ $) 46 T ELT)) (-3833 (((-831) $) 40 T ELT)) (-3139 (($ $) 18 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#1| $) 36 T ELT)) (-3946 (((-773) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-740 |#1|) $) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 13 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT)))
+(((-619 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3946 ((-740 |#1|) $)) (-15 -3801 (|#1| $)) (-15 -3139 ($ $)) (-15 -3833 ((-831) $)) (-15 -2512 ((-85) $ $)) (-15 -3936 ($ $)) (-15 -3799 ($ $)) (-15 -2665 ((-85) $)) (-15 -3138 ($ $)) (-15 -3934 ((-584 |#1|) $)))) (-757)) (T -619))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3801 (*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))))
+((-2338 ((|#1| (-1 |#1| (-695) |#1|) (-695) |#1|) 11 T ELT)) (-2330 ((|#1| (-1 |#1| |#1|) (-695) |#1|) 9 T ELT)))
+(((-620 |#1|) (-10 -7 (-15 -2330 (|#1| (-1 |#1| |#1|) (-695) |#1|)) (-15 -2338 (|#1| (-1 |#1| (-695) |#1|) (-695) |#1|))) (-1014)) (T -620))
+((-2338 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))) (-2330 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))))
+((-2332 ((|#2| |#1| |#2|) 9 T ELT)) (-2331 ((|#1| |#1| |#2|) 8 T ELT)))
+(((-621 |#1| |#2|) (-10 -7 (-15 -2331 (|#1| |#1| |#2|)) (-15 -2332 (|#2| |#1| |#2|))) (-1014) (-1014)) (T -621))
+((-2332 (*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2331 (*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+((-2333 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT)))
+(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -2333 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1014) (-1014) (-1014)) (T -622))
+((-2333 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1130) $) 22 T ELT)) (-3318 (((-584 (-1130)) $) 20 T ELT)) (-2334 (($ (-584 (-1130)) (-1130)) 15 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 30 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) (((-1130) $) 23 T ELT) (($ (-1029)) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-623) (-13 (-996) (-553 (-1130)) (-10 -8 (-15 -3946 ($ (-1029))) (-15 -2334 ($ (-584 (-1130)) (-1130))) (-15 -3318 ((-584 (-1130)) $)) (-15 -3319 ((-1130) $))))) (T -623))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-623)))) (-2334 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1130))) (-5 *3 (-1130)) (-5 *1 (-623)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-623)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-623)))))
+((-2338 (((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)) 26 T ELT)) (-2335 (((-1 |#1|) |#1|) 8 T ELT)) (-2337 ((|#1| |#1|) 19 T ELT)) (-2336 (((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3946 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-695)) 23 T ELT)))
+(((-624 |#1|) (-10 -7 (-15 -2335 ((-1 |#1|) |#1|)) (-15 -3946 ((-1 |#1|) |#1|)) (-15 -2336 (|#1| (-1 |#1| |#1|))) (-15 -2336 ((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485))) (-15 -2337 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-695))) (-15 -2338 ((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)))) (-1014)) (T -624))
+((-2338 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4)))) (-2337 (*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5)) (-5 *1 (-624 *5)) (-4 *5 (-1014)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))) (-2335 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))))
+((-2341 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2340 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3952 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2339 (((-1 |#2| |#1|) |#2|) 11 T ELT)))
+(((-625 |#1| |#2|) (-10 -7 (-15 -2339 ((-1 |#2| |#1|) |#2|)) (-15 -2340 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3952 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2341 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1014) (-1014)) (T -625))
+((-2341 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) (-4 *4 (-1014)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5)) (-5 *1 (-625 *4 *5)))) (-2339 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1014)))))
+((-2346 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2342 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2343 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2344 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2345 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT)))
+(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -2342 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2343 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2345 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2346 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1014) (-1014) (-1014)) (T -626))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6)))))
+((-3838 (($ (-695) (-695)) 42 T ELT)) (-2351 (($ $ $) 73 T ELT)) (-3414 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3121 (((-85) $) 36 T ELT)) (-2350 (($ $ (-485) (-485)) 84 T ELT)) (-2349 (($ $ (-485) (-485)) 85 T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) 90 T ELT)) (-2353 (($ $) 71 T ELT)) (-3123 (((-85) $) 15 T ELT)) (-2347 (($ $ (-485) (-485) $) 91 T ELT)) (-3788 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 89 T ELT)) (-3333 (($ (-695) |#2|) 55 T ELT)) (-3124 (($ (-584 (-584 |#2|))) 51 T ELT) (($ (-695) (-695) (-1 |#2| (-485) (-485))) 53 T ELT)) (-3594 (((-584 (-584 |#2|)) $) 80 T ELT)) (-2352 (($ $ $) 72 T ELT)) (-3466 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3800 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) 88 T ELT)) (-3332 (($ (-584 |#2|)) 56 T ELT) (($ (-584 $)) 58 T ELT)) (-3122 (((-85) $) 28 T ELT)) (-3946 (($ |#4|) 63 T ELT) (((-773) $) NIL T ELT)) (-3120 (((-85) $) 38 T ELT)) (-3949 (($ $ |#2|) 124 T ELT)) (-3837 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3839 (($ $ $) 93 T ELT)) (** (($ $ (-695)) 111 T ELT) (($ $ (-485)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-485) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
+(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3946 ((-773) |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3949 (|#1| |#1| |#2|)) (-15 -3466 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| (-485) (-485) |#1|)) (-15 -2348 (|#1| |#1| (-485) (-485) (-485) (-485))) (-15 -2349 (|#1| |#1| (-485) (-485))) (-15 -2350 (|#1| |#1| (-485) (-485))) (-15 -3788 (|#1| |#1| (-584 (-485)) (-584 (-485)) |#1|)) (-15 -3800 (|#1| |#1| (-584 (-485)) (-584 (-485)))) (-15 -3594 ((-584 (-584 |#2|)) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -3414 (|#1| |#3|)) (-15 -3946 (|#1| |#4|)) (-15 -3332 (|#1| (-584 |#1|))) (-15 -3332 (|#1| (-584 |#2|))) (-15 -3333 (|#1| (-695) |#2|)) (-15 -3124 (|#1| (-695) (-695) (-1 |#2| (-485) (-485)))) (-15 -3124 (|#1| (-584 (-584 |#2|)))) (-15 -3838 (|#1| (-695) (-695))) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3788 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3800 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3800 (|#2| |#1| (-485) (-485)))) (-628 |#2| |#3| |#4|) (-962) (-324 |#2|) (-324 |#2|)) (T -627))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3838 (($ (-695) (-695)) 103 T ELT)) (-2351 (($ $ $) 92 T ELT)) (-3414 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3121 (((-85) $) 105 T ELT)) (-2350 (($ $ (-485) (-485)) 88 T ELT)) (-2349 (($ $ (-485) (-485)) 87 T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) 86 T ELT)) (-2353 (($ $) 94 T ELT)) (-3123 (((-85) $) 107 T ELT)) (-2347 (($ $ (-485) (-485) $) 85 T ELT)) (-3788 ((|#1| $ (-485) (-485) |#1|) 48 T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 89 T ELT)) (-1257 (($ $ (-485) |#2|) 46 T ELT)) (-1256 (($ $ (-485) |#3|) 45 T ELT)) (-3333 (($ (-695) |#1|) 100 T ELT)) (-3724 (($) 7 T CONST)) (-3110 (($ $) 72 (|has| |#1| (-258)) ELT)) (-3112 ((|#2| $ (-485)) 50 T ELT)) (-3109 (((-695) $) 71 (|has| |#1| (-496)) ELT)) (-1576 ((|#1| $ (-485) (-485) |#1|) 47 T ELT)) (-3113 ((|#1| $ (-485) (-485)) 52 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3108 (((-695) $) 70 (|has| |#1| (-496)) ELT)) (-3107 (((-584 |#3|) $) 69 (|has| |#1| (-496)) ELT)) (-3115 (((-695) $) 55 T ELT)) (-3614 (($ (-695) (-695) |#1|) 61 T ELT)) (-3114 (((-695) $) 54 T ELT)) (-3327 ((|#1| $) 67 (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-3119 (((-485) $) 59 T ELT)) (-3117 (((-485) $) 57 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) 58 T ELT)) (-3116 (((-485) $) 56 T ELT)) (-3124 (($ (-584 (-584 |#1|))) 102 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) 101 T ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3594 (((-584 (-584 |#1|)) $) 91 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3590 (((-3 $ "failed") $) 66 (|has| |#1| (-312)) ELT)) (-2352 (($ $ $) 93 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 60 T ELT)) (-3466 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-496)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-485) (-485)) 53 T ELT) ((|#1| $ (-485) (-485) |#1|) 51 T ELT) (($ $ (-584 (-485)) (-584 (-485))) 90 T ELT)) (-3332 (($ (-584 |#1|)) 99 T ELT) (($ (-584 $)) 98 T ELT)) (-3122 (((-85) $) 106 T ELT)) (-3328 ((|#1| $) 68 (|has| |#1| (-6 (-3997 #1#))) ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 10 T ELT)) (-3111 ((|#3| $ (-485)) 49 T ELT)) (-3946 (($ |#3|) 97 T ELT) (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3120 (((-85) $) 104 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3949 (($ $ |#1|) 73 (|has| |#1| (-312)) ELT)) (-3837 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3839 (($ $ $) 84 T ELT)) (** (($ $ (-695)) 75 T ELT) (($ $ (-485)) 65 (|has| |#1| (-312)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-485) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-628 |#1| |#2| |#3|) (-113) (-962) (-324 |t#1|) (-324 |t#1|)) (T -628))
+((-3123 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3838 (*1 *1 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3124 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962)) (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-3333 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3946 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (-3414 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-584 (-584 *3))))) (-3800 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3788 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2350 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2349 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2348 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2347 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-496)))) (-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (-3110 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3997 #1="*"))) (-4 *2 (-962)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3997 #1#))) (-4 *2 (-962)))) (-3590 (*1 *1 *1) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3838 ($ (-695) (-695))) (-15 -3124 ($ (-584 (-584 |t#1|)))) (-15 -3124 ($ (-695) (-695) (-1 |t#1| (-485) (-485)))) (-15 -3333 ($ (-695) |t#1|)) (-15 -3332 ($ (-584 |t#1|))) (-15 -3332 ($ (-584 $))) (-15 -3946 ($ |t#3|)) (-15 -3414 ($ |t#2|)) (-15 -3414 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -3594 ((-584 (-584 |t#1|)) $)) (-15 -3800 ($ $ (-584 (-485)) (-584 (-485)))) (-15 -3788 ($ $ (-584 (-485)) (-584 (-485)) $)) (-15 -2350 ($ $ (-485) (-485))) (-15 -2349 ($ $ (-485) (-485))) (-15 -2348 ($ $ (-485) (-485) (-485) (-485))) (-15 -2347 ($ $ (-485) (-485) $)) (-15 -3839 ($ $ $)) (-15 -3837 ($ $ $)) (-15 -3837 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-485) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-695))) (IF (|has| |t#1| (-496)) (-15 -3466 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3949 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3110 ($ $)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3109 ((-695) $)) (-15 -3108 ((-695) $)) (-15 -3107 ((-584 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3997 "*"))) (PROGN (-15 -3328 (|t#1| $)) (-15 -3327 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3590 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-57 |#1| |#2| |#3|) . T) ((-1129) . T))
+((-3842 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3958 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT)))
+(((-629 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3958 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3958 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3842 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-962) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|) (-962) (-324 |#5|) (-324 |#5|) (-628 |#5| |#6| |#7|)) (T -629))
+((-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) (-4 *10 (-628 *2 *8 *9)))) (-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))))
+((-3110 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3109 (((-695) |#4|) 92 (|has| |#1| (-496)) ELT)) (-3108 (((-695) |#4|) 94 (|has| |#1| (-496)) ELT)) (-3107 (((-584 |#3|) |#4|) 101 (|has| |#1| (-496)) ELT)) (-2381 (((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3327 ((|#1| |#4|) 52 T ELT)) (-2358 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-496)) ELT)) (-3590 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2357 ((|#4| |#4|) 76 (|has| |#1| (-496)) ELT)) (-2355 ((|#4| |#4| |#1| (-485) (-485)) 60 T ELT)) (-2354 ((|#4| |#4| (-485) (-485)) 55 T ELT)) (-2356 ((|#4| |#4| |#1| (-485) (-485)) 65 T ELT)) (-3328 ((|#1| |#4|) 96 T ELT)) (-2521 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-496)) ELT)))
+(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3328 (|#1| |#4|)) (-15 -3327 (|#1| |#4|)) (-15 -2354 (|#4| |#4| (-485) (-485))) (-15 -2355 (|#4| |#4| |#1| (-485) (-485))) (-15 -2356 (|#4| |#4| |#1| (-485) (-485))) (IF (|has| |#1| (-496)) (PROGN (-15 -3109 ((-695) |#4|)) (-15 -3108 ((-695) |#4|)) (-15 -3107 ((-584 |#3|) |#4|)) (-15 -2357 (|#4| |#4|)) (-15 -2358 ((-3 |#4| #1="failed") |#4|)) (-15 -2521 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3110 (|#4| |#4|)) (-15 -2381 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3590 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -630))
+((-3590 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2381 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-630 *3 *4 *5 *6)) (-4 *6 (-628 *3 *4 *5)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2358 (*1 *2 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2356 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2355 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2354 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3838 (($ (-695) (-695)) 63 T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3414 (($ (-1179 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2350 (($ $ (-485) (-485)) 21 T ELT)) (-2349 (($ $ (-485) (-485)) NIL T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2353 (($ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2347 (($ $ (-485) (-485) $) NIL T ELT)) (-3788 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1257 (($ $ (-485) (-1179 |#1|)) NIL T ELT)) (-1256 (($ $ (-485) (-1179 |#1|)) NIL T ELT)) (-3333 (($ (-695) |#1|) 37 T ELT)) (-3724 (($) NIL T CONST)) (-3110 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3112 (((-1179 |#1|) $ (-485)) NIL T ELT)) (-3109 (((-695) $) 48 (|has| |#1| (-496)) ELT)) (-1576 ((|#1| $ (-485) (-485) |#1|) 68 T ELT)) (-3113 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3108 (((-695) $) 50 (|has| |#1| (-496)) ELT)) (-3107 (((-584 (-1179 |#1|)) $) 53 (|has| |#1| (-496)) ELT)) (-3115 (((-695) $) 31 T ELT)) (-3614 (($ (-695) (-695) |#1|) 27 T ELT)) (-3114 (((-695) $) 32 T ELT)) (-3327 ((|#1| $) 44 (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-3119 (((-485) $) 9 T ELT)) (-3117 (((-485) $) 10 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) 13 T ELT)) (-3116 (((-485) $) 64 T ELT)) (-3124 (($ (-584 (-584 |#1|))) NIL T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3594 (((-584 (-584 |#1|)) $) 75 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3590 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2352 (($ $ $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-3466 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3332 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-1179 |#1|)) 69 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3328 ((|#1| $) 42 (|has| |#1| (-6 (-3997 #1#))) ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) 79 (|has| |#1| (-554 (-474))) ELT)) (-3111 (((-1179 |#1|) $ (-485)) NIL T ELT)) (-3946 (($ (-1179 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-695)) 38 T ELT) (($ $ (-485)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1179 |#1|) $ (-1179 |#1|)) NIL T ELT) (((-1179 |#1|) (-1179 |#1|) $) NIL T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-631 |#1|) (-13 (-628 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 -3332 ($ (-1179 |#1|))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3590 ((-3 $ "failed") $)) |%noBranch|))) (-962)) (T -631))
+((-3590 (*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-312)) (-4 *2 (-962)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3)))))
+((-2364 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 37 T ELT)) (-2363 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 32 T ELT)) (-2365 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695)) 43 T ELT)) (-2360 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 25 T ELT)) (-2361 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 29 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 27 T ELT)) (-2362 (((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|)) 31 T ELT)) (-2359 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 23 T ELT)) (** (((-631 |#1|) (-631 |#1|) (-695)) 46 T ELT)))
+(((-632 |#1|) (-10 -7 (-15 -2359 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2360 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2362 ((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|))) (-15 -2363 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -2364 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2365 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695))) (-15 ** ((-631 |#1|) (-631 |#1|) (-695)))) (-962)) (T -632))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2365 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2364 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2363 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2362 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2360 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2359 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+((-3158 (((-3 |#1| "failed") $) 18 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2366 (($) 7 T CONST)) (-2367 (($ |#1|) 8 T ELT)) (-3946 (($ |#1|) 16 T ELT) (((-773) $) 23 T ELT)) (-3566 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2366)) 11 T ELT)) (-3572 ((|#1| $) 15 T ELT)))
+(((-633 |#1|) (-13 (-1175) (-951 |#1|) (-553 (-773)) (-10 -8 (-15 -2367 ($ |#1|)) (-15 -3566 ((-85) $ (|[\|\|]| |#1|))) (-15 -3566 ((-85) $ (|[\|\|]| -2366))) (-15 -3572 (|#1| $)) (-15 -2366 ($) -3952))) (-553 (-773))) (T -633))
+((-2367 (*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85)) (-5 *1 (-633 *4)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2366)) (-5 *2 (-85)) (-5 *1 (-633 *4)) (-4 *4 (-553 (-773))))) (-3572 (*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-2366 (*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
+((-3741 (((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)) 20 T ELT)) (-3739 ((|#1| (-631 |#2|)) 9 T ELT)) (-3740 (((-631 |#1|) (-631 |#2|)) 18 T ELT)))
+(((-634 |#1| |#2|) (-10 -7 (-15 -3739 (|#1| (-631 |#2|))) (-15 -3740 ((-631 |#1|) (-631 |#2|))) (-15 -3741 ((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)))) (-496) (-905 |#1|)) (T -634))
+((-3741 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4)) (-5 *1 (-634 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-634 *2 *4)))))
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2369 (($ $) 66 T ELT)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1946 (-695)))) $) 65 T ELT)) (-1466 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 54 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-635 |#1|) (-113) (-1014)) (T -635))
+((-3609 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1946 (-695))))))))
+(-13 (-193 |t#1|) (-10 -8 (-15 -3609 ($ |t#1| $ (-695))) (-15 -2369 ($ $)) (-15 -2368 ((-584 (-2 (|:| |entry| |t#1|) (|:| -1946 (-695)))) $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2372 (((-584 |#1|) (-584 (-2 (|:| -3732 |#1|) (|:| -3948 (-485)))) (-485)) 66 T ELT)) (-2370 ((|#1| |#1| (-485)) 63 T ELT)) (-3145 ((|#1| |#1| |#1| (-485)) 46 T ELT)) (-3732 (((-584 |#1|) |#1| (-485)) 49 T ELT)) (-2373 ((|#1| |#1| (-485) |#1| (-485)) 40 T ELT)) (-2371 (((-584 (-2 (|:| -3732 |#1|) (|:| -3948 (-485)))) |#1| (-485)) 62 T ELT)))
+(((-636 |#1|) (-10 -7 (-15 -3145 (|#1| |#1| |#1| (-485))) (-15 -2370 (|#1| |#1| (-485))) (-15 -3732 ((-584 |#1|) |#1| (-485))) (-15 -2371 ((-584 (-2 (|:| -3732 |#1|) (|:| -3948 (-485)))) |#1| (-485))) (-15 -2372 ((-584 |#1|) (-584 (-2 (|:| -3732 |#1|) (|:| -3948 (-485)))) (-485))) (-15 -2373 (|#1| |#1| (-485) |#1| (-485)))) (-1155 (-485))) (T -636))
+((-2373 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1155 *3)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| -3732 *5) (|:| -3948 (-485))))) (-5 *4 (-485)) (-4 *5 (-1155 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3732 *3) (|:| -3948 *4)))) (-5 *1 (-636 *3)) (-4 *3 (-1155 *4)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1155 *4)))) (-2370 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1155 *3)))) (-3145 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1155 *3)))))
+((-2377 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2374 (((-1047 (-179)) (-1047 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 53 T ELT) (((-1047 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 55 T ELT) (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 57 T ELT)) (-2376 (((-1047 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-584 (-221))) NIL T ELT)) (-2375 (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 58 T ELT)))
+(((-637) (-10 -7 (-15 -2374 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2374 ((-1047 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2374 ((-1047 (-179)) (-1047 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2375 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2376 ((-1047 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2377 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -637))
+((-2377 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637)))) (-2376 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-637)))) (-2375 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-637)))) (-2374 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637)))) (-2374 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-637)))) (-2374 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-637)))))
+((-3732 (((-348 (-1085 |#4|)) (-1085 |#4|)) 87 T ELT) (((-348 |#4|) |#4|) 270 T ELT)))
+(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4|)) (-15 -3732 ((-348 (-1085 |#4|)) (-1085 |#4|)))) (-757) (-718) (-299) (-862 |#3| |#2| |#1|)) (T -638))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
+((-2380 (((-631 |#1|) (-631 |#1|) |#1| |#1|) 85 T ELT)) (-3110 (((-631 |#1|) (-631 |#1|) |#1|) 66 T ELT)) (-2379 (((-631 |#1|) (-631 |#1|) |#1|) 86 T ELT)) (-2378 (((-631 |#1|) (-631 |#1|)) 67 T ELT)) (-2381 (((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|) 84 T ELT)))
+(((-639 |#1|) (-10 -7 (-15 -2378 ((-631 |#1|) (-631 |#1|))) (-15 -3110 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2379 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2380 ((-631 |#1|) (-631 |#1|) |#1| |#1|)) (-15 -2381 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|))) (-258)) (T -639))
+((-2381 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-639 *3)) (-4 *3 (-258)))) (-2380 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-2379 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-3110 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))))
+((-2387 (((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)) 19 T ELT)) (-2382 (((-1 |#4| |#2| |#3|) (-1090)) 12 T ELT)))
+(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2382 ((-1 |#4| |#2| |#3|) (-1090))) (-15 -2387 ((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)))) (-554 (-474)) (-1129) (-1129) (-1129)) (T -640))
+((-2387 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) (-4 *3 (-554 (-474))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) (-4 *4 (-554 (-474))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129)))))
+((-2383 (((-1 (-179) (-179) (-179)) |#1| (-1090) (-1090)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1090)) 48 T ELT)))
+(((-641 |#1|) (-10 -7 (-15 -2383 ((-1 (-179) (-179)) |#1| (-1090))) (-15 -2383 ((-1 (-179) (-179) (-179)) |#1| (-1090) (-1090)))) (-554 (-474))) (T -641))
+((-2383 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474))))) (-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474))))))
+((-2384 (((-1090) |#1| (-1090) (-584 (-1090))) 10 T ELT) (((-1090) |#1| (-1090) (-1090) (-1090)) 13 T ELT) (((-1090) |#1| (-1090) (-1090)) 12 T ELT) (((-1090) |#1| (-1090)) 11 T ELT)))
+(((-642 |#1|) (-10 -7 (-15 -2384 ((-1090) |#1| (-1090))) (-15 -2384 ((-1090) |#1| (-1090) (-1090))) (-15 -2384 ((-1090) |#1| (-1090) (-1090) (-1090))) (-15 -2384 ((-1090) |#1| (-1090) (-584 (-1090))))) (-554 (-474))) (T -642))
+((-2384 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-584 (-1090))) (-5 *2 (-1090)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))))
+((-2385 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -2385 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1129) (-1129)) (T -643))
+((-2385 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) (-4 *3 (-1129)) (-4 *4 (-1129)))))
+((-2386 (((-1 |#3| |#2|) (-1090)) 11 T ELT)) (-2387 (((-1 |#3| |#2|) |#1| (-1090)) 21 T ELT)))
+(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -2386 ((-1 |#3| |#2|) (-1090))) (-15 -2387 ((-1 |#3| |#2|) |#1| (-1090)))) (-554 (-474)) (-1129) (-1129)) (T -644))
+((-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) (-4 *3 (-554 (-474))) (-4 *5 (-1129)) (-4 *6 (-1129)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-554 (-474))) (-4 *5 (-1129)) (-4 *6 (-1129)))))
+((-2390 (((-3 (-584 (-1085 |#4|)) #1="failed") (-1085 |#4|) (-584 |#2|) (-584 (-1085 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1179 (-584 (-1085 |#3|))) |#3|) 92 T ELT)) (-2389 (((-3 (-584 (-1085 |#4|)) #1#) (-1085 |#4|) (-584 |#2|) (-584 (-1085 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|) 110 T ELT)) (-2388 (((-3 (-584 (-1085 |#4|)) #1#) (-1085 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1085 |#4|)) (-1179 (-584 (-1085 |#3|))) |#3|) 48 T ELT)))
+(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2388 ((-3 (-584 (-1085 |#4|)) #1="failed") (-1085 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1085 |#4|)) (-1179 (-584 (-1085 |#3|))) |#3|)) (-15 -2389 ((-3 (-584 (-1085 |#4|)) #1#) (-1085 |#4|) (-584 |#2|) (-584 (-1085 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|)) (-15 -2390 ((-3 (-584 (-1085 |#4|)) #1#) (-1085 |#4|) (-584 |#2|) (-584 (-1085 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1179 (-584 (-1085 |#3|))) |#3|))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -645))
+((-2390 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-584 (-1085 *13))) (-5 *3 (-1085 *13)) (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) (-5 *7 (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| *13))))) (-5 *8 (-584 (-695))) (-5 *9 (-1179 (-584 (-1085 *10)))) (-4 *12 (-757)) (-4 *10 (-258)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) (-5 *1 (-645 *11 *12 *10 *13)))) (-2389 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1085 *9))) (-5 *6 (-584 *9)) (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-258)) (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1085 *12))) (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1085 *12)))) (-2388 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-584 (-1085 *11))) (-5 *3 (-1085 *11)) (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) (-5 *7 (-1179 (-584 (-1085 *8)))) (-4 *10 (-757)) (-4 *8 (-258)) (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 56 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2894 (($ |#1| (-695)) 54 T ELT)) (-2821 (((-695) $) 58 T ELT)) (-3175 ((|#1| $) 57 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3948 (((-695) $) 59 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ (-695)) 55 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT)))
+(((-646 |#1|) (-113) (-962)) (T -646))
+((-3948 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))))
+(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3948 ((-695) $)) (-15 -2821 ((-695) $)) (-15 -3175 (|t#1| $)) (-15 -3959 ($ $)) (-15 -3677 (|t#1| $ (-695))) (-15 -2894 ($ |t#1| (-695)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3958 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT)))
+(((-647 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3958 (|#6| (-1 |#4| |#1|) |#3|))) (-496) (-1155 |#1|) (-1155 (-350 |#2|)) (-496) (-1155 |#4|) (-1155 (-350 |#5|))) (T -647))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1155 *5)) (-4 *2 (-1155 (-350 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1155 (-350 *6))) (-4 *8 (-1155 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2391 (((-1073) (-773)) 36 T ELT)) (-3617 (((-1185) (-1073)) 29 T ELT)) (-2393 (((-1073) (-773)) 26 T ELT)) (-2392 (((-1073) (-773)) 27 T ELT)) (-3946 (((-773) $) NIL T ELT) (((-1073) (-773)) 25 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-648) (-13 (-1014) (-10 -7 (-15 -3946 ((-1073) (-773))) (-15 -2393 ((-1073) (-773))) (-15 -2392 ((-1073) (-773))) (-15 -2391 ((-1073) (-773))) (-15 -3617 ((-1185) (-1073)))))) (T -648))
+((-3946 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1073)) (-5 *1 (-648)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1073)) (-5 *1 (-648)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1073)) (-5 *1 (-648)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1073)) (-5 *1 (-648)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-648)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-3842 (($ |#1| |#2|) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 ((|#2| $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
+(((-649 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2615 (|#2| $)) (-15 -3946 (|#1| $)) (-15 -3842 ($ |#1| |#2|)) (-15 -2403 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -649))
+((-2615 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3842 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 37 T ELT)) (-3767 (((-1179 |#1|) $ (-695)) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3765 (($ (-1085 |#1|)) NIL T ELT)) (-3084 (((-1085 $) $ (-995)) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3755 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3137 (((-695)) 55 (|has| |#1| (-320)) ELT)) (-3761 (($ $ (-695)) NIL T ELT)) (-3760 (($ $ (-695)) NIL T ELT)) (-2400 ((|#2| |#2|) 51 T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3756 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) 72 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3842 (($ |#2|) 49 T ELT)) (-3467 (((-3 $ #1#) $) 98 T ELT)) (-2995 (($) 59 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ $) NIL T ELT)) (-3753 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-2396 (((-870 $)) 89 T ELT)) (-1624 (($ $ |#1| (-695) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3772 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3085 (($ (-1085 |#1|) (-995)) NIL T ELT) (($ (-1085 $) (-995)) NIL T ELT)) (-3777 (($ $ (-695)) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) 86 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2615 ((|#2|) 52 T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1625 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3766 (((-1085 |#1|) $) NIL T ELT)) (-3083 (((-3 (-995) #1#) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3080 ((|#2| $) 48 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) 35 T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3762 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3812 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (($) NIL (|has| |#1| (-1066)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2394 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3764 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-3948 (((-695) $) 39 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-2395 (((-870 $)) 43 T ELT)) (-3754 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3946 (((-773) $) 69 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-995)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-695)) 71 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 26 T CONST)) (-2399 (((-1179 |#1|) $) 84 T ELT)) (-2398 (($ (-1179 |#1|)) 58 T ELT)) (-2667 (($) 9 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-2397 (((-1179 |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 77 T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 40 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 93 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-650 |#1| |#2|) (-13 (-1155 |#1|) (-556 |#2|) (-10 -8 (-15 -2400 (|#2| |#2|)) (-15 -2615 (|#2|)) (-15 -3842 ($ |#2|)) (-15 -3080 (|#2| $)) (-15 -2399 ((-1179 |#1|) $)) (-15 -2398 ($ (-1179 |#1|))) (-15 -2397 ((-1179 |#1|) $)) (-15 -2396 ((-870 $))) (-15 -2395 ((-870 $))) (IF (|has| |#1| (-299)) (-15 -2394 ($ $)) |%noBranch|) (IF (|has| |#1| (-320)) (-6 (-320)) |%noBranch|))) (-962) (-1155 |#1|)) (T -650))
+((-2400 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1155 *3)))) (-2615 (*1 *2) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-3842 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1155 *3)))) (-3080 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-2399 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1179 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1155 *3)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1155 *3)))) (-2397 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1179 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1155 *3)))) (-2396 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1155 *3)))) (-2395 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1155 *3)))) (-2394 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1155 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 ((|#1| $) 13 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2402 ((|#2| $) 12 T ELT)) (-3530 (($ |#1| |#2|) 16 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) 15 T ELT) (((-2 (|:| -2401 |#1|) (|:| -2402 |#2|)) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 11 T ELT)))
+(((-651 |#1| |#2| |#3|) (-13 (-757) (-430 (-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) (-10 -8 (-15 -2402 (|#2| $)) (-15 -2401 (|#1| $)) (-15 -3530 ($ |#1| |#2|)))) (-757) (-1014) (-1 (-85) (-2 (|:| -2401 |#1|) (|:| -2402 |#2|)) (-2 (|:| -2401 |#1|) (|:| -2402 |#2|)))) (T -651))
+((-2402 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *2)) (-2 (|:| -2401 *3) (|:| -2402 *2)))))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) (-2 (|:| -2401 *2) (|:| -2402 *3)))))) (-3530 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) (-2 (|:| -2401 *2) (|:| -2402 *3)))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 66 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3467 (((-3 $ #1#) $) 102 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2517 ((|#2| (-86) |#2|) 93 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2516 (($ |#1| (-310 (-86))) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2518 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2519 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3800 ((|#2| $ |#2|) 33 T ELT)) (-2520 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3946 (((-773) $) 73 T ELT) (($ (-485)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 37 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 9 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 83 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) 64 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT)))
+(((-652 |#1| |#2|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2521 ($ $)) (-15 -2521 ($ $ $)) (-15 -2520 (|#1| |#1|))) |%noBranch|) (-15 -2519 ($ $ (-1 |#2| |#2|))) (-15 -2518 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2517 (|#2| (-86) |#2|)) (-15 -2516 ($ |#1| (-310 (-86)))))) (-962) (-591 |#1|)) (T -652))
+((-2521 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2521 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2520 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) (-2517 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) (-4 *4 (-591 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 33 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3842 (($ |#1| |#2|) 25 T ELT)) (-3467 (((-3 $ #1#) $) 51 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 35 T ELT)) (-2615 ((|#2| $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 52 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) 50 T ELT)) (-3946 (((-773) $) 24 T ELT) (($ (-485)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3127 (((-695)) 28 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 16 T CONST)) (-2667 (($) 30 T CONST)) (-3057 (((-85) $ $) 41 T ELT)) (-3837 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3839 (($ $ $) 43 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 21 T ELT) (($ $ $) 20 T ELT)))
+(((-653 |#1| |#2| |#3| |#4| |#5|) (-13 (-962) (-10 -8 (-15 -2615 (|#2| $)) (-15 -3946 (|#1| $)) (-15 -3842 ($ |#1| |#2|)) (-15 -2403 ((-3 $ #1="failed") $ $)) (-15 -3467 ((-3 $ #1#) $)) (-15 -2485 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -653))
+((-3467 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2615 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3842 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2485 (*1 *1 *1) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+((* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT)))
+(((-654 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-655 |#2|) (-146)) (T -654))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-655 |#1|) (-113) (-146)) (T -655))
+NIL
+(-13 (-82 |t#1| |t#1|) (-583 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2442 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3847 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2404 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 16 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3768 ((|#1| $ |#1|) 24 T ELT) (((-744 |#1|) $ (-744 |#1|)) 32 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3946 (((-773) $) 39 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 9 T CONST)) (-3057 (((-85) $ $) 48 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 14 T ELT)))
+(((-656 |#1|) (-13 (-413) (-10 -8 (-15 -2404 ($ |#1| |#1| |#1| |#1|)) (-15 -2442 ($ |#1|)) (-15 -3847 ($ |#1|)) (-15 -3467 ($)) (-15 -2442 ($ $ |#1|)) (-15 -3847 ($ $ |#1|)) (-15 -3467 ($ $)) (-15 -3768 (|#1| $ |#1|)) (-15 -3768 ((-744 |#1|) $ (-744 |#1|))))) (-312)) (T -656))
+((-2404 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-2442 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3847 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3467 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3847 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3467 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3768 (*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3768 (*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-312)) (-5 *1 (-656 *3)))))
+((-2408 (($ $ (-831)) 19 T ELT)) (-2407 (($ $ (-831)) 20 T ELT)) (** (($ $ (-831)) 10 T ELT)))
+(((-657 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831))) (-15 -2407 (|#1| |#1| (-831))) (-15 -2408 (|#1| |#1| (-831)))) (-658)) (T -657))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-2408 (($ $ (-831)) 19 T ELT)) (-2407 (($ $ (-831)) 18 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 20 T ELT)))
+(((-658) (-113)) (T -658))
+((* (*1 *1 *1 *1) (-4 *1 (-658))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))))
+(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 -2408 ($ $ (-831))) (-15 -2407 ($ $ (-831))) (-15 ** ($ $ (-831)))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2408 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 18 T ELT)) (-2411 (((-85) $) 10 T ELT)) (-2407 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 19 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 16 T ELT)))
+(((-659 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-695))) (-15 -2407 (|#1| |#1| (-695))) (-15 -2408 (|#1| |#1| (-695))) (-15 -2411 ((-85) |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -2407 (|#1| |#1| (-831))) (-15 -2408 (|#1| |#1| (-831)))) (-660)) (T -659))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-2405 (((-3 $ "failed") $) 22 T ELT)) (-2408 (($ $ (-831)) 19 T ELT) (($ $ (-695)) 27 T ELT)) (-3467 (((-3 $ "failed") $) 24 T ELT)) (-2411 (((-85) $) 28 T ELT)) (-2406 (((-3 $ "failed") $) 23 T ELT)) (-2407 (($ $ (-831)) 18 T ELT) (($ $ (-695)) 26 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 29 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 25 T ELT)) (* (($ $ $) 20 T ELT)))
+(((-660) (-113)) (T -660))
+((-2667 (*1 *1) (-4 *1 (-660))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-3467 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2406 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2405 (*1 *1 *1) (|partial| -4 *1 (-660))))
+(-13 (-658) (-10 -8 (-15 -2667 ($) -3952) (-15 -2411 ((-85) $)) (-15 -2408 ($ $ (-695))) (-15 -2407 ($ $ (-695))) (-15 ** ($ $ (-695))) (-15 -3467 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-658) . T) ((-1014) . T) ((-1129) . T))
+((-3137 (((-695)) 39 T ELT)) (-3158 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3842 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) 49 T ELT)) (-3467 (((-3 $ #1#) $) 69 T ELT)) (-2995 (($) 43 T ELT)) (-3133 ((|#2| $) 21 T ELT)) (-2410 (($) 18 T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2409 (((-631 |#2|) (-1179 $) (-1 |#2| |#2|)) 64 T ELT)) (-3972 (((-1179 |#2|) $) NIL T ELT) (($ (-1179 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2450 ((|#3| $) 36 T ELT)) (-2013 (((-1179 $)) 33 T ELT)))
+(((-661 |#1| |#2| |#3|) (-10 -7 (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -2995 (|#1|)) (-15 -3137 ((-695))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2409 ((-631 |#2|) (-1179 |#1|) (-1 |#2| |#2|))) (-15 -3842 ((-3 |#1| #1="failed") (-350 |#3|))) (-15 -3972 (|#1| |#3|)) (-15 -3842 (|#1| |#3|)) (-15 -2410 (|#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3972 (|#3| |#1|)) (-15 -3972 (|#1| (-1179 |#2|))) (-15 -3972 ((-1179 |#2|) |#1|)) (-15 -2013 ((-1179 |#1|))) (-15 -2450 (|#3| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1|))) (-662 |#2| |#3|) (-146) (-1155 |#2|)) (T -661))
+((-3137 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2064 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2062 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1782 (((-631 |#1|) (-1179 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3330 ((|#1| $) 67 T ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 135 (|has| |#1| (-312)) ELT)) (-1608 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3137 (((-695)) 108 (|has| |#1| (-320)) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3157 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) 63 T ELT) (($ (-1179 |#1|)) 80 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1781 (((-631 |#1|) $ (-1179 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3842 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-350 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-831)) 69 T ELT)) (-2995 (($) 111 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| |#1| (-312)) ELT)) (-2834 (($) 169 (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1764 (($ $ (-695)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3723 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3772 (((-831) $) 172 (|has| |#1| (-299)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 66 T ELT)) (-3445 (((-633 $) $) 162 (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-312)) ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2011 (((-831) $) 110 (|has| |#1| (-320)) ELT)) (-3080 ((|#2| $) 176 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 182 T ELT) (((-631 |#1|) (-1179 $)) 181 T ELT)) (-1891 (($ (-584 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3446 (($) 163 (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2410 (($) 180 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 122 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-3732 (((-348 $) $) 133 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-312)) ELT)) (-1607 (((-695) $) 126 (|has| |#1| (-312)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3757 ((|#1| (-1179 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1765 (((-695) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3758 (($ $ (-695)) 156 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 150 (-2563 (|has| |#1| (-812 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090) (-695)) 149 (-2563 (|has| |#1| (-812 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1090))) 148 (-2563 (|has| |#1| (-812 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090)) 146 (-2563 (|has| |#1| (-812 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 (|has| |#1| (-312)) ELT)) (-2409 (((-631 |#1|) (-1179 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3186 ((|#2|) 179 T ELT)) (-1674 (($) 168 (|has| |#1| (-299)) ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-631 |#1|) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 |#1|) $) 82 T ELT) (((-631 |#1|) (-1179 $)) 81 T ELT)) (-3972 (((-1179 |#1|) $) 79 T ELT) (($ (-1179 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-631 $)) 165 (|has| |#1| (-299)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-350 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (($ $) 164 (|has| |#1| (-299)) ELT) (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2013 (((-1179 $)) 83 T ELT)) (-2063 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-695)) 157 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 153 (-2563 (|has| |#1| (-812 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090) (-695)) 152 (-2563 (|has| |#1| (-812 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1090))) 151 (-2563 (|has| |#1| (-812 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090)) 147 (-2563 (|has| |#1| (-812 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 (|has| |#1| (-312)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| |#1| (-312)) ELT)))
+(((-662 |#1| |#2|) (-113) (-146) (-1155 |t#1|)) (T -662))
+((-2410 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1155 *2)))) (-3186 (*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) (-3842 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1155 *3)))) (-3972 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1155 *3)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) (-3842 (*1 *1 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-662 *3 *4)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1155 *5)) (-5 *2 (-631 *5)))))
+(-13 (-353 |t#1| |t#2|) (-146) (-554 |t#2|) (-355 |t#1|) (-329 |t#1|) (-10 -8 (-15 -2410 ($)) (-15 -3186 (|t#2|)) (-15 -3842 ($ |t#2|)) (-15 -3972 ($ |t#2|)) (-15 -3080 (|t#2| $)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3842 ((-3 $ "failed") (-350 |t#2|))) (-15 -2409 ((-631 |t#1|) (-1179 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| |#2|) . T) ((-353 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-496) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090))))) ((-810 (-1090)) -12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090)))) ((-812 (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1090))))) ((-833) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1066) |has| |#1| (-299)) ((-1129) . T) ((-1134) OR (|has| |#1| (-299)) (|has| |#1| (-312))))
+((-3724 (($) 11 T CONST)) (-3467 (((-3 $ "failed") $) 14 T ELT)) (-2411 (((-85) $) 10 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 20 T ELT)))
+(((-663 |#1|) (-10 -7 (-15 -3467 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 -2411 ((-85) |#1|)) (-15 -3724 (|#1|) -3952) (-15 ** (|#1| |#1| (-831)))) (-664)) (T -663))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 20 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-664) (-113)) (T -664))
+((-2667 (*1 *1) (-4 *1 (-664))) (-3724 (*1 *1) (-4 *1 (-664))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695)))) (-3467 (*1 *1 *1) (|partial| -4 *1 (-664))))
+(-13 (-1026) (-10 -8 (-15 -2667 ($) -3952) (-15 -3724 ($) -3952) (-15 -2411 ((-85) $)) (-15 ** ($ $ (-695))) (-15 -3467 ((-3 $ "failed") $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1026) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2413 ((|#1| $) 16 T ELT)) (-2412 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3946 (((-773) $) NIL T ELT) (((-1023 |#1|) $) 17 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-665 |#1|) (-13 (-666 |#1|) (-1014) (-553 (-1023 |#1|)) (-10 -8 (-15 -2412 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -665))
+((-2412 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3)))))
+((-2413 ((|#1| $) 8 T ELT)) (-3800 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-666 |#1|) (-113) (-72)) (T -666))
+((-2413 (*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72)))))
+(-13 (-1024 |t#1|) (-10 -8 (-15 -2413 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3057 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3057 (|f| (-2413 |f|) |x|) |x|))))))))
+(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1024 |#1|) . T) ((-1129) . T))
+((-2414 (((-2 (|:| -3090 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3418 (((-2 (|:| -3090 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2415 ((|#2| (-350 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3435 (((-2 (|:| |poly| |#2|) (|:| -3090 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)) 48 T ELT)))
+(((-667 |#1| |#2|) (-10 -7 (-15 -3418 ((-2 (|:| -3090 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2414 ((-2 (|:| -3090 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2415 (|#2| (-350 |#2|) (-1 |#2| |#2|))) (-15 -3435 ((-2 (|:| |poly| |#2|) (|:| -3090 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1155 |#1|)) (T -667))
+((-3435 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3090 (-350 *6)) (|:| |special| (-350 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-350 *6)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-312)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3090 (-348 *3)) (|:| |special| (-348 *3)))) (-5 *1 (-667 *5 *3)))) (-3418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3090 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))))
+((-2416 ((|#7| (-584 |#5|) |#6|) NIL T ELT)) (-3958 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT)))
+(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3958 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2416 (|#7| (-584 |#5|) |#6|))) (-757) (-718) (-718) (-962) (-962) (-862 |#4| |#2| |#1|) (-862 |#5| |#3| |#1|)) (T -668))
+((-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))))
+((-3958 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT)))
+(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3958 (|#7| (-1 |#2| |#1|) |#6|))) (-757) (-757) (-718) (-718) (-962) (-862 |#5| |#3| |#1|) (-862 |#5| |#4| |#2|)) (T -669))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5)))))
+((-3732 (((-348 |#4|) |#4|) 42 T ELT)))
+(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090))))) (-258) (-862 (-858 |#3|) |#1| |#2|)) (T -670))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090)))))) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-862 (-858 *6) *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3084 (((-1085 $) $ (-774 |#1|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1624 (($ $ |#2| (-470 (-774 |#1|)) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1085 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1085 $) (-774 |#1|)) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2821 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1625 (($ (-1 (-470 (-774 |#1|)) (-470 (-774 |#1|))) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#2| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3757 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3948 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-496)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT)) (-3817 (((-584 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-671 |#1| |#2|) (-862 |#2| (-470 (-774 |#1|)) (-774 |#1|)) (-584 (-1090)) (-962)) (T -671))
+NIL
+((-2417 (((-2 (|:| -2484 (-858 |#3|)) (|:| -2059 (-858 |#3|))) |#4|) 14 T ELT)) (-2987 ((|#4| |#4| |#2|) 33 T ELT)) (-2420 ((|#4| (-350 (-858 |#3|)) |#2|) 62 T ELT)) (-2419 ((|#4| (-1085 (-858 |#3|)) |#2|) 74 T ELT)) (-2418 ((|#4| (-1085 |#4|) |#2|) 49 T ELT)) (-2986 ((|#4| |#4| |#2|) 52 T ELT)) (-3732 (((-348 |#4|) |#4|) 40 T ELT)))
+(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2417 ((-2 (|:| -2484 (-858 |#3|)) (|:| -2059 (-858 |#3|))) |#4|)) (-15 -2986 (|#4| |#4| |#2|)) (-15 -2418 (|#4| (-1085 |#4|) |#2|)) (-15 -2987 (|#4| |#4| |#2|)) (-15 -2419 (|#4| (-1085 (-858 |#3|)) |#2|)) (-15 -2420 (|#4| (-350 (-858 |#3|)) |#2|)) (-15 -3732 ((-348 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)))) (-496) (-862 (-350 (-858 |#3|)) |#1| |#2|)) (T -672))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *6 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))) (-2420 (*1 *2 *3 *4) (-12 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-350 (-858 *6))) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 (-858 *6))) (-4 *6 (-496)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *6 (-496)))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) (-2417 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *6 (-496)) (-5 *2 (-2 (|:| -2484 (-858 *6)) (|:| -2059 (-858 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))))
+((-3732 (((-348 |#4|) |#4|) 54 T ELT)))
+(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4|))) (-718) (-757) (-13 (-258) (-120)) (-862 (-350 |#3|) |#1| |#2|)) (T -673))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-862 (-350 *6) *4 *5)))))
+((-3958 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18 T ELT)))
+(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-962) (-962) (-664)) (T -674))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 36 T ELT)) (-3774 (((-584 (-2 (|:| -3954 |#1|) (|:| -3938 |#2|))) $) 37 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) 22 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3157 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) 99 (|has| |#2| (-757)) ELT)) (-3467 (((-3 $ #1#) $) 83 T ELT)) (-2995 (($) 48 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 70 T ELT)) (-2822 (((-584 $) $) 52 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| |#2|) 17 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2011 (((-831) $) 43 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-2895 ((|#2| $) 98 (|has| |#2| (-757)) ELT)) (-3175 ((|#1| $) 97 (|has| |#2| (-757)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) 35 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 96 T ELT) (($ (-485)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-584 (-2 (|:| -3954 |#1|) (|:| -3938 |#2|)))) 11 T ELT)) (-3817 (((-584 |#1|) $) 54 T ELT)) (-3677 ((|#1| $ |#2|) 114 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-2667 (($) 44 T CONST)) (-3057 (((-85) $ $) 104 T ELT)) (-3837 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 33 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-675 |#1| |#2|) (-13 (-962) (-951 |#2|) (-951 |#1|) (-10 -8 (-15 -2894 ($ |#1| |#2|)) (-15 -3677 (|#1| $ |#2|)) (-15 -3946 ($ (-584 (-2 (|:| -3954 |#1|) (|:| -3938 |#2|))))) (-15 -3774 ((-584 (-2 (|:| -3954 |#1|) (|:| -3938 |#2|))) $)) (-15 -3958 ($ (-1 |#1| |#1|) $)) (-15 -3937 ((-85) $)) (-15 -3817 ((-584 |#1|) $)) (-15 -2822 ((-584 $) $)) (-15 -2421 ((-695) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-757)) (PROGN (-15 -2895 (|#2| $)) (-15 -3175 (|#1| $)) (-15 -3959 ($ $))) |%noBranch|))) (-962) (-664)) (T -675))
+((-2894 (*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) (-3677 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3954 *3) (|:| -3938 *4)))) (-4 *3 (-962)) (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3954 *3) (|:| -3938 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2895 (*1 *2 *1) (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) (-3175 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3235 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3237 (($ $ $) 99 T ELT)) (-3236 (((-85) $ $) 107 T ELT)) (-3240 (($ (-584 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2369 (($ $) 88 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3405 (($ |#1| $) 71 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT) (($ |#1| $ (-485)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 81 T ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ |#1| $ (-485)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 84 T ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3242 (((-85) $ $) 106 T ELT)) (-2422 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-584 |#1|)) 23 T ELT)) (-2609 (((-584 |#1|) $) 38 T ELT)) (-3246 (((-85) |#1| $) 66 (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3239 (($ $ $) 97 T ELT)) (-1274 ((|#1| $) 63 T ELT)) (-3609 (($ |#1| $) 64 T ELT) (($ |#1| $ (-695)) 89 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1275 ((|#1| $) 62 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 57 T ELT)) (-3565 (($) 14 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1946 (-695)))) $) 56 T ELT)) (-3238 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1466 (($) 16 T ELT) (($ (-584 |#1|)) 25 T ELT)) (-1946 (((-695) |#1| $) 69 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 82 T ELT)) (-3972 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 22 T ELT)) (-3946 (((-773) $) 50 T ELT)) (-3241 (($ (-584 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-584 |#1|)) 24 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 103 T ELT)) (-3957 (((-695) $) 68 T ELT)))
+(((-676 |#1|) (-13 (-677 |#1|) (-318 |#1|) (-10 -8 (-6 -3996) (-15 -2422 ($)) (-15 -2422 ($ |#1|)) (-15 -2422 ($ (-584 |#1|))) (-15 -2609 ((-584 |#1|) $)) (-15 -3406 ($ |#1| $ (-485))) (-15 -3406 ($ (-1 (-85) |#1|) $ (-485))) (-15 -3405 ($ |#1| $ (-485))) (-15 -3405 ($ (-1 (-85) |#1|) $ (-485))))) (-1014)) (T -676))
+((-2609 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014)))) (-2422 (*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2422 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))))
+((-2569 (((-85) $ $) 19 T ELT)) (-3235 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3237 (($ $ $) 77 T ELT)) (-3236 (((-85) $ $) 78 T ELT)) (-3240 (($ (-584 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2369 (($ $) 66 T ELT)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3242 (((-85) $ $) 69 T ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 T ELT)) (-3239 (($ $ $) 74 T ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3244 (((-1034) $) 21 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1946 (-695)))) $) 65 T ELT)) (-3238 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1466 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 54 T ELT)) (-3946 (((-773) $) 17 T ELT)) (-3241 (($ (-584 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1265 (((-85) $ $) 20 T ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-677 |#1|) (-113) (-1014)) (T -677))
+NIL
+(-13 (-635 |t#1|) (-1012 |t#1|))
+(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-635 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2423 (((-1185) (-1073)) 8 T ELT)))
+(((-678) (-10 -7 (-15 -2423 ((-1185) (-1073))))) (T -678))
+((-2423 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-678)))))
+((-2424 (((-584 |#1|) (-584 |#1|) (-584 |#1|)) 15 T ELT)))
+(((-679 |#1|) (-10 -7 (-15 -2424 ((-584 |#1|) (-584 |#1|) (-584 |#1|)))) (-757)) (T -679))
+((-2424 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 |#2|) $) 159 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 152 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 151 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 149 (|has| |#1| (-496)) ELT)) (-3492 (($ $) 108 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 91 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $) 90 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 107 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 92 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 106 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 93 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 143 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3814 (((-858 |#1|) $ (-695)) 121 T ELT) (((-858 |#1|) $ (-695) (-695)) 120 T ELT)) (-2893 (((-85) $) 160 T ELT)) (-3627 (($) 118 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-695) $ |#2|) 123 T ELT) (((-695) $ |#2| (-695)) 122 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 89 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3937 (((-85) $) 141 T ELT)) (-2894 (($ $ (-584 |#2|) (-584 (-470 |#2|))) 158 T ELT) (($ $ |#2| (-470 |#2|)) 157 T ELT) (($ |#1| (-470 |#2|)) 142 T ELT) (($ $ |#2| (-695)) 125 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 124 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3942 (($ $) 115 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 138 T ELT)) (-3175 ((|#1| $) 137 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3812 (($ $ |#2|) 119 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3769 (($ $ (-695)) 126 T ELT)) (-3466 (((-3 $ "failed") $ $) 153 (|has| |#1| (-496)) ELT)) (-3943 (($ $) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (($ $ |#2| $) 134 T ELT) (($ $ (-584 |#2|) (-584 $)) 133 T ELT) (($ $ (-584 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-584 $) (-584 $)) 129 T ELT)) (-3758 (($ $ (-584 |#2|) (-584 (-695))) 52 T ELT) (($ $ |#2| (-695)) 51 T ELT) (($ $ (-584 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3948 (((-470 |#2|) $) 139 T ELT)) (-3495 (($ $) 105 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 94 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 104 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 95 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 103 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 96 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 161 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-496)) ELT) (($ (-350 (-485))) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3677 ((|#1| $ (-470 |#2|)) 144 T ELT) (($ $ |#2| (-695)) 128 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 127 T ELT)) (-2703 (((-633 $) $) 155 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 114 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 102 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 150 (|has| |#1| (-496)) ELT)) (-3496 (($ $) 113 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 101 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 100 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 111 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 99 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 110 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 98 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 109 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 97 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) 55 T ELT) (($ $ |#2| (-695)) 54 T ELT) (($ $ (-584 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 88 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 148 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT)))
+(((-680 |#1| |#2|) (-113) (-962) (-757)) (T -680))
+((-3677 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-3677 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3772 (*1 *2 *1 *3) (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3772 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) (-3814 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3814 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3812 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) (-4 *3 (-38 (-350 (-485)))))))
+(-13 (-810 |t#2|) (-887 |t#1| (-470 |t#2|) |t#2|) (-456 |t#2| $) (-260 $) (-10 -8 (-15 -3677 ($ $ |t#2| (-695))) (-15 -3677 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3769 ($ $ (-695))) (-15 -2894 ($ $ |t#2| (-695))) (-15 -2894 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3772 ((-695) $ |t#2|)) (-15 -3772 ((-695) $ |t#2| (-695))) (-15 -3814 ((-858 |t#1|) $ (-695))) (-15 -3814 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3812 ($ $ |t#2|)) (-6 (-916)) (-6 (-1115))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-470 |#2|)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-246) |has| |#1| (-496)) ((-260 $) . T) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-456 |#2| $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ |#2|) . T) ((-810 |#2|) . T) ((-812 |#2|) . T) ((-887 |#1| (-470 |#2|) |#2|) . T) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1115) |has| |#1| (-38 (-350 (-485)))) ((-1118) |has| |#1| (-38 (-350 (-485)))) ((-1129) . T))
+((-3732 (((-348 (-1085 |#4|)) (-1085 |#4|)) 30 T ELT) (((-348 |#4|) |#4|) 26 T ELT)))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4|)) (-15 -3732 ((-348 (-1085 |#4|)) (-1085 |#4|)))) (-757) (-718) (-13 (-258) (-120)) (-862 |#3| |#2| |#1|)) (T -681))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
+((-2427 (((-348 |#4|) |#4| |#2|) 142 T ELT)) (-2425 (((-348 |#4|) |#4|) NIL T ELT)) (-3971 (((-348 (-1085 |#4|)) (-1085 |#4|)) 129 T ELT) (((-348 |#4|) |#4|) 52 T ELT)) (-2429 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3732 (-1085 |#4|)) (|:| -2402 (-485)))))) (-1085 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 81 T ELT)) (-2433 (((-1085 |#3|) (-1085 |#3|) (-485)) 169 T ELT)) (-2432 (((-584 (-695)) (-1085 |#4|) (-584 |#2|) (-695)) 75 T ELT)) (-3080 (((-3 (-584 (-1085 |#4|)) "failed") (-1085 |#4|) (-1085 |#3|) (-1085 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|)) 79 T ELT)) (-2430 (((-2 (|:| |upol| (-1085 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2402 (-485))))) (|:| |ctpol| |#3|)) (-1085 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 27 T ELT)) (-2428 (((-2 (|:| -2005 (-1085 |#4|)) (|:| |polval| (-1085 |#3|))) (-1085 |#4|) (-1085 |#3|) (-485)) 72 T ELT)) (-2426 (((-485) (-584 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2402 (-485))))) 165 T ELT)) (-2431 ((|#4| (-485) (-348 |#4|)) 73 T ELT)) (-3357 (((-85) (-584 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2402 (-485)))) (-584 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2402 (-485))))) NIL T ELT)))
+(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3971 ((-348 |#4|) |#4|)) (-15 -3971 ((-348 (-1085 |#4|)) (-1085 |#4|))) (-15 -2425 ((-348 |#4|) |#4|)) (-15 -2426 ((-485) (-584 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2402 (-485)))))) (-15 -2427 ((-348 |#4|) |#4| |#2|)) (-15 -2428 ((-2 (|:| -2005 (-1085 |#4|)) (|:| |polval| (-1085 |#3|))) (-1085 |#4|) (-1085 |#3|) (-485))) (-15 -2429 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3732 (-1085 |#4|)) (|:| -2402 (-485)))))) (-1085 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2430 ((-2 (|:| |upol| (-1085 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2402 (-485))))) (|:| |ctpol| |#3|)) (-1085 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2431 (|#4| (-485) (-348 |#4|))) (-15 -3357 ((-85) (-584 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2402 (-485)))) (-584 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2402 (-485)))))) (-15 -3080 ((-3 (-584 (-1085 |#4|)) "failed") (-1085 |#4|) (-1085 |#3|) (-1085 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|))) (-15 -2432 ((-584 (-695)) (-1085 |#4|) (-584 |#2|) (-695))) (-15 -2433 ((-1085 |#3|) (-1085 |#3|) (-485)))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -682))
+((-2433 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2432 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-258)) (-5 *2 (-584 (-695))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))) (-3080 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1085 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-258)) (-4 *9 (-718)) (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1085 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1085 *5)))) (-3357 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-2 (|:| -3732 (-1085 *6)) (|:| -2402 (-485))))) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2431 (*1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-348 *2)) (-4 *2 (-862 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-258)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |upol| (-1085 *8)) (|:| |Lval| (-584 *8)) (|:| |Lfact| (-584 (-2 (|:| -3732 (-1085 *8)) (|:| -2402 (-485))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-584 (-2 (|:| -3732 (-1085 *9)) (|:| -2402 (-485))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1085 *9)))) (-2428 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| -2005 (-1085 *9)) (|:| |polval| (-1085 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1085 *9)) (-5 *4 (-1085 *8)))) (-2427 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3732 (-1085 *6)) (|:| -2402 (-485))))) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2425 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) (-3971 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3971 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))))
+((-2434 (($ $ (-831)) 17 T ELT)))
+(((-683 |#1| |#2|) (-10 -7 (-15 -2434 (|#1| |#1| (-831)))) (-684 |#2|) (-146)) (T -683))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2408 (($ $ (-831)) 37 T ELT)) (-2434 (($ $ (-831)) 44 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+(((-684 |#1|) (-113) (-146)) (T -684))
+((-2434 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146)))))
+(-13 (-686) (-655 |t#1|) (-10 -8 (-15 -2434 ($ $ (-831)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2436 (($ $ $) 10 T ELT)) (-2437 (($ $ $ $) 9 T ELT)) (-2435 (($ $ $) 12 T ELT)))
+(((-685 |#1|) (-10 -7 (-15 -2435 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1| |#1|))) (-686)) (T -685))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2408 (($ $ (-831)) 37 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT)))
+(((-686) (-113)) (T -686))
+((-2437 (*1 *1 *1 *1 *1) (-4 *1 (-686))) (-2436 (*1 *1 *1 *1) (-4 *1 (-686))) (-2435 (*1 *1 *1 *1) (-4 *1 (-686))))
+(-13 (-21) (-658) (-10 -8 (-15 -2437 ($ $ $ $)) (-15 -2436 ($ $ $)) (-15 -2435 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-658) . T) ((-1014) . T) ((-1129) . T))
+((-3946 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT)))
+(((-687 |#1|) (-10 -7 (-15 -3946 (|#1| (-485))) (-15 -3946 ((-773) |#1|))) (-688)) (T -687))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2405 (((-3 $ #1="failed") $) 49 T ELT)) (-2408 (($ $ (-831)) 37 T ELT) (($ $ (-695)) 44 T ELT)) (-3467 (((-3 $ #1#) $) 47 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 43 T ELT)) (-2406 (((-3 $ #1#) $) 48 T ELT)) (-2407 (($ $ (-831)) 38 T ELT) (($ $ (-695)) 45 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 40 T ELT)) (-3127 (((-695)) 41 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 42 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT) (($ $ (-695)) 46 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT)))
+(((-688) (-113)) (T -688))
+((-3127 (*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-688)))))
+(-13 (-686) (-660) (-10 -8 (-15 -3127 ((-695)) -3952) (-15 -3946 ($ (-485)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-658) . T) ((-660) . T) ((-686) . T) ((-1014) . T) ((-1129) . T))
+((-2439 (((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-350 (-485)))) |#1|) 33 T ELT)) (-2438 (((-584 (-142 |#1|)) (-631 (-142 (-350 (-485)))) |#1|) 23 T ELT)) (-2450 (((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))) (-1090)) 20 T ELT) (((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485))))) 19 T ELT)))
+(((-689 |#1|) (-10 -7 (-15 -2450 ((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))))) (-15 -2450 ((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))) (-1090))) (-15 -2438 ((-584 (-142 |#1|)) (-631 (-142 (-350 (-485)))) |#1|)) (-15 -2439 ((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-350 (-485)))) |#1|))) (-13 (-312) (-756))) (T -689))
+((-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 *4))))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) (-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *4 (-1090)) (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *5)) (-4 *5 (-13 (-312) (-756))))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))))
+((-2617 (((-148 (-485)) |#1|) 27 T ELT)))
+(((-690 |#1|) (-10 -7 (-15 -2617 ((-148 (-485)) |#1|))) (-347)) (T -690))
+((-2617 (*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-347)))))
+((-2543 ((|#1| |#1| |#1|) 28 T ELT)) (-2544 ((|#1| |#1| |#1|) 27 T ELT)) (-2533 ((|#1| |#1| |#1|) 38 T ELT)) (-2541 ((|#1| |#1| |#1|) 33 T ELT)) (-2542 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2549 (((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|) 26 T ELT)))
+(((-691 |#1| |#2|) (-10 -7 (-15 -2549 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2542 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#1|))) (-646 |#2|) (-312)) (T -691))
+((-2533 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2541 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2542 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2544 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2549 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4)))))
+((-2556 (((-633 (-1138)) $ (-1138)) 27 T ELT)) (-2557 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2555 (((-695) $ (-102)) 28 T ELT)) (-2558 (((-633 (-101)) $ (-101)) 25 T ELT)) (-2001 (((-633 (-1138)) $) 12 T ELT)) (-1997 (((-633 (-1136)) $) 8 T ELT)) (-1999 (((-633 (-1135)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-2440 (((-85) $) 32 T ELT)) (-2441 (((-633 $) |#1| (-866)) 33 T ELT)) (-1700 (($ $) 6 T ELT)))
+(((-692 |#1|) (-113) (-1014)) (T -692))
+((-2441 (*1 *2 *3 *4) (-12 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
+(-13 (-513) (-10 -8 (-15 -2441 ((-633 $) |t#1| (-866))) (-15 -2440 ((-85) $))))
+(((-147) . T) ((-466) . T) ((-513) . T) ((-771) . T))
+((-3919 (((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)) 72 T ELT)) (-3918 (((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) 70 T ELT)) (-3757 (((-485)) 86 T ELT)))
+(((-693 |#1| |#2|) (-10 -7 (-15 -3757 ((-485))) (-15 -3918 ((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))))) (-15 -3919 ((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)))) (-1155 (-485)) (-353 (-485) |#1|)) (T -693))
+((-3919 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-693 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3918 (*1 *2) (-12 (-4 *3 (-1155 (-485))) (-5 *2 (-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) (-5 *1 (-693 *3 *4)) (-4 *4 (-353 (-485) *3)))) (-3757 (*1 *2) (-12 (-4 *3 (-1155 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4)) (-4 *4 (-353 *2 *3)))))
+((-2509 (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))) 19 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1090))) 18 T ELT)) (-3573 (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))) 21 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1090))) 20 T ELT)))
+(((-694 |#1|) (-10 -7 (-15 -2509 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1090)))) (-15 -2509 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3573 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1090)))) (-15 -3573 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))))) (-496)) (T -694))
+((-3573 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1090))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1090))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2484 (($ $ $) 10 T ELT)) (-1312 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2442 (($ $ (-485)) 11 T ELT)) (-3724 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3145 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 6 T CONST)) (-2667 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-695) (-13 (-718) (-664) (-10 -8 (-15 -2564 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3145 ($ $ $)) (-15 -2880 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -3466 ((-3 $ "failed") $ $)) (-15 -2442 ($ $ (-485))) (-15 -2995 ($ $)) (-6 (-3997 "*"))))) (T -695))
+((-2564 (*1 *1 *1 *1) (-5 *1 (-695))) (-2565 (*1 *1 *1 *1) (-5 *1 (-695))) (-3145 (*1 *1 *1 *1) (-5 *1 (-695))) (-2880 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1973 (-695)) (|:| -2903 (-695)))) (-5 *1 (-695)))) (-3466 (*1 *1 *1 *1) (|partial| -5 *1 (-695))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-695)))) (-2995 (*1 *1 *1) (-5 *1 (-695))))
+((-485) (|%not| (|%ilt| |#1| 0)))
+((-3573 (((-3 |#2| "failed") |#2| |#2| (-86) (-1090)) 37 T ELT)))
+(((-696 |#1| |#2|) (-10 -7 (-15 -3573 ((-3 |#2| "failed") |#2| |#2| (-86) (-1090)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1115) (-872))) (T -696))
+((-3573 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-696 *5 *2)) (-4 *2 (-13 (-29 *5) (-1115) (-872))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT)))
+(((-697) (-1014)) (T -697))
+NIL
+((-3946 (((-697) |#1|) 8 T ELT)))
+(((-698 |#1|) (-10 -7 (-15 -3946 ((-697) |#1|))) (-1129)) (T -698))
+((-3946 (*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1129)))))
+((-3133 ((|#2| |#4|) 35 T ELT)))
+(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3133 (|#2| |#4|))) (-392) (-1155 |#1|) (-662 |#1| |#2|) (-1155 |#3|)) (T -699))
+((-3133 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1155 *5)))))
+((-3467 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2445 (((-1185) (-1073) (-1073) |#4| |#5|) 33 T ELT)) (-2443 ((|#4| |#4| |#5|) 74 T ELT)) (-2444 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|) 79 T ELT)) (-2446 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 16 T ELT)))
+(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3467 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2443 (|#4| |#4| |#5|)) (-15 -2444 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -2445 ((-1185) (-1073) (-1073) |#4| |#5|)) (-15 -2446 ((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -700))
+((-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2445 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1073)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1185)) (-5 *1 (-700 *6 *7 *8 *4 *5)) (-4 *5 (-984 *6 *7 *8 *4)))) (-2444 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2443 (*1 *2 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2)))) (-3467 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+((-3158 (((-3 (-1085 (-1085 |#1|)) "failed") |#4|) 53 T ELT)) (-2447 (((-584 |#4|) |#4|) 22 T ELT)) (-3928 ((|#4| |#4|) 17 T ELT)))
+(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2447 ((-584 |#4|) |#4|)) (-15 -3158 ((-3 (-1085 (-1085 |#1|)) "failed") |#4|)) (-15 -3928 (|#4| |#4|))) (-299) (-280 |#1|) (-1155 |#2|) (-1155 |#3|) (-831)) (T -701))
+((-3928 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1155 *4)) (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1155 *5)) (-14 *6 (-831)))) (-3158 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-1085 (-1085 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-831)))) (-2447 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-584 *3)) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-831)))))
+((-2448 (((-2 (|:| |deter| (-584 (-1085 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1085 |#5|) (-584 |#1|) (-584 |#5|)) 72 T ELT)) (-2449 (((-584 (-695)) |#1|) 20 T ELT)))
+(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2448 ((-2 (|:| |deter| (-584 (-1085 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1085 |#5|) (-584 |#1|) (-584 |#5|))) (-15 -2449 ((-584 (-695)) |#1|))) (-1155 |#4|) (-718) (-757) (-258) (-862 |#4| |#2| |#3|)) (T -702))
+((-2449 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-584 (-695))) (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *6)) (-4 *7 (-862 *6 *4 *5)))) (-2448 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1155 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-258)) (-4 *10 (-862 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-584 (-1085 *10))) (|:| |dterm| (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| *10))))) (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1085 *10)) (-5 *4 (-584 *6)) (-5 *5 (-584 *10)))))
+((-2452 (((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-350 (-485))) |#1|) 31 T ELT)) (-2451 (((-584 |#1|) (-631 (-350 (-485))) |#1|) 21 T ELT)) (-2450 (((-858 (-350 (-485))) (-631 (-350 (-485))) (-1090)) 18 T ELT) (((-858 (-350 (-485))) (-631 (-350 (-485)))) 17 T ELT)))
+(((-703 |#1|) (-10 -7 (-15 -2450 ((-858 (-350 (-485))) (-631 (-350 (-485))))) (-15 -2450 ((-858 (-350 (-485))) (-631 (-350 (-485))) (-1090))) (-15 -2451 ((-584 |#1|) (-631 (-350 (-485))) |#1|)) (-15 -2452 ((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-350 (-485))) |#1|))) (-13 (-312) (-756))) (T -703))
+((-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 (-2 (|:| |outval| *4) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *4)))))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *4 (-1090)) (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-312) (-756))))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 36 T ELT)) (-3082 (((-584 |#2|) $) NIL T ELT)) (-3084 (((-1085 $) $ |#2|) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) NIL T ELT)) (-3797 (($ $) 30 T ELT)) (-3167 (((-85) $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3755 (($ $ $) 110 (|has| |#1| (-496)) ELT)) (-3149 (((-584 $) $ $) 123 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1090)))) ELT) (((-3 $ #1#) (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1090))))) ELT) (((-3 $ #1#) (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1090))) (-2561 (|has| |#1| (-905 (-485)))))) ELT) (((-3 (-1039 |#1| |#2|) #1#) $) 21 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT) (($ (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1090)))) ELT) (($ (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1090))))) ELT) (($ (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1090))) (-2561 (|has| |#1| (-905 (-485)))))) ELT) (((-1039 |#1| |#2|) $) NIL T ELT)) (-3756 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-496)) ELT)) (-3959 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3694 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3173 (((-85) $) NIL T ELT)) (-3752 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 81 T ELT)) (-3144 (($ $) 136 (|has| |#1| (-392)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-3155 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3156 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3166 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3165 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1624 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 57 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3146 (($ $ $ $ $) 107 (|has| |#1| (-496)) ELT)) (-3181 ((|#2| $) 22 T ELT)) (-3085 (($ (-1085 |#1|) |#2|) NIL T ELT) (($ (-1085 $) |#2|) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 38 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3160 (($ $ $) 63 T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-3174 (((-85) $) NIL T ELT)) (-2821 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3180 (((-695) $) 23 T ELT)) (-1625 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3083 (((-3 |#2| #1#) $) NIL T ELT)) (-3141 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3142 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3169 (((-584 $) $) NIL T ELT)) (-3172 (($ $) 39 T ELT)) (-3143 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3170 (((-584 $) $) 43 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-3171 (($ $) 41 T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3481 (-695))) $ $) 96 T ELT)) (-3161 (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $) 78 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-3162 (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $) NIL T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-3164 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3163 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3191 (($ $ $) 125 (|has| |#1| (-496)) ELT)) (-3177 (((-584 $) $) 32 T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3691 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3686 (($ $ $) NIL T ELT)) (-3446 (($ $) 24 T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-3692 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3687 (($ $ $) NIL T ELT)) (-3179 (($ $) 26 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3150 (((-2 (|:| -3145 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-496)) ELT)) (-3151 (((-2 (|:| -3145 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-496)) ELT)) (-1797 (((-85) $) 56 T ELT)) (-1796 ((|#1| $) 58 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 ((|#1| |#1| $) 133 (|has| |#1| (-392)) ELT) (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3152 (((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-496)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-496)) ELT)) (-3153 (($ $ |#1|) 129 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 128 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-584 |#2|) (-584 $)) NIL T ELT)) (-3757 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3948 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) 45 T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3178 (($ $) NIL T ELT)) (-3176 (($ $) 35 T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT) (($ (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1090)))) ELT) (($ (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1090))))) ELT) (($ (-858 |#1|)) NIL (|has| |#2| (-554 (-1090))) ELT) (((-1073) $) NIL (-12 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1090)))) ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1090))) ELT)) (-2818 ((|#1| $) 132 (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1090))) ELT) (((-1039 |#1| |#2|) $) 18 T ELT) (($ (-1039 |#1| |#2|)) 19 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 13 T CONST)) (-3168 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2667 (($) 37 T CONST)) (-3147 (($ $ $ $ (-695)) 105 (|has| |#1| (-496)) ELT)) (-3148 (($ $ $ (-695)) 104 (|has| |#1| (-496)) ELT)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3839 (($ $ $) 85 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 70 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-704 |#1| |#2|) (-13 (-978 |#1| (-470 |#2|) |#2|) (-553 (-1039 |#1| |#2|)) (-951 (-1039 |#1| |#2|))) (-962) (-757)) (T -704))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 12 T ELT)) (-3767 (((-1179 |#1|) $ (-695)) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3765 (($ (-1085 |#1|)) NIL T ELT)) (-3084 (((-1085 $) $ (-995)) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2456 (((-584 $) $ $) 54 (|has| |#1| (-496)) ELT)) (-3755 (($ $ $) 50 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-695)) NIL T ELT)) (-3760 (($ $ (-695)) NIL T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT) (((-3 (-1085 |#1|) #1#) $) 10 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ $) NIL T ELT)) (-3753 (($ $ $) 87 (|has| |#1| (-496)) ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1973 $) (|:| -2903 $)) $ $) 86 (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| (-695) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3772 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3085 (($ (-1085 |#1|) (-995)) NIL T ELT) (($ (-1085 $) (-995)) NIL T ELT)) (-3777 (($ $ (-695)) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3160 (($ $ $) 27 T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1625 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3766 (((-1085 |#1|) $) NIL T ELT)) (-3083 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3481 (-695))) $ $) 37 T ELT)) (-2458 (($ $ $) 41 T ELT)) (-2457 (($ $ $) 47 T ELT)) (-3161 (((-2 (|:| -3954 |#1|) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $) 46 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3191 (($ $ $) 56 (|has| |#1| (-496)) ELT)) (-3762 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3812 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (($) NIL (|has| |#1| (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3150 (((-2 (|:| -3145 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-496)) ELT)) (-3151 (((-2 (|:| -3145 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-496)) ELT)) (-2453 (((-2 (|:| -3756 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2454 (((-2 (|:| -3756 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-496)) ELT)) (-1797 (((-85) $) 13 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3738 (($ $ (-695) |#1| $) 26 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3152 (((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-496)) ELT)) (-2455 (((-2 (|:| -3756 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-496)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3764 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-3948 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3754 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-995)) NIL T ELT) (((-1085 |#1|) $) 7 T ELT) (($ (-1085 |#1|)) 8 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 28 T CONST)) (-2667 (($) 32 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-705 |#1|) (-13 (-1155 |#1|) (-553 (-1085 |#1|)) (-951 (-1085 |#1|)) (-10 -8 (-15 -3738 ($ $ (-695) |#1| $)) (-15 -3160 ($ $ $)) (-15 -3159 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3481 (-695))) $ $)) (-15 -2458 ($ $ $)) (-15 -3161 ((-2 (|:| -3954 |#1|) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2457 ($ $ $)) (IF (|has| |#1| (-496)) (PROGN (-15 -2456 ((-584 $) $ $)) (-15 -3191 ($ $ $)) (-15 -3152 ((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3151 ((-2 (|:| -3145 $) (|:| |coef1| $)) $ $)) (-15 -3150 ((-2 (|:| -3145 $) (|:| |coef2| $)) $ $)) (-15 -2455 ((-2 (|:| -3756 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2454 ((-2 (|:| -3756 |#1|) (|:| |coef1| $)) $ $)) (-15 -2453 ((-2 (|:| -3756 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-962)) (T -705))
+((-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-3160 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3159 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3481 (-695)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3161 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3954 *3) (|:| |gap| (-695)) (|:| -1973 (-705 *3)) (|:| -2903 (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2457 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-2456 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3191 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962)))) (-3152 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3151 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3150 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))))
+((-3958 (((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)) 13 T ELT)))
+(((-706 |#1| |#2|) (-10 -7 (-15 -3958 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) (-962) (-962)) (T -706))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6)))))
+((-2460 ((|#1| (-695) |#1|) 33 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2802 ((|#1| (-695) |#1|) 23 T ELT)) (-2459 ((|#1| (-695) |#1|) 35 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-707 |#1|) (-10 -7 (-15 -2802 (|#1| (-695) |#1|)) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -2459 (|#1| (-695) |#1|)) (-15 -2460 (|#1| (-695) |#1|))) |%noBranch|)) (-146)) (T -707))
+((-2460 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2459 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2802 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3682 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-3775 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3689 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3799 (((-3 $ #1#) $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#4|)) (|:| -1702 (-584 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-584 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3440 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3697 (((-584 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3801 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-695) $) 112 T ELT)) (-1946 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3946 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3678 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3190 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-584 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3957 (((-695) $) 43 T ELT)))
+(((-708 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -708))
+NIL
+(-13 (-984 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T))
+((-2463 (((-3 (-330) #1="failed") (-265 |#1|) (-831)) 60 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-330) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-330) #1#) (-350 (-858 |#1|)) (-831)) 39 (|has| |#1| (-496)) ELT) (((-3 (-330) #1#) (-350 (-858 |#1|))) 35 (|has| |#1| (-496)) ELT) (((-3 (-330) #1#) (-858 |#1|) (-831)) 30 (|has| |#1| (-962)) ELT) (((-3 (-330) #1#) (-858 |#1|)) 24 (|has| |#1| (-962)) ELT)) (-2461 (((-330) (-265 |#1|) (-831)) 92 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-330) (-265 |#1|)) 87 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-330) (-350 (-858 |#1|)) (-831)) 84 (|has| |#1| (-496)) ELT) (((-330) (-350 (-858 |#1|))) 81 (|has| |#1| (-496)) ELT) (((-330) (-858 |#1|) (-831)) 80 (|has| |#1| (-962)) ELT) (((-330) (-858 |#1|)) 77 (|has| |#1| (-962)) ELT) (((-330) |#1| (-831)) 73 T ELT) (((-330) |#1|) 22 T ELT)) (-2464 (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-831)) 68 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|) (-831)) 61 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))) (-831)) 44 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|)))) 43 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)) (-831)) 38 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 |#1|))) 37 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-858 |#1|) (-831)) 28 (|has| |#1| (-962)) ELT) (((-3 (-142 (-330)) #1#) (-858 |#1|)) 26 (|has| |#1| (-962)) ELT) (((-3 (-142 (-330)) #1#) (-858 (-142 |#1|)) (-831)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-330)) #1#) (-858 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2462 (((-142 (-330)) (-265 (-142 |#1|)) (-831)) 95 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 |#1|) (-831)) 93 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 |#1|)) 91 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-350 (-858 (-142 |#1|))) (-831)) 86 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 (-142 |#1|)))) 85 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 |#1|)) (-831)) 83 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 |#1|))) 82 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-858 |#1|) (-831)) 79 (|has| |#1| (-962)) ELT) (((-142 (-330)) (-858 |#1|)) 78 (|has| |#1| (-962)) ELT) (((-142 (-330)) (-858 (-142 |#1|)) (-831)) 75 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-858 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|) (-831)) 17 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-330)) |#1| (-831)) 27 T ELT) (((-142 (-330)) |#1|) 25 T ELT)))
+(((-709 |#1|) (-10 -7 (-15 -2461 ((-330) |#1|)) (-15 -2461 ((-330) |#1| (-831))) (-15 -2462 ((-142 (-330)) |#1|)) (-15 -2462 ((-142 (-330)) |#1| (-831))) (IF (|has| |#1| (-146)) (PROGN (-15 -2462 ((-142 (-330)) (-142 |#1|))) (-15 -2462 ((-142 (-330)) (-142 |#1|) (-831))) (-15 -2462 ((-142 (-330)) (-858 (-142 |#1|)))) (-15 -2462 ((-142 (-330)) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2461 ((-330) (-858 |#1|))) (-15 -2461 ((-330) (-858 |#1|) (-831))) (-15 -2462 ((-142 (-330)) (-858 |#1|))) (-15 -2462 ((-142 (-330)) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2461 ((-330) (-350 (-858 |#1|)))) (-15 -2461 ((-330) (-350 (-858 |#1|)) (-831))) (-15 -2462 ((-142 (-330)) (-350 (-858 |#1|)))) (-15 -2462 ((-142 (-330)) (-350 (-858 |#1|)) (-831))) (-15 -2462 ((-142 (-330)) (-350 (-858 (-142 |#1|))))) (-15 -2462 ((-142 (-330)) (-350 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2461 ((-330) (-265 |#1|))) (-15 -2461 ((-330) (-265 |#1|) (-831))) (-15 -2462 ((-142 (-330)) (-265 |#1|))) (-15 -2462 ((-142 (-330)) (-265 |#1|) (-831))) (-15 -2462 ((-142 (-330)) (-265 (-142 |#1|)))) (-15 -2462 ((-142 (-330)) (-265 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2464 ((-3 (-142 (-330)) #1="failed") (-858 (-142 |#1|)))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2463 ((-3 (-330) #1#) (-858 |#1|))) (-15 -2463 ((-3 (-330) #1#) (-858 |#1|) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-858 |#1|))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2463 ((-3 (-330) #1#) (-350 (-858 |#1|)))) (-15 -2463 ((-3 (-330) #1#) (-350 (-858 |#1|)) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2463 ((-3 (-330) #1#) (-265 |#1|))) (-15 -2463 ((-3 (-330) #1#) (-265 |#1|) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 |#1|))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 |#1|) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|)) (-554 (-330))) (T -709))
+((-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) (-2462 (*1 *2 *3) (-12 (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) (-2461 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))))
+((-2468 (((-831) (-1073)) 90 T ELT)) (-2470 (((-3 (-330) "failed") (-1073)) 36 T ELT)) (-2469 (((-330) (-1073)) 34 T ELT)) (-2466 (((-831) (-1073)) 64 T ELT)) (-2467 (((-1073) (-831)) 74 T ELT)) (-2465 (((-1073) (-831)) 63 T ELT)))
+(((-710) (-10 -7 (-15 -2465 ((-1073) (-831))) (-15 -2466 ((-831) (-1073))) (-15 -2467 ((-1073) (-831))) (-15 -2468 ((-831) (-1073))) (-15 -2469 ((-330) (-1073))) (-15 -2470 ((-3 (-330) "failed") (-1073))))) (T -710))
+((-2470 (*1 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-710)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-710)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1073)) (-5 *1 (-710)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1073)) (-5 *1 (-710)))))
+((-2473 (((-1185) (-1179 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330))) 54 T ELT) (((-1185) (-1179 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 51 T ELT)) (-2474 (((-1185) (-1179 (-330)) (-485) (-330) (-330) (-485) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 61 T ELT)) (-2472 (((-1185) (-1179 (-330)) (-485) (-330) (-330) (-330) (-330) (-485) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 49 T ELT)) (-2471 (((-1185) (-1179 (-330)) (-485) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330))) 63 T ELT) (((-1185) (-1179 (-330)) (-485) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 62 T ELT)))
+(((-711) (-10 -7 (-15 -2471 ((-1185) (-1179 (-330)) (-485) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))) (-15 -2471 ((-1185) (-1179 (-330)) (-485) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)))) (-15 -2472 ((-1185) (-1179 (-330)) (-485) (-330) (-330) (-330) (-330) (-485) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))) (-15 -2473 ((-1185) (-1179 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))) (-15 -2473 ((-1185) (-1179 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)))) (-15 -2474 ((-1185) (-1179 (-330)) (-485) (-330) (-330) (-485) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))))) (T -711))
+((-2474 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))) (-2473 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330)))) (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))) (-2473 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330)))) (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))) (-2472 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))) (-2471 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))) (-2471 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))))
+((-2483 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 65 T ELT)) (-2480 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 40 T ELT)) (-2482 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 64 T ELT)) (-2479 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 38 T ELT)) (-2481 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 63 T ELT)) (-2478 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 24 T ELT)) (-2477 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 41 T ELT)) (-2476 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 39 T ELT)) (-2475 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 37 T ELT)))
+(((-712) (-10 -7 (-15 -2475 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2476 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2477 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2478 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2479 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2480 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2481 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2482 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2483 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))))) (T -712))
+((-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))))
+((-3705 (((-1125 |#1|) |#1| (-179) (-485)) 69 T ELT)))
+(((-713 |#1|) (-10 -7 (-15 -3705 ((-1125 |#1|) |#1| (-179) (-485)))) (-888)) (T -713))
+((-3705 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1125 *3)) (-5 *1 (-713 *3)) (-4 *3 (-888)))))
+((-3623 (((-485) $) 17 T ELT)) (-3188 (((-85) $) 10 T ELT)) (-3383 (($ $) 19 T ELT)))
+(((-714 |#1|) (-10 -7 (-15 -3383 (|#1| |#1|)) (-15 -3623 ((-485) |#1|)) (-15 -3188 ((-85) |#1|))) (-715)) (T -714))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3623 (((-485) $) 38 T ELT)) (-3724 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-3188 (((-85) $) 39 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3383 (($ $) 37 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3837 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT)))
+(((-715) (-113)) (T -715))
+((-3188 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-485)))) (-3383 (*1 *1 *1) (-4 *1 (-715))))
+(-13 (-722) (-21) (-10 -8 (-15 -3188 ((-85) $)) (-15 -3623 ((-485) $)) (-15 -3383 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1129) . T))
+((-3187 (((-85) $) 10 T ELT)))
+(((-716 |#1|) (-10 -7 (-15 -3187 ((-85) |#1|))) (-717)) (T -716))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-3724 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
(((-717) (-113)) (T -717))
-((-2483 (*1 *1 *1 *1) (-4 *1 (-717))))
-(-13 (-721) (-10 -8 (-15 -2483 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT)))
+((-3187 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85)))))
+(-13 (-719) (-23) (-10 -8 (-15 -3187 ((-85) $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-2484 (($ $ $) 36 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3724 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
(((-718) (-113)) (T -718))
-NIL
-(-13 (-756) (-25))
-(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T))
-((-3188 (((-85) $) 42 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 78 T ELT)) (-3023 (((-85) $) 72 T ELT)) (-3022 (((-349 (-484)) $) 76 T ELT)) (-3132 ((|#2| $) 26 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2484 (($ $) 58 T ELT)) (-3971 (((-473) $) 67 T ELT)) (-3009 (($ $) 21 T ELT)) (-3945 (((-772) $) 53 T ELT) (($ (-484)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-349 (-484))) NIL T ELT)) (-3126 (((-694)) 10 T CONST)) (-3382 ((|#2| $) 71 T ELT)) (-3056 (((-85) $ $) 30 T ELT)) (-2685 (((-85) $ $) 69 T ELT)) (-3836 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
-(((-719 |#1| |#2|) (-10 -7 (-15 -2685 ((-85) |#1| |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3024 ((-3 (-349 (-484)) #1="failed") |#1|)) (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -3382 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3188 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-720 |#2|) (-146)) (T -719))
-((-3126 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3136 (((-694)) 67 (|has| |#1| (-319)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 109 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 106 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3156 (((-484) $) 108 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 105 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 104 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3642 ((|#1| $) 93 T ELT)) (-3024 (((-3 (-349 (-484)) "failed") $) 80 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 82 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 81 (|has| |#1| (-483)) ELT)) (-2994 (($) 70 (|has| |#1| (-319)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2489 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3132 ((|#1| $) 85 T ELT)) (-2531 (($ $ $) 71 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 72 (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2010 (((-830) $) 69 (|has| |#1| (-319)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2400 (($ (-830)) 68 (|has| |#1| (-319)) ELT)) (-2486 ((|#1| $) 90 T ELT)) (-2487 ((|#1| $) 91 T ELT)) (-2488 ((|#1| $) 92 T ELT)) (-3006 ((|#1| $) 86 T ELT)) (-3007 ((|#1| $) 87 T ELT)) (-3008 ((|#1| $) 88 T ELT)) (-2485 ((|#1| $) 89 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 97 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 96 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3799 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3971 (((-473) $) 77 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 94 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-349 (-484))) 107 (|has| |#1| (-950 (-349 (-484)))) ELT)) (-2702 (((-632 $) $) 78 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 ((|#1| $) 83 (|has| |#1| (-973)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 73 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 75 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 74 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 76 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-720 |#1|) (-113) (-146)) (T -720))
-((-3009 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2489 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
-(-13 (-38 |t#1|) (-354 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3009 ($ $)) (-15 -3642 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -2485 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3132 (|t#1| $)) (-15 -2489 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3382 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2484 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-319) |has| |#1| (-319)) ((-288 |#1|) . T) ((-354 |#1|) . T) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-1311 (((-3 $ "failed") $ $) 35 T ELT)) (-3723 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT)))
-(((-721) (-113)) (T -721))
-NIL
-(-13 (-716) (-104))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-909 |#1|) #1#) $) 35 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3156 ((|#1| $) NIL T ELT) (((-909 |#1|) $) 33 T ELT) (((-484) $) NIL (OR (|has| (-909 |#1|) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT) (((-349 (-484)) $) NIL (OR (|has| (-909 |#1|) (-950 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3642 ((|#1| $) 16 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2489 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-909 |#1|) (-909 |#1|)) 29 T ELT)) (-3132 ((|#1| $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2486 ((|#1| $) 22 T ELT)) (-2487 ((|#1| $) 20 T ELT)) (-2488 ((|#1| $) 18 T ELT)) (-3006 ((|#1| $) 26 T ELT)) (-3007 ((|#1| $) 25 T ELT)) (-3008 ((|#1| $) 24 T ELT)) (-2485 ((|#1| $) 23 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3799 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-909 |#1|)) 30 T ELT) (($ (-349 (-484))) NIL (OR (|has| (-909 |#1|) (-950 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2660 (($) 8 T CONST)) (-2666 (($) 12 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-722 |#1|) (-13 (-720 |#1|) (-354 (-909 |#1|)) (-10 -8 (-15 -2489 ($ (-909 |#1|) (-909 |#1|))))) (-146)) (T -722))
-((-2489 (*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3)))))
-((-3957 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT)))
-(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|))) (-720 |#2|) (-146) (-720 |#4|) (-146)) (T -723))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6)) (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5)))))
-((-2490 (((-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#3| |#2| (-1089)) 19 T ELT)))
-(((-724 |#1| |#2| |#3|) (-10 -7 (-15 -2490 ((-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#3| |#2| (-1089)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871)) (-600 |#2|)) (T -724))
-((-2490 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1089)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1114) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4)))))
-((-3572 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-583 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1089)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1089)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1089)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-583 (-249 |#2|)) (-583 (-86)) (-1089)) 26 T ELT) (((-3 (-583 (-1178 |#2|)) #1#) (-630 |#2|) (-1089)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-630 |#2|) (-1178 |#2|) (-1089)) 35 T ELT)))
-(((-725 |#1| |#2|) (-10 -7 (-15 -3572 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1="failed") (-630 |#2|) (-1178 |#2|) (-1089))) (-15 -3572 ((-3 (-583 (-1178 |#2|)) #1#) (-630 |#2|) (-1089))) (-15 -3572 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-583 (-249 |#2|)) (-583 (-86)) (-1089))) (-15 -3572 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1089))) (-15 -3572 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1089))) (-15 -3572 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1089))) (-15 -3572 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|))) (-15 -3572 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-583 |#2|)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871))) (T -725))
-((-3572 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-725 *6 *2)))) (-3572 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-871))) (-5 *1 (-725 *6 *2)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1089)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2012 (-583 *3))) *3 #1="failed")) (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-871))))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2012 (-583 *7))) *7 #1#)) (-5 *1 (-725 *6 *7)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7))))) (-5 *1 (-725 *6 *7)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7))))) (-5 *1 (-725 *6 *7)))) (-3572 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1089)) (-4 *6 (-13 (-29 *5) (-1114) (-871))) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-1178 *6))) (-5 *1 (-725 *5 *6)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7))))) (-5 *1 (-725 *6 *7)) (-5 *4 (-1178 *7)))))
-((-3469 ((|#2| |#2| (-1089)) 17 T ELT)) (-2491 ((|#2| |#2| (-1089)) 56 T ELT)) (-2492 (((-1 |#2| |#2|) (-1089)) 11 T ELT)))
-(((-726 |#1| |#2|) (-10 -7 (-15 -3469 (|#2| |#2| (-1089))) (-15 -2491 (|#2| |#2| (-1089))) (-15 -2492 ((-1 |#2| |#2|) (-1089)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871))) (T -726))
-((-2492 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5)) (-4 *5 (-13 (-29 *4) (-1114) (-871))))) (-2491 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-871))))) (-3469 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-871))))))
-((-2493 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2012 (-583 |#4|))) (-597 |#4|) |#4|) 33 T ELT)))
-(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2493 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2012 (-583 |#4|))) (-597 |#4|) |#4|))) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -727))
-((-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-727 *5 *6 *7 *4)))))
-((-3740 (((-2 (|:| -3266 |#3|) (|:| |rh| (-583 (-349 |#2|)))) |#4| (-583 (-349 |#2|))) 53 T ELT)) (-2495 (((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#4| |#2|) 62 T ELT) (((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#4|) 61 T ELT) (((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#3| |#2|) 20 T ELT) (((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#3|) 21 T ELT)) (-2496 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2494 ((|#2| |#3| (-583 (-349 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-349 |#2|)) 105 T ELT)))
-(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2494 ((-3 |#2| "failed") |#3| (-349 |#2|))) (-15 -2494 (|#2| |#3| (-583 (-349 |#2|)))) (-15 -2495 ((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#3|)) (-15 -2495 ((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#3| |#2|)) (-15 -2496 (|#2| |#3| |#1|)) (-15 -2495 ((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#4|)) (-15 -2495 ((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#4| |#2|)) (-15 -2496 (|#2| |#4| |#1|)) (-15 -3740 ((-2 (|:| -3266 |#3|) (|:| |rh| (-583 (-349 |#2|)))) |#4| (-583 (-349 |#2|))))) (-13 (-312) (-120) (-950 (-349 (-484)))) (-1154 |#1|) (-600 |#2|) (-600 (-349 |#2|))) (T -728))
-((-3740 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-2 (|:| -3266 *7) (|:| |rh| (-583 (-349 *6))))) (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-349 *6))) (-4 *7 (-600 *6)) (-4 *3 (-600 (-349 *6))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-728 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-600 *2)) (-4 *3 (-600 (-349 *2))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *4 (-1154 *5)) (-5 *2 (-583 (-2 (|:| -3772 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *6 *3)) (-4 *6 (-600 *4)) (-4 *3 (-600 (-349 *4))))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-2 (|:| -3772 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 (-349 *5))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-728 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-349 *2))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *4 (-1154 *5)) (-5 *2 (-583 (-2 (|:| -3772 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *3 *6)) (-4 *3 (-600 *4)) (-4 *6 (-600 (-349 *4))))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-2 (|:| -3772 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-349 *5))))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-349 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) (-4 *6 (-600 (-349 *2))))) (-2494 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-349 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) (-4 *6 (-600 *4)))))
-((-2504 (((-583 (-2 (|:| |frac| (-349 |#2|)) (|:| -3266 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1084 |#2|)) (-1 (-347 |#2|) |#2|)) 156 T ELT)) (-2505 (((-583 (-2 (|:| |poly| |#2|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 52 T ELT)) (-2498 (((-583 (-2 (|:| |deg| (-694)) (|:| -3266 |#2|))) |#3|) 123 T ELT)) (-2497 ((|#2| |#3|) 42 T ELT)) (-2499 (((-583 (-2 (|:| -3951 |#1|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 100 T ELT)) (-2500 ((|#3| |#3| (-349 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2497 (|#2| |#3|)) (-15 -2498 ((-583 (-2 (|:| |deg| (-694)) (|:| -3266 |#2|))) |#3|)) (-15 -2499 ((-583 (-2 (|:| -3951 |#1|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2505 ((-583 (-2 (|:| |poly| |#2|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2504 ((-583 (-2 (|:| |frac| (-349 |#2|)) (|:| -3266 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1084 |#2|)) (-1 (-347 |#2|) |#2|))) (-15 -2500 (|#3| |#3| |#2|)) (-15 -2500 (|#3| |#3| (-349 |#2|)))) (-13 (-312) (-120) (-950 (-349 (-484)))) (-1154 |#1|) (-600 |#2|) (-600 (-349 |#2|))) (T -729))
-((-2500 (*1 *2 *2 *3) (-12 (-5 *3 (-349 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5)) (-4 *6 (-600 *3)))) (-2500 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-1154 *4)) (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-349 *3))))) (-2504 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1084 *7))) (-5 *5 (-1 (-347 *7) *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-312) (-120) (-950 (-349 (-484))))) (-5 *2 (-583 (-2 (|:| |frac| (-349 *7)) (|:| -3266 *3)))) (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-349 *7))))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-349 *6))))) (-2499 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-2 (|:| -3951 *5) (|:| -3266 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-349 *6))))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3266 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-349 *5))))) (-2497 (*1 *2 *3) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-349 *2))))))
-((-2501 (((-2 (|:| -2012 (-583 (-349 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-349 |#2|)) (-583 (-349 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-349 |#2|) #1="failed")) (|:| -2012 (-583 (-349 |#2|)))) (-598 |#2| (-349 |#2|)) (-349 |#2|)) 145 T ELT) (((-2 (|:| -2012 (-583 (-349 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-349 |#2|)) (-583 (-349 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-349 |#2|) #1#)) (|:| -2012 (-583 (-349 |#2|)))) (-597 (-349 |#2|)) (-349 |#2|)) 138 T ELT)) (-2502 ((|#2| (-598 |#2| (-349 |#2|))) 86 T ELT) ((|#2| (-597 (-349 |#2|))) 89 T ELT)))
-(((-730 |#1| |#2|) (-10 -7 (-15 -2501 ((-2 (|:| |particular| (-3 (-349 |#2|) #1="failed")) (|:| -2012 (-583 (-349 |#2|)))) (-597 (-349 |#2|)) (-349 |#2|))) (-15 -2501 ((-2 (|:| -2012 (-583 (-349 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-349 |#2|)) (-583 (-349 |#2|)))) (-15 -2501 ((-2 (|:| |particular| (-3 (-349 |#2|) #1#)) (|:| -2012 (-583 (-349 |#2|)))) (-598 |#2| (-349 |#2|)) (-349 |#2|))) (-15 -2501 ((-2 (|:| -2012 (-583 (-349 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-349 |#2|)) (-583 (-349 |#2|)))) (-15 -2502 (|#2| (-597 (-349 |#2|)))) (-15 -2502 (|#2| (-598 |#2| (-349 |#2|))))) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|)) (T -730))
-((-2502 (*1 *2 *3) (-12 (-5 *3 (-598 *2 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-597 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-349 *6))) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-2 (|:| -2012 (-583 (-349 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-349 *6))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-730 *5 *6)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-349 *6))) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-2 (|:| -2012 (-583 (-349 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-349 *6))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-730 *5 *6)))))
-((-2503 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#1|))) |#5| |#4|) 49 T ELT)))
-(((-731 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2503 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#1|))) |#5| |#4|))) (-312) (-600 |#1|) (-1154 |#1|) (-661 |#1| |#3|) (-600 |#4|)) (T -731))
-((-2503 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1154 *5)) (-4 *4 (-661 *5 *7)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1178 *5)))) (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4)))))
-((-2504 (((-583 (-2 (|:| |frac| (-349 |#2|)) (|:| -3266 (-598 |#2| (-349 |#2|))))) (-598 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|)) 47 T ELT)) (-2506 (((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-347 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-583 (-349 |#2|)) (-597 (-349 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-347 |#2|) |#2|)) 38 T ELT) (((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|)) 39 T ELT) (((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-347 |#2|) |#2|)) 36 T ELT) (((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|)) 37 T ELT)) (-2505 (((-583 (-2 (|:| |poly| |#2|) (|:| -3266 (-598 |#2| (-349 |#2|))))) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|)) 96 T ELT)))
-(((-732 |#1| |#2|) (-10 -7 (-15 -2506 ((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2506 ((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-347 |#2|) |#2|))) (-15 -2506 ((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2506 ((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-347 |#2|) |#2|))) (-15 -2504 ((-583 (-2 (|:| |frac| (-349 |#2|)) (|:| -3266 (-598 |#2| (-349 |#2|))))) (-598 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|))) (-15 -2505 ((-583 (-2 (|:| |poly| |#2|) (|:| -3266 (-598 |#2| (-349 |#2|))))) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2506 ((-583 (-349 |#2|)) (-597 (-349 |#2|)))) (-15 -2506 ((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-347 |#2|) |#2|))) (-15 -2506 ((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)))) (-15 -2506 ((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|)) (T -732))
-((-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-598 *5 (-349 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-349 *5))) (-5 *1 (-732 *4 *5)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-597 (-349 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-349 *5))) (-5 *1 (-732 *4 *5)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 (-598 *6 (-349 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-349 *6))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-2 (|:| |frac| (-349 *6)) (|:| -3266 (-598 *6 (-349 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-349 *6))))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *7 (-349 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-347 *7) *7)) (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *7 (-1154 *6)) (-5 *2 (-583 (-349 *7))) (-5 *1 (-732 *6 *7)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-349 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-347 *7) *7)) (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *7 (-1154 *6)) (-5 *2 (-583 (-349 *7))) (-5 *1 (-732 *6 *7)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))))
-((-2507 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#1|))) (-630 |#2|) (-1178 |#1|)) 110 T ELT) (((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1178 |#1|)) (|:| -3266 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1178 |#1|)) 15 T ELT)) (-2508 (((-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2012 (-583 (-1178 |#1|)))) (-630 |#2|) (-1178 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2012 (-583 |#1|))) |#2| |#1|)) 116 T ELT)) (-3572 (((-3 (-2 (|:| |particular| (-1178 |#1|)) (|:| -2012 (-630 |#1|))) #1#) (-630 |#1|) (-1178 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#) |#2| |#1|)) 54 T ELT)))
-(((-733 |#1| |#2|) (-10 -7 (-15 -2507 ((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1178 |#1|)) (|:| -3266 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1178 |#1|))) (-15 -2507 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#1|))) (-630 |#2|) (-1178 |#1|))) (-15 -3572 ((-3 (-2 (|:| |particular| (-1178 |#1|)) (|:| -2012 (-630 |#1|))) #1="failed") (-630 |#1|) (-1178 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#) |#2| |#1|))) (-15 -2508 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|)))) (-630 |#2|) (-1178 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2012 (-583 |#1|))) |#2| |#1|)))) (-312) (-600 |#1|)) (T -733))
-((-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2012 (-583 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *6) "failed")) (|:| -2012 (-583 (-1178 *6))))) (-5 *1 (-733 *6 *7)) (-5 *4 (-1178 *6)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2012 (-583 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-1178 *6)) (|:| -2012 (-630 *6)))) (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1178 *6)))) (-2507 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-600 *5)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1178 *5)))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1178 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-630 *5)) (|:| |eqs| (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1178 *5)) (|:| -3266 *6) (|:| |rh| *5)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *6 (-600 *5)))))
-((-2509 (((-630 |#1|) (-583 |#1|) (-694)) 14 T ELT) (((-630 |#1|) (-583 |#1|)) 15 T ELT)) (-2510 (((-3 (-1178 |#1|) #1="failed") |#2| |#1| (-583 |#1|)) 39 T ELT)) (-3339 (((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 46 T ELT)))
-(((-734 |#1| |#2|) (-10 -7 (-15 -2509 ((-630 |#1|) (-583 |#1|))) (-15 -2509 ((-630 |#1|) (-583 |#1|) (-694))) (-15 -2510 ((-3 (-1178 |#1|) #1="failed") |#2| |#1| (-583 |#1|))) (-15 -3339 ((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-312) (-600 |#1|)) (T -734))
-((-3339 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2)))) (-2510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-1178 *4)) (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-630 *5)) (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5)) (-4 *5 (-600 *4)))))
-((-2568 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3706 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#2| (-319)) ELT)) (-3787 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2994 (($) NIL (|has| |#2| (-319)) ELT)) (-1575 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ (-484)) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1178 $)) NIL (|has| |#2| (-961)) ELT)) (-3242 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-319)) ELT)) (-3243 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3835 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1467 (($ (-1178 |#2|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1945 (((-694) |#2| $) NIL (|has| |#2| (-1013)) ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2660 (($) NIL (|has| |#2| (-23)) CONST)) (-2666 (($) NIL (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 11 (|has| |#2| (-756)) ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-735 |#1| |#2| |#3|) (-196 |#1| |#2|) (-694) (-717) (-1 (-85) (-1178 |#2|) (-1178 |#2|))) (T -735))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1487 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1089)) NIL T ELT)) (-1521 (((-694) $) NIL T ELT) (((-694) $ (-1089)) NIL T ELT)) (-3081 (((-583 (-738 (-1089))) $) NIL T ELT)) (-3083 (((-1084 $) $ (-738 (-1089))) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-738 (-1089)))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1483 (($ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-738 (-1089)) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-1038 |#1| (-1089)) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-738 (-1089)) $) NIL T ELT) (((-1089) $) NIL T ELT) (((-1038 |#1| (-1089)) $) NIL T ELT)) (-3755 (($ $ $ (-738 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-738 (-1089))) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 (-738 (-1089))) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-738 (-1089)) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-738 (-1089)) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ (-1089)) NIL T ELT) (((-694) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#1|) (-738 (-1089))) NIL T ELT) (($ (-1084 $) (-738 (-1089))) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 (-738 (-1089)))) NIL T ELT) (($ $ (-738 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1089))) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-738 (-1089))) NIL T ELT)) (-2820 (((-469 (-738 (-1089))) $) NIL T ELT) (((-694) $ (-738 (-1089))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1089)))) NIL T ELT)) (-1624 (($ (-1 (-469 (-738 (-1089))) (-469 (-738 (-1089)))) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1522 (((-1 $ (-694)) (-1089)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3082 (((-3 (-738 (-1089)) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1485 (((-738 (-1089)) $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1486 (((-85) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-738 (-1089))) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-738 (-1089)) |#1|) NIL T ELT) (($ $ (-583 (-738 (-1089))) (-583 |#1|)) NIL T ELT) (($ $ (-738 (-1089)) $) NIL T ELT) (($ $ (-583 (-738 (-1089))) (-583 $)) NIL T ELT) (($ $ (-1089) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1089)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3756 (($ $ (-738 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-738 (-1089))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1089)))) NIL T ELT) (($ $ (-738 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1488 (((-583 (-1089)) $) NIL T ELT)) (-3947 (((-469 (-738 (-1089))) $) NIL T ELT) (((-694) $ (-738 (-1089))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1089)))) NIL T ELT) (((-694) $ (-1089)) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-738 (-1089)) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-738 (-1089)) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-738 (-1089)) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-738 (-1089))) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-738 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-1038 |#1| (-1089))) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 (-738 (-1089)))) NIL T ELT) (($ $ (-738 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1089))) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-738 (-1089))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1089)))) NIL T ELT) (($ $ (-738 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-736 |#1|) (-13 (-213 |#1| (-1089) (-738 (-1089)) (-469 (-738 (-1089)))) (-950 (-1038 |#1| (-1089)))) (-961)) (T -736))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#2| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-1606 (((-694) $) NIL (|has| |#2| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $) 13 T ELT) (($ $ (-694)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-349 (-484))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ (-484)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-312)) ELT)))
-(((-737 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-429 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1013) (-809 |#1|) |#1|) (T -737))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-1521 (((-694) $) NIL T ELT)) (-3830 ((|#1| $) 10 T ELT)) (-3157 (((-3 |#1| "failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3771 (((-694) $) 11 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-1522 (($ |#1| (-694)) 9 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3757 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2669 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)))
-(((-738 |#1|) (-228 |#1|) (-756)) (T -738))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) 39 T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3938 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3798 (($ $) 43 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1749 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-694) $ (-484)) NIL T ELT)) (-3935 (($ $) 55 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2291 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3939 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2511 (((-85) $ $) 52 T ELT)) (-3832 (((-694) $) 35 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1750 (($ $ $) NIL T ELT)) (-1751 (($ $ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $) 42 T ELT)) (-1778 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-694)))) $) NIL T ELT)) (-2879 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2565 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 7 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 54 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-739 |#1|) (-13 (-335 |#1|) (-754) (-10 -8 (-15 -3800 (|#1| $)) (-15 -3798 ($ $)) (-15 -3935 ($ $)) (-15 -2511 ((-85) $ $)) (-15 -3939 ((-3 $ #1="failed") $ |#1|)) (-15 -3938 ((-3 $ #1#) $ |#1|)) (-15 -2565 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3832 ((-694) $)) (-15 -3933 ((-583 |#1|) $)))) (-756)) (T -739))
-((-3800 (*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3939 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3938 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2565 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3)))) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3622 (((-484) $) 69 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3186 (((-85) $) 67 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3187 (((-85) $) 68 T ELT)) (-2531 (($ $ $) 61 T ELT)) (-2857 (($ $ $) 62 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 (($ $) 70 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 63 T ELT)) (-2567 (((-85) $ $) 65 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 64 T ELT)) (-2685 (((-85) $ $) 66 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-740) (-113)) (T -740))
-NIL
-(-13 (-495) (-755))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2512 ((|#1| $) 10 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2513 (($ |#1|) 9 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-694)) NIL T ELT)) (-2820 (((-694) $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-3945 (((-772) $) 17 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3676 ((|#2| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-741 |#1| |#2|) (-13 (-645 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2513 ($ |#1|)) (-15 -2512 (|#1| $)))) (-645 |#2|) (-961)) (T -741))
-((-2513 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961)))))
-((-2568 (((-85) $ $) 19 T ELT)) (-3234 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3236 (($ $ $) 77 T ELT)) (-3235 (((-85) $ $) 78 T ELT)) (-3239 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2368 (($ $) 66 T ELT)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 69 T ELT)) (-2531 ((|#1| $) 84 T ELT)) (-2856 (($ $ $) 87 T ELT)) (-3517 (($ $ $) 86 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-2857 ((|#1| $) 85 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 T ELT)) (-3238 (($ $ $) 74 T ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3243 (((-1033) $) 21 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 65 T ELT)) (-3237 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 T ELT)) (-3240 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1264 (((-85) $ $) 20 T ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-742 |#1|) (-113) (-756)) (T -742))
-((-2531 (*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756)))))
-(-13 (-676 |t#1|) (-881 |t#1|) (-10 -8 (-15 -2531 (|t#1| $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-634 |#1|) . T) ((-676 |#1|) . T) ((-881 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3723 (($) NIL (|has| |#1| (-21)) CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3466 (((-3 $ #1#) $) 42 (|has| |#1| (-755)) ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 51 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 46 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 48 (|has| |#1| (-483)) ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2514 (($) 13 T ELT)) (-2524 (((-85) $) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2525 (((-85) $) 11 T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ELT)) (-3126 (((-694)) 36 (|has| |#1| (-755)) CONST)) (-1264 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3382 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2660 (($) 23 (|has| |#1| (-21)) CONST)) (-2666 (($) 33 (|has| |#1| (-755)) CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2685 (((-85) $ $) 45 (|has| |#1| (-755)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 39 (|has| |#1| (-755)) ELT) (($ (-484) $) 27 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT)))
-(((-743 |#1|) (-13 (-1013) (-354 |#1|) (-10 -8 (-15 -2514 ($)) (-15 -2525 ((-85) $)) (-15 -2524 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -743))
-((-2514 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1013)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))))
-((-3957 (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)) 12 T ELT) (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|)) 13 T ELT)))
-(((-744 |#1| |#2|) (-10 -7 (-15 -3957 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|))) (-15 -3957 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)))) (-1013) (-1013)) (T -744))
-((-3957 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-744 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2516 ((|#1| (-86) |#1|) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2515 (($ |#1| (-310 (-86))) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2517 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2518 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT)) (-2519 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-745 |#1|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2520 ($ $)) (-15 -2520 ($ $ $)) (-15 -2519 (|#1| |#1|))) |%noBranch|) (-15 -2518 ($ $ (-1 |#1| |#1|))) (-15 -2517 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2516 (|#1| (-86) |#1|)) (-15 -2515 ($ |#1| (-310 (-86)))))) (-961)) (T -745))
-((-2520 (*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2520 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2519 (*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-745 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-745 *3)) (-4 *3 (-961)))) (-2516 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961)))) (-2515 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961)))))
-((-2633 (((-85) $ |#2|) 14 T ELT)) (-3945 (((-772) $) 11 T ELT)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -2633 ((-85) |#1| |#2|)) (-15 -3945 ((-772) |#1|))) (-747 |#2|) (-1013)) (T -746))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3541 ((|#1| $) 19 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2633 (((-85) $ |#1|) 17 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2521 (((-55) $) 18 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-747 |#1|) (-113) (-1013)) (T -747))
-((-3541 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1013)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-55)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
-(-13 (-1013) (-10 -8 (-15 -3541 (|t#1| $)) (-15 -2521 ((-55) $)) (-15 -2633 ((-85) $ |t#1|))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2522 (((-167 (-441)) (-1072)) 9 T ELT)))
-(((-748) (-10 -7 (-15 -2522 ((-167 (-441)) (-1072))))) (T -748))
-((-2522 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-167 (-441))) (-5 *1 (-748)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3319 (((-1028) $) 10 T ELT)) (-3541 (((-446) $) 9 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3529 (($ (-446) (-1028)) 8 T ELT)) (-3945 (((-772) $) 25 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) 20 T ELT)) (-3056 (((-85) $ $) 12 T ELT)))
-(((-749) (-13 (-747 (-446)) (-10 -8 (-15 -3319 ((-1028) $)) (-15 -3529 ($ (-446) (-1028)))))) (T -749))
-((-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-749)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-749)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2523 (((-1033) $) 31 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3723 (($) NIL (|has| |#1| (-21)) CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3466 (((-3 $ #1#) $) 57 (|has| |#1| (-755)) ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 65 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 60 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 63 (|has| |#1| (-483)) ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2527 (($) 14 T ELT)) (-1213 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2526 (($) 16 T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2524 (((-85) $) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2525 (((-85) $) 11 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ELT)) (-3126 (((-694)) 50 (|has| |#1| (-755)) CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3382 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2660 (($) 37 (|has| |#1| (-21)) CONST)) (-2666 (($) 47 (|has| |#1| (-755)) CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3056 (((-85) $ $) 35 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2685 (((-85) $ $) 59 (|has| |#1| (-755)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 54 (|has| |#1| (-755)) ELT) (($ (-484) $) 41 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT)))
-(((-750 |#1|) (-13 (-1013) (-354 |#1|) (-10 -8 (-15 -2527 ($)) (-15 -2526 ($)) (-15 -2525 ((-85) $)) (-15 -2524 ((-85) $)) (-15 -2523 ((-1033) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -750))
-((-2527 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))) (-2526 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))))
-((-3957 (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)) 13 T ELT) (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|)) 14 T ELT)))
-(((-751 |#1| |#2|) (-10 -7 (-15 -3957 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|))) (-15 -3957 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)))) (-1013) (-1013)) (T -751))
-((-3957 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-751 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3136 (((-694)) 27 T ELT)) (-2994 (($) 30 T ELT)) (-2531 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2857 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2400 (($ (-830)) 28 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)))
-(((-752) (-113)) (T -752))
-((-2531 (*1 *1) (-4 *1 (-752))) (-2857 (*1 *1) (-4 *1 (-752))))
-(-13 (-756) (-319) (-10 -8 (-15 -2531 ($) -3951) (-15 -2857 ($) -3951)))
-(((-72) . T) ((-552 (-772)) . T) ((-319) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T))
-((-2529 (((-85) (-1178 |#2|) (-1178 |#2|)) 19 T ELT)) (-2530 (((-85) (-1178 |#2|) (-1178 |#2|)) 20 T ELT)) (-2528 (((-85) (-1178 |#2|) (-1178 |#2|)) 16 T ELT)))
-(((-753 |#1| |#2|) (-10 -7 (-15 -2528 ((-85) (-1178 |#2|) (-1178 |#2|))) (-15 -2529 ((-85) (-1178 |#2|) (-1178 |#2|))) (-15 -2530 ((-85) (-1178 |#2|) (-1178 |#2|)))) (-694) (-716)) (T -753))
-((-2530 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2529 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2528 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3723 (($) 29 T CONST)) (-3466 (((-3 $ "failed") $) 32 T ELT)) (-2410 (((-85) $) 30 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 28 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT) (($ $ (-694)) 31 T ELT)) (* (($ $ $) 25 T ELT)))
-(((-754) (-113)) (T -754))
-NIL
-(-13 (-766) (-663))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-766) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-1311 (((-3 $ "failed") $ $) 35 T ELT)) (-3622 (((-484) $) 38 T ELT)) (-3723 (($) 30 T CONST)) (-3466 (((-3 $ "failed") $) 55 T ELT)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2410 (((-85) $) 53 T ELT)) (-3187 (((-85) $) 39 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 56 T ELT)) (-3126 (((-694)) 57 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 51 T ELT)) (-3382 (($ $) 37 T ELT)) (-2660 (($) 29 T CONST)) (-2666 (($) 52 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3836 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3838 (($ $ $) 25 T ELT)) (** (($ $ (-694)) 54 T ELT) (($ $ (-830)) 49 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-484) $) 40 T ELT) (($ $ $) 50 T ELT)))
+((-2484 (*1 *1 *1 *1) (-4 *1 (-718))))
+(-13 (-722) (-10 -8 (-15 -2484 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT)))
+(((-719) (-113)) (T -719))
+NIL
+(-13 (-757) (-25))
+(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1129) . T))
+((-3189 (((-85) $) 42 T ELT)) (-3158 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 78 T ELT)) (-3024 (((-85) $) 72 T ELT)) (-3023 (((-350 (-485)) $) 76 T ELT)) (-3133 ((|#2| $) 26 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2485 (($ $) 58 T ELT)) (-3972 (((-474) $) 67 T ELT)) (-3010 (($ $) 21 T ELT)) (-3946 (((-773) $) 53 T ELT) (($ (-485)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3127 (((-695)) 10 T CONST)) (-3383 ((|#2| $) 71 T ELT)) (-3057 (((-85) $ $) 30 T ELT)) (-2686 (((-85) $ $) 69 T ELT)) (-3837 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
+(((-720 |#1| |#2|) (-10 -7 (-15 -2686 ((-85) |#1| |#1|)) (-15 -3972 ((-474) |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3025 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -3383 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3010 (|#1| |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3127 ((-695)) -3952) (-15 -3946 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-721 |#2|) (-146)) (T -720))
+((-3127 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3137 (((-695)) 67 (|has| |#1| (-320)) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3157 (((-485) $) 108 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 104 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3643 ((|#1| $) 93 T ELT)) (-3025 (((-3 (-350 (-485)) "failed") $) 80 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 82 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 81 (|has| |#1| (-484)) ELT)) (-2995 (($) 70 (|has| |#1| (-320)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2490 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3133 ((|#1| $) 85 T ELT)) (-2532 (($ $ $) 71 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 72 (|has| |#1| (-757)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2011 (((-831) $) 69 (|has| |#1| (-320)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2401 (($ (-831)) 68 (|has| |#1| (-320)) ELT)) (-2487 ((|#1| $) 90 T ELT)) (-2488 ((|#1| $) 91 T ELT)) (-2489 ((|#1| $) 92 T ELT)) (-3007 ((|#1| $) 86 T ELT)) (-3008 ((|#1| $) 87 T ELT)) (-3009 ((|#1| $) 88 T ELT)) (-2486 ((|#1| $) 89 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) 97 (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 96 (|has| |#1| (-456 (-1090) |#1|)) ELT)) (-3800 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3972 (((-474) $) 77 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) 94 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 107 (|has| |#1| (-951 (-350 (-485)))) ELT)) (-2703 (((-633 $) $) 78 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3383 ((|#1| $) 83 (|has| |#1| (-974)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 73 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 75 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 74 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 76 (|has| |#1| (-757)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
+(((-721 |#1|) (-113) (-146)) (T -721))
+((-3010 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2490 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-2485 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
+(-13 (-38 |t#1|) (-355 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3010 ($ $)) (-15 -3643 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3133 (|t#1| $)) (-15 -2490 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3383 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2485 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-320) |has| |#1| (-320)) ((-288 |#1|) . T) ((-355 |#1|) . T) ((-456 (-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3724 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
+(((-722) (-113)) (T -722))
+NIL
+(-13 (-717) (-104))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-910 |#1|) #1#) $) 35 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3157 ((|#1| $) NIL T ELT) (((-910 |#1|) $) 33 T ELT) (((-485) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-350 (-485)) $) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3643 ((|#1| $) 16 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2490 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-910 |#1|) (-910 |#1|)) 29 T ELT)) (-3133 ((|#1| $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2487 ((|#1| $) 22 T ELT)) (-2488 ((|#1| $) 20 T ELT)) (-2489 ((|#1| $) 18 T ELT)) (-3007 ((|#1| $) 26 T ELT)) (-3008 ((|#1| $) 25 T ELT)) (-3009 ((|#1| $) 24 T ELT)) (-2486 ((|#1| $) 23 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-456 (-1090) |#1|)) ELT)) (-3800 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-910 |#1|)) 30 T ELT) (($ (-350 (-485))) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2661 (($) 8 T CONST)) (-2667 (($) 12 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-723 |#1|) (-13 (-721 |#1|) (-355 (-910 |#1|)) (-10 -8 (-15 -2490 ($ (-910 |#1|) (-910 |#1|))))) (-146)) (T -723))
+((-2490 (*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3)))))
+((-3958 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT)))
+(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#3| (-1 |#4| |#2|) |#1|))) (-721 |#2|) (-146) (-721 |#4|) (-146)) (T -724))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6)) (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5)))))
+((-2491 (((-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#3| |#2| (-1090)) 19 T ELT)))
+(((-725 |#1| |#2| |#3|) (-10 -7 (-15 -2491 ((-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#3| |#2| (-1090)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1115) (-872)) (-601 |#2|)) (T -725))
+((-2491 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1115) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4)))))
+((-3573 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-584 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1090)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1090)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2013 (-584 (-1179 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1090)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2013 (-584 (-1179 |#2|)))) #1#) (-584 (-249 |#2|)) (-584 (-86)) (-1090)) 26 T ELT) (((-3 (-584 (-1179 |#2|)) #1#) (-631 |#2|) (-1090)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2013 (-584 (-1179 |#2|)))) #1#) (-631 |#2|) (-1179 |#2|) (-1090)) 35 T ELT)))
+(((-726 |#1| |#2|) (-10 -7 (-15 -3573 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2013 (-584 (-1179 |#2|)))) #1="failed") (-631 |#2|) (-1179 |#2|) (-1090))) (-15 -3573 ((-3 (-584 (-1179 |#2|)) #1#) (-631 |#2|) (-1090))) (-15 -3573 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2013 (-584 (-1179 |#2|)))) #1#) (-584 (-249 |#2|)) (-584 (-86)) (-1090))) (-15 -3573 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2013 (-584 (-1179 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1090))) (-15 -3573 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1090))) (-15 -3573 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1090))) (-15 -3573 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|))) (-15 -3573 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-584 |#2|)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1115) (-872))) (T -726))
+((-3573 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1115) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-726 *6 *2)))) (-3573 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1115) (-872))) (-5 *1 (-726 *6 *2)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2013 (-584 *3))) *3 #1="failed")) (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1115) (-872))))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2013 (-584 *7))) *7 #1#)) (-5 *1 (-726 *6 *7)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2013 (-584 (-1179 *7))))) (-5 *1 (-726 *6 *7)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2013 (-584 (-1179 *7))))) (-5 *1 (-726 *6 *7)))) (-3573 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1090)) (-4 *6 (-13 (-29 *5) (-1115) (-872))) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-1179 *6))) (-5 *1 (-726 *5 *6)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2013 (-584 (-1179 *7))))) (-5 *1 (-726 *6 *7)) (-5 *4 (-1179 *7)))))
+((-3470 ((|#2| |#2| (-1090)) 17 T ELT)) (-2492 ((|#2| |#2| (-1090)) 56 T ELT)) (-2493 (((-1 |#2| |#2|) (-1090)) 11 T ELT)))
+(((-727 |#1| |#2|) (-10 -7 (-15 -3470 (|#2| |#2| (-1090))) (-15 -2492 (|#2| |#2| (-1090))) (-15 -2493 ((-1 |#2| |#2|) (-1090)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1115) (-872))) (T -727))
+((-2493 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) (-4 *5 (-13 (-29 *4) (-1115) (-872))))) (-2492 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-872))))) (-3470 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-872))))))
+((-2494 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2013 (-584 |#4|))) (-598 |#4|) |#4|) 33 T ELT)))
+(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2494 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2013 (-584 |#4|))) (-598 |#4|) |#4|))) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -728))
+((-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-728 *5 *6 *7 *4)))))
+((-3741 (((-2 (|:| -3267 |#3|) (|:| |rh| (-584 (-350 |#2|)))) |#4| (-584 (-350 |#2|))) 53 T ELT)) (-2496 (((-584 (-2 (|:| -3773 |#2|) (|:| -3227 |#2|))) |#4| |#2|) 62 T ELT) (((-584 (-2 (|:| -3773 |#2|) (|:| -3227 |#2|))) |#4|) 61 T ELT) (((-584 (-2 (|:| -3773 |#2|) (|:| -3227 |#2|))) |#3| |#2|) 20 T ELT) (((-584 (-2 (|:| -3773 |#2|) (|:| -3227 |#2|))) |#3|) 21 T ELT)) (-2497 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2495 ((|#2| |#3| (-584 (-350 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-350 |#2|)) 105 T ELT)))
+(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2495 ((-3 |#2| "failed") |#3| (-350 |#2|))) (-15 -2495 (|#2| |#3| (-584 (-350 |#2|)))) (-15 -2496 ((-584 (-2 (|:| -3773 |#2|) (|:| -3227 |#2|))) |#3|)) (-15 -2496 ((-584 (-2 (|:| -3773 |#2|) (|:| -3227 |#2|))) |#3| |#2|)) (-15 -2497 (|#2| |#3| |#1|)) (-15 -2496 ((-584 (-2 (|:| -3773 |#2|) (|:| -3227 |#2|))) |#4|)) (-15 -2496 ((-584 (-2 (|:| -3773 |#2|) (|:| -3227 |#2|))) |#4| |#2|)) (-15 -2497 (|#2| |#4| |#1|)) (-15 -3741 ((-2 (|:| -3267 |#3|) (|:| |rh| (-584 (-350 |#2|)))) |#4| (-584 (-350 |#2|))))) (-13 (-312) (-120) (-951 (-350 (-485)))) (-1155 |#1|) (-601 |#2|) (-601 (-350 |#2|))) (T -729))
+((-3741 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1155 *5)) (-5 *2 (-2 (|:| -3267 *7) (|:| |rh| (-584 (-350 *6))))) (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-350 *6))) (-4 *7 (-601 *6)) (-4 *3 (-601 (-350 *6))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-729 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-601 *2)) (-4 *3 (-601 (-350 *2))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1155 *5)) (-5 *2 (-584 (-2 (|:| -3773 *4) (|:| -3227 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) (-4 *6 (-601 *4)) (-4 *3 (-601 (-350 *4))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1155 *4)) (-5 *2 (-584 (-2 (|:| -3773 *5) (|:| -3227 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 (-350 *5))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-350 *2))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1155 *5)) (-5 *2 (-584 (-2 (|:| -3773 *4) (|:| -3227 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) (-4 *3 (-601 *4)) (-4 *6 (-601 (-350 *4))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1155 *4)) (-5 *2 (-584 (-2 (|:| -3773 *5) (|:| -3227 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) (-2495 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-350 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 (-350 *2))))) (-2495 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 *4)))))
+((-2505 (((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1085 |#2|)) (-1 (-348 |#2|) |#2|)) 156 T ELT)) (-2506 (((-584 (-2 (|:| |poly| |#2|) (|:| -3267 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 52 T ELT)) (-2499 (((-584 (-2 (|:| |deg| (-695)) (|:| -3267 |#2|))) |#3|) 123 T ELT)) (-2498 ((|#2| |#3|) 42 T ELT)) (-2500 (((-584 (-2 (|:| -3952 |#1|) (|:| -3267 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 100 T ELT)) (-2501 ((|#3| |#3| (-350 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT)))
+(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2498 (|#2| |#3|)) (-15 -2499 ((-584 (-2 (|:| |deg| (-695)) (|:| -3267 |#2|))) |#3|)) (-15 -2500 ((-584 (-2 (|:| -3952 |#1|) (|:| -3267 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2506 ((-584 (-2 (|:| |poly| |#2|) (|:| -3267 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2505 ((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1085 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2501 (|#3| |#3| |#2|)) (-15 -2501 (|#3| |#3| (-350 |#2|)))) (-13 (-312) (-120) (-951 (-350 (-485)))) (-1155 |#1|) (-601 |#2|) (-601 (-350 |#2|))) (T -730))
+((-2501 (*1 *2 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1155 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) (-4 *6 (-601 *3)))) (-2501 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-1155 *4)) (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-350 *3))))) (-2505 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-584 *7) *7 (-1085 *7))) (-5 *5 (-1 (-348 *7) *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-312) (-120) (-951 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-350 *7)) (|:| -3267 *3)))) (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-350 *7))))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1155 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3267 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1155 *5)) (-5 *2 (-584 (-2 (|:| -3952 *5) (|:| -3267 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) (-2499 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1155 *4)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3267 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) (-2498 (*1 *2 *3) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-350 *2))))))
+((-2502 (((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-350 |#2|)) (-584 (-350 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2013 (-584 (-350 |#2|)))) (-599 |#2| (-350 |#2|)) (-350 |#2|)) 145 T ELT) (((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-350 |#2|)) (-584 (-350 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2013 (-584 (-350 |#2|)))) (-598 (-350 |#2|)) (-350 |#2|)) 138 T ELT)) (-2503 ((|#2| (-599 |#2| (-350 |#2|))) 86 T ELT) ((|#2| (-598 (-350 |#2|))) 89 T ELT)))
+(((-731 |#1| |#2|) (-10 -7 (-15 -2502 ((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2013 (-584 (-350 |#2|)))) (-598 (-350 |#2|)) (-350 |#2|))) (-15 -2502 ((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-350 |#2|)) (-584 (-350 |#2|)))) (-15 -2502 ((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2013 (-584 (-350 |#2|)))) (-599 |#2| (-350 |#2|)) (-350 |#2|))) (-15 -2502 ((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-350 |#2|)) (-584 (-350 |#2|)))) (-15 -2503 (|#2| (-598 (-350 |#2|)))) (-15 -2503 (|#2| (-599 |#2| (-350 |#2|))))) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1155 |#1|)) (T -731))
+((-2503 (*1 *2 *3) (-12 (-5 *3 (-599 *2 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-598 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-731 *5 *6)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-731 *5 *6)))))
+((-2504 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#1|))) |#5| |#4|) 49 T ELT)))
+(((-732 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2504 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#1|))) |#5| |#4|))) (-312) (-601 |#1|) (-1155 |#1|) (-662 |#1| |#3|) (-601 |#4|)) (T -732))
+((-2504 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1155 *5)) (-4 *4 (-662 *5 *7)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1179 *5)))) (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4)))))
+((-2505 (((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 47 T ELT)) (-2507 (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 38 T ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 39 T ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 36 T ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 37 T ELT)) (-2506 (((-584 (-2 (|:| |poly| |#2|) (|:| -3267 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 96 T ELT)))
+(((-733 |#1| |#2|) (-10 -7 (-15 -2507 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2507 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2507 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2505 ((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2506 ((-584 (-2 (|:| |poly| |#2|) (|:| -3267 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2507 ((-584 (-350 |#2|)) (-598 (-350 |#2|)))) (-15 -2507 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)))) (-15 -2507 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1155 |#1|)) (T -733))
+((-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-599 *5 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-598 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1155 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3267 (-599 *6 (-350 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-350 *6)) (|:| -3267 (-599 *6 (-350 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))) (-2507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *7 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *7 (-1155 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1155 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *7 (-1155 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1155 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))))
+((-2508 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#1|))) (-631 |#2|) (-1179 |#1|)) 110 T ELT) (((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1179 |#1|)) (|:| -3267 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1179 |#1|)) 15 T ELT)) (-2509 (((-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2013 (-584 (-1179 |#1|)))) (-631 |#2|) (-1179 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2013 (-584 |#1|))) |#2| |#1|)) 116 T ELT)) (-3573 (((-3 (-2 (|:| |particular| (-1179 |#1|)) (|:| -2013 (-631 |#1|))) #1#) (-631 |#1|) (-1179 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#) |#2| |#1|)) 54 T ELT)))
+(((-734 |#1| |#2|) (-10 -7 (-15 -2508 ((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1179 |#1|)) (|:| -3267 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1179 |#1|))) (-15 -2508 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#1|))) (-631 |#2|) (-1179 |#1|))) (-15 -3573 ((-3 (-2 (|:| |particular| (-1179 |#1|)) (|:| -2013 (-631 |#1|))) #1="failed") (-631 |#1|) (-1179 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#) |#2| |#1|))) (-15 -2509 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2013 (-584 (-1179 |#1|)))) (-631 |#2|) (-1179 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2013 (-584 |#1|))) |#2| |#1|)))) (-312) (-601 |#1|)) (T -734))
+((-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2013 (-584 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *6) "failed")) (|:| -2013 (-584 (-1179 *6))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1179 *6)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2013 (-584 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-1179 *6)) (|:| -2013 (-631 *6)))) (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1179 *6)))) (-2508 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-601 *5)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1179 *5)))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1179 *5)))) (-2508 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-631 *5)) (|:| |eqs| (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1179 *5)) (|:| -3267 *6) (|:| |rh| *5)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1179 *5)) (-4 *6 (-601 *5)))))
+((-2510 (((-631 |#1|) (-584 |#1|) (-695)) 14 T ELT) (((-631 |#1|) (-584 |#1|)) 15 T ELT)) (-2511 (((-3 (-1179 |#1|) #1="failed") |#2| |#1| (-584 |#1|)) 39 T ELT)) (-3340 (((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)) 46 T ELT)))
+(((-735 |#1| |#2|) (-10 -7 (-15 -2510 ((-631 |#1|) (-584 |#1|))) (-15 -2510 ((-631 |#1|) (-584 |#1|) (-695))) (-15 -2511 ((-3 (-1179 |#1|) #1="failed") |#2| |#1| (-584 |#1|))) (-15 -3340 ((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)))) (-312) (-601 |#1|)) (T -735))
+((-3340 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) (-2511 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-1179 *4)) (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-631 *5)) (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) (-4 *5 (-601 *4)))))
+((-2569 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3707 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-2484 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3137 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3788 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3157 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2995 (($) NIL (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ (-485)) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2890 (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-1949 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1179 $)) NIL (|has| |#2| (-962)) ELT)) (-3243 (((-1073) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3244 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3801 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3836 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1468 (($ (-1179 |#2|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1946 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3127 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2661 (($) NIL (|has| |#2| (-23)) CONST)) (-2667 (($) NIL (|has| |#2| (-962)) CONST)) (-2670 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-812 (-1090))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) 11 (|has| |#2| (-757)) ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-736 |#1| |#2| |#3|) (-196 |#1| |#2|) (-695) (-718) (-1 (-85) (-1179 |#2|) (-1179 |#2|))) (T -736))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1488 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1090)) NIL T ELT)) (-1522 (((-695) $) NIL T ELT) (((-695) $ (-1090)) NIL T ELT)) (-3082 (((-584 (-739 (-1090))) $) NIL T ELT)) (-3084 (((-1085 $) $ (-739 (-1090))) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-739 (-1090)))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-1484 (($ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-739 (-1090)) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 (-1039 |#1| (-1090)) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-739 (-1090)) $) NIL T ELT) (((-1090) $) NIL T ELT) (((-1039 |#1| (-1090)) $) NIL T ELT)) (-3756 (($ $ $ (-739 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| (-470 (-739 (-1090))) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-739 (-1090)) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-739 (-1090)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3772 (((-695) $ (-1090)) NIL T ELT) (((-695) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1085 |#1|) (-739 (-1090))) NIL T ELT) (($ (-1085 $) (-739 (-1090))) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 (-739 (-1090)))) NIL T ELT) (($ $ (-739 (-1090)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1090))) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-739 (-1090))) NIL T ELT)) (-2821 (((-470 (-739 (-1090))) $) NIL T ELT) (((-695) $ (-739 (-1090))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1090)))) NIL T ELT)) (-1625 (($ (-1 (-470 (-739 (-1090))) (-470 (-739 (-1090)))) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1523 (((-1 $ (-695)) (-1090)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3083 (((-3 (-739 (-1090)) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1486 (((-739 (-1090)) $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-739 (-1090))) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-739 (-1090)) |#1|) NIL T ELT) (($ $ (-584 (-739 (-1090))) (-584 |#1|)) NIL T ELT) (($ $ (-739 (-1090)) $) NIL T ELT) (($ $ (-584 (-739 (-1090))) (-584 $)) NIL T ELT) (($ $ (-1090) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1090)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3757 (($ $ (-739 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 (-739 (-1090))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1090)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1090)))) NIL T ELT) (($ $ (-739 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1489 (((-584 (-1090)) $) NIL T ELT)) (-3948 (((-470 (-739 (-1090))) $) NIL T ELT) (((-695) $ (-739 (-1090))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1090)))) NIL T ELT) (((-695) $ (-1090)) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-739 (-1090)) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-739 (-1090)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-739 (-1090)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1090))) NIL T ELT) (($ (-1090)) NIL T ELT) (($ (-1039 |#1| (-1090))) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-470 (-739 (-1090)))) NIL T ELT) (($ $ (-739 (-1090)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1090))) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-739 (-1090))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1090)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1090)))) NIL T ELT) (($ $ (-739 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-737 |#1|) (-13 (-213 |#1| (-1090) (-739 (-1090)) (-470 (-739 (-1090)))) (-951 (-1039 |#1| (-1090)))) (-962)) (T -737))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3724 (($) NIL T CONST)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#2| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-1891 (($ (-584 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-695) $) NIL (|has| |#2| (-312)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $) 13 T ELT) (($ $ (-695)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ (-485)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-312)) ELT)))
+(((-738 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-430 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1014) (-810 |#1|) |#1|) (T -738))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1522 (((-695) $) NIL T ELT)) (-3831 ((|#1| $) 10 T ELT)) (-3158 (((-3 |#1| "failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3772 (((-695) $) 11 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-1523 (($ |#1| (-695)) 9 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3758 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2670 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-739 |#1|) (-228 |#1|) (-757)) (T -739))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3934 (((-584 |#1|) $) 39 T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3939 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3799 (($ $) 43 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1750 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-695) $ (-485)) NIL T ELT)) (-3936 (($ $) 55 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2292 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3940 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2512 (((-85) $ $) 52 T ELT)) (-3833 (((-695) $) 35 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1751 (($ $ $) NIL T ELT)) (-1752 (($ $ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#1| $) 42 T ELT)) (-1779 (((-584 (-2 (|:| |gen| |#1|) (|:| -3943 (-695)))) $) NIL T ELT)) (-2880 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2566 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 7 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 54 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-740 |#1|) (-13 (-336 |#1|) (-755) (-10 -8 (-15 -3801 (|#1| $)) (-15 -3799 ($ $)) (-15 -3936 ($ $)) (-15 -2512 ((-85) $ $)) (-15 -3940 ((-3 $ #1="failed") $ |#1|)) (-15 -3939 ((-3 $ #1#) $ |#1|)) (-15 -2566 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3833 ((-695) $)) (-15 -3934 ((-584 |#1|) $)))) (-757)) (T -740))
+((-3801 (*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3940 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3939 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2566 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3623 (((-485) $) 69 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3187 (((-85) $) 67 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3188 (((-85) $) 68 T ELT)) (-2532 (($ $ $) 61 T ELT)) (-2858 (($ $ $) 62 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3383 (($ $) 70 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 63 T ELT)) (-2568 (((-85) $ $) 65 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 64 T ELT)) (-2686 (((-85) $ $) 66 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-741) (-113)) (T -741))
+NIL
+(-13 (-496) (-756))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2513 ((|#1| $) 10 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2514 (($ |#1|) 9 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-695)) NIL T ELT)) (-2821 (((-695) $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3948 (((-695) $) NIL T ELT)) (-3946 (((-773) $) 17 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3677 ((|#2| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-742 |#1| |#2|) (-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2514 ($ |#1|)) (-15 -2513 (|#1| $)))) (-646 |#2|) (-962)) (T -742))
+((-2514 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))) (-2513 (*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962)))))
+((-2569 (((-85) $ $) 19 T ELT)) (-3235 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3237 (($ $ $) 77 T ELT)) (-3236 (((-85) $ $) 78 T ELT)) (-3240 (($ (-584 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2369 (($ $) 66 T ELT)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3242 (((-85) $ $) 69 T ELT)) (-2532 ((|#1| $) 84 T ELT)) (-2857 (($ $ $) 87 T ELT)) (-3518 (($ $ $) 86 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 85 T ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 T ELT)) (-3239 (($ $ $) 74 T ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3244 (((-1034) $) 21 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1946 (-695)))) $) 65 T ELT)) (-3238 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1466 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 54 T ELT)) (-3946 (((-773) $) 17 T ELT)) (-3241 (($ (-584 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1265 (((-85) $ $) 20 T ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-743 |#1|) (-113) (-757)) (T -743))
+((-2532 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757)))))
+(-13 (-677 |t#1|) (-882 |t#1|) (-10 -8 (-15 -2532 (|t#1| $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-635 |#1|) . T) ((-677 |#1|) . T) ((-882 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3623 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3724 (($) NIL (|has| |#1| (-21)) CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3467 (((-3 $ #1#) $) 42 (|has| |#1| (-756)) ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 51 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 46 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 48 (|has| |#1| (-484)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2515 (($) 13 T ELT)) (-2525 (((-85) $) 12 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2526 (((-85) $) 11 T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3127 (((-695)) 36 (|has| |#1| (-756)) CONST)) (-1265 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3383 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2661 (($) 23 (|has| |#1| (-21)) CONST)) (-2667 (($) 33 (|has| |#1| (-756)) CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 45 (|has| |#1| (-756)) ELT)) (-3837 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 39 (|has| |#1| (-756)) ELT) (($ (-485) $) 27 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT)))
+(((-744 |#1|) (-13 (-1014) (-355 |#1|) (-10 -8 (-15 -2515 ($)) (-15 -2526 ((-85) $)) (-15 -2525 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -744))
+((-2515 (*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1014)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))))
+((-3958 (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)) 12 T ELT) (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|)) 13 T ELT)))
+(((-745 |#1| |#2|) (-10 -7 (-15 -3958 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|))) (-15 -3958 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)))) (-1014) (-1014)) (T -745))
+((-3958 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-745 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2517 ((|#1| (-86) |#1|) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2516 (($ |#1| (-310 (-86))) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2518 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2519 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT)) (-2520 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-746 |#1|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2521 ($ $)) (-15 -2521 ($ $ $)) (-15 -2520 (|#1| |#1|))) |%noBranch|) (-15 -2519 ($ $ (-1 |#1| |#1|))) (-15 -2518 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2517 (|#1| (-86) |#1|)) (-15 -2516 ($ |#1| (-310 (-86)))))) (-962)) (T -746))
+((-2521 (*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2521 (*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2520 (*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) (-2517 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
+((-2634 (((-85) $ |#2|) 14 T ELT)) (-3946 (((-773) $) 11 T ELT)))
+(((-747 |#1| |#2|) (-10 -7 (-15 -2634 ((-85) |#1| |#2|)) (-15 -3946 ((-773) |#1|))) (-748 |#2|) (-1014)) (T -747))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3542 ((|#1| $) 19 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2634 (((-85) $ |#1|) 17 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2522 (((-55) $) 18 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-748 |#1|) (-113) (-1014)) (T -748))
+((-3542 (*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1014)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-55)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
+(-13 (-1014) (-10 -8 (-15 -3542 (|t#1| $)) (-15 -2522 ((-55) $)) (-15 -2634 ((-85) $ |t#1|))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2523 (((-167 (-442)) (-1073)) 9 T ELT)))
+(((-749) (-10 -7 (-15 -2523 ((-167 (-442)) (-1073))))) (T -749))
+((-2523 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-167 (-442))) (-5 *1 (-749)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3320 (((-1029) $) 10 T ELT)) (-3542 (((-447) $) 9 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2634 (((-85) $ (-447)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3530 (($ (-447) (-1029)) 8 T ELT)) (-3946 (((-773) $) 25 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) 20 T ELT)) (-3057 (((-85) $ $) 12 T ELT)))
+(((-750) (-13 (-748 (-447)) (-10 -8 (-15 -3320 ((-1029) $)) (-15 -3530 ($ (-447) (-1029)))))) (T -750))
+((-3320 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-750)))) (-3530 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2524 (((-1034) $) 31 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3623 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3724 (($) NIL (|has| |#1| (-21)) CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3467 (((-3 $ #1#) $) 57 (|has| |#1| (-756)) ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 65 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 60 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 63 (|has| |#1| (-484)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2528 (($) 14 T ELT)) (-1214 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2527 (($) 16 T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2525 (((-85) $) 12 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2526 (((-85) $) 11 T ELT)) (-3946 (((-773) $) 24 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3127 (((-695)) 50 (|has| |#1| (-756)) CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3383 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2661 (($) 37 (|has| |#1| (-21)) CONST)) (-2667 (($) 47 (|has| |#1| (-756)) CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 35 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 59 (|has| |#1| (-756)) ELT)) (-3837 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 54 (|has| |#1| (-756)) ELT) (($ (-485) $) 41 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT)))
+(((-751 |#1|) (-13 (-1014) (-355 |#1|) (-10 -8 (-15 -2528 ($)) (-15 -2527 ($)) (-15 -2526 ((-85) $)) (-15 -2525 ((-85) $)) (-15 -2524 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -751))
+((-2528 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2527 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))))
+((-3958 (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)) 13 T ELT) (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|)) 14 T ELT)))
+(((-752 |#1| |#2|) (-10 -7 (-15 -3958 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|))) (-15 -3958 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)))) (-1014) (-1014)) (T -752))
+((-3958 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-752 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3137 (((-695)) 27 T ELT)) (-2995 (($) 30 T ELT)) (-2532 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2858 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2401 (($ (-831)) 28 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)))
+(((-753) (-113)) (T -753))
+((-2532 (*1 *1) (-4 *1 (-753))) (-2858 (*1 *1) (-4 *1 (-753))))
+(-13 (-757) (-320) (-10 -8 (-15 -2532 ($) -3952) (-15 -2858 ($) -3952)))
+(((-72) . T) ((-553 (-773)) . T) ((-320) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1129) . T))
+((-2530 (((-85) (-1179 |#2|) (-1179 |#2|)) 19 T ELT)) (-2531 (((-85) (-1179 |#2|) (-1179 |#2|)) 20 T ELT)) (-2529 (((-85) (-1179 |#2|) (-1179 |#2|)) 16 T ELT)))
+(((-754 |#1| |#2|) (-10 -7 (-15 -2529 ((-85) (-1179 |#2|) (-1179 |#2|))) (-15 -2530 ((-85) (-1179 |#2|) (-1179 |#2|))) (-15 -2531 ((-85) (-1179 |#2|) (-1179 |#2|)))) (-695) (-717)) (T -754))
+((-2531 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2530 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2529 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3724 (($) 29 T CONST)) (-3467 (((-3 $ "failed") $) 32 T ELT)) (-2411 (((-85) $) 30 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 28 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT) (($ $ (-695)) 31 T ELT)) (* (($ $ $) 25 T ELT)))
(((-755) (-113)) (T -755))
NIL
-(-13 (-714) (-120) (-663))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)))
+(-13 (-767) (-664))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-767) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3623 (((-485) $) 38 T ELT)) (-3724 (($) 30 T CONST)) (-3467 (((-3 $ "failed") $) 55 T ELT)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2411 (((-85) $) 53 T ELT)) (-3188 (((-85) $) 39 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 56 T ELT)) (-3127 (((-695)) 57 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 51 T ELT)) (-3383 (($ $) 37 T ELT)) (-2661 (($) 29 T CONST)) (-2667 (($) 52 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3837 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3839 (($ $ $) 25 T ELT)) (** (($ $ (-695)) 54 T ELT) (($ $ (-831)) 49 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT) (($ $ $) 50 T ELT)))
(((-756) (-113)) (T -756))
NIL
-(-13 (-1013) (-759))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-759) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3945 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 12 T ELT)))
-(((-757 |#1| |#2|) (-13 (-759) (-429 |#1|) (-10 -7 (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|))) (-1128) (-1 (-85) |#1| |#1|)) (T -757))
-NIL
-((-2531 (($ $ $) 16 T ELT)) (-2857 (($ $ $) 15 T ELT)) (-1264 (((-85) $ $) 17 T ELT)) (-2566 (((-85) $ $) 12 T ELT)) (-2567 (((-85) $ $) 9 T ELT)) (-3056 (((-85) $ $) 14 T ELT)) (-2684 (((-85) $ $) 11 T ELT)))
-(((-758 |#1|) (-10 -7 (-15 -2531 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2566 ((-85) |#1| |#1|)) (-15 -2684 ((-85) |#1| |#1|)) (-15 -2567 ((-85) |#1| |#1|)) (-15 -1264 ((-85) |#1| |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-759)) (T -758))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 10 T ELT)) (-2857 (($ $ $) 11 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 12 T ELT)) (-2567 (((-85) $ $) 14 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 13 T ELT)) (-2685 (((-85) $ $) 15 T ELT)))
-(((-759) (-113)) (T -759))
-((-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2567 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2684 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2566 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2857 (*1 *1 *1 *1) (-4 *1 (-759))) (-2531 (*1 *1 *1 *1) (-4 *1 (-759))))
-(-13 (-72) (-10 -8 (-15 -2685 ((-85) $ $)) (-15 -2567 ((-85) $ $)) (-15 -2684 ((-85) $ $)) (-15 -2566 ((-85) $ $)) (-15 -2857 ($ $ $)) (-15 -2531 ($ $ $))))
-(((-72) . T) ((-13) . T) ((-1128) . T))
-((-2536 (($ $ $) 49 T ELT)) (-2537 (($ $ $) 48 T ELT)) (-2538 (($ $ $) 46 T ELT)) (-2534 (($ $ $) 55 T ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 50 T ELT)) (-2535 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3502 (($ $) 39 T ELT)) (-2542 (($ $ $) 43 T ELT)) (-2543 (($ $ $) 42 T ELT)) (-2532 (($ $ $) 51 T ELT)) (-2540 (($ $ $) 57 T ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 45 T ELT)) (-2541 (((-3 $ #1#) $ $) 52 T ELT)) (-3465 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2817 ((|#2| $) 36 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3816 (((-583 |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
-(((-760 |#1| |#2|) (-10 -7 (-15 -2532 (|#1| |#1| |#1|)) (-15 -2533 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2535 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3816 ((-583 |#2|) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3945 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3945 ((-772) |#1|))) (-761 |#2|) (-961)) (T -760))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2536 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1="failed") $) 88 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 85 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3156 (((-484) $) 87 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 84 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 83 T ELT)) (-3958 (($ $) 77 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 68 (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2893 (($ |#1| (-694)) 75 T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 71 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 79 T ELT)) (-2542 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) 78 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-495)) ELT)) (-3947 (((-694) $) 80 T ELT)) (-2817 ((|#1| $) 69 (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 86 (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 81 T ELT)) (-3816 (((-583 |#1|) $) 74 T ELT)) (-3676 ((|#1| $ (-694)) 76 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2545 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
-(((-761 |#1|) (-113) (-961)) (T -761))
-((-3947 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-2545 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-2546 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-391)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-391)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2542 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2541 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2539 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-761 *3)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2535 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2533 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-761 *3)))) (-2532 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
-(-13 (-961) (-82 |t#1| |t#1|) (-354 |t#1|) (-10 -8 (-15 -3947 ((-694) $)) (-15 -2820 ((-694) $)) (-15 -3174 (|t#1| $)) (-15 -3958 ($ $)) (-15 -3676 (|t#1| $ (-694))) (-15 -2893 ($ |t#1| (-694))) (-15 -3816 ((-583 |t#1|) $)) (-15 -2545 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3465 ((-3 $ "failed") $ |t#1|)) (-15 -2546 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2547 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-391)) (PROGN (-15 -2817 (|t#1| $)) (-15 -3502 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2548 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2543 ($ $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ((-3 $ "failed") $ $)) (-15 -2540 ($ $ $)) (-15 -2539 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -2538 ($ $ $)) (-15 -2549 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2537 ($ $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ((-3 $ "failed") $ $)) (-15 -2534 ($ $ $)) (-15 -2533 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -2532 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-354 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2544 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2549 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2547 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-495)) ELT)) (-2548 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2545 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT)))
-(((-762 |#1| |#2|) (-10 -7 (-15 -2544 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2545 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-495)) (PROGN (-15 -2546 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2547 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2548 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2549 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-961) (-761 |#1|)) (T -762))
-((-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2547 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2546 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2545 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3)) (-4 *3 (-761 *2)))) (-2544 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2)) (-4 *2 (-761 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3532 (((-772) $ (-772)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 30 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 28 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 23 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT) (($ $ (-694)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-763 |#1| |#2| |#3|) (-13 (-761 |#1|) (-10 -8 (-15 -3532 ((-772) $ (-772))))) (-961) (-69 |#1|) (-1 |#1| |#1|)) (T -763))
-((-3532 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-694)) 17 T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (($ |#2|) NIL T ELT) (($ (-1175 |#1|)) 19 T ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 13 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-764 |#1| |#2| |#3| |#4|) (-13 (-761 |#2|) (-555 (-1175 |#1|))) (-1089) (-961) (-69 |#2|) (-1 |#2| |#2|)) (T -764))
-NIL
-((-2552 ((|#1| (-694) |#1|) 45 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2551 ((|#1| (-694) (-694) |#1|) 36 T ELT) ((|#1| (-694) |#1|) 24 T ELT)) (-2550 ((|#1| (-694) |#1|) 40 T ELT)) (-2800 ((|#1| (-694) |#1|) 38 T ELT)) (-2799 ((|#1| (-694) |#1|) 37 T ELT)))
-(((-765 |#1|) (-10 -7 (-15 -2799 (|#1| (-694) |#1|)) (-15 -2800 (|#1| (-694) |#1|)) (-15 -2550 (|#1| (-694) |#1|)) (-15 -2551 (|#1| (-694) |#1|)) (-15 -2551 (|#1| (-694) (-694) |#1|)) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -2552 (|#1| (-694) |#1|)) |%noBranch|)) (-146)) (T -765))
-((-2552 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-146)))) (-2551 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2799 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT)) (* (($ $ $) 25 T ELT)))
-(((-766) (-113)) (T -766))
-NIL
-(-13 (-756) (-1025))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3401 (((-484) $) 14 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-484)) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 10 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 12 T ELT)))
-(((-767) (-13 (-756) (-10 -8 (-15 -3945 ($ (-484))) (-15 -3401 ((-484) $))))) (T -767))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-767)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-767)))))
-((-2553 (((-1184) (-583 (-51))) 23 T ELT)) (-3459 (((-1184) (-1072) (-772)) 13 T ELT) (((-1184) (-772)) 8 T ELT) (((-1184) (-1072)) 10 T ELT)))
-(((-768) (-10 -7 (-15 -3459 ((-1184) (-1072))) (-15 -3459 ((-1184) (-772))) (-15 -3459 ((-1184) (-1072) (-772))) (-15 -2553 ((-1184) (-583 (-51)))))) (T -768))
-((-2553 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1184)) (-5 *1 (-768)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-772)) (-5 *2 (-1184)) (-5 *1 (-768)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-768)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-768)))))
-((-2555 (((-632 (-1137)) $ (-1137)) 15 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 12 T ELT)) (-2554 (((-694) $ (-102)) 30 T ELT)))
-(((-769 |#1|) (-10 -7 (-15 -2554 ((-694) |#1| (-102))) (-15 -2555 ((-632 (-1137)) |#1| (-1137))) (-15 -2556 ((-632 (-488)) |#1| (-488)))) (-770)) (T -769))
-NIL
-((-2555 (((-632 (-1137)) $ (-1137)) 8 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 9 T ELT)) (-2554 (((-694) $ (-102)) 7 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 10 T ELT)) (-1699 (($ $) 6 T ELT)))
-(((-770) (-113)) (T -770))
-((-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101)))) (-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-488))) (-5 *3 (-488)))) (-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1137))) (-5 *3 (-1137)))) (-2554 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694)))))
-(-13 (-147) (-10 -8 (-15 -2557 ((-632 (-101)) $ (-101))) (-15 -2556 ((-632 (-488)) $ (-488))) (-15 -2555 ((-632 (-1137)) $ (-1137))) (-15 -2554 ((-694) $ (-102)))))
+(-13 (-715) (-120) (-664))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)))
+(((-757) (-113)) (T -757))
+NIL
+(-13 (-1014) (-760))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-760) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3946 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 12 T ELT)))
+(((-758 |#1| |#2|) (-13 (-760) (-430 |#1|) (-10 -7 (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|))) (-1129) (-1 (-85) |#1| |#1|)) (T -758))
+NIL
+((-2532 (($ $ $) 16 T ELT)) (-2858 (($ $ $) 15 T ELT)) (-1265 (((-85) $ $) 17 T ELT)) (-2567 (((-85) $ $) 12 T ELT)) (-2568 (((-85) $ $) 9 T ELT)) (-3057 (((-85) $ $) 14 T ELT)) (-2685 (((-85) $ $) 11 T ELT)))
+(((-759 |#1|) (-10 -7 (-15 -2532 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -2567 ((-85) |#1| |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -2568 ((-85) |#1| |#1|)) (-15 -1265 ((-85) |#1| |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-760)) (T -759))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 10 T ELT)) (-2858 (($ $ $) 11 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 12 T ELT)) (-2568 (((-85) $ $) 14 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 13 T ELT)) (-2686 (((-85) $ $) 15 T ELT)))
+(((-760) (-113)) (T -760))
+((-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2567 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2858 (*1 *1 *1 *1) (-4 *1 (-760))) (-2532 (*1 *1 *1 *1) (-4 *1 (-760))))
+(-13 (-72) (-10 -8 (-15 -2686 ((-85) $ $)) (-15 -2568 ((-85) $ $)) (-15 -2685 ((-85) $ $)) (-15 -2567 ((-85) $ $)) (-15 -2858 ($ $ $)) (-15 -2532 ($ $ $))))
+(((-72) . T) ((-13) . T) ((-1129) . T))
+((-2537 (($ $ $) 49 T ELT)) (-2538 (($ $ $) 48 T ELT)) (-2539 (($ $ $) 46 T ELT)) (-2535 (($ $ $) 55 T ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 50 T ELT)) (-2536 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3503 (($ $) 39 T ELT)) (-2543 (($ $ $) 43 T ELT)) (-2544 (($ $ $) 42 T ELT)) (-2533 (($ $ $) 51 T ELT)) (-2541 (($ $ $) 57 T ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 45 T ELT)) (-2542 (((-3 $ #1#) $ $) 52 T ELT)) (-3466 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2818 ((|#2| $) 36 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3817 (((-584 |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
+(((-761 |#1| |#2|) (-10 -7 (-15 -2533 (|#1| |#1| |#1|)) (-15 -2534 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -2536 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2542 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3817 ((-584 |#2|) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3946 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3946 ((-773) |#1|))) (-762 |#2|) (-962)) (T -761))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2537 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 85 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3157 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 84 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3959 (($ $) 77 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2894 (($ |#1| (-695)) 75 T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 79 T ELT)) (-2543 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) 78 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3948 (((-695) $) 80 T ELT)) (-2818 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 86 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3817 (((-584 |#1|) $) 74 T ELT)) (-3677 ((|#1| $ (-695)) 76 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2546 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
+(((-762 |#1|) (-113) (-962)) (T -762))
+((-3948 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) (-2546 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-762 *3)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-762 *3)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3503 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-762 *3)))) (-2544 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2542 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2540 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-762 *3)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-762 *3)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2536 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2535 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2534 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-762 *3)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+(-13 (-962) (-82 |t#1| |t#1|) (-355 |t#1|) (-10 -8 (-15 -3948 ((-695) $)) (-15 -2821 ((-695) $)) (-15 -3175 (|t#1| $)) (-15 -3959 ($ $)) (-15 -3677 (|t#1| $ (-695))) (-15 -2894 ($ |t#1| (-695))) (-15 -3817 ((-584 |t#1|) $)) (-15 -2546 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3466 ((-3 $ "failed") $ |t#1|)) (-15 -2547 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2548 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2818 (|t#1| $)) (-15 -3503 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2549 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2544 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -2542 ((-3 $ "failed") $ $)) (-15 -2541 ($ $ $)) (-15 -2540 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -2539 ($ $ $)) (-15 -2550 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2538 ($ $ $)) (-15 -2537 ($ $ $)) (-15 -2536 ((-3 $ "failed") $ $)) (-15 -2535 ($ $ $)) (-15 -2534 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -2533 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-355 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2545 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2550 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-496)) ELT)) (-2549 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2546 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT)))
+(((-763 |#1| |#2|) (-10 -7 (-15 -2545 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2546 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-496)) (PROGN (-15 -2547 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2548 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2549 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2550 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-962) (-762 |#1|)) (T -763))
+((-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2547 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2546 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) (-4 *3 (-762 *2)))) (-2545 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) (-4 *2 (-762 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3533 (((-773) $ (-773)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 30 (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 28 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3948 (((-695) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 23 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT) (($ $ (-695)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-764 |#1| |#2| |#3|) (-13 (-762 |#1|) (-10 -8 (-15 -3533 ((-773) $ (-773))))) (-962) (-69 |#1|) (-1 |#1| |#1|)) (T -764))
+((-3533 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-695)) 17 T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-3948 (((-695) $) NIL T ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT)) (-3946 (((-773) $) 24 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (($ (-1176 |#1|)) 19 T ELT)) (-3817 (((-584 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 13 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-765 |#1| |#2| |#3| |#4|) (-13 (-762 |#2|) (-556 (-1176 |#1|))) (-1090) (-962) (-69 |#2|) (-1 |#2| |#2|)) (T -765))
+NIL
+((-2553 ((|#1| (-695) |#1|) 45 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2552 ((|#1| (-695) (-695) |#1|) 36 T ELT) ((|#1| (-695) |#1|) 24 T ELT)) (-2551 ((|#1| (-695) |#1|) 40 T ELT)) (-2801 ((|#1| (-695) |#1|) 38 T ELT)) (-2800 ((|#1| (-695) |#1|) 37 T ELT)))
+(((-766 |#1|) (-10 -7 (-15 -2800 (|#1| (-695) |#1|)) (-15 -2801 (|#1| (-695) |#1|)) (-15 -2551 (|#1| (-695) |#1|)) (-15 -2552 (|#1| (-695) |#1|)) (-15 -2552 (|#1| (-695) (-695) |#1|)) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -2553 (|#1| (-695) |#1|)) |%noBranch|)) (-146)) (T -766))
+((-2553 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2552 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2552 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT)) (* (($ $ $) 25 T ELT)))
+(((-767) (-113)) (T -767))
+NIL
+(-13 (-757) (-1026))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3402 (((-485) $) 14 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 20 T ELT) (($ (-485)) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 10 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 12 T ELT)))
+(((-768) (-13 (-757) (-10 -8 (-15 -3946 ($ (-485))) (-15 -3402 ((-485) $))))) (T -768))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-768)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-768)))))
+((-2554 (((-1185) (-584 (-51))) 23 T ELT)) (-3460 (((-1185) (-1073) (-773)) 13 T ELT) (((-1185) (-773)) 8 T ELT) (((-1185) (-1073)) 10 T ELT)))
+(((-769) (-10 -7 (-15 -3460 ((-1185) (-1073))) (-15 -3460 ((-1185) (-773))) (-15 -3460 ((-1185) (-1073) (-773))) (-15 -2554 ((-1185) (-584 (-51)))))) (T -769))
+((-2554 (*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1185)) (-5 *1 (-769)))) (-3460 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-773)) (-5 *2 (-1185)) (-5 *1 (-769)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-769)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-769)))))
+((-2556 (((-633 (-1138)) $ (-1138)) 15 T ELT)) (-2557 (((-633 (-489)) $ (-489)) 12 T ELT)) (-2555 (((-695) $ (-102)) 30 T ELT)))
+(((-770 |#1|) (-10 -7 (-15 -2555 ((-695) |#1| (-102))) (-15 -2556 ((-633 (-1138)) |#1| (-1138))) (-15 -2557 ((-633 (-489)) |#1| (-489)))) (-771)) (T -770))
+NIL
+((-2556 (((-633 (-1138)) $ (-1138)) 8 T ELT)) (-2557 (((-633 (-489)) $ (-489)) 9 T ELT)) (-2555 (((-695) $ (-102)) 7 T ELT)) (-2558 (((-633 (-101)) $ (-101)) 10 T ELT)) (-1700 (($ $) 6 T ELT)))
+(((-771) (-113)) (T -771))
+((-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489)))) (-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1138))) (-5 *3 (-1138)))) (-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695)))))
+(-13 (-147) (-10 -8 (-15 -2558 ((-633 (-101)) $ (-101))) (-15 -2557 ((-633 (-489)) $ (-489))) (-15 -2556 ((-633 (-1138)) $ (-1138))) (-15 -2555 ((-695) $ (-102)))))
(((-147) . T))
-((-2555 (((-632 (-1137)) $ (-1137)) NIL T ELT)) (-2556 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2554 (((-694) $ (-102)) NIL T ELT)) (-2557 (((-632 (-101)) $ (-101)) 22 T ELT)) (-2559 (($ (-337)) 12 T ELT) (($ (-1072)) 14 T ELT)) (-2558 (((-85) $) 19 T ELT)) (-3945 (((-772) $) 26 T ELT)) (-1699 (($ $) 23 T ELT)))
-(((-771) (-13 (-770) (-552 (-772)) (-10 -8 (-15 -2559 ($ (-337))) (-15 -2559 ($ (-1072))) (-15 -2558 ((-85) $))))) (T -771))
-((-2559 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-771)))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-771)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771)))))
-((-2568 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2589 (($ $ $) 125 T ELT)) (-2604 (((-484) $) 31 T ELT) (((-484)) 36 T ELT)) (-2599 (($ (-484)) 53 T ELT)) (-2596 (($ $ $) 54 T ELT) (($ (-583 $)) 84 T ELT)) (-2580 (($ $ (-583 $)) 82 T ELT)) (-2601 (((-484) $) 34 T ELT)) (-2583 (($ $ $) 73 T ELT)) (-3531 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2602 (((-484) $) 33 T ELT)) (-2584 (($ $ $) 72 T ELT)) (-3534 (($ $) 114 T ELT)) (-2587 (($ $ $) 129 T ELT)) (-2570 (($ (-583 $)) 61 T ELT)) (-3539 (($ $ (-583 $)) 79 T ELT)) (-2598 (($ (-484) (-484)) 55 T ELT)) (-2611 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3137 (($ $ (-484)) 43 T ELT) (($ $) 46 T ELT)) (-2564 (($ $ $) 97 T ELT)) (-2585 (($ $ $) 132 T ELT)) (-2579 (($ $) 115 T ELT)) (-2563 (($ $ $) 98 T ELT)) (-2575 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2837 (((-1184) $) 10 T ELT)) (-2578 (($ $) 118 T ELT) (($ $ (-694)) 122 T ELT)) (-2581 (($ $ $) 75 T ELT)) (-2582 (($ $ $) 74 T ELT)) (-2595 (($ $ (-583 $)) 110 T ELT)) (-2593 (($ $ $) 113 T ELT)) (-2572 (($ (-583 $)) 59 T ELT)) (-2573 (($ $) 70 T ELT) (($ (-583 $)) 71 T ELT)) (-2576 (($ $ $) 123 T ELT)) (-2577 (($ $) 116 T ELT)) (-2588 (($ $ $) 128 T ELT)) (-3532 (($ (-484)) 21 T ELT) (($ (-1089)) 23 T ELT) (($ (-1072)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2561 (($ $ $) 101 T ELT)) (-2560 (($ $) 102 T ELT)) (-2606 (((-1184) (-1072)) 15 T ELT)) (-2607 (($ (-1072)) 14 T ELT)) (-3123 (($ (-583 (-583 $))) 58 T ELT)) (-3138 (($ $ (-484)) 42 T ELT) (($ $) 45 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2591 (($ $ $) 131 T ELT)) (-3469 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2592 (((-85) $) 108 T ELT)) (-2594 (($ $ (-583 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2600 (($ (-484)) 39 T ELT)) (-2603 (((-484) $) 32 T ELT) (((-484)) 35 T ELT)) (-2597 (($ $ $) 40 T ELT) (($ (-583 $)) 83 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (($ $ $) 99 T ELT)) (-3564 (($) 13 T ELT)) (-3799 (($ $ (-583 $)) 109 T ELT)) (-2605 (((-1072) (-1072)) 8 T ELT)) (-3835 (($ $) 117 T ELT) (($ $ (-694)) 121 T ELT)) (-2565 (($ $ $) 96 T ELT)) (-3757 (($ $ (-694)) 139 T ELT)) (-2571 (($ (-583 $)) 60 T ELT)) (-3945 (((-772) $) 19 T ELT)) (-3772 (($ $ (-484)) 41 T ELT) (($ $) 44 T ELT)) (-2574 (($ $) 68 T ELT) (($ (-583 $)) 69 T ELT)) (-3240 (($ $) 66 T ELT) (($ (-583 $)) 67 T ELT)) (-2590 (($ $) 124 T ELT)) (-2569 (($ (-583 $)) 65 T ELT)) (-3101 (($ $ $) 105 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2586 (($ $ $) 130 T ELT)) (-2562 (($ $ $) 100 T ELT)) (-3736 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2566 (($ $ $) 89 T ELT)) (-2567 (($ $ $) 87 T ELT)) (-3056 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2684 (($ $ $) 88 T ELT)) (-2685 (($ $ $) 86 T ELT)) (-3948 (($ $ $) 94 T ELT)) (-3836 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3838 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT)))
-(((-772) (-13 (-1013) (-10 -8 (-15 -2837 ((-1184) $)) (-15 -2607 ($ (-1072))) (-15 -2606 ((-1184) (-1072))) (-15 -3532 ($ (-484))) (-15 -3532 ($ (-1089))) (-15 -3532 ($ (-1072))) (-15 -3532 ($ (-179))) (-15 -3564 ($)) (-15 -2605 ((-1072) (-1072))) (-15 -2604 ((-484) $)) (-15 -2603 ((-484) $)) (-15 -2604 ((-484))) (-15 -2603 ((-484))) (-15 -2602 ((-484) $)) (-15 -2601 ((-484) $)) (-15 -2600 ($ (-484))) (-15 -2599 ($ (-484))) (-15 -2598 ($ (-484) (-484))) (-15 -3138 ($ $ (-484))) (-15 -3137 ($ $ (-484))) (-15 -3772 ($ $ (-484))) (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3772 ($ $)) (-15 -2597 ($ $ $)) (-15 -2596 ($ $ $)) (-15 -2597 ($ (-583 $))) (-15 -2596 ($ (-583 $))) (-15 -2595 ($ $ (-583 $))) (-15 -2594 ($ $ (-583 $))) (-15 -2594 ($ $ $ $)) (-15 -2593 ($ $ $)) (-15 -2592 ((-85) $)) (-15 -3799 ($ $ (-583 $))) (-15 -3534 ($ $)) (-15 -2591 ($ $ $)) (-15 -2590 ($ $)) (-15 -3123 ($ (-583 (-583 $)))) (-15 -2589 ($ $ $)) (-15 -2611 ($ $)) (-15 -2611 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -3757 ($ $ (-694))) (-15 -3101 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -3539 ($ $ (-583 $))) (-15 -2580 ($ $ (-583 $))) (-15 -2579 ($ $)) (-15 -3835 ($ $)) (-15 -3835 ($ $ (-694))) (-15 -2578 ($ $)) (-15 -2578 ($ $ (-694))) (-15 -2577 ($ $)) (-15 -2576 ($ $ $)) (-15 -3531 ($ $)) (-15 -3531 ($ $ $)) (-15 -3531 ($ $ $ $)) (-15 -2575 ($ $)) (-15 -2575 ($ $ $)) (-15 -2575 ($ $ $ $)) (-15 -3469 ($ $)) (-15 -3469 ($ $ $)) (-15 -3469 ($ $ $ $)) (-15 -3240 ($ $)) (-15 -3240 ($ (-583 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-583 $))) (-15 -2573 ($ $)) (-15 -2573 ($ (-583 $))) (-15 -2572 ($ (-583 $))) (-15 -2571 ($ (-583 $))) (-15 -2570 ($ (-583 $))) (-15 -2569 ($ (-583 $))) (-15 -3056 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2684 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -3836 ($ $)) (-15 * ($ $ $)) (-15 -3948 ($ $ $)) (-15 ** ($ $ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -3465 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $ $)) (-15 -2560 ($ $)) (-15 -3736 ($ $ $)) (-15 -3736 ($ $))))) (T -772))
-((-2837 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-772)))) (-2607 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-772)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-772)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772)))) (-3564 (*1 *1) (-5 *1 (-772))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2604 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2603 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2598 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3138 (*1 *1 *1) (-5 *1 (-772))) (-3137 (*1 *1 *1) (-5 *1 (-772))) (-3772 (*1 *1 *1) (-5 *1 (-772))) (-2597 (*1 *1 *1 *1) (-5 *1 (-772))) (-2596 (*1 *1 *1 *1) (-5 *1 (-772))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2594 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2593 (*1 *1 *1 *1) (-5 *1 (-772))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3534 (*1 *1 *1) (-5 *1 (-772))) (-2591 (*1 *1 *1 *1) (-5 *1 (-772))) (-2590 (*1 *1 *1) (-5 *1 (-772))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772)))) (-2589 (*1 *1 *1 *1) (-5 *1 (-772))) (-2611 (*1 *1 *1) (-5 *1 (-772))) (-2611 (*1 *1 *1 *1) (-5 *1 (-772))) (-2588 (*1 *1 *1 *1) (-5 *1 (-772))) (-2587 (*1 *1 *1 *1) (-5 *1 (-772))) (-2586 (*1 *1 *1 *1) (-5 *1 (-772))) (-2585 (*1 *1 *1 *1) (-5 *1 (-772))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-3101 (*1 *1 *1 *1) (-5 *1 (-772))) (-2584 (*1 *1 *1 *1) (-5 *1 (-772))) (-2583 (*1 *1 *1 *1) (-5 *1 (-772))) (-2582 (*1 *1 *1 *1) (-5 *1 (-772))) (-2581 (*1 *1 *1 *1) (-5 *1 (-772))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2580 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2579 (*1 *1 *1) (-5 *1 (-772))) (-3835 (*1 *1 *1) (-5 *1 (-772))) (-3835 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2578 (*1 *1 *1) (-5 *1 (-772))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2577 (*1 *1 *1) (-5 *1 (-772))) (-2576 (*1 *1 *1 *1) (-5 *1 (-772))) (-3531 (*1 *1 *1) (-5 *1 (-772))) (-3531 (*1 *1 *1 *1) (-5 *1 (-772))) (-3531 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3469 (*1 *1 *1) (-5 *1 (-772))) (-3469 (*1 *1 *1 *1) (-5 *1 (-772))) (-3469 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3240 (*1 *1 *1) (-5 *1 (-772))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2574 (*1 *1 *1) (-5 *1 (-772))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2573 (*1 *1 *1) (-5 *1 (-772))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3056 (*1 *1 *1 *1) (-5 *1 (-772))) (-2568 (*1 *1 *1 *1) (-5 *1 (-772))) (-2685 (*1 *1 *1 *1) (-5 *1 (-772))) (-2567 (*1 *1 *1 *1) (-5 *1 (-772))) (-2684 (*1 *1 *1 *1) (-5 *1 (-772))) (-2566 (*1 *1 *1 *1) (-5 *1 (-772))) (-3838 (*1 *1 *1 *1) (-5 *1 (-772))) (-3836 (*1 *1 *1 *1) (-5 *1 (-772))) (-3836 (*1 *1 *1) (-5 *1 (-772))) (* (*1 *1 *1 *1) (-5 *1 (-772))) (-3948 (*1 *1 *1 *1) (-5 *1 (-772))) (** (*1 *1 *1 *1) (-5 *1 (-772))) (-2565 (*1 *1 *1 *1) (-5 *1 (-772))) (-2564 (*1 *1 *1 *1) (-5 *1 (-772))) (-2563 (*1 *1 *1 *1) (-5 *1 (-772))) (-3465 (*1 *1 *1 *1) (-5 *1 (-772))) (-2562 (*1 *1 *1 *1) (-5 *1 (-772))) (-2561 (*1 *1 *1 *1) (-5 *1 (-772))) (-2560 (*1 *1 *1) (-5 *1 (-772))) (-3736 (*1 *1 *1 *1) (-5 *1 (-772))) (-3736 (*1 *1 *1) (-5 *1 (-772))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3830 (((-3 $ "failed") (-1089)) 36 T ELT)) (-3136 (((-694)) 32 T ELT)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3242 (((-1072) $) 43 T ELT)) (-2400 (($ (-830)) 28 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (((-1089) $) 13 T ELT) (((-473) $) 19 T ELT) (((-800 (-329)) $) 26 T ELT) (((-800 (-484)) $) 22 T ELT)) (-3945 (((-772) $) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 40 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 38 T ELT)))
-(((-773 |#1|) (-13 (-752) (-553 (-1089)) (-553 (-473)) (-553 (-800 (-329))) (-553 (-800 (-484))) (-10 -8 (-15 -3830 ((-3 $ "failed") (-1089))))) (-583 (-1089))) (T -773))
-((-3830 (*1 *1 *2) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3541 (((-446) $) 12 T ELT)) (-2608 (((-583 (-380)) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT)))
-(((-774) (-13 (-1013) (-10 -8 (-15 -3541 ((-446) $)) (-15 -2608 ((-583 (-380)) $))))) (T -774))
-((-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-774)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-583 (-380))) (-5 *1 (-774)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT) (((-857 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3922 (((-1184) (-694)) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-775 |#1| |#2| |#3| |#4|) (-13 (-961) (-429 (-857 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3948 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3922 ((-1184) (-694))))) (-961) (-583 (-1089)) (-583 (-694)) (-694)) (T -775))
-((-3948 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-961)) (-14 *3 (-583 (-1089))) (-14 *4 (-583 (-694))) (-14 *5 (-694)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 *3)) (-14 *7 *3))))
-((-2609 (((-3 (-148 |#3|) #1="failed") (-694) (-694) |#2| |#2|) 38 T ELT)) (-2610 (((-3 (-349 |#3|) #1#) (-694) (-694) |#2| |#2|) 29 T ELT)))
-(((-776 |#1| |#2| |#3|) (-10 -7 (-15 -2610 ((-3 (-349 |#3|) #1="failed") (-694) (-694) |#2| |#2|)) (-15 -2609 ((-3 (-148 |#3|) #1#) (-694) (-694) |#2| |#2|))) (-312) (-1171 |#1|) (-1154 |#1|)) (T -776))
-((-2609 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))) (-2610 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-349 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))))
-((-2610 (((-3 (-349 (-1147 |#2| |#1|)) #1="failed") (-694) (-694) (-1168 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-349 (-1147 |#2| |#1|)) #1#) (-694) (-694) (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 28 T ELT)))
-(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2610 ((-3 (-349 (-1147 |#2| |#1|)) #1="failed") (-694) (-694) (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (-15 -2610 ((-3 (-349 (-1147 |#2| |#1|)) #1#) (-694) (-694) (-1168 |#1| |#2| |#3|)))) (-312) (-1089) |#1|) (T -777))
-((-2610 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-349 (-1147 *6 *5))) (-5 *1 (-777 *5 *6 *7)))) (-2610 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-349 (-1147 *6 *5))) (-5 *1 (-777 *5 *6 *7)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $ (-484)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2611 (($ (-1084 (-484)) (-484)) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3771 (((-694) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 (((-484)) NIL T ELT)) (-2613 (((-484) $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3768 (($ $ (-484)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-1068 (-484)) $) NIL T ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-484) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-778 |#1|) (-779 |#1|) (-484)) (T -778))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $ (-484)) 78 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-2611 (($ (-1084 (-484)) (-484)) 77 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2612 (($ $) 80 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3771 (((-694) $) 85 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2614 (((-484)) 82 T ELT)) (-2613 (((-484) $) 81 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3768 (($ $ (-484)) 84 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-2615 (((-1068 (-484)) $) 86 T ELT)) (-2891 (($ $) 83 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3769 (((-484) $ (-484)) 79 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-779 |#1|) (-113) (-484)) (T -779))
-((-2615 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1068 (-484))))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2891 (*1 *1 *1) (-4 *1 (-779 *2))) (-2614 (*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2612 (*1 *1 *1) (-4 *1 (-779 *2))) (-3769 (*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2611 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *3 (-484)) (-4 *1 (-779 *4)))))
-(-13 (-258) (-120) (-10 -8 (-15 -2615 ((-1068 (-484)) $)) (-15 -3771 ((-694) $)) (-15 -3768 ($ $ (-484))) (-15 -2891 ($ $)) (-15 -2614 ((-484))) (-15 -2613 ((-484) $)) (-15 -2612 ($ $)) (-15 -3769 ((-484) $ (-484))) (-15 -3037 ($ $ (-484))) (-15 -2611 ($ (-1084 (-484)) (-484)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-778 |#1|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-778 |#1|) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT)) (-3156 (((-778 |#1|) $) NIL T ELT) (((-1089) $) NIL (|has| (-778 |#1|) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT)) (-3729 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1178 (-778 |#1|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-778 |#1|)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-778 |#1|) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-778 |#1|) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-778 |#1|) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-778 |#1|) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-778 |#1|) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3957 (($ (-1 (-778 |#1|) (-778 |#1|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1178 (-778 |#1|)))) (-1178 $) $) NIL T ELT) (((-630 (-778 |#1|)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-778 |#1|) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-778 |#1|) (-258)) ELT)) (-3130 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-778 |#1|)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-778 |#1|) (-778 |#1|)) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-249 (-778 |#1|))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-583 (-249 (-778 |#1|)))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-583 (-1089)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-455 (-1089) (-778 |#1|))) ELT) (($ $ (-1089) (-778 |#1|)) NIL (|has| (-778 |#1|) (-455 (-1089) (-778 |#1|))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-778 |#1|)) NIL (|has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-778 |#1|) $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-778 |#1|) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-778 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-778 |#1|) (-933)) ELT)) (-2616 (((-148 (-349 (-484))) $) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-778 |#1|)) NIL T ELT) (($ (-1089)) NIL (|has| (-778 |#1|) (-950 (-1089))) ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) (|has| (-778 |#1|) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-349 (-484)) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-778 |#1|) (-778 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-778 |#1|) $) NIL T ELT) (($ $ (-778 |#1|)) NIL T ELT)))
-(((-780 |#1|) (-13 (-904 (-778 |#1|)) (-10 -8 (-15 -3769 ((-349 (-484)) $ (-484))) (-15 -2616 ((-148 (-349 (-484))) $)) (-15 -3729 ($ $)) (-15 -3729 ($ (-484) $)))) (-484)) (T -780))
-((-3769 (*1 *2 *1 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-780 *3)) (-14 *3 (-484)))) (-3729 (*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-484)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-780 *3)) (-14 *3 *2))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| |#2| (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| |#2| (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT)) (-3156 ((|#2| $) NIL T ELT) (((-1089) $) NIL (|has| |#2| (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT)) (-3729 (($ $) 35 T ELT) (($ (-484) $) 38 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 64 T ELT)) (-2994 (($) NIL (|has| |#2| (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#2| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| |#2| (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#2| $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#2| (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 60 T ELT)) (-3445 (($) NIL (|has| |#2| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3130 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-583 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-583 (-1089)) (-583 |#2|)) NIL (|has| |#2| (-455 (-1089) |#2|)) ELT) (($ $ (-1089) |#2|) NIL (|has| |#2| (-455 (-1089) |#2|)) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#2| $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| |#2| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| |#2| (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| |#2| (-553 (-473))) ELT) (((-329) $) NIL (|has| |#2| (-933)) ELT) (((-179) $) NIL (|has| |#2| (-933)) ELT)) (-2616 (((-148 (-349 (-484))) $) 78 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) 105 T ELT) (($ (-484)) 20 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1089)) NIL (|has| |#2| (-950 (-1089))) ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-349 (-484)) $ (-484)) 71 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| |#2| (-740)) ELT)) (-2660 (($) 15 T CONST)) (-2666 (($) 17 T CONST)) (-2669 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) 46 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3948 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3836 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3838 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 61 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-781 |#1| |#2|) (-13 (-904 |#2|) (-10 -8 (-15 -3769 ((-349 (-484)) $ (-484))) (-15 -2616 ((-148 (-349 (-484))) $)) (-15 -3729 ($ $)) (-15 -3729 ($ (-484) $)))) (-484) (-779 |#1|)) (T -781))
-((-3769 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-349 (-484))) (-5 *1 (-781 *4 *5)) (-5 *3 (-484)) (-4 *5 (-779 *4)))) (-2616 (*1 *2 *1) (-12 (-14 *3 (-484)) (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))) (-3729 (*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))))
-((-2568 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3795 ((|#2| $) 12 T ELT)) (-2617 (($ |#1| |#2|) 9 T ELT)) (-3242 (((-1072) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3243 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#1| $) 11 T ELT)) (-3529 (($ |#1| |#2|) 10 T ELT)) (-3945 (((-772) $) 18 (OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))) ELT)) (-1264 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3056 (((-85) $ $) 23 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)))
-(((-782 |#1| |#2|) (-13 (-1128) (-10 -8 (IF (|has| |#1| (-552 (-772))) (IF (|has| |#2| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2617 ($ |#1| |#2|)) (-15 -3529 ($ |#1| |#2|)) (-15 -3800 (|#1| $)) (-15 -3795 (|#2| $)))) (-1128) (-1128)) (T -782))
-((-2617 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-3800 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1128)))) (-3795 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1128)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2957 (((-484) $) 16 T ELT)) (-2619 (($ (-130)) 13 T ELT)) (-2618 (($ (-130)) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2956 (((-130) $) 15 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2621 (($ (-130)) 11 T ELT)) (-2622 (($ (-130)) 10 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2620 (($ (-130)) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-783) (-13 (-1013) (-555 (-130)) (-10 -8 (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2619 ($ (-130))) (-15 -2618 ($ (-130))) (-15 -2956 ((-130) $)) (-15 -2957 ((-484) $))))) (T -783))
-((-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2618 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-783)))))
-((-3945 (((-265 (-484)) (-349 (-857 (-48)))) 23 T ELT) (((-265 (-484)) (-857 (-48))) 18 T ELT)))
-(((-784) (-10 -7 (-15 -3945 ((-265 (-484)) (-857 (-48)))) (-15 -3945 ((-265 (-484)) (-349 (-857 (-48))))))) (T -784))
-((-3945 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 (-48)))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3565 (((-85) $ (|[\|\|]| (-446))) 9 T ELT) (((-85) $ (|[\|\|]| (-1072))) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3571 (((-446) $) 10 T ELT) (((-1072) $) 14 T ELT)) (-3056 (((-85) $ $) 15 T ELT)))
-(((-785) (-13 (-995) (-1174) (-10 -8 (-15 -3565 ((-85) $ (|[\|\|]| (-446)))) (-15 -3571 ((-446) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1072)))) (-15 -3571 ((-1072) $))))) (T -785))
-((-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-785)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-785)))))
-((-3957 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 15 T ELT)))
-(((-786 |#1| |#2|) (-10 -7 (-15 -3957 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1128) (-1128)) (T -786))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))))
-((-3370 (($ |#1| |#1|) 8 T ELT)) (-2625 ((|#1| $ (-694)) 15 T ELT)))
-(((-787 |#1|) (-10 -8 (-15 -3370 ($ |#1| |#1|)) (-15 -2625 (|#1| $ (-694)))) (-1128)) (T -787))
-((-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1128)))) (-3370 (*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1128)))))
-((-3957 (((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)) 15 T ELT)))
-(((-788 |#1| |#2|) (-10 -7 (-15 -3957 ((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)))) (-1128) (-1128)) (T -788))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6)))))
-((-3370 (($ |#1| |#1| |#1|) 8 T ELT)) (-2625 ((|#1| $ (-694)) 15 T ELT)))
-(((-789 |#1|) (-10 -8 (-15 -3370 ($ |#1| |#1| |#1|)) (-15 -2625 (|#1| $ (-694)))) (-1128)) (T -789))
-((-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1128)))) (-3370 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1128)))))
-((-2623 (((-583 (-1094)) (-1072)) 9 T ELT)))
-(((-790) (-10 -7 (-15 -2623 ((-583 (-1094)) (-1072))))) (T -790))
-((-2623 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-1094))) (-5 *1 (-790)))))
-((-3957 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 15 T ELT)))
-(((-791 |#1| |#2|) (-10 -7 (-15 -3957 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1128) (-1128)) (T -791))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))))
-((-2624 (($ |#1| |#1| |#1|) 8 T ELT)) (-2625 ((|#1| $ (-694)) 15 T ELT)))
-(((-792 |#1|) (-10 -8 (-15 -2624 ($ |#1| |#1| |#1|)) (-15 -2625 (|#1| $ (-694)))) (-1128)) (T -792))
-((-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1128)))) (-2624 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1128)))))
-((-2628 (((-1068 (-583 (-484))) (-583 (-484)) (-1068 (-583 (-484)))) 41 T ELT)) (-2627 (((-1068 (-583 (-484))) (-583 (-484)) (-583 (-484))) 31 T ELT)) (-2629 (((-1068 (-583 (-484))) (-583 (-484))) 53 T ELT) (((-1068 (-583 (-484))) (-583 (-484)) (-583 (-484))) 50 T ELT)) (-2630 (((-1068 (-583 (-484))) (-484)) 55 T ELT)) (-2626 (((-1068 (-583 (-830))) (-1068 (-583 (-830)))) 22 T ELT)) (-3009 (((-583 (-830)) (-583 (-830))) 18 T ELT)))
-(((-793) (-10 -7 (-15 -3009 ((-583 (-830)) (-583 (-830)))) (-15 -2626 ((-1068 (-583 (-830))) (-1068 (-583 (-830))))) (-15 -2627 ((-1068 (-583 (-484))) (-583 (-484)) (-583 (-484)))) (-15 -2628 ((-1068 (-583 (-484))) (-583 (-484)) (-1068 (-583 (-484))))) (-15 -2629 ((-1068 (-583 (-484))) (-583 (-484)) (-583 (-484)))) (-15 -2629 ((-1068 (-583 (-484))) (-583 (-484)))) (-15 -2630 ((-1068 (-583 (-484))) (-484))))) (T -793))
-((-2630 (*1 *2 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-484)))) (-2629 (*1 *2 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2629 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2628 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *3 (-583 (-484))) (-5 *1 (-793)))) (-2627 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1068 (-583 (-830)))) (-5 *1 (-793)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793)))))
-((-3971 (((-800 (-329)) $) 9 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-800 (-484)) $) 8 (|has| |#1| (-553 (-800 (-484)))) ELT)))
-(((-794 |#1|) (-113) (-1128)) (T -794))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-553 (-800 (-484)))) (-6 (-553 (-800 (-484)))) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-329)))) (-6 (-553 (-800 (-329)))) |%noBranch|)))
-(((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3613 (($) 14 T ELT)) (-2632 (($ (-798 |#1| |#2|) (-798 |#1| |#3|)) 28 T ELT)) (-2631 (((-798 |#1| |#3|) $) 16 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2640 (((-85) $) 22 T ELT)) (-2639 (($) 19 T ELT)) (-3945 (((-772) $) 31 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2850 (((-798 |#1| |#2|) $) 15 T ELT)) (-3056 (((-85) $ $) 26 T ELT)))
-(((-795 |#1| |#2| |#3|) (-13 (-1013) (-10 -8 (-15 -2640 ((-85) $)) (-15 -2639 ($)) (-15 -3613 ($)) (-15 -2632 ($ (-798 |#1| |#2|) (-798 |#1| |#3|))) (-15 -2850 ((-798 |#1| |#2|) $)) (-15 -2631 ((-798 |#1| |#3|) $)))) (-1013) (-1013) (-608 |#2|)) (T -795))
-((-2640 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))) (-2639 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-608 *3)))) (-3613 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-608 *3)))) (-2632 (*1 *1 *2 *3) (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6)))) (-2850 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))) (-2631 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-2796 (((-798 |#1| $) $ (-800 |#1|) (-798 |#1| $)) 17 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-796 |#1|) (-113) (-1013)) (T -796))
-((-2796 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4)) (-4 *4 (-1013)))))
-(-13 (-1013) (-10 -8 (-15 -2796 ((-798 |t#1| $) $ (-800 |t#1|) (-798 |t#1| $)))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2633 (((-85) (-583 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2634 (((-798 |#1| |#2|) |#2| |#3|) 45 (-12 (-2560 (|has| |#2| (-950 (-1089)))) (-2560 (|has| |#2| (-961)))) ELT) (((-583 (-249 (-857 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-961)) (-2560 (|has| |#2| (-950 (-1089))))) ELT) (((-583 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-950 (-1089))) ELT) (((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21 T ELT)))
-(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -2633 ((-85) |#2| |#3|)) (-15 -2633 ((-85) (-583 |#2|) |#3|)) (-15 -2634 ((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1089))) (-15 -2634 ((-583 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -2634 ((-583 (-249 (-857 |#2|))) |#2| |#3|)) (-15 -2634 ((-798 |#1| |#2|) |#2| |#3|))))) (-1013) (-796 |#1|) (-553 (-800 |#1|))) (T -797))
-((-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4)) (-2560 (-4 *3 (-950 (-1089)))) (-2560 (-4 *3 (-961))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 (-857 *3)))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-961)) (-2560 (-4 *3 (-950 (-1089)))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 *3))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-950 (-1089))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6))) (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3234 (($ $ $) 40 T ELT)) (-2661 (((-3 (-85) #1="failed") $ (-800 |#1|)) 37 T ELT)) (-3613 (($) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2636 (($ (-800 |#1|) |#2| $) 20 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2638 (((-3 |#2| #1#) (-800 |#1|) $) 51 T ELT)) (-2640 (((-85) $) 15 T ELT)) (-2639 (($) 13 T ELT)) (-3257 (((-583 (-2 (|:| -3859 (-1089)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3529 (($ (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| |#2|)))) 23 T ELT)) (-3945 (((-772) $) 45 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2635 (($ (-800 |#1|) |#2| $ |#2|) 49 T ELT)) (-2637 (($ (-800 |#1|) |#2| $) 48 T ELT)) (-3056 (((-85) $ $) 42 T ELT)))
-(((-798 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2640 ((-85) $)) (-15 -2639 ($)) (-15 -3613 ($)) (-15 -3234 ($ $ $)) (-15 -2638 ((-3 |#2| #1="failed") (-800 |#1|) $)) (-15 -2637 ($ (-800 |#1|) |#2| $)) (-15 -2636 ($ (-800 |#1|) |#2| $)) (-15 -2635 ($ (-800 |#1|) |#2| $ |#2|)) (-15 -3257 ((-583 (-2 (|:| -3859 (-1089)) (|:| |entry| |#2|))) $)) (-15 -3529 ($ (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| |#2|))))) (-15 -2661 ((-3 (-85) #1#) $ (-800 |#1|))))) (-1013) (-1013)) (T -798))
-((-2640 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2639 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3613 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3234 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2638 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-798 *4 *2)))) (-2637 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-2636 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-2635 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| *4)))) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| *4)))) (-4 *4 (-1013)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)))) (-2661 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *4 *5)) (-4 *5 (-1013)))))
-((-3957 (((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)) 22 T ELT)))
-(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)))) (-1013) (-1013) (-1013)) (T -799))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2648 (($ $ (-583 (-51))) 74 T ELT)) (-3081 (((-583 $) $) 139 T ELT)) (-2645 (((-2 (|:| |var| (-583 (-1089))) (|:| |pred| (-51))) $) 30 T ELT)) (-3260 (((-85) $) 35 T ELT)) (-2646 (($ $ (-583 (-1089)) (-51)) 31 T ELT)) (-2649 (($ $ (-583 (-51))) 73 T ELT)) (-3157 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1089) #1#) $) 167 T ELT)) (-3156 ((|#1| $) 68 T ELT) (((-1089) $) NIL T ELT)) (-2643 (($ $) 126 T ELT)) (-2655 (((-85) $) 55 T ELT)) (-2650 (((-583 (-51)) $) 50 T ELT)) (-2647 (($ (-1089) (-85) (-85) (-85)) 75 T ELT)) (-2641 (((-3 (-583 $) #1#) (-583 $)) 82 T ELT)) (-2652 (((-85) $) 58 T ELT)) (-2653 (((-85) $) 57 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) 41 T ELT)) (-2658 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 $)) #1#) $) 97 T ELT)) (-2822 (((-3 (-583 $) #1#) $) 40 T ELT)) (-2659 (((-3 (-583 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 $))) #1#) $) 107 T ELT)) (-2657 (((-3 (-583 $) #1#) $) 42 T ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2401 (-694))) #1#) $) 45 T ELT)) (-2656 (((-85) $) 34 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2644 (((-85) $) 28 T ELT)) (-2651 (((-85) $) 52 T ELT)) (-2642 (((-583 (-51)) $) 130 T ELT)) (-2654 (((-85) $) 56 T ELT)) (-3799 (($ (-86) (-583 $)) 104 T ELT)) (-3322 (((-694) $) 33 T ELT)) (-3399 (($ $) 72 T ELT)) (-3971 (($ (-583 $)) 69 T ELT)) (-3952 (((-85) $) 32 T ELT)) (-3945 (((-772) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1089)) 76 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2662 (($ $ (-51)) 129 T ELT)) (-2660 (($) 103 T CONST)) (-2666 (($) 83 T CONST)) (-3056 (((-85) $ $) 93 T ELT)) (-3948 (($ $ $) 117 T ELT)) (-3838 (($ $ $) 121 T ELT)) (** (($ $ (-694)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT)))
-(((-800 |#1|) (-13 (-1013) (-950 |#1|) (-950 (-1089)) (-10 -8 (-15 -2660 ($) -3951) (-15 -2666 ($) -3951) (-15 -2822 ((-3 (-583 $) #1="failed") $)) (-15 -2823 ((-3 (-583 $) #1#) $)) (-15 -2659 ((-3 (-583 $) #1#) $ (-86))) (-15 -2659 ((-3 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 $))) #1#) $)) (-15 -2824 ((-3 (-2 (|:| |val| $) (|:| -2401 (-694))) #1#) $)) (-15 -2658 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2657 ((-3 (-583 $) #1#) $)) (-15 -2825 ((-3 (-2 (|:| |val| $) (|:| -2401 $)) #1#) $)) (-15 -3799 ($ (-86) (-583 $))) (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ $)) (-15 -3948 ($ $ $)) (-15 -3322 ((-694) $)) (-15 -3971 ($ (-583 $))) (-15 -3399 ($ $)) (-15 -2656 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3952 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-85) $)) (-15 -2650 ((-583 (-51)) $)) (-15 -2649 ($ $ (-583 (-51)))) (-15 -2648 ($ $ (-583 (-51)))) (-15 -2647 ($ (-1089) (-85) (-85) (-85))) (-15 -2646 ($ $ (-583 (-1089)) (-51))) (-15 -2645 ((-2 (|:| |var| (-583 (-1089))) (|:| |pred| (-51))) $)) (-15 -2644 ((-85) $)) (-15 -2643 ($ $)) (-15 -2662 ($ $ (-51))) (-15 -2642 ((-583 (-51)) $)) (-15 -3081 ((-583 $) $)) (-15 -2641 ((-3 (-583 $) #1#) (-583 $))))) (-1013)) (T -800))
-((-2660 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2666 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2822 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2823 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2659 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2659 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 (-800 *3))))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-694)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2657 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3799 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-3838 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-3948 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3399 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2649 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2648 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2647 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1089))) (|:| |pred| (-51)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2643 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2641 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-((-3209 (((-800 |#1|) (-800 |#1|) (-583 (-1089)) (-1 (-85) (-583 |#2|))) 32 T ELT) (((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|))) 46 T ELT) (((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2661 (((-85) (-583 |#2|) (-800 |#1|)) 42 T ELT) (((-85) |#2| (-800 |#1|)) 36 T ELT)) (-3530 (((-1 (-85) |#2|) (-800 |#1|)) 16 T ELT)) (-2663 (((-583 |#2|) (-800 |#1|)) 24 T ELT)) (-2662 (((-800 |#1|) (-800 |#1|) |#2|) 20 T ELT)))
-(((-801 |#1| |#2|) (-10 -7 (-15 -3209 ((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|))) (-15 -3209 ((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|)))) (-15 -3209 ((-800 |#1|) (-800 |#1|) (-583 (-1089)) (-1 (-85) (-583 |#2|)))) (-15 -3530 ((-1 (-85) |#2|) (-800 |#1|))) (-15 -2661 ((-85) |#2| (-800 |#1|))) (-15 -2661 ((-85) (-583 |#2|) (-800 |#1|))) (-15 -2662 ((-800 |#1|) (-800 |#1|) |#2|)) (-15 -2663 ((-583 |#2|) (-800 |#1|)))) (-1013) (-1128)) (T -801))
-((-2663 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1128)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1128)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *2 (-85)) (-5 *1 (-801 *5 *6)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3)) (-4 *3 (-1128)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1128)))) (-3209 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1089))) (-5 *4 (-1 (-85) (-583 *6))) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-801 *5 *6)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1013)) (-4 *5 (-1128)) (-5 *1 (-801 *4 *5)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1128)) (-5 *1 (-801 *4 *5)))))
-((-3957 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 19 T ELT)))
-(((-802 |#1| |#2|) (-10 -7 (-15 -3957 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1013) (-1013)) (T -802))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) 20 T ELT)) (-2664 (((-85) $) 49 T ELT)) (-3157 (((-3 (-614 |#1|) "failed") $) 55 T ELT)) (-3156 (((-614 |#1|) $) 53 T ELT)) (-3798 (($ $) 24 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3832 (((-694) $) 60 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-614 |#1|) $) 22 T ELT)) (-3945 (((-772) $) 47 T ELT) (($ (-614 |#1|)) 27 T ELT) (((-739 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 11 T CONST)) (-2665 (((-583 (-614 |#1|)) $) 28 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 14 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 66 T ELT)))
-(((-803 |#1|) (-13 (-756) (-950 (-614 |#1|)) (-10 -8 (-15 -2666 ($) -3951) (-15 -3945 ((-739 |#1|) $)) (-15 -3945 ($ |#1|)) (-15 -3800 ((-614 |#1|) $)) (-15 -3832 ((-694) $)) (-15 -2665 ((-583 (-614 |#1|)) $)) (-15 -3798 ($ $)) (-15 -2664 ((-85) $)) (-15 -3933 ((-583 |#1|) $)))) (-756)) (T -803))
-((-2666 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3945 (*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))))
-((-3473 ((|#1| |#1| |#1|) 19 T ELT)))
-(((-804 |#1| |#2|) (-10 -7 (-15 -3473 (|#1| |#1| |#1|))) (-1154 |#2|) (-961)) (T -804))
-((-3473 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1154 *3)))))
-((-2669 ((|#2| $ |#3|) 10 T ELT)))
-(((-805 |#1| |#2| |#3|) (-10 -7 (-15 -2669 (|#2| |#1| |#3|))) (-806 |#2| |#3|) (-1128) (-1128)) (T -805))
-NIL
-((-3757 ((|#1| $ |#2|) 7 T ELT)) (-2669 ((|#1| $ |#2|) 6 T ELT)))
-(((-806 |#1| |#2|) (-113) (-1128) (-1128)) (T -806))
-((-3757 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))) (-2669 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))))
-(-13 (-1128) (-10 -8 (-15 -3757 (|t#1| $ |t#2|)) (-15 -2669 (|t#1| $ |t#2|))))
-(((-13) . T) ((-1128) . T))
-((-2668 ((|#1| |#1| (-694)) 26 T ELT)) (-2667 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3434 (((-3 (-2 (|:| -3138 |#1|) (|:| -3137 |#1|)) #1#) |#1| (-694) (-694)) 29 T ELT) (((-583 |#1|) |#1|) 38 T ELT)))
-(((-807 |#1| |#2|) (-10 -7 (-15 -3434 ((-583 |#1|) |#1|)) (-15 -3434 ((-3 (-2 (|:| -3138 |#1|) (|:| -3137 |#1|)) #1="failed") |#1| (-694) (-694))) (-15 -2667 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2668 (|#1| |#1| (-694)))) (-1154 |#2|) (-312)) (T -807))
-((-2668 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1154 *4)))) (-2667 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1154 *3)))) (-3434 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-807 *3 *5)) (-4 *3 (-1154 *5)))) (-3434 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4)) (-4 *3 (-1154 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) 45 T ELT) (($ $ |#2| (-694)) 44 T ELT) (($ $ (-583 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) 48 T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-808 |#1| |#2|) (-113) (-961) (-1013)) (T -808))
-NIL
-(-13 (-82 |t#1| |t#1|) (-811 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-806 $ |#2|) . T) ((-811 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-583 |#1|) (-583 (-694))) 52 T ELT) (($ $ |#1| (-694)) 51 T ELT) (($ $ (-583 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#1|) (-583 (-694))) 55 T ELT) (($ $ |#1| (-694)) 54 T ELT) (($ $ (-583 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-809 |#1|) (-113) (-1013)) (T -809))
-NIL
-(-13 (-961) (-811 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ |#1|) . T) ((-811 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3757 (($ $ |#2|) NIL T ELT) (($ $ (-583 |#2|)) 10 T ELT) (($ $ |#2| (-694)) 12 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 15 T ELT)) (-2669 (($ $ |#2|) 16 T ELT) (($ $ (-583 |#2|)) 18 T ELT) (($ $ |#2| (-694)) 19 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 21 T ELT)))
-(((-810 |#1| |#2|) (-10 -7 (-15 -2669 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -2669 (|#1| |#1| |#2| (-694))) (-15 -2669 (|#1| |#1| (-583 |#2|))) (-15 -3757 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -3757 (|#1| |#1| |#2| (-694))) (-15 -3757 (|#1| |#1| (-583 |#2|))) (-15 -2669 (|#1| |#1| |#2|)) (-15 -3757 (|#1| |#1| |#2|))) (-811 |#2|) (-1013)) (T -810))
-NIL
-((-3757 (($ $ |#1|) 7 T ELT) (($ $ (-583 |#1|)) 15 T ELT) (($ $ |#1| (-694)) 14 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 13 T ELT)) (-2669 (($ $ |#1|) 6 T ELT) (($ $ (-583 |#1|)) 12 T ELT) (($ $ |#1| (-694)) 11 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 10 T ELT)))
-(((-811 |#1|) (-113) (-1013)) (T -811))
-((-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) (-3757 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) (-3757 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1013)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1013)))))
-(-13 (-806 $ |t#1|) (-10 -8 (-15 -3757 ($ $ (-583 |t#1|))) (-15 -3757 ($ $ |t#1| (-694))) (-15 -3757 ($ $ (-583 |t#1|) (-583 (-694)))) (-15 -2669 ($ $ (-583 |t#1|))) (-15 -2669 ($ $ |t#1| (-694))) (-15 -2669 ($ $ (-583 |t#1|) (-583 (-694))))))
-(((-13) . T) ((-806 $ |#1|) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 26 T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 25 T ELT)) (-2670 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 23 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) 20 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1115 |#1|) $) 9 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT)))
-(((-812 |#1|) (-13 (-92 |#1|) (-552 (-1115 |#1|)) (-10 -8 (-15 -2670 ($ |#1|)) (-15 -2670 ($ $ $)))) (-1013)) (T -812))
-((-2670 (*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))) (-2670 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2686 (((-1009 |#1|) $) 61 T ELT)) (-2909 (((-583 $) (-583 $)) 104 T ELT)) (-3622 (((-484) $) 84 T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-3771 (((-694) $) 81 T ELT)) (-2690 (((-1009 |#1|) $ |#1|) 71 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2673 (((-85) $) 89 T ELT)) (-2675 (((-694) $) 85 T ELT)) (-2531 (($ $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-2857 (($ $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-2679 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 56 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 131 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2672 (((-1009 |#1|) $) 136 (|has| |#1| (-319)) ELT)) (-2674 (((-85) $) 82 T ELT)) (-3799 ((|#1| $ |#1|) 69 T ELT)) (-3947 (((-694) $) 63 T ELT)) (-2681 (($ (-583 (-583 |#1|))) 119 T ELT)) (-2676 (((-884) $) 75 T ELT)) (-2682 (($ (-583 |#1|)) 32 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-2678 (($ (-583 (-583 |#1|))) 58 T ELT)) (-2677 (($ (-583 (-583 |#1|))) 124 T ELT)) (-2671 (($ (-583 |#1|)) 133 T ELT)) (-3945 (((-772) $) 118 T ELT) (($ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 |#1|)) 93 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 24 T CONST)) (-2566 (((-85) $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-2567 (((-85) $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-3056 (((-85) $ $) 67 T ELT)) (-2684 (((-85) $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-2685 (((-85) $ $) 91 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 33 T ELT)))
-(((-813 |#1|) (-13 (-815 |#1|) (-10 -8 (-15 -2679 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2678 ($ (-583 (-583 |#1|)))) (-15 -3945 ($ (-583 (-583 |#1|)))) (-15 -3945 ($ (-583 |#1|))) (-15 -2677 ($ (-583 (-583 |#1|)))) (-15 -3947 ((-694) $)) (-15 -2676 ((-884) $)) (-15 -3771 ((-694) $)) (-15 -2675 ((-694) $)) (-15 -3622 ((-484) $)) (-15 -2674 ((-85) $)) (-15 -2673 ((-85) $)) (-15 -2909 ((-583 $) (-583 $))) (IF (|has| |#1| (-319)) (-15 -2672 ((-1009 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-483)) (-15 -2671 ($ (-583 |#1|))) (IF (|has| |#1| (-319)) (-15 -2671 ($ (-583 |#1|))) |%noBranch|)))) (-1013)) (T -813))
-((-2679 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2909 (*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-813 *3)) (-4 *3 (-319)) (-4 *3 (-1013)))) (-2671 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))))
-((-2680 ((|#2| (-1055 |#1| |#2|)) 48 T ELT)))
-(((-814 |#1| |#2|) (-10 -7 (-15 -2680 (|#2| (-1055 |#1| |#2|)))) (-830) (-13 (-961) (-10 -7 (-6 (-3996 "*"))))) (T -814))
-((-2680 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *2)) (-14 *4 (-830)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-3996 "*"))))) (-5 *1 (-814 *4 *2)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-2686 (((-1009 |#1|) $) 42 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 20 T ELT)) (-2690 (((-1009 |#1|) $ |#1|) 41 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-2531 (($ $ $) 35 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-2857 (($ $ $) 36 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 30 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3799 ((|#1| $ |#1|) 45 T ELT)) (-2681 (($ (-583 (-583 |#1|))) 43 T ELT)) (-2682 (($ (-583 |#1|)) 44 T ELT)) (-3009 (($ $ $) 27 T ELT)) (-2435 (($ $ $) 26 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2566 (((-85) $ $) 37 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-2567 (((-85) $ $) 39 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 38 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-2685 (((-85) $ $) 40 T ELT)) (-3948 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-815 |#1|) (-113) (-1013)) (T -815))
-((-2682 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-815 *3)))) (-2681 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-4 *1 (-815 *3)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2690 (*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
-(-13 (-412) (-241 |t#1| |t#1|) (-10 -8 (-15 -2682 ($ (-583 |t#1|))) (-15 -2681 ($ (-583 (-583 |t#1|)))) (-15 -2686 ((-1009 |t#1|) $)) (-15 -2690 ((-1009 |t#1|) $ |t#1|)) (-15 -2685 ((-85) $ $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-756)) |%noBranch|)))
-(((-72) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-412) . T) ((-13) . T) ((-663) . T) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-319))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-319))) ((-1025) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-2692 (((-583 (-583 (-694))) $) 163 T ELT)) (-2688 (((-583 (-694)) (-813 |#1|) $) 191 T ELT)) (-2687 (((-583 (-694)) (-813 |#1|) $) 192 T ELT)) (-2686 (((-1009 |#1|) $) 155 T ELT)) (-2693 (((-583 (-813 |#1|)) $) 152 T ELT)) (-2994 (((-813 |#1|) $ (-484)) 157 T ELT) (((-813 |#1|) $) 158 T ELT)) (-2691 (($ (-583 (-813 |#1|))) 165 T ELT)) (-3771 (((-694) $) 159 T ELT)) (-2689 (((-1009 (-1009 |#1|)) $) 189 T ELT)) (-2690 (((-1009 |#1|) $ |#1|) 180 T ELT) (((-1009 (-1009 |#1|)) $ (-1009 |#1|)) 201 T ELT) (((-1009 (-583 |#1|)) $ (-583 |#1|)) 204 T ELT)) (-3245 (((-85) (-813 |#1|) $) 140 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2683 (((-1184) $) 145 T ELT) (((-1184) $ (-484) (-484)) 205 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2695 (((-583 (-813 |#1|)) $) 146 T ELT)) (-3799 (((-813 |#1|) $ (-694)) 153 T ELT)) (-3947 (((-694) $) 160 T ELT)) (-3945 (((-772) $) 177 T ELT) (((-583 (-813 |#1|)) $) 28 T ELT) (($ (-583 (-813 |#1|))) 164 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (((-583 |#1|) $) 162 T ELT)) (-3056 (((-85) $ $) 198 T ELT)) (-2684 (((-85) $ $) 195 T ELT)) (-2685 (((-85) $ $) 194 T ELT)))
-(((-816 |#1|) (-13 (-1013) (-10 -8 (-15 -3945 ((-583 (-813 |#1|)) $)) (-15 -2695 ((-583 (-813 |#1|)) $)) (-15 -3799 ((-813 |#1|) $ (-694))) (-15 -2994 ((-813 |#1|) $ (-484))) (-15 -2994 ((-813 |#1|) $)) (-15 -3771 ((-694) $)) (-15 -3947 ((-694) $)) (-15 -2694 ((-583 |#1|) $)) (-15 -2693 ((-583 (-813 |#1|)) $)) (-15 -2692 ((-583 (-583 (-694))) $)) (-15 -3945 ($ (-583 (-813 |#1|)))) (-15 -2691 ($ (-583 (-813 |#1|)))) (-15 -2690 ((-1009 |#1|) $ |#1|)) (-15 -2689 ((-1009 (-1009 |#1|)) $)) (-15 -2690 ((-1009 (-1009 |#1|)) $ (-1009 |#1|))) (-15 -2690 ((-1009 (-583 |#1|)) $ (-583 |#1|))) (-15 -3245 ((-85) (-813 |#1|) $)) (-15 -2688 ((-583 (-694)) (-813 |#1|) $)) (-15 -2687 ((-583 (-694)) (-813 |#1|) $)) (-15 -2686 ((-1009 |#1|) $)) (-15 -2685 ((-85) $ $)) (-15 -2684 ((-85) $ $)) (-15 -2683 ((-1184) $)) (-15 -2683 ((-1184) $ (-484) (-484))))) (-1013)) (T -816))
-((-3945 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) (-2994 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) (-2690 (*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2690 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-816 *4)) (-5 *3 (-1009 *4)))) (-2690 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-583 *4))) (-5 *1 (-816 *4)) (-5 *3 (-583 *4)))) (-3245 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-816 *4)))) (-2688 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2687 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2685 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2684 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2683 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (($ $ (-830)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 $ #1#) $) NIL T ELT)) (-3156 (($ $) NIL T ELT)) (-1791 (($ (-1178 $)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL T ELT)) (-1679 (((-85) $) NIL T ELT)) (-1763 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| $ (-319)) ELT)) (-2011 (((-85) $) NIL (|has| $ (-319)) ELT)) (-3132 (($ $ (-830)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 $) $ (-830)) NIL (|has| $ (-319)) ELT) (((-1084 $) $) NIL T ELT)) (-2010 (((-830) $) NIL T ELT)) (-1626 (((-1084 $) $) NIL (|has| $ (-319)) ELT)) (-1625 (((-3 (-1084 $) #1#) $ $) NIL (|has| $ (-319)) ELT) (((-1084 $) $) NIL (|has| $ (-319)) ELT)) (-1627 (($ $ (-1084 $)) NIL (|has| $ (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2400 (($ (-830)) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| $ (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-830)) NIL T ELT) (((-743 (-830))) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3947 (((-830) $) NIL T ELT) (((-743 (-830)) $) NIL T ELT)) (-3185 (((-1084 $)) NIL T ELT)) (-1673 (($) NIL T ELT)) (-1628 (($) NIL (|has| $ (-319)) ELT)) (-3224 (((-630 $) (-1178 $)) NIL T ELT) (((-1178 $) $) NIL T ELT)) (-3971 (((-484) $) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $) (-830)) NIL T ELT) (((-1178 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $ (-694)) NIL (|has| $ (-319)) ELT) (($ $) NIL (|has| $ (-319)) ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT)))
-(((-817 |#1|) (-13 (-299) (-280 $) (-553 (-484))) (-830)) (T -817))
-NIL
-((-2697 (((-3 (-583 (-1084 |#4|)) #1="failed") (-583 (-1084 |#4|)) (-1084 |#4|)) 164 T ELT)) (-2700 ((|#1|) 101 T ELT)) (-2699 (((-347 (-1084 |#4|)) (-1084 |#4|)) 173 T ELT)) (-2701 (((-347 (-1084 |#4|)) (-583 |#3|) (-1084 |#4|)) 83 T ELT)) (-2698 (((-347 (-1084 |#4|)) (-1084 |#4|)) 183 T ELT)) (-2696 (((-3 (-583 (-1084 |#4|)) #1#) (-583 (-1084 |#4|)) (-1084 |#4|) |#3|) 117 T ELT)))
-(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2697 ((-3 (-583 (-1084 |#4|)) #1="failed") (-583 (-1084 |#4|)) (-1084 |#4|))) (-15 -2698 ((-347 (-1084 |#4|)) (-1084 |#4|))) (-15 -2699 ((-347 (-1084 |#4|)) (-1084 |#4|))) (-15 -2700 (|#1|)) (-15 -2696 ((-3 (-583 (-1084 |#4|)) #1#) (-583 (-1084 |#4|)) (-1084 |#4|) |#3|)) (-15 -2701 ((-347 (-1084 |#4|)) (-583 |#3|) (-1084 |#4|)))) (-821) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -818))
-((-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-347 (-1084 *8))) (-5 *1 (-818 *5 *6 *7 *8)) (-5 *4 (-1084 *8)))) (-2696 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1084 *7))) (-5 *3 (-1084 *7)) (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756)) (-5 *1 (-818 *5 *6 *4 *7)))) (-2700 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-2697 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *7))) (-5 *3 (-1084 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-818 *4 *5 *6 *7)))))
-((-2697 (((-3 (-583 (-1084 |#2|)) "failed") (-583 (-1084 |#2|)) (-1084 |#2|)) 39 T ELT)) (-2700 ((|#1|) 71 T ELT)) (-2699 (((-347 (-1084 |#2|)) (-1084 |#2|)) 125 T ELT)) (-2701 (((-347 (-1084 |#2|)) (-1084 |#2|)) 109 T ELT)) (-2698 (((-347 (-1084 |#2|)) (-1084 |#2|)) 136 T ELT)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -2697 ((-3 (-583 (-1084 |#2|)) "failed") (-583 (-1084 |#2|)) (-1084 |#2|))) (-15 -2698 ((-347 (-1084 |#2|)) (-1084 |#2|))) (-15 -2699 ((-347 (-1084 |#2|)) (-1084 |#2|))) (-15 -2700 (|#1|)) (-15 -2701 ((-347 (-1084 |#2|)) (-1084 |#2|)))) (-821) (-1154 |#1|)) (T -819))
-((-2701 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5)))) (-2700 (*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1154 *2)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5)))) (-2697 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5)))))
-((-2704 (((-3 (-583 (-1084 $)) "failed") (-583 (-1084 $)) (-1084 $)) 46 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 18 T ELT)) (-2702 (((-632 $) $) 40 T ELT)))
-(((-820 |#1|) (-10 -7 (-15 -2702 ((-632 |#1|) |#1|)) (-15 -2704 ((-3 (-583 (-1084 |#1|)) "failed") (-583 (-1084 |#1|)) (-1084 |#1|))) (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|)))) (-821)) (T -820))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 75 T ELT)) (-3774 (($ $) 66 T ELT)) (-3970 (((-347 $) $) 67 T ELT)) (-2704 (((-3 (-583 (-1084 $)) "failed") (-583 (-1084 $)) (-1084 $)) 72 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3722 (((-85) $) 68 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 73 T ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 74 T ELT)) (-3731 (((-347 $) $) 65 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 71 (|has| $ (-118)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-2702 (((-632 $) $) 70 (|has| $ (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-821) (-113)) (T -821))
-((-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-821)))) (-2707 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2706 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2705 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *1))) (-5 *3 (-1084 *1)) (-4 *1 (-821)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821)) (-5 *2 (-1178 *1)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821)))))
-(-13 (-1133) (-10 -8 (-15 -2707 ((-347 (-1084 $)) (-1084 $))) (-15 -2706 ((-347 (-1084 $)) (-1084 $))) (-15 -2705 ((-347 (-1084 $)) (-1084 $))) (-15 -2708 ((-1084 $) (-1084 $) (-1084 $))) (-15 -2704 ((-3 (-583 (-1084 $)) "failed") (-583 (-1084 $)) (-1084 $))) (IF (|has| $ (-118)) (PROGN (-15 -2703 ((-3 (-1178 $) "failed") (-630 $))) (-15 -2702 ((-632 $) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
-((-2710 (((-3 (-2 (|:| -3771 (-694)) (|:| -2383 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2709 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3771 (((-3 (-694) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT)))
-(((-822 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3771 ((-3 (-694) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2709 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2710 ((-3 (-2 (|:| -3771 (-694)) (|:| -2383 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-495) (-950 (-484))) (-363 |#1|) (-1154 |#2|) (-1154 (-349 |#3|)) (-291 |#2| |#3| |#4|)) (T -822))
-((-2710 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-2 (|:| -3771 (-694)) (|:| -2383 *8))) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-3771 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-694)) (-5 *1 (-822 *4 *5 *6 *7 *8)))))
-((-2710 (((-3 (-2 (|:| -3771 (-694)) (|:| -2383 |#3|)) #1="failed") (-283 (-349 (-484)) |#1| |#2| |#3|)) 64 T ELT)) (-2709 (((-85) (-283 (-349 (-484)) |#1| |#2| |#3|)) 16 T ELT)) (-3771 (((-3 (-694) #1#) (-283 (-349 (-484)) |#1| |#2| |#3|)) 14 T ELT)))
-(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -3771 ((-3 (-694) #1="failed") (-283 (-349 (-484)) |#1| |#2| |#3|))) (-15 -2709 ((-85) (-283 (-349 (-484)) |#1| |#2| |#3|))) (-15 -2710 ((-3 (-2 (|:| -3771 (-694)) (|:| -2383 |#3|)) #1#) (-283 (-349 (-484)) |#1| |#2| |#3|)))) (-1154 (-349 (-484))) (-1154 (-349 |#1|)) (-291 (-349 (-484)) |#1| |#2|)) (T -823))
-((-2710 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-2 (|:| -3771 (-694)) (|:| -2383 *6))) (-5 *1 (-823 *4 *5 *6)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6)))) (-3771 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6)))))
-((-2715 ((|#2| |#2|) 26 T ELT)) (-2713 (((-484) (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) 15 T ELT)) (-2711 (((-830) (-484)) 38 T ELT)) (-2714 (((-484) |#2|) 45 T ELT)) (-2712 (((-484) |#2|) 21 T ELT) (((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|) 20 T ELT)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -2711 ((-830) (-484))) (-15 -2712 ((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|)) (-15 -2712 ((-484) |#2|)) (-15 -2713 ((-484) (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))))) (-15 -2714 ((-484) |#2|)) (-15 -2715 (|#2| |#2|))) (-1154 (-349 (-484))) (-1154 (-349 |#1|))) (T -824))
-((-2715 (*1 *2 *2) (-12 (-4 *3 (-1154 (-349 (-484)))) (-5 *1 (-824 *3 *2)) (-4 *2 (-1154 (-349 *3))))) (-2714 (*1 *2 *3) (-12 (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1154 (-349 *4))))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1154 (-349 *4))))) (-2712 (*1 *2 *3) (-12 (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1154 (-349 *4))))) (-2712 (*1 *2 *3) (-12 (-4 *3 (-1154 (-349 (-484)))) (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-824 *3 *4)) (-4 *4 (-1154 (-349 *3))))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1154 (-349 *3))) (-5 *2 (-830)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1154 (-349 *4))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 ((|#1| $) 99 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 93 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2723 (($ |#1| (-347 |#1|)) 91 T ELT)) (-2717 (((-1084 |#1|) |#1| |#1|) 52 T ELT)) (-2716 (($ $) 60 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2718 (((-484) $) 96 T ELT)) (-2719 (($ $ (-484)) 98 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2720 ((|#1| $) 95 T ELT)) (-2721 (((-347 |#1|) $) 94 T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) 92 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2722 (($ $) 49 T ELT)) (-3945 (((-772) $) 123 T ELT) (($ (-484)) 72 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 40 T ELT) (((-349 |#1|) $) 77 T ELT) (($ (-349 (-347 |#1|))) 85 T ELT)) (-3126 (((-694)) 70 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 12 T CONST)) (-3056 (((-85) $ $) 86 T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-825 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3945 ((-349 |#1|) $)) (-15 -3945 ($ (-349 (-347 |#1|)))) (-15 -2722 ($ $)) (-15 -2721 ((-347 |#1|) $)) (-15 -2720 (|#1| $)) (-15 -2719 ($ $ (-484))) (-15 -2718 ((-484) $)) (-15 -2717 ((-1084 |#1|) |#1| |#1|)) (-15 -2716 ($ $)) (-15 -2723 ($ |#1| (-347 |#1|))) (-15 -3129 (|#1| $)))) (-258)) (T -825))
-((-3945 (*1 *2 *1) (-12 (-5 *2 (-349 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-349 (-347 *3))) (-4 *3 (-258)) (-5 *1 (-825 *3)))) (-2722 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2720 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2719 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2717 (*1 *2 *3 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2716 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2723 (*1 *1 *2 *3) (-12 (-5 *3 (-347 *2)) (-4 *2 (-258)) (-5 *1 (-825 *2)))) (-3129 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))))
-((-2723 (((-51) (-857 |#1|) (-347 (-857 |#1|)) (-1089)) 17 T ELT) (((-51) (-349 (-857 |#1|)) (-1089)) 18 T ELT)))
-(((-826 |#1|) (-10 -7 (-15 -2723 ((-51) (-349 (-857 |#1|)) (-1089))) (-15 -2723 ((-51) (-857 |#1|) (-347 (-857 |#1|)) (-1089)))) (-13 (-258) (-120))) (T -826))
-((-2723 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-347 (-857 *6))) (-5 *5 (-1089)) (-5 *3 (-857 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *5)))))
-((-2724 ((|#4| (-583 |#4|)) 148 T ELT) (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3144 (((-1084 |#4|) (-583 (-1084 |#4|))) 141 T ELT) (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 61 T ELT) ((|#4| (-583 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT)))
-(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3144 (|#4| |#4| |#4|)) (-15 -3144 (|#4| (-583 |#4|))) (-15 -3144 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -3144 ((-1084 |#4|) (-583 (-1084 |#4|)))) (-15 -2724 (|#4| |#4| |#4|)) (-15 -2724 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -2724 (|#4| (-583 |#4|)))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -827))
-((-2724 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) (-2724 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) (-2724 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-583 (-1084 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-1084 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-3144 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) (-3144 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4)))))
-((-2737 (((-816 (-484)) (-884)) 38 T ELT) (((-816 (-484)) (-583 (-484))) 34 T ELT)) (-2725 (((-816 (-484)) (-583 (-484))) 66 T ELT) (((-816 (-484)) (-830)) 67 T ELT)) (-2736 (((-816 (-484))) 39 T ELT)) (-2734 (((-816 (-484))) 53 T ELT) (((-816 (-484)) (-583 (-484))) 52 T ELT)) (-2733 (((-816 (-484))) 51 T ELT) (((-816 (-484)) (-583 (-484))) 50 T ELT)) (-2732 (((-816 (-484))) 49 T ELT) (((-816 (-484)) (-583 (-484))) 48 T ELT)) (-2731 (((-816 (-484))) 47 T ELT) (((-816 (-484)) (-583 (-484))) 46 T ELT)) (-2730 (((-816 (-484))) 45 T ELT) (((-816 (-484)) (-583 (-484))) 44 T ELT)) (-2735 (((-816 (-484))) 55 T ELT) (((-816 (-484)) (-583 (-484))) 54 T ELT)) (-2729 (((-816 (-484)) (-583 (-484))) 71 T ELT) (((-816 (-484)) (-830)) 73 T ELT)) (-2728 (((-816 (-484)) (-583 (-484))) 68 T ELT) (((-816 (-484)) (-830)) 69 T ELT)) (-2726 (((-816 (-484)) (-583 (-484))) 64 T ELT) (((-816 (-484)) (-830)) 65 T ELT)) (-2727 (((-816 (-484)) (-583 (-830))) 57 T ELT)))
-(((-828) (-10 -7 (-15 -2725 ((-816 (-484)) (-830))) (-15 -2725 ((-816 (-484)) (-583 (-484)))) (-15 -2726 ((-816 (-484)) (-830))) (-15 -2726 ((-816 (-484)) (-583 (-484)))) (-15 -2727 ((-816 (-484)) (-583 (-830)))) (-15 -2728 ((-816 (-484)) (-830))) (-15 -2728 ((-816 (-484)) (-583 (-484)))) (-15 -2729 ((-816 (-484)) (-830))) (-15 -2729 ((-816 (-484)) (-583 (-484)))) (-15 -2730 ((-816 (-484)) (-583 (-484)))) (-15 -2730 ((-816 (-484)))) (-15 -2731 ((-816 (-484)) (-583 (-484)))) (-15 -2731 ((-816 (-484)))) (-15 -2732 ((-816 (-484)) (-583 (-484)))) (-15 -2732 ((-816 (-484)))) (-15 -2733 ((-816 (-484)) (-583 (-484)))) (-15 -2733 ((-816 (-484)))) (-15 -2734 ((-816 (-484)) (-583 (-484)))) (-15 -2734 ((-816 (-484)))) (-15 -2735 ((-816 (-484)) (-583 (-484)))) (-15 -2735 ((-816 (-484)))) (-15 -2736 ((-816 (-484)))) (-15 -2737 ((-816 (-484)) (-583 (-484)))) (-15 -2737 ((-816 (-484)) (-884))))) (T -828))
-((-2737 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2736 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2735 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2734 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2733 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2732 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2731 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2730 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-((-2739 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089))) 14 T ELT)) (-2738 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089))) 13 T ELT)))
-(((-829 |#1|) (-10 -7 (-15 -2738 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089)))) (-15 -2739 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089))))) (-391)) (T -829))
-((-2739 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1089))) (-4 *4 (-391)) (-5 *1 (-829 *4)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1089))) (-4 *4 (-391)) (-5 *1 (-829 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3144 (($ $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-830) (-13 (-718) (-663) (-10 -8 (-15 -3144 ($ $ $)) (-6 (-3996 "*"))))) (T -830))
-((-3144 (*1 *1 *1 *1) (-5 *1 (-830))))
-((-694) (|%ilt| 0 |#1|))
-((-3945 (((-265 |#1|) (-416)) 16 T ELT)))
-(((-831 |#1|) (-10 -7 (-15 -3945 ((-265 |#1|) (-416)))) (-495)) (T -831))
-((-3945 (*1 *2 *3) (-12 (-5 *3 (-416)) (-5 *2 (-265 *4)) (-5 *1 (-831 *4)) (-4 *4 (-495)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-832) (-113)) (T -832))
-((-2741 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3953 (-583 *1)) (|:| -2409 *1))) (-5 *3 (-583 *1)))) (-2740 (*1 *2 *3 *1) (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1)))))
-(-13 (-391) (-10 -8 (-15 -2741 ((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $))) (-15 -2740 ((-632 (-583 $)) (-583 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3105 (((-1084 |#2|) (-583 |#2|) (-583 |#2|)) 17 T ELT) (((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13 T ELT)))
-(((-833 |#1| |#2|) (-10 -7 (-15 -3105 ((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3105 ((-1084 |#2|) (-583 |#2|) (-583 |#2|)))) (-1089) (-312)) (T -833))
-((-3105 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-312)) (-5 *2 (-1084 *5)) (-5 *1 (-833 *4 *5)) (-14 *4 (-1089)))) (-3105 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1089)) (-4 *5 (-312)) (-5 *1 (-833 *4 *5)))))
-((-2742 ((|#2| (-583 |#1|) (-583 |#1|)) 28 T ELT)))
-(((-834 |#1| |#2|) (-10 -7 (-15 -2742 (|#2| (-583 |#1|) (-583 |#1|)))) (-312) (-1154 |#1|)) (T -834))
-((-2742 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-4 *2 (-1154 *4)) (-5 *1 (-834 *4 *2)))))
-((-2744 (((-484) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-1072)) 175 T ELT)) (-2763 ((|#4| |#4|) 194 T ELT)) (-2748 (((-583 (-349 (-857 |#1|))) (-583 (-1089))) 146 T ELT)) (-2762 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))) (-630 |#4|) (-583 (-349 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-484)) 88 T ELT)) (-2752 (((-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-583 |#4|)) 69 T ELT)) (-2761 (((-630 |#4|) (-630 |#4|) (-583 |#4|)) 65 T ELT)) (-2745 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-1072)) 187 T ELT)) (-2743 (((-484) (-630 |#4|) (-830) (-1072)) 167 T ELT) (((-484) (-630 |#4|) (-583 (-1089)) (-830) (-1072)) 166 T ELT) (((-484) (-630 |#4|) (-583 |#4|) (-830) (-1072)) 165 T ELT) (((-484) (-630 |#4|) (-1072)) 154 T ELT) (((-484) (-630 |#4|) (-583 (-1089)) (-1072)) 153 T ELT) (((-484) (-630 |#4|) (-583 |#4|) (-1072)) 152 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-830)) 151 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1089)) (-830)) 150 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830)) 149 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|)) 148 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1089))) 147 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|)) 143 T ELT)) (-2749 ((|#4| (-857 |#1|)) 80 T ELT)) (-2759 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 191 T ELT)) (-2758 (((-583 (-583 (-484))) (-484) (-484)) 161 T ELT)) (-2757 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 106 T ELT)) (-2756 (((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|))))) 100 T ELT)) (-2755 (((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|))))) 99 T ELT)) (-2764 (((-85) (-583 (-857 |#1|))) 19 T ELT) (((-85) (-583 |#4|)) 15 T ELT)) (-2750 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-2754 (((-583 |#4|) |#4|) 57 T ELT)) (-2747 (((-583 (-349 (-857 |#1|))) (-583 |#4|)) 142 T ELT) (((-630 (-349 (-857 |#1|))) (-630 |#4|)) 66 T ELT) (((-349 (-857 |#1|)) |#4|) 139 T ELT)) (-2746 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))))))) (|:| |rgsz| (-484))) (-630 |#4|) (-583 (-349 (-857 |#1|))) (-694) (-1072) (-484)) 112 T ELT)) (-2751 (((-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694)) 98 T ELT)) (-2760 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-630 |#4|) (-694)) 121 T ELT)) (-2753 (((-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-349 (-857 |#1|)))) (|:| |vec| (-583 (-349 (-857 |#1|)))) (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) 56 T ELT)))
-(((-835 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1089)))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1089)) (-830))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-830))) (-15 -2743 ((-484) (-630 |#4|) (-583 |#4|) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-583 (-1089)) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-583 |#4|) (-830) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-583 (-1089)) (-830) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-830) (-1072))) (-15 -2744 ((-484) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-1072))) (-15 -2745 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-1072))) (-15 -2746 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))))))) (|:| |rgsz| (-484))) (-630 |#4|) (-583 (-349 (-857 |#1|))) (-694) (-1072) (-484))) (-15 -2747 ((-349 (-857 |#1|)) |#4|)) (-15 -2747 ((-630 (-349 (-857 |#1|))) (-630 |#4|))) (-15 -2747 ((-583 (-349 (-857 |#1|))) (-583 |#4|))) (-15 -2748 ((-583 (-349 (-857 |#1|))) (-583 (-1089)))) (-15 -2749 (|#4| (-857 |#1|))) (-15 -2750 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -2751 ((-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694))) (-15 -2752 ((-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-583 |#4|))) (-15 -2753 ((-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-349 (-857 |#1|)))) (|:| |vec| (-583 (-349 (-857 |#1|)))) (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (-15 -2754 ((-583 |#4|) |#4|)) (-15 -2755 ((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2756 ((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2757 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2758 ((-583 (-583 (-484))) (-484) (-484))) (-15 -2759 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2760 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-630 |#4|) (-694))) (-15 -2761 ((-630 |#4|) (-630 |#4|) (-583 |#4|))) (-15 -2762 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))) (-630 |#4|) (-583 (-349 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-484))) (-15 -2763 (|#4| |#4|)) (-15 -2764 ((-85) (-583 |#4|))) (-15 -2764 ((-85) (-583 (-857 |#1|))))) (-13 (-258) (-120)) (-13 (-756) (-553 (-1089))) (-717) (-861 |#1| |#3| |#2|)) (T -835))
-((-2764 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2763 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1089)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4)))) (-2762 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-5 *4 (-630 *12)) (-5 *5 (-583 (-349 (-857 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-694)) (-5 *8 (-484)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1089)))) (-4 *11 (-717)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-857 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *9)))) (|:| -2012 (-583 (-1178 (-349 (-857 *9))))))))) (-5 *1 (-835 *9 *10 *11 *12)))) (-2761 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2758 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-583 (-484)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *6 *5)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1089)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2754 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-630 (-349 (-857 *4)))) (|:| |vec| (-583 (-349 (-857 *4)))) (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) (|:| -2012 (-583 (-1178 (-349 (-857 *4))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2752 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) (|:| -2012 (-583 (-1178 (-349 (-857 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-861 *4 *6 *5)) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694)))) (-2750 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-861 *4 *6 *5)) (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-630 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2747 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-349 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2746 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-349 (-857 *8)))) (-5 *5 (-694)) (-5 *6 (-1072)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-861 *8 *10 *9)) (-4 *9 (-13 (-756) (-553 (-1089)))) (-4 *10 (-717)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-857 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *8)))) (|:| -2012 (-583 (-1178 (-349 (-857 *8)))))))))) (|:| |rgsz| (-484)))) (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-484)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) (|:| -2012 (-583 (-1178 (-349 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) (-5 *4 (-1072)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-861 *5 *7 *6)) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1072)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1089))) (-5 *5 (-830)) (-5 *6 (-1072)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-756) (-553 (-1089)))) (-4 *9 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2743 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1072)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-756) (-553 (-1089)))) (-4 *9 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-1072)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1089))) (-5 *5 (-1072)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1072)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1089))) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *6)))) (|:| -2012 (-583 (-1178 (-349 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *6)))) (|:| -2012 (-583 (-1178 (-349 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) (|:| -2012 (-583 (-1178 (-349 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1089))) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-((-3873 (($ $ (-1001 (-179))) 125 T ELT) (($ $ (-1001 (-179)) (-1001 (-179))) 126 T ELT)) (-2896 (((-1001 (-179)) $) 73 T ELT)) (-2897 (((-1001 (-179)) $) 72 T ELT)) (-2788 (((-1001 (-179)) $) 74 T ELT)) (-2769 (((-484) (-484)) 66 T ELT)) (-2773 (((-484) (-484)) 61 T ELT)) (-2771 (((-484) (-484)) 64 T ELT)) (-2767 (((-85) (-85)) 68 T ELT)) (-2770 (((-484)) 65 T ELT)) (-3134 (($ $ (-1001 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2790 (($ (-1 (-854 (-179)) (-179)) (-1001 (-179))) 148 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 149 T ELT)) (-2776 (($ (-1 (-179) (-179)) (-1001 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2789 (($ (-1 (-179) (-179)) (-1001 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179))) 145 T ELT) (($ (-583 (-1 (-179) (-179))) (-1001 (-179))) 153 T ELT) (($ (-583 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 147 T ELT) (($ $ (-1001 (-179))) 131 T ELT)) (-2775 (((-85) $) 69 T ELT)) (-2766 (((-484)) 70 T ELT)) (-2774 (((-484)) 59 T ELT)) (-2772 (((-484)) 62 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 35 T ELT)) (-2765 (((-85) (-85)) 71 T ELT)) (-3945 (((-772) $) 174 T ELT)) (-2768 (((-85)) 67 T ELT)))
-(((-836) (-13 (-866) (-10 -8 (-15 -2789 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-583 (-1 (-179) (-179))) (-1001 (-179)))) (-15 -2789 ($ (-583 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2776 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2776 ($ (-1 (-179) (-179)))) (-15 -2789 ($ $ (-1001 (-179)))) (-15 -2775 ((-85) $)) (-15 -3873 ($ $ (-1001 (-179)))) (-15 -3873 ($ $ (-1001 (-179)) (-1001 (-179)))) (-15 -3134 ($ $ (-1001 (-179)))) (-15 -3134 ($ $)) (-15 -2788 ((-1001 (-179)) $)) (-15 -2774 ((-484))) (-15 -2773 ((-484) (-484))) (-15 -2772 ((-484))) (-15 -2771 ((-484) (-484))) (-15 -2770 ((-484))) (-15 -2769 ((-484) (-484))) (-15 -2768 ((-85))) (-15 -2767 ((-85) (-85))) (-15 -2766 ((-484))) (-15 -2765 ((-85) (-85)))))) (T -836))
-((-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-3873 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3873 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3134 (*1 *1 *1) (-5 *1 (-836))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-2774 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2772 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2770 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2768 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2766 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2765 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-((-2776 (((-836) |#1| (-1089)) 17 T ELT) (((-836) |#1| (-1089) (-1001 (-179))) 21 T ELT)) (-2789 (((-836) |#1| |#1| (-1089) (-1001 (-179))) 19 T ELT) (((-836) |#1| (-1089) (-1001 (-179))) 15 T ELT)))
-(((-837 |#1|) (-10 -7 (-15 -2789 ((-836) |#1| (-1089) (-1001 (-179)))) (-15 -2789 ((-836) |#1| |#1| (-1089) (-1001 (-179)))) (-15 -2776 ((-836) |#1| (-1089) (-1001 (-179)))) (-15 -2776 ((-836) |#1| (-1089)))) (-553 (-473))) (T -837))
-((-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2789 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2789 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))))
-((-3873 (($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 123 T ELT)) (-2895 (((-1001 (-179)) $) 64 T ELT)) (-2896 (((-1001 (-179)) $) 63 T ELT)) (-2897 (((-1001 (-179)) $) 62 T ELT)) (-2787 (((-583 (-583 (-179))) $) 69 T ELT)) (-2788 (((-1001 (-179)) $) 65 T ELT)) (-2781 (((-484) (-484)) 57 T ELT)) (-2785 (((-484) (-484)) 52 T ELT)) (-2783 (((-484) (-484)) 55 T ELT)) (-2779 (((-85) (-85)) 59 T ELT)) (-2782 (((-484)) 56 T ELT)) (-3134 (($ $ (-1001 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2790 (($ (-1 (-854 (-179)) (-179)) (-1001 (-179))) 133 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 134 T ELT)) (-2789 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 141 T ELT) (($ $ (-1001 (-179))) 129 T ELT)) (-2778 (((-484)) 60 T ELT)) (-2786 (((-484)) 50 T ELT)) (-2784 (((-484)) 53 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 157 T ELT)) (-2777 (((-85) (-85)) 61 T ELT)) (-3945 (((-772) $) 155 T ELT)) (-2780 (((-85)) 58 T ELT)))
-(((-838) (-13 (-887) (-10 -8 (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ $ (-1001 (-179)))) (-15 -3873 ($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -3134 ($ $ (-1001 (-179)))) (-15 -3134 ($ $)) (-15 -2788 ((-1001 (-179)) $)) (-15 -2787 ((-583 (-583 (-179))) $)) (-15 -2786 ((-484))) (-15 -2785 ((-484) (-484))) (-15 -2784 ((-484))) (-15 -2783 ((-484) (-484))) (-15 -2782 ((-484))) (-15 -2781 ((-484) (-484))) (-15 -2780 ((-85))) (-15 -2779 ((-85) (-85))) (-15 -2778 ((-484))) (-15 -2777 ((-85) (-85)))))) (T -838))
-((-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2790 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2789 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2789 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3873 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3134 (*1 *1 *1) (-5 *1 (-838))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838)))) (-2786 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2784 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2782 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2780 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2778 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
-((-2791 (((-583 (-1001 (-179))) (-583 (-583 (-854 (-179))))) 34 T ELT)))
-(((-839) (-10 -7 (-15 -2791 ((-583 (-1001 (-179))) (-583 (-583 (-854 (-179)))))))) (T -839))
-((-2791 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1001 (-179)))) (-5 *1 (-839)))))
-((-2793 (((-265 (-484)) (-1089)) 16 T ELT)) (-2794 (((-265 (-484)) (-1089)) 14 T ELT)) (-3951 (((-265 (-484)) (-1089)) 12 T ELT)) (-2792 (((-265 (-484)) (-1089) (-446)) 19 T ELT)))
-(((-840) (-10 -7 (-15 -2792 ((-265 (-484)) (-1089) (-446))) (-15 -3951 ((-265 (-484)) (-1089))) (-15 -2793 ((-265 (-484)) (-1089))) (-15 -2794 ((-265 (-484)) (-1089))))) (T -840))
-((-2794 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-446)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))))
-((-2793 ((|#2| |#2|) 28 T ELT)) (-2794 ((|#2| |#2|) 29 T ELT)) (-3951 ((|#2| |#2|) 27 T ELT)) (-2792 ((|#2| |#2| (-446)) 26 T ELT)))
-(((-841 |#1| |#2|) (-10 -7 (-15 -2792 (|#2| |#2| (-446))) (-15 -3951 (|#2| |#2|)) (-15 -2793 (|#2| |#2|)) (-15 -2794 (|#2| |#2|))) (-1013) (-363 |#1|)) (T -841))
-((-2794 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3)))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3)))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-446)) (-4 *4 (-1013)) (-5 *1 (-841 *4 *2)) (-4 *2 (-363 *4)))))
-((-2796 (((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT)) (-2795 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT)))
-(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2796 ((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-796 |#1|) (-13 (-1013) (-950 |#2|))) (T -842))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-950 *5))) (-4 *5 (-796 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6)))))
-((-2796 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 30 T ELT)))
-(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-13 (-495) (-796 |#1|)) (-13 (-363 |#2|) (-553 (-800 |#1|)) (-796 |#1|) (-950 (-550 $)))) (T -843))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-363 *6) (-553 *4) (-796 *5) (-950 (-550 $)))) (-5 *4 (-800 *5)) (-4 *6 (-13 (-495) (-796 *5))) (-5 *1 (-843 *5 *6 *3)))))
-((-2796 (((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|)) 13 T ELT)))
-(((-844 |#1|) (-10 -7 (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|)))) (-483)) (T -844))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 (-484) *3)) (-5 *4 (-800 (-484))) (-4 *3 (-483)) (-5 *1 (-844 *3)))))
-((-2796 (((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)) 57 T ELT)))
-(((-845 |#1| |#2|) (-10 -7 (-15 -2796 ((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)))) (-1013) (-13 (-1013) (-950 (-550 $)) (-553 (-800 |#1|)) (-796 |#1|))) (T -845))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5)) (-5 *1 (-845 *5 *6)))))
-((-2796 (((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)) 17 T ELT)))
-(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)))) (-1013) (-796 |#1|) (-608 |#2|)) (T -846))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3)))))
-((-2796 (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|)) 17 (|has| |#3| (-796 |#1|)) ELT) (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|))) 16 T ELT)))
-(((-847 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2796 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|)))) (IF (|has| |#3| (-796 |#1|)) (-15 -2796 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|))) |%noBranch|)) (-1013) (-717) (-756) (-13 (-961) (-796 |#1|)) (-13 (-861 |#4| |#2| |#3|) (-553 (-800 |#1|)))) (T -847))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5))) (-5 *1 (-847 *5 *6 *7 *8 *3)))) (-2796 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756)) (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1013)) (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717)) (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3)))))
-((-3209 (((-265 (-484)) (-1089) (-583 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-484)) (-1089) (-1 (-85) |#1|)) 15 T ELT)))
-(((-848 |#1|) (-10 -7 (-15 -3209 ((-265 (-484)) (-1089) (-1 (-85) |#1|))) (-15 -3209 ((-265 (-484)) (-1089) (-583 (-1 (-85) |#1|))))) (-1128)) (T -848))
-((-3209 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1128)) (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))) (-3209 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1128)) (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))))
-((-3209 ((|#2| |#2| (-583 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT)))
-(((-849 |#1| |#2| |#3|) (-10 -7 (-15 -3209 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3209 (|#2| |#2| (-583 (-1 (-85) |#3|))))) (-1013) (-363 |#1|) (-1128)) (T -849))
-((-3209 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1128)) (-4 *4 (-1013)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-363 *4)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1128)) (-4 *4 (-1013)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-363 *4)))))
-((-2796 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT)))
-(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-13 (-495) (-796 |#1|) (-553 (-800 |#1|))) (-904 |#2|)) (T -850))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-904 *6)) (-4 *6 (-13 (-495) (-796 *5) (-553 *4))) (-5 *4 (-800 *5)) (-5 *1 (-850 *5 *6 *3)))))
-((-2796 (((-798 |#1| (-1089)) (-1089) (-800 |#1|) (-798 |#1| (-1089))) 18 T ELT)))
-(((-851 |#1|) (-10 -7 (-15 -2796 ((-798 |#1| (-1089)) (-1089) (-800 |#1|) (-798 |#1| (-1089))))) (-1013)) (T -851))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *1 (-851 *5)))))
-((-2797 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 34 T ELT)) (-2796 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 33 T ELT)))
-(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-15 -2797 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))))) (-1013) (-961) (-13 (-961) (-553 (-800 |#1|)) (-950 |#2|))) (T -852))
-((-2797 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6))) (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1013)) (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8)) (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8)))) (-2796 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1013)) (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9)))))
-((-2805 (((-1084 (-349 (-484))) (-484)) 80 T ELT)) (-2804 (((-1084 (-484)) (-484)) 83 T ELT)) (-3333 (((-1084 (-484)) (-484)) 77 T ELT)) (-2803 (((-484) (-1084 (-484))) 73 T ELT)) (-2802 (((-1084 (-349 (-484))) (-484)) 66 T ELT)) (-2801 (((-1084 (-484)) (-484)) 49 T ELT)) (-2800 (((-1084 (-484)) (-484)) 85 T ELT)) (-2799 (((-1084 (-484)) (-484)) 84 T ELT)) (-2798 (((-1084 (-349 (-484))) (-484)) 68 T ELT)))
-(((-853) (-10 -7 (-15 -2798 ((-1084 (-349 (-484))) (-484))) (-15 -2799 ((-1084 (-484)) (-484))) (-15 -2800 ((-1084 (-484)) (-484))) (-15 -2801 ((-1084 (-484)) (-484))) (-15 -2802 ((-1084 (-349 (-484))) (-484))) (-15 -2803 ((-484) (-1084 (-484)))) (-15 -3333 ((-1084 (-484)) (-484))) (-15 -2804 ((-1084 (-484)) (-484))) (-15 -2805 ((-1084 (-349 (-484))) (-484))))) (T -853))
-((-2805 (*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-3333 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-484)) (-5 *1 (-853)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3837 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-3705 (($ (-583 |#1|)) 9 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3834 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3831 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3832 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 |#1|)) 25 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3835 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-3910 (((-830) $) 13 T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3833 (($ $ $) 23 T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT) (($ (-583 |#1|)) 14 T ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3836 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3956 (((-694) $) 11 T ELT)))
-(((-854 |#1|) (-893 |#1|) (-961)) (T -854))
-NIL
-((-2808 (((-420 |#1| |#2|) (-857 |#2|)) 22 T ELT)) (-2811 (((-206 |#1| |#2|) (-857 |#2|)) 35 T ELT)) (-2809 (((-857 |#2|) (-420 |#1| |#2|)) 27 T ELT)) (-2807 (((-206 |#1| |#2|) (-420 |#1| |#2|)) 57 T ELT)) (-2810 (((-857 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2806 (((-420 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT)))
-(((-855 |#1| |#2|) (-10 -7 (-15 -2806 ((-420 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2807 ((-206 |#1| |#2|) (-420 |#1| |#2|))) (-15 -2808 ((-420 |#1| |#2|) (-857 |#2|))) (-15 -2809 ((-857 |#2|) (-420 |#1| |#2|))) (-15 -2810 ((-857 |#2|) (-206 |#1| |#2|))) (-15 -2811 ((-206 |#1| |#2|) (-857 |#2|)))) (-583 (-1089)) (-961)) (T -855))
-((-2811 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1089))))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-420 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-420 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1089))))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-420 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) (-5 *2 (-420 *4 *5)) (-5 *1 (-855 *4 *5)))))
-((-2812 (((-583 |#2|) |#2| |#2|) 10 T ELT)) (-2815 (((-694) (-583 |#1|)) 47 (|has| |#1| (-755)) ELT)) (-2813 (((-583 |#2|) |#2|) 11 T ELT)) (-2816 (((-694) (-583 |#1|) (-484) (-484)) 45 (|has| |#1| (-755)) ELT)) (-2814 ((|#1| |#2|) 37 (|has| |#1| (-755)) ELT)))
-(((-856 |#1| |#2|) (-10 -7 (-15 -2812 ((-583 |#2|) |#2| |#2|)) (-15 -2813 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-755)) (PROGN (-15 -2814 (|#1| |#2|)) (-15 -2815 ((-694) (-583 |#1|))) (-15 -2816 ((-694) (-583 |#1|) (-484) (-484)))) |%noBranch|)) (-312) (-1154 |#1|)) (T -856))
-((-2816 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-484)) (-4 *5 (-755)) (-4 *5 (-312)) (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1154 *5)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1154 *4)))) (-2814 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1154 *2)))) (-2813 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1154 *4)))) (-2812 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1154 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-1089)) $) 16 T ELT)) (-3083 (((-1084 $) $ (-1089)) 21 T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1089))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-1089) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-1089) $) NIL T ELT)) (-3755 (($ $ $ (-1089)) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 (-1089)) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-1089) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1089) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#1|) (-1089)) NIL T ELT) (($ (-1084 $) (-1089)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-1089)) NIL T ELT)) (-2820 (((-469 (-1089)) $) NIL T ELT) (((-694) $ (-1089)) NIL T ELT) (((-583 (-694)) $ (-583 (-1089))) NIL T ELT)) (-1624 (($ (-1 (-469 (-1089)) (-469 (-1089))) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3082 (((-3 (-1089) #1#) $) 19 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-1089)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $ (-1089)) 29 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1089) |#1|) NIL T ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL T ELT) (($ $ (-1089) $) NIL T ELT) (($ $ (-583 (-1089)) (-583 $)) NIL T ELT)) (-3756 (($ $ (-1089)) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3947 (((-469 (-1089)) $) NIL T ELT) (((-694) $ (-1089)) NIL T ELT) (((-583 (-694)) $ (-583 (-1089))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-1089) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1089) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1089) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 25 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1089)) 27 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-857 |#1|) (-13 (-861 |#1| (-469 (-1089)) (-1089)) (-10 -8 (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1089))) |%noBranch|))) (-961)) (T -857))
-((-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)))))
-((-3957 (((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)) 19 T ELT)))
-(((-858 |#1| |#2|) (-10 -7 (-15 -3957 ((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)))) (-961) (-961)) (T -858))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6)))))
-((-3083 (((-1147 |#1| (-857 |#2|)) (-857 |#2|) (-1175 |#1|)) 18 T ELT)))
-(((-859 |#1| |#2|) (-10 -7 (-15 -3083 ((-1147 |#1| (-857 |#2|)) (-857 |#2|) (-1175 |#1|)))) (-1089) (-961)) (T -859))
-((-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1175 *5)) (-14 *5 (-1089)) (-4 *6 (-961)) (-5 *2 (-1147 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6)))))
-((-2819 (((-694) $) 88 T ELT) (((-694) $ (-583 |#4|)) 93 T ELT)) (-3774 (($ $) 214 T ELT)) (-3970 (((-347 $) $) 206 T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 141 T ELT)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3755 (($ $ $ |#4|) 95 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 131 T ELT) (((-630 |#2|) (-630 $)) 121 T ELT)) (-3502 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2818 (((-583 $) $) 77 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 240 T ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 233 T ELT)) (-2821 (((-583 $) $) 34 T ELT)) (-2893 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|) (-583 (-694))) 71 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#4|) 203 T ELT)) (-2823 (((-3 (-583 $) #1#) $) 52 T ELT)) (-2822 (((-3 (-583 $) #1#) $) 39 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#4|) (|:| -2401 (-694))) #1#) $) 57 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 134 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 147 T ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 145 T ELT)) (-3731 (((-347 $) $) 165 T ELT)) (-3767 (($ $ (-583 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT)) (-3756 (($ $ |#4|) 97 T ELT)) (-3971 (((-800 (-329)) $) 254 T ELT) (((-800 (-484)) $) 247 T ELT) (((-473) $) 262 T ELT)) (-2817 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 185 T ELT)) (-3676 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-694)) 62 T ELT) (($ $ (-583 |#4|) (-583 (-694))) 69 T ELT)) (-2702 (((-632 $) $) 195 T ELT)) (-1264 (((-85) $ $) 227 T ELT)))
-(((-860 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -2702 ((-632 |#1|) |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -2796 ((-798 (-329) |#1|) |#1| (-800 (-329)) (-798 (-329) |#1|))) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -2706 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2705 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-3 (-583 (-1084 |#1|)) #1="failed") (-583 (-1084 |#1|)) (-1084 |#1|))) (-15 -2703 ((-3 (-1178 |#1|) #1#) (-630 |#1|))) (-15 -3502 (|#1| |#1| |#4|)) (-15 -2817 (|#1| |#1| |#4|)) (-15 -3756 (|#1| |#1| |#4|)) (-15 -3755 (|#1| |#1| |#1| |#4|)) (-15 -2818 ((-583 |#1|) |#1|)) (-15 -2819 ((-694) |#1| (-583 |#4|))) (-15 -2819 ((-694) |#1|)) (-15 -2824 ((-3 (-2 (|:| |var| |#4|) (|:| -2401 (-694))) #1#) |#1|)) (-15 -2823 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2822 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2893 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -2893 (|#1| |#1| |#4| (-694))) (-15 -3762 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1| |#4|)) (-15 -2821 ((-583 |#1|) |#1|)) (-15 -3676 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3676 (|#1| |#1| |#4| (-694))) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3157 ((-3 |#4| #1#) |#1|)) (-15 -3156 (|#4| |#1|)) (-15 -3767 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#4| |#1|)) (-15 -3767 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#4| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -2893 (|#1| |#2| |#3|)) (-15 -3676 (|#2| |#1| |#3|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -1264 ((-85) |#1| |#1|))) (-861 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -860))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#3|) $) 123 T ELT)) (-3083 (((-1084 $) $ |#3|) 138 T ELT) (((-1084 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 111 (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) 110 (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 116 (|has| |#1| (-821)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-349 (-484)) #2#) $) 178 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3156 ((|#1| $) 180 T ELT) (((-349 (-484)) $) 179 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT)) (-3755 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3958 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 193 (|has| |#1| (-391)) ELT) (($ $ |#3|) 118 (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3722 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| |#2| $) 189 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 97 (-12 (|has| |#3| (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3084 (($ (-1084 |#1|) |#3|) 130 T ELT) (($ (-1084 $) |#3|) 129 T ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3936 (((-85) $) 169 T ELT)) (-2893 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 133 T ELT)) (-2820 ((|#2| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-1624 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3082 (((-3 |#3| "failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 145 T ELT) (((-630 |#1|) (-1178 $)) 144 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT)) (-1890 (($ (-583 $)) 107 (|has| |#1| (-391)) ELT) (($ $ $) 106 (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2823 (((-3 (-583 $) "failed") $) 127 T ELT)) (-2822 (((-3 (-583 $) "failed") $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) "failed") $) 126 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 183 T ELT)) (-1795 ((|#1| $) 184 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 108 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) 105 (|has| |#1| (-391)) ELT) (($ $ $) 104 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 112 (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT)) (-3756 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3947 ((|#2| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT)) (-3971 (((-800 (-329)) $) 95 (-12 (|has| |#3| (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-391)) ELT) (($ $ |#3|) 119 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-495)) ELT) (($ (-349 (-484))) 91 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) 185 T ELT)) (-3676 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
-(((-861 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -861))
-((-3502 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3947 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3676 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-3676 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-2821 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3083 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1084 *1)) (-4 *1 (-861 *4 *5 *3)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1084 *3)))) (-3082 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-2820 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3762 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-861 *4 *5 *3)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-3084 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717)) (-4 *3 (-756)))) (-3084 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-694)))))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2818 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3755 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3756 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-2817 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-391)))) (-3502 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-391)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3970 (*1 *2 *1) (-12 (-4 *3 (-391)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-347 *1)) (-4 *1 (-861 *3 *4 *5)))))
-(-13 (-809 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-455 |t#3| |t#1|) (-455 |t#3| $) (-950 |t#3|) (-328 |t#1|) (-10 -8 (-15 -3947 ((-694) $ |t#3|)) (-15 -3947 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3676 ($ $ |t#3| (-694))) (-15 -3676 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -2821 ((-583 $) $)) (-15 -3083 ((-1084 $) $ |t#3|)) (-15 -3083 ((-1084 |t#1|) $)) (-15 -3082 ((-3 |t#3| "failed") $)) (-15 -2820 ((-694) $ |t#3|)) (-15 -2820 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3762 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |t#3|)) (-15 -2893 ($ $ |t#3| (-694))) (-15 -2893 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -3084 ($ (-1084 |t#1|) |t#3|)) (-15 -3084 ($ (-1084 $) |t#3|)) (-15 -2822 ((-3 (-583 $) "failed") $)) (-15 -2823 ((-3 (-583 $) "failed") $)) (-15 -2824 ((-3 (-2 (|:| |var| |t#3|) (|:| -2401 (-694))) "failed") $)) (-15 -2819 ((-694) $)) (-15 -2819 ((-694) $ (-583 |t#3|))) (-15 -3081 ((-583 |t#3|) $)) (-15 -2818 ((-583 $) $)) (IF (|has| |t#1| (-553 (-473))) (IF (|has| |t#3| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-484)))) (IF (|has| |t#3| (-553 (-800 (-484)))) (-6 (-553 (-800 (-484)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-329)))) (IF (|has| |t#3| (-553 (-800 (-329)))) (-6 (-553 (-800 (-329)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-484))) (IF (|has| |t#3| (-796 (-484))) (-6 (-796 (-484))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-329))) (IF (|has| |t#3| (-796 (-329))) (-6 (-796 (-329))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3755 ($ $ $ |t#3|)) (-15 -3756 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-391)) (PROGN (-6 (-391)) (-15 -2817 ($ $ |t#3|)) (-15 -3502 ($ $)) (-15 -3502 ($ $ |t#3|)) (-15 -3970 ((-347 $) $)) (-15 -3774 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-821)) (|has| |#1| (-391))) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-821) |has| |#1| (-821)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-821)))
-((-3081 (((-583 |#2|) |#5|) 40 T ELT)) (-3083 (((-1084 |#5|) |#5| |#2| (-1084 |#5|)) 23 T ELT) (((-349 (-1084 |#5|)) |#5| |#2|) 16 T ELT)) (-3084 ((|#5| (-349 (-1084 |#5|)) |#2|) 30 T ELT)) (-3082 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2823 (((-3 (-583 |#5|) #1#) |#5|) 64 T ELT)) (-2825 (((-3 (-2 (|:| |val| |#5|) (|:| -2401 (-484))) #1#) |#5|) 53 T ELT)) (-2822 (((-3 (-583 |#5|) #1#) |#5|) 66 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-484))) #1#) |#5|) 56 T ELT)))
-(((-862 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3081 ((-583 |#2|) |#5|)) (-15 -3082 ((-3 |#2| #1="failed") |#5|)) (-15 -3083 ((-349 (-1084 |#5|)) |#5| |#2|)) (-15 -3084 (|#5| (-349 (-1084 |#5|)) |#2|)) (-15 -3083 ((-1084 |#5|) |#5| |#2| (-1084 |#5|))) (-15 -2822 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2823 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2824 ((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-484))) #1#) |#5|)) (-15 -2825 ((-3 (-2 (|:| |val| |#5|) (|:| -2401 (-484))) #1#) |#5|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3945 ($ |#4|)) (-15 -2998 (|#4| $)) (-15 -2997 (|#4| $))))) (T -862))
-((-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2401 (-484)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-484)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-2823 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-2822 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-3083 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-5 *1 (-862 *5 *4 *6 *7 *3)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-1084 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4)))) (-3083 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-349 (-1084 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-3082 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2)) (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *6)) (-15 -2998 (*6 $)) (-15 -2997 (*6 $))))))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))))
-((-3957 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT)))
-(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3957 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (T -863))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *6 (-717)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7)))))
-((-2826 (((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) |#3| (-694)) 48 T ELT)) (-2827 (((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) (-349 (-484)) (-694)) 43 T ELT)) (-2829 (((-2 (|:| -2401 (-694)) (|:| -3953 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)) 64 T ELT)) (-2828 (((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) |#5| (-694)) 73 (|has| |#3| (-391)) ELT)))
-(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2826 ((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) |#3| (-694))) (-15 -2827 ((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) (-349 (-484)) (-694))) (IF (|has| |#3| (-391)) (-15 -2828 ((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) |#5| (-694))) |%noBranch|) (-15 -2829 ((-2 (|:| -2401 (-694)) (|:| -3953 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3945 ($ |#4|)) (-15 -2998 (|#4| $)) (-15 -2997 (|#4| $))))) (T -864))
-((-2829 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *3 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3945 ($ *3)) (-15 -2998 (*3 $)) (-15 -2997 (*3 $))))))) (-2828 (*1 *2 *3 *4) (-12 (-4 *7 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| *3))) (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $))))))) (-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-484))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *9) (|:| |radicand| *9))) (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3945 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $))))))) (-2826 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-495)) (-4 *7 (-861 *3 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *8) (|:| |radicand| *8))) (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2830 (($ (-1033)) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 15 T ELT) (((-1033) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT)))
-(((-865) (-13 (-1013) (-552 (-1033)) (-10 -8 (-15 -2830 ($ (-1033)))))) (T -865))
-((-2830 (*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-865)))))
-((-2896 (((-1001 (-179)) $) 8 T ELT)) (-2897 (((-1001 (-179)) $) 9 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 10 T ELT)) (-3945 (((-772) $) 6 T ELT)))
-(((-866) (-113)) (T -866))
-((-2898 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))))
-(-13 (-552 (-772)) (-10 -8 (-15 -2898 ((-583 (-583 (-854 (-179)))) $)) (-15 -2897 ((-1001 (-179)) $)) (-15 -2896 ((-1001 (-179)) $))))
-(((-552 (-772)) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 80 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 81 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) 32 T ELT)) (-3466 (((-3 $ #1#) $) 43 T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1623 (($ $ |#1| |#2| $) 64 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 18 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-2820 ((|#2| $) 25 T ELT)) (-1624 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2894 (($ $) 29 T ELT)) (-3174 ((|#1| $) 27 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 52 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-3737 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-495))) ELT)) (-3465 (((-3 $ #1#) $ $) 92 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-495)) ELT)) (-3947 ((|#2| $) 23 T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 47 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 42 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ |#2|) 38 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 15 T CONST)) (-1622 (($ $ $ (-694)) 76 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) 86 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 28 T CONST)) (-2666 (($) 12 T CONST)) (-3056 (((-85) $ $) 85 T ELT)) (-3948 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 71 T ELT) (($ $ (-694)) 69 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-867 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| |#2| (-104)) (-15 -3737 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3992)) (-6 -3992) |%noBranch|))) (-961) (-716)) (T -867))
-((-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-961)) (-4 *2 (-716)))))
-((-2831 (((-3 (-630 |#1|) "failed") |#2| (-830)) 18 T ELT)))
-(((-868 |#1| |#2|) (-10 -7 (-15 -2831 ((-3 (-630 |#1|) "failed") |#2| (-830)))) (-495) (-600 |#1|)) (T -868))
-((-2831 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-830)) (-4 *5 (-495)) (-5 *2 (-630 *5)) (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 18 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 17 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 15 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 23 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 14 T ELT)) (-2200 (((-484) $) 10 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 24 T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) 22 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) 19 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 11 T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 16 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 20 T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 13 T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 8 T ELT)))
-(((-869 |#1|) (-19 |#1|) (-1128)) (T -869))
-NIL
-((-3840 (((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 16 T ELT)) (-3841 ((|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 18 T ELT)) (-3957 (((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)) 13 T ELT)))
-(((-870 |#1| |#2|) (-10 -7 (-15 -3840 ((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3841 (|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3957 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) (-1128) (-1128)) (T -870))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-870 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5)))))
-((-2832 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1089)) 6 T ELT)))
-(((-871) (-113)) (T -871))
-((-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-871)))) (-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1089)))))
-(-13 (-10 -8 (-15 -2832 ($ $ (-1089))) (-15 -2832 ($ $ (-1004 $)))))
-((-2833 (((-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-583 (-857 |#1|)) (-583 (-1089)) (-1089)) 26 T ELT) (((-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-583 (-857 |#1|)) (-583 (-1089))) 27 T ELT) (((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 |#1|))) (-857 |#1|) (-1089) (-857 |#1|) (-1089)) 49 T ELT)))
-(((-872 |#1|) (-10 -7 (-15 -2833 ((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 |#1|))) (-857 |#1|) (-1089) (-857 |#1|) (-1089))) (-15 -2833 ((-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-583 (-857 |#1|)) (-583 (-1089)))) (-15 -2833 ((-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-583 (-857 |#1|)) (-583 (-1089)) (-1089)))) (-13 (-312) (-120))) (T -872))
-((-2833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-5 *5 (-1089)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 *6))) (|:| |prim| (-1084 *6)))) (-5 *1 (-872 *6)))) (-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 *5))) (|:| |prim| (-1084 *5)))) (-5 *1 (-872 *5)))) (-2833 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 *5)))) (-5 *1 (-872 *5)))))
-((-2836 (((-583 |#1|) |#1| |#1|) 47 T ELT)) (-3722 (((-85) |#1|) 44 T ELT)) (-2835 ((|#1| |#1|) 80 T ELT)) (-2834 ((|#1| |#1|) 79 T ELT)))
-(((-873 |#1|) (-10 -7 (-15 -3722 ((-85) |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -2836 ((-583 |#1|) |#1| |#1|))) (-483)) (T -873))
-((-2836 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-483)))) (-2835 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))) (-2834 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))) (-3722 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-483)))))
-((-2837 (((-1184) (-772)) 9 T ELT)))
-(((-874) (-10 -7 (-15 -2837 ((-1184) (-772))))) (T -874))
-((-2837 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-874)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2483 (($ $ $) 65 (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1311 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-3136 (((-694)) 36 (-12 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-2838 ((|#2| $) 22 T ELT)) (-2839 ((|#1| $) 21 T ELT)) (-3723 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-3466 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2994 (($) NIL (-12 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-3186 (((-85) $) NIL (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1213 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2410 (((-85) $) NIL (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2531 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2857 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2840 (($ |#1| |#2|) 20 T ELT)) (-2010 (((-830) $) NIL (-12 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 39 (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT)) (-2400 (($ (-830)) NIL (-12 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3009 (($ $ $) NIL (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT)) (-2435 (($ $ $) NIL (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT)) (-3945 (((-772) $) 14 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-2666 (($) 25 (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) CONST)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3056 (((-85) $ $) 19 T ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2685 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3948 (($ $ $) NIL (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT)) (-3836 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3838 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (** (($ $ (-484)) NIL (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT) (($ $ (-694)) 32 (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT) (($ $ (-830)) NIL (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (* (($ (-484) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-694) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ (-830) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)))
-(((-875 |#1| |#2|) (-13 (-1013) (-10 -8 (IF (|has| |#1| (-319)) (IF (|has| |#2| (-319)) (-6 (-319)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-412)) (IF (|has| |#2| (-412)) (-6 (-412)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-756)) (IF (|has| |#2| (-756)) (-6 (-756)) |%noBranch|) |%noBranch|) (-15 -2840 ($ |#1| |#2|)) (-15 -2839 (|#1| $)) (-15 -2838 (|#2| $)))) (-1013) (-1013)) (T -875))
-((-2840 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2839 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1013)))) (-2838 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1013)))))
-((-3401 (((-1015) $) 13 T ELT)) (-2841 (($ (-446) (-1015)) 15 T ELT)) (-3541 (((-446) $) 11 T ELT)) (-3945 (((-772) $) 25 T ELT)))
-(((-876) (-13 (-552 (-772)) (-10 -8 (-15 -3541 ((-446) $)) (-15 -3401 ((-1015) $)) (-15 -2841 ($ (-446) (-1015)))))) (T -876))
-((-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-876)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-876)))) (-2841 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-876)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 29 T ELT)) (-2855 (($) 17 T CONST)) (-2561 (($ $ $) NIL T ELT)) (-2560 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2846 (((-632 (-782 $ $)) $) 62 T ELT)) (-2848 (((-632 $) $) 52 T ELT)) (-2845 (((-632 (-782 $ $)) $) 63 T ELT)) (-2844 (((-632 (-782 $ $)) $) 64 T ELT)) (-2849 (((-632 |#1|) $) 43 T ELT)) (-2847 (((-632 (-782 $ $)) $) 61 T ELT)) (-2853 (($ $ $) 38 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2854 (($) 16 T CONST)) (-2852 (($ $ $) 39 T ELT)) (-2842 (($ $ $) 36 T ELT)) (-2843 (($ $ $) 34 T ELT)) (-3945 (((-772) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2311 (($ $ $) 37 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 35 T ELT)))
-(((-877 |#1|) (-13 (-880) (-555 |#1|) (-10 -8 (-15 -2849 ((-632 |#1|) $)) (-15 -2848 ((-632 $) $)) (-15 -2847 ((-632 (-782 $ $)) $)) (-15 -2846 ((-632 (-782 $ $)) $)) (-15 -2845 ((-632 (-782 $ $)) $)) (-15 -2844 ((-632 (-782 $ $)) $)) (-15 -2843 ($ $ $)) (-15 -2842 ($ $ $)))) (-1013)) (T -877))
-((-2849 (*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2843 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))) (-2842 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))))
-((-3648 (((-877 |#1|) (-877 |#1|)) 46 T ELT)) (-2851 (((-877 |#1|) (-877 |#1|)) 22 T ELT)) (-2850 (((-1009 |#1|) (-877 |#1|)) 41 T ELT)))
-(((-878 |#1|) (-13 (-1128) (-10 -7 (-15 -2851 ((-877 |#1|) (-877 |#1|))) (-15 -2850 ((-1009 |#1|) (-877 |#1|))) (-15 -3648 ((-877 |#1|) (-877 |#1|))))) (-1013)) (T -878))
-((-2851 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-878 *4)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))))
-((-3957 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 29 T ELT)))
-(((-879 |#1| |#2|) (-13 (-1128) (-10 -7 (-15 -3957 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))) (-1013) (-1013)) (T -879))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6)))))
-((-2568 (((-85) $ $) 19 T ELT)) (-2313 (($ $) 8 T ELT)) (-2855 (($) 17 T CONST)) (-2561 (($ $ $) 9 T ELT)) (-2560 (($ $) 11 T ELT)) (-3242 (((-1072) $) 23 T ELT)) (-2853 (($ $ $) 15 T ELT)) (-3243 (((-1033) $) 22 T ELT)) (-2854 (($) 16 T CONST)) (-2852 (($ $ $) 14 T ELT)) (-3945 (((-772) $) 21 T ELT)) (-1264 (((-85) $ $) 20 T ELT)) (-2562 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-2312 (($ $ $) 7 T ELT)))
-(((-880) (-113)) (T -880))
-((-2855 (*1 *1) (-4 *1 (-880))) (-2854 (*1 *1) (-4 *1 (-880))) (-2853 (*1 *1 *1 *1) (-4 *1 (-880))) (-2852 (*1 *1 *1 *1) (-4 *1 (-880))))
-(-13 (-84) (-1013) (-10 -8 (-15 -2855 ($) -3951) (-15 -2854 ($) -3951) (-15 -2853 ($ $ $)) (-15 -2852 ($ $ $))))
-(((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-13) . T) ((-604) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2856 (($ $ $) 48 T ELT)) (-3517 (($ $ $) 49 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-2857 ((|#1| $) 50 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-881 |#1|) (-113) (-756)) (T -881))
-((-2857 (*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-3517 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-2856 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))))
-(-13 (-76 |t#1|) (-317 |t#1|) (-10 -8 (-15 -2857 (|t#1| $)) (-15 -3517 ($ $ $)) (-15 -2856 ($ $ $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2869 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|) 105 T ELT)) (-3754 ((|#2| |#2| |#2|) 103 T ELT)) (-2870 (((-2 (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|) 107 T ELT)) (-2871 (((-2 (|:| |coef1| |#2|) (|:| -3144 |#2|)) |#2| |#2|) 109 T ELT)) (-2878 (((-2 (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|) 132 (|has| |#1| (-391)) ELT)) (-2885 (((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 56 T ELT)) (-2859 (((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 80 T ELT)) (-2860 (((-2 (|:| |coef1| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 82 T ELT)) (-2868 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2863 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 89 T ELT)) (-2873 (((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2|) 121 T ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 92 T ELT)) (-2875 (((-583 (-694)) |#2| |#2|) 102 T ELT)) (-2883 ((|#1| |#2| |#2|) 50 T ELT)) (-2877 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|) 130 (|has| |#1| (-391)) ELT)) (-2876 ((|#1| |#2| |#2|) 128 (|has| |#1| (-391)) ELT)) (-2884 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 54 T ELT)) (-2858 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 79 T ELT)) (-3755 ((|#1| |#2| |#2|) 76 T ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|) 41 T ELT)) (-2882 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2867 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3190 ((|#2| |#2| |#2|) 93 T ELT)) (-2862 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 87 T ELT)) (-2861 ((|#2| |#2| |#2| (-694)) 85 T ELT)) (-3144 ((|#2| |#2| |#2|) 136 (|has| |#1| (-391)) ELT)) (-3465 (((-1178 |#2|) (-1178 |#2|) |#1|) 22 T ELT)) (-2879 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|) 46 T ELT)) (-2872 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2|) 119 T ELT)) (-3756 ((|#1| |#2|) 116 T ELT)) (-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 91 T ELT)) (-2864 ((|#2| |#2| |#2| (-694)) 90 T ELT)) (-2874 (((-583 |#2|) |#2| |#2|) 99 T ELT)) (-2881 ((|#2| |#2| |#1| |#1| (-694)) 62 T ELT)) (-2880 ((|#1| |#1| |#1| (-694)) 61 T ELT)) (* (((-1178 |#2|) |#1| (-1178 |#2|)) 17 T ELT)))
-(((-882 |#1| |#2|) (-10 -7 (-15 -3755 (|#1| |#2| |#2|)) (-15 -2858 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|)) (-15 -2860 ((-2 (|:| |coef1| |#2|) (|:| -3755 |#1|)) |#2| |#2|)) (-15 -2861 (|#2| |#2| |#2| (-694))) (-15 -2862 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2863 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2864 (|#2| |#2| |#2| (-694))) (-15 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2866 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -3190 (|#2| |#2| |#2|)) (-15 -2867 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3754 (|#2| |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef1| |#2|) (|:| -3144 |#2|)) |#2| |#2|)) (-15 -3756 (|#1| |#2|)) (-15 -2872 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2|)) (-15 -2873 ((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2|)) (-15 -2874 ((-583 |#2|) |#2| |#2|)) (-15 -2875 ((-583 (-694)) |#2| |#2|)) (IF (|has| |#1| (-391)) (PROGN (-15 -2876 (|#1| |#2| |#2|)) (-15 -2877 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|)) (-15 -2878 ((-2 (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|)) (-15 -3144 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1178 |#2|) |#1| (-1178 |#2|))) (-15 -3465 ((-1178 |#2|) (-1178 |#2|) |#1|)) (-15 -3751 ((-2 (|:| -3953 |#1|) (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|)) (-15 -2879 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|)) (-15 -2880 (|#1| |#1| |#1| (-694))) (-15 -2881 (|#2| |#2| |#1| |#1| (-694))) (-15 -2882 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2883 (|#1| |#2| |#2|)) (-15 -2884 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|)) (-15 -2885 ((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|))) (-495) (-1154 |#1|)) (T -882))
-((-2885 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2884 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))) (-2882 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2881 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2880 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *2 (-495)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1154 *2)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3751 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3953 *4) (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3465 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) (-5 *1 (-882 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) (-5 *1 (-882 *3 *4)))) (-3144 (*1 *2 *2 *2) (-12 (-4 *3 (-391)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2876 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2876 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-4 *2 (-391)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3756 (*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3144 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3144 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3144 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3754 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3190 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))) (-2864 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1154 *4)))) (-2863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))) (-2862 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))) (-2861 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1154 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3755 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1129) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-883) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $)) (-15 -3318 ((-1129) $))))) (T -883))
-((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-883)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-883)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 40 T ELT)) (-1311 (((-3 $ "failed") $ $) 54 T ELT)) (-3723 (($) NIL T CONST)) (-2887 (((-583 (-782 (-830) (-830))) $) 64 T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2886 (((-830) $) 91 T ELT)) (-2889 (((-583 (-830)) $) 17 T ELT)) (-2888 (((-1068 $) (-694)) 39 T ELT)) (-2890 (($ (-583 (-830))) 16 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3009 (($ $) 67 T ELT)) (-3945 (((-772) $) 87 T ELT) (((-583 (-830)) $) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 44 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 42 T ELT)) (-3838 (($ $ $) 46 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 49 T ELT)) (-3956 (((-694) $) 22 T ELT)))
-(((-884) (-13 (-721) (-552 (-583 (-830))) (-10 -8 (-15 -2890 ($ (-583 (-830)))) (-15 -2889 ((-583 (-830)) $)) (-15 -3956 ((-694) $)) (-15 -2888 ((-1068 $) (-694))) (-15 -2887 ((-583 (-782 (-830) (-830))) $)) (-15 -2886 ((-830) $)) (-15 -3009 ($ $))))) (T -884))
-((-2890 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1068 (-884))) (-5 *1 (-884)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884)))) (-3009 (*1 *1 *1) (-5 *1 (-884))))
-((-3948 (($ $ |#2|) 31 T ELT)) (-3836 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-349 (-484)) $) 27 T ELT) (($ $ (-349 (-484))) 29 T ELT)))
-(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 -3948 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-886 |#2| |#3| |#4|) (-961) (-716) (-756)) (T -885))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#3|) $) 95 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2892 (((-85) $) 94 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3947 ((|#2| $) 84 T ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-886 |#1| |#2| |#3|) (-113) (-961) (-716) (-756)) (T -886))
-((-3174 (*1 *2 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-85)))) (-2891 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2893 ($ $ |t#3| |t#2|)) (-15 -2893 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2894 ($ $)) (-15 -3174 (|t#1| $)) (-15 -3947 (|t#2| $)) (-15 -3081 ((-583 |t#3|) $)) (-15 -2892 ((-85) $)) (-15 -2891 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2895 (((-1001 (-179)) $) 8 T ELT)) (-2896 (((-1001 (-179)) $) 9 T ELT)) (-2897 (((-1001 (-179)) $) 10 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 11 T ELT)) (-3945 (((-772) $) 6 T ELT)))
-(((-887) (-113)) (T -887))
-((-2898 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))))
-(-13 (-552 (-772)) (-10 -8 (-15 -2898 ((-583 (-583 (-854 (-179)))) $)) (-15 -2897 ((-1001 (-179)) $)) (-15 -2896 ((-1001 (-179)) $)) (-15 -2895 ((-1001 (-179)) $))))
-(((-552 (-772)) . T))
-((-3081 (((-583 |#4|) $) 23 T ELT)) (-2908 (((-85) $) 55 T ELT)) (-2899 (((-85) $) 54 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2904 (((-85) $) 56 T ELT)) (-2906 (((-85) $ $) 62 T ELT)) (-2905 (((-85) $ $) 65 T ELT)) (-2907 (((-85) $) 60 T ELT)) (-2900 (((-583 |#5|) (-583 |#5|) $) 98 T ELT)) (-2901 (((-583 |#5|) (-583 |#5|) $) 95 T ELT)) (-2902 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2914 (((-583 |#4|) $) 27 T ELT)) (-2913 (((-85) |#4| $) 34 T ELT)) (-2903 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2910 (($ $ |#4|) 39 T ELT)) (-2912 (($ $ |#4|) 38 T ELT)) (-2911 (($ $ |#4|) 40 T ELT)) (-3056 (((-85) $ $) 46 T ELT)))
-(((-888 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2899 ((-85) |#1|)) (-15 -2900 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2901 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2902 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2903 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2904 ((-85) |#1|)) (-15 -2905 ((-85) |#1| |#1|)) (-15 -2906 ((-85) |#1| |#1|)) (-15 -2907 ((-85) |#1|)) (-15 -2908 ((-85) |#1|)) (-15 -2909 ((-2 (|:| |under| |#1|) (|:| -3130 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2913 ((-85) |#4| |#1|)) (-15 -2914 ((-583 |#4|) |#1|)) (-15 -3081 ((-583 |#4|) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-889 |#2| |#3| |#4| |#5|) (-961) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -888))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-1352 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3994)) ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 50 T ELT)) (-3402 (((-85) $) 53 T ELT)) (-3564 (($) 52 T ELT)) (-1945 (((-694) |#4| $) 48 (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3399 (($ $) 51 T ELT)) (-3971 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 43 T ELT)))
-(((-889 |#1| |#2| |#3| |#4|) (-113) (-961) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -889))
-((-3157 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3156 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-756)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2913 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2910 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2909 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3130 *1) (|:| |upper| *1))) (-4 *1 (-889 *4 *5 *3 *6)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2906 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2905 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2903 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2902 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2901 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2900 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
-(-13 (-1013) (-124 |t#4|) (-317 |t#4|) (-552 (-583 |t#4|)) (-10 -8 (-15 -3157 ((-3 $ "failed") (-583 |t#4|))) (-15 -3156 ($ (-583 |t#4|))) (-15 -3180 (|t#3| $)) (-15 -3081 ((-583 |t#3|) $)) (-15 -2914 ((-583 |t#3|) $)) (-15 -2913 ((-85) |t#3| $)) (-15 -2912 ($ $ |t#3|)) (-15 -2911 ($ $ |t#3|)) (-15 -2910 ($ $ |t#3|)) (-15 -2909 ((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |t#3|)) (-15 -2908 ((-85) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -2907 ((-85) $)) (-15 -2906 ((-85) $ $)) (-15 -2905 ((-85) $ $)) (-15 -2904 ((-85) $)) (-15 -2903 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2902 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2901 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2900 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2899 ((-85) $))) |%noBranch|)))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-317 |#4|) . T) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2916 (((-583 |#4|) |#4| |#4|) 135 T ELT)) (-2939 (((-583 |#4|) (-583 |#4|) (-85)) 123 (|has| |#1| (-391)) ELT) (((-583 |#4|) (-583 |#4|)) 124 (|has| |#1| (-391)) ELT)) (-2926 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 44 T ELT)) (-2925 (((-85) |#4|) 43 T ELT)) (-2938 (((-583 |#4|) |#4|) 120 (|has| |#1| (-391)) ELT)) (-2921 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|)) 24 T ELT)) (-2922 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 30 T ELT)) (-2923 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 31 T ELT)) (-2934 (((-3 (-2 (|:| |bas| (-415 |#1| |#2| |#3| |#4|)) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|)) 90 T ELT)) (-2936 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2937 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2915 (((-583 |#4|) (-583 |#4|)) 126 T ELT)) (-2931 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85)) 59 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 61 T ELT)) (-2932 ((|#4| |#4| (-583 |#4|)) 60 T ELT)) (-2940 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 131 (|has| |#1| (-391)) ELT)) (-2942 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 134 (|has| |#1| (-391)) ELT)) (-2941 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 133 (|has| |#1| (-391)) ELT)) (-2917 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 105 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 107 T ELT) (((-583 |#4|) (-583 |#4|) |#4|) 139 T ELT) (((-583 |#4|) |#4| |#4|) 136 T ELT) (((-583 |#4|) (-583 |#4|)) 106 T ELT)) (-2945 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2924 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 52 T ELT)) (-2920 (((-85) (-583 |#4|)) 79 T ELT)) (-2919 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 67 T ELT)) (-2928 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 37 T ELT)) (-2927 (((-85) |#4|) 36 T ELT)) (-2944 (((-583 |#4|) (-583 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2943 (((-583 |#4|) (-583 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2933 (((-583 |#4|) (-583 |#4|)) 83 T ELT)) (-2935 (((-583 |#4|) (-583 |#4|)) 97 T ELT)) (-2918 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-2930 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 50 T ELT)) (-2929 (((-85) |#4|) 45 T ELT)))
-(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2917 ((-583 |#4|) (-583 |#4|))) (-15 -2917 ((-583 |#4|) |#4| |#4|)) (-15 -2915 ((-583 |#4|) (-583 |#4|))) (-15 -2916 ((-583 |#4|) |#4| |#4|)) (-15 -2917 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2917 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2917 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -2918 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -2919 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2920 ((-85) (-583 |#4|))) (-15 -2921 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|))) (-15 -2922 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2925 ((-85) |#4|)) (-15 -2926 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2927 ((-85) |#4|)) (-15 -2928 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2929 ((-85) |#4|)) (-15 -2930 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2931 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2931 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85))) (-15 -2932 (|#4| |#4| (-583 |#4|))) (-15 -2933 ((-583 |#4|) (-583 |#4|))) (-15 -2934 ((-3 (-2 (|:| |bas| (-415 |#1| |#2| |#3| |#4|)) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2935 ((-583 |#4|) (-583 |#4|))) (-15 -2936 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2937 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-391)) (PROGN (-15 -2938 ((-583 |#4|) |#4|)) (-15 -2939 ((-583 |#4|) (-583 |#4|))) (-15 -2939 ((-583 |#4|) (-583 |#4|) (-85))) (-15 -2940 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2941 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2942 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2943 ((-583 |#4|) (-583 |#4|))) (-15 -2944 ((-583 |#4|) (-583 |#4|))) (-15 -2945 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -890))
-((-2945 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2940 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2939 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2938 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2937 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2936 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2934 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-415 *4 *5 *6 *7)) (|:| -3323 (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2933 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2932 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2)))) (-2931 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2931 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2918 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2917 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2917 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2917 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3)))) (-2916 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2917 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
-((-2946 (((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2948 (((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1178 |#1|)))) (-630 |#1|) (-1178 |#1|)) 45 T ELT)) (-2947 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT)))
-(((-891 |#1|) (-10 -7 (-15 -2946 ((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2947 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2948 ((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1178 |#1|)))) (-630 |#1|) (-1178 |#1|)))) (-312)) (T -891))
-((-2948 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1178 *5))))) (-5 *1 (-891 *5)) (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)))) (-2947 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-891 *5)))) (-2946 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6)))) (-5 *1 (-891 *6)) (-5 *3 (-630 *6)))))
-((-3970 (((-347 |#4|) |#4|) 61 T ELT)))
-(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3970 ((-347 |#4|) |#4|))) (-756) (-717) (-391) (-861 |#3| |#2| |#1|)) (T -892))
-((-3970 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-391)) (-5 *2 (-347 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3837 (($ (-694)) 122 (|has| |#1| (-23)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3995)) ELT) (($ $) 98 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 100 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 110 T ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) 107 T ELT) (((-484) |#1| $) 106 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 105 (|has| |#1| (-1013)) ELT)) (-3705 (($ (-583 |#1|)) 128 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3834 (((-630 |#1|) $ $) 115 (|has| |#1| (-961)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3831 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3832 ((|#1| $) 113 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 |#1|)) 126 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-3835 ((|#1| $ $) 116 (|has| |#1| (-961)) ELT)) (-3910 (((-830) $) 127 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-3833 (($ $ $) 114 T ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-1730 (($ $ $ (-484)) 101 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT) (($ (-583 |#1|)) 129 T ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-663)) ELT) (($ $ |#1|) 117 (|has| |#1| (-663)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-893 |#1|) (-113) (-961)) (T -893))
-((-3705 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961)))))
-(-13 (-1177 |t#1|) (-557 (-583 |t#1|)) (-10 -8 (-15 -3705 ($ (-583 |t#1|))) (-15 -3910 ((-830) $)) (-15 -3833 ($ $ $)) (-15 -3768 ($ $ (-583 |t#1|)))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-557 (-583 |#1|)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-323 |#1|) . T) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1128) . T) ((-1177 |#1|) . T))
-((-3957 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 17 T ELT)))
-(((-894 |#1| |#2|) (-10 -7 (-15 -3957 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)))) (-961) (-961)) (T -894))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6)))))
-((-2951 ((|#1| (-854 |#1|)) 14 T ELT)) (-2950 ((|#1| (-854 |#1|)) 13 T ELT)) (-2949 ((|#1| (-854 |#1|)) 12 T ELT)) (-2953 ((|#1| (-854 |#1|)) 16 T ELT)) (-2957 ((|#1| (-854 |#1|)) 24 T ELT)) (-2952 ((|#1| (-854 |#1|)) 15 T ELT)) (-2954 ((|#1| (-854 |#1|)) 17 T ELT)) (-2956 ((|#1| (-854 |#1|)) 23 T ELT)) (-2955 ((|#1| (-854 |#1|)) 22 T ELT)))
-(((-895 |#1|) (-10 -7 (-15 -2949 (|#1| (-854 |#1|))) (-15 -2950 (|#1| (-854 |#1|))) (-15 -2951 (|#1| (-854 |#1|))) (-15 -2952 (|#1| (-854 |#1|))) (-15 -2953 (|#1| (-854 |#1|))) (-15 -2954 (|#1| (-854 |#1|))) (-15 -2955 (|#1| (-854 |#1|))) (-15 -2956 (|#1| (-854 |#1|))) (-15 -2957 (|#1| (-854 |#1|)))) (-961)) (T -895))
-((-2957 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-((-2975 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2958 (((-3 |#1| "failed") |#1| (-694)) 1 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 11 T ELT)))
-(((-896 |#1|) (-113) (-1114)) (T -896))
-((-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2958 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(-13 (-10 -7 (-15 -2958 ((-3 |t#1| "failed") |t#1| (-694))) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|))))
-((-2986 ((|#4| |#4| (-583 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2985 ((|#4| |#4| (-583 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3957 ((|#4| (-1 |#4| (-857 |#1|)) |#4|) 33 T ELT)))
-(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2985 (|#4| |#4| |#3|)) (-15 -2985 (|#4| |#4| (-583 |#3|))) (-15 -2986 (|#4| |#4| |#3|)) (-15 -2986 (|#4| |#4| (-583 |#3|))) (-15 -3957 (|#4| (-1 |#4| (-857 |#1|)) |#4|))) (-961) (-717) (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089))))) (-861 (-857 |#1|) |#2| |#3|)) (T -897))
-((-3957 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6)) (-4 *5 (-717)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1="failed") (-1089)))))) (-5 *1 (-897 *4 *5 *6 *2)))) (-2986 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) (-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))))
-((-2987 ((|#2| |#3|) 35 T ELT)) (-3918 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 79 T ELT)) (-3917 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 100 T ELT)))
-(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3917 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3918 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|)) (-15 -2987 (|#2| |#3|))) (-299) (-1154 |#1|) (-1154 |#2|) (-661 |#2| |#3|)) (T -898))
-((-2987 (*1 *2 *3) (-12 (-4 *3 (-1154 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-898 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-661 *2 *3)))) (-3918 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) (-3917 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3400 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3648 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2991 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2992 (($ (-583 |#4|) |#4|) 25 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2988 (($ $) 69 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3402 (((-85) $) 70 T ELT)) (-3564 (($) 30 T ELT)) (-2989 ((|#4| $) 74 T ELT)) (-2990 (((-583 |#4|) $) 73 T ELT)) (-3945 (((-772) $) 68 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-899 |#1| |#2| |#3| |#4|) (-13 (-1013) (-552 (-772)) (-10 -8 (-15 -3564 ($)) (-15 -2992 ($ (-583 |#4|) |#4|)) (-15 -3400 ((-3 (-85) #1="failed") $)) (-15 -2991 ($ $ (-3 (-85) #1#))) (-15 -3402 ((-85) $)) (-15 -2990 ((-583 |#4|) $)) (-15 -2989 (|#4| $)) (-15 -2988 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3648 ($ $)) |%noBranch|) |%noBranch|))) (-391) (-756) (-717) (-861 |#1| |#3| |#2|)) (T -899))
-((-3564 (*1 *1) (-12 (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-2992 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-391)) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3)))) (-3400 (*1 *2 *1) (|partial| -12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2991 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-3402 (*1 *2 *1) (-12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2990 (*1 *2 *1) (-12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2989 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)))) (-2988 (*1 *1 *1) (-12 (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-3648 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))))
-((-2993 (((-899 (-349 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-349 (-484)))) (-899 (-349 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-349 (-484))))) 82 T ELT)))
-(((-900 |#1| |#2|) (-10 -7 (-15 -2993 ((-899 (-349 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-349 (-484)))) (-899 (-349 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-349 (-484))))))) (-583 (-1089)) (-694)) (T -900))
-((-2993 (*1 *2 *2) (-12 (-5 *2 (-899 (-349 (-484)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-349 (-484))))) (-14 *3 (-583 (-1089))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4)))))
-((-3269 (((-85) |#5| |#5|) 44 T ELT)) (-3272 (((-85) |#5| |#5|) 59 T ELT)) (-3277 (((-85) |#5| (-583 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3273 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3279 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) 70 T ELT)) (-3268 (((-1184)) 32 T ELT)) (-3267 (((-1184) (-1072) (-1072) (-1072)) 28 T ELT)) (-3278 (((-583 |#5|) (-583 |#5|)) 100 T ELT)) (-3280 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) 92 T ELT)) (-3281 (((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 122 T ELT)) (-3271 (((-85) |#5| |#5|) 53 T ELT)) (-3276 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3274 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3275 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3698 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3282 (((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3270 (((-583 |#5|) (-583 |#5|)) 49 T ELT)))
-(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3267 ((-1184) (-1072) (-1072) (-1072))) (-15 -3268 ((-1184))) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-583 |#5|) (-583 |#5|))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3274 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3275 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3698 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3276 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3277 ((-85) |#5| |#5|)) (-15 -3277 ((-85) |#5| (-583 |#5|))) (-15 -3278 ((-583 |#5|) (-583 |#5|))) (-15 -3279 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) (-15 -3280 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-15 -3281 ((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3282 ((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -901))
-((-3282 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3281 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1599 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-901 *5 *6 *7 *8 *3)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3267 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
-((-3830 (((-1089) $) 15 T ELT)) (-3401 (((-1072) $) 16 T ELT)) (-3226 (($ (-1089) (-1072)) 14 T ELT)) (-3945 (((-772) $) 13 T ELT)))
-(((-902) (-13 (-552 (-772)) (-10 -8 (-15 -3226 ($ (-1089) (-1072))) (-15 -3830 ((-1089) $)) (-15 -3401 ((-1072) $))))) (T -902))
-((-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-902)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-902)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-902)))))
-((-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1089) #1#) $) 72 T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) 102 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-1089) $) 67 T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) 99 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 121 T ELT) (((-630 |#2|) (-630 $)) 35 T ELT)) (-2994 (($) 105 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 82 T ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 91 T ELT)) (-2996 (($ $) 10 T ELT)) (-3444 (((-632 $) $) 27 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3445 (($) 16 T CONST)) (-3128 (($ $) 61 T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2995 (($ $) 12 T ELT)) (-3971 (((-800 (-484)) $) 77 T ELT) (((-800 (-329)) $) 86 T ELT) (((-473) $) 47 T ELT) (((-329) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1089)) 64 T ELT)) (-3126 (((-694)) 38 T CONST)) (-2685 (((-85) $ $) 57 T ELT)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -2685 ((-85) |#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3445 (|#1|) -3951) (-15 -3444 ((-632 |#1|) |#1|)) (-15 -3157 ((-3 (-484) #1="failed") |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3971 ((-179) |#1|)) (-15 -3971 ((-329) |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3945 (|#1| (-1089))) (-15 -3157 ((-3 (-1089) #1#) |#1|)) (-15 -3156 ((-1089) |#1|)) (-15 -2994 (|#1|)) (-15 -3128 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -2996 (|#1| |#1|)) (-15 -2796 ((-798 (-329) |#1|) |#1| (-800 (-329)) (-798 (-329) |#1|))) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| |#1|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-904 |#2|) (-495)) (T -903))
-((-3126 (*1 *2) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 164 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 167 (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3622 (((-484) $) 154 (|has| |#1| (-740)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1089) #2#) $) 162 (|has| |#1| (-950 (-1089))) ELT) (((-3 (-349 (-484)) #2#) $) 145 (|has| |#1| (-950 (-484))) ELT) (((-3 (-484) #2#) $) 143 (|has| |#1| (-950 (-484))) ELT)) (-3156 ((|#1| $) 204 T ELT) (((-1089) $) 163 (|has| |#1| (-950 (-1089))) ELT) (((-349 (-484)) $) 146 (|has| |#1| (-950 (-484))) ELT) (((-484) $) 144 (|has| |#1| (-950 (-484))) ELT)) (-2564 (($ $ $) 71 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 186 T ELT) (((-630 |#1|) (-630 $)) 185 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2994 (($) 171 (|has| |#1| (-483)) ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-3186 (((-85) $) 156 (|has| |#1| (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 180 (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 179 (|has| |#1| (-796 (-329))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2996 (($ $) 175 T ELT)) (-2998 ((|#1| $) 177 T ELT)) (-3444 (((-632 $) $) 142 (|has| |#1| (-1065)) ELT)) (-3187 (((-85) $) 155 (|has| |#1| (-740)) ELT)) (-1604 (((-3 (-583 $) #3="failed") (-583 $) $) 68 T ELT)) (-2531 (($ $ $) 147 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 148 (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 190 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 189 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 184 T ELT) (((-630 |#1|) (-1178 $)) 183 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3445 (($) 141 (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3128 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3130 ((|#1| $) 169 (|has| |#1| (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 166 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 165 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 197 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 196 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-1606 (((-694) $) 74 T ELT)) (-3799 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-694)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 136 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 134 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 133 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 132 (|has| |#1| (-811 (-1089))) ELT)) (-2995 (($ $) 174 T ELT)) (-2997 ((|#1| $) 176 T ELT)) (-3971 (((-800 (-484)) $) 182 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) 181 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-473) $) 159 (|has| |#1| (-553 (-473))) ELT) (((-329) $) 158 (|has| |#1| (-933)) ELT) (((-179) $) 157 (|has| |#1| (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 168 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1089)) 161 (|has| |#1| (-950 (-1089))) ELT)) (-2702 (((-632 $) $) 160 (OR (|has| |#1| (-118)) (-2562 (|has| $ (-118)) (|has| |#1| (-821)))) ELT)) (-3126 (((-694)) 40 T CONST)) (-3131 ((|#1| $) 170 (|has| |#1| (-483)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 (($ $) 153 (|has| |#1| (-740)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-694)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 135 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 131 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 130 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 129 (|has| |#1| (-811 (-1089))) ELT)) (-2566 (((-85) $ $) 149 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 151 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 150 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 152 (|has| |#1| (-756)) ELT)) (-3948 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT)))
-(((-904 |#1|) (-113) (-495)) (T -904))
-((-3948 (*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) (-2994 (*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-483)) (-4 *2 (-495)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))))
-(-13 (-312) (-38 |t#1|) (-950 |t#1|) (-288 |t#1|) (-184 |t#1|) (-328 |t#1|) (-794 |t#1|) (-342 |t#1|) (-10 -8 (-15 -3948 ($ |t#1| |t#1|)) (-15 -2998 (|t#1| $)) (-15 -2997 (|t#1| $)) (-15 -2996 ($ $)) (-15 -2995 ($ $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-950 (-484))) (PROGN (-6 (-950 (-484))) (-6 (-950 (-349 (-484))))) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-740)) (-6 (-740)) |%noBranch|) (IF (|has| |t#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-950 (-1089))) (-6 (-950 (-1089))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3129 (|t#1| $)) (-15 -3128 ($ $))) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -2994 ($)) (-15 -3131 (|t#1| $)) (-15 -3130 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-740)) (|has| |#1| (-120))) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 (-1089)) |has| |#1| (-950 (-1089))) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) |has| |#1| (-933)) ((-553 (-329)) |has| |#1| (-933)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-328 |#1|) . T) ((-342 |#1|) . T) ((-391) . T) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-714) |has| |#1| (-740)) ((-716) |has| |#1| (-740)) ((-718) |has| |#1| (-740)) ((-721) |has| |#1| (-740)) ((-740) |has| |#1| (-740)) ((-755) |has| |#1| (-740)) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-821) |has| |#1| (-821)) ((-832) . T) ((-933) |has| |#1| (-933)) ((-950 (-349 (-484))) |has| |#1| (-950 (-484))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-1089)) |has| |#1| (-950 (-1089))) ((-950 |#1|) . T) ((-963 (-349 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-1065)) ((-1128) . T) ((-1133) . T))
-((-3957 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT)))
-(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#2| |#1|) |#3|))) (-495) (-495) (-904 |#1|) (-904 |#2|)) (T -905))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-904 *6)) (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2999 (($ (-1055 |#1| |#2|)) 11 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-3123 (((-1055 |#1| |#2|) $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT)))
-(((-906 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -2999 ($ (-1055 |#1| |#2|))) (-15 -3123 ((-1055 |#1| |#2|) $)))) (-830) (-312)) (T -906))
-((-2999 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312)) (-5 *1 (-906 *3 *4)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 10 T ELT)) (-3945 (((-772) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-907) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $))))) (T -907))
-((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-907)))))
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-3002 (($ $) 51 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3832 (((-694) $) 50 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) 49 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3004 ((|#1| |#1| $) 53 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3003 ((|#1| $) 52 T ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-3000 ((|#1| $) 48 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-908 |#1|) (-113) (-1128)) (T -908))
-((-3004 (*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))) (-3002 (*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))))
-(-13 (-76 |t#1|) (-317 |t#1|) (-10 -8 (-15 -3004 (|t#1| |t#1| $)) (-15 -3003 (|t#1| $)) (-15 -3002 ($ $)) (-15 -3832 ((-694) $)) (-15 -3001 (|t#1| $)) (-15 -3000 (|t#1| $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3642 ((|#1| $) 12 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3005 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3006 ((|#1| $) 15 T ELT)) (-3007 ((|#1| $) 14 T ELT)) (-3008 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3799 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2660 (($) 8 T CONST)) (-2666 (($) 10 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-312)) ELT)))
-(((-909 |#1|) (-911 |#1|) (-146)) (T -909))
-NIL
-((-3188 (((-85) $) 43 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 78 T ELT)) (-3023 (((-85) $) 72 T ELT)) (-3022 (((-349 (-484)) $) 76 T ELT)) (-2410 (((-85) $) 42 T ELT)) (-3132 ((|#2| $) 22 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2484 (($ $) 58 T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3971 (((-473) $) 67 T ELT)) (-3009 (($ $) 17 T ELT)) (-3945 (((-772) $) 53 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-349 (-484))) NIL T ELT)) (-3126 (((-694)) 10 T CONST)) (-3382 ((|#2| $) 71 T ELT)) (-3056 (((-85) $ $) 26 T ELT)) (-2685 (((-85) $ $) 69 T ELT)) (-3836 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3838 (($ $ $) 27 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT)))
-(((-910 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| (-349 (-484)))) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -2685 ((-85) |#1| |#1|)) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 * (|#1| |#1| (-349 (-484)))) (-15 -2484 (|#1| |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3024 ((-3 (-349 (-484)) #1="failed") |#1|)) (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -3382 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 -2410 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3188 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-911 |#2|) (-146)) (T -910))
-((-3126 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 143 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 141 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3156 (((-484) $) 142 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 140 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 139 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 123 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 122 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 121 T ELT) (((-630 |#1|) (-630 $)) 120 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3642 ((|#1| $) 111 T ELT)) (-3024 (((-3 (-349 (-484)) "failed") $) 107 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 109 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 108 (|has| |#1| (-483)) ELT)) (-3005 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 113 T ELT)) (-2531 (($ $ $) 95 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 96 (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 125 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 124 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 119 T ELT) (((-630 |#1|) (-1178 $)) 118 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3006 ((|#1| $) 114 T ELT)) (-3007 ((|#1| $) 115 T ELT)) (-3008 ((|#1| $) 116 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 128 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 127 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3799 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-694)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 90 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 88 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 87 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 86 (|has| |#1| (-811 (-1089))) ELT)) (-3971 (((-473) $) 105 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 117 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-349 (-484))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (((-632 $) $) 106 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 ((|#1| $) 110 (|has| |#1| (-973)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-694)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 89 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 85 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 84 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 83 (|has| |#1| (-811 (-1089))) ELT)) (-2566 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 99 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 98 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 100 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-349 (-484))) 102 (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) 101 (|has| |#1| (-312)) ELT)))
-(((-911 |#1|) (-113) (-146)) (T -911))
-((-3009 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3005 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))))
-(-13 (-38 |t#1|) (-354 |t#1|) (-184 |t#1|) (-288 |t#1|) (-328 |t#1|) (-10 -8 (-15 -3009 ($ $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3132 (|t#1| $)) (-15 -3005 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3642 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3382 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-312)) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-312)) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-312)) ((-582 |#1|) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-312)) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-349 (-484))) |has| |#1| (-312)) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-968 (-349 (-484))) |has| |#1| (-312)) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3957 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT)))
-(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|))) (-911 |#2|) (-146) (-911 |#4|) (-146)) (T -912))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6)) (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3723 (($) NIL T CONST)) (-3002 (($ $) 24 T ELT)) (-3010 (($ (-583 |#1|)) 34 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3832 (((-694) $) 27 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 29 T ELT)) (-3608 (($ |#1| $) 18 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) 28 T ELT)) (-1274 ((|#1| $) 23 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3004 ((|#1| |#1| $) 17 T ELT)) (-3402 (((-85) $) 19 T ELT)) (-3564 (($) NIL T ELT)) (-3003 ((|#1| $) 22 T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-3000 ((|#1| $) 31 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-913 |#1|) (-13 (-908 |#1|) (-10 -8 (-15 -3010 ($ (-583 |#1|))))) (-1013)) (T -913))
-((-3010 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-913 *3)))))
-((-3037 (($ $) 12 T ELT)) (-3011 (($ $ (-484)) 13 T ELT)))
-(((-914 |#1|) (-10 -7 (-15 -3037 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-484)))) (-915)) (T -914))
-NIL
-((-3037 (($ $) 6 T ELT)) (-3011 (($ $ (-484)) 7 T ELT)) (** (($ $ (-349 (-484))) 8 T ELT)))
-(((-915) (-113)) (T -915))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-349 (-484))))) (-3011 (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-484)))) (-3037 (*1 *1 *1) (-4 *1 (-915))))
-(-13 (-10 -8 (-15 -3037 ($ $)) (-15 -3011 ($ $ (-484))) (-15 ** ($ $ (-349 (-484))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1646 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2063 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2061 (((-85) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1781 (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT) (((-630 (-349 |#2|))) NIL T ELT)) (-3329 (((-349 |#2|) $) NIL T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1607 (((-85) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3136 (((-694)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| (-349 |#2|) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-3 (-349 |#2|) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| (-349 |#2|) (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-349 |#2|) $) NIL T ELT)) (-1791 (($ (-1178 (-349 |#2|)) (-1178 $)) NIL T ELT) (($ (-1178 (-349 |#2|))) 79 T ELT) (($ (-1178 |#2|) |#2|) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-349 |#2|) (-299)) ELT)) (-2564 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1780 (((-630 (-349 |#2|)) $ (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) (-630 $)) NIL T ELT)) (-1651 (((-1178 $) (-1178 $)) NIL T ELT)) (-3841 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-349 |#3|)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1638 (((-583 (-583 |#1|))) NIL (|has| |#1| (-319)) ELT)) (-1663 (((-85) |#1| |#1|) NIL T ELT)) (-3108 (((-830)) NIL T ELT)) (-2994 (($) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1658 (((-85)) NIL T ELT)) (-1657 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2563 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3502 (($ $) NIL T ELT)) (-2833 (($) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1679 (((-85) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1763 (($ $ (-694)) NIL (|has| (-349 |#2|) (-299)) ELT) (($ $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3722 (((-85) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3771 (((-830) $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-743 (-830)) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3376 (((-694)) NIL T ELT)) (-1652 (((-1178 $) (-1178 $)) NIL T ELT)) (-3132 (((-349 |#2|) $) NIL T ELT)) (-1639 (((-583 (-857 |#1|)) (-1089)) NIL (|has| |#1| (-312)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2014 ((|#3| $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2010 (((-830) $) NIL (|has| (-349 |#2|) (-319)) ELT)) (-3079 ((|#3| $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-1178 $) $) NIL T ELT) (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1647 (((-630 (-349 |#2|))) 57 T ELT)) (-1649 (((-630 (-349 |#2|))) 56 T ELT)) (-2484 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1644 (($ (-1178 |#2|) |#2|) 80 T ELT)) (-1648 (((-630 (-349 |#2|))) 55 T ELT)) (-1650 (((-630 (-349 |#2|))) 54 T ELT)) (-1643 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1656 (((-1178 $)) 51 T ELT)) (-3917 (((-1178 $)) 50 T ELT)) (-1655 (((-85) $) NIL T ELT)) (-1654 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3445 (($) NIL (|has| (-349 |#2|) (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1641 (((-3 |#2| #1#)) 70 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1665 (((-694)) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3731 (((-347 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-349 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1606 (((-694) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3799 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1642 (((-3 |#2| #1#)) 68 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3756 (((-349 |#2|) (-1178 $)) NIL T ELT) (((-349 |#2|)) 47 T ELT)) (-1764 (((-694) $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3757 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-2408 (((-630 (-349 |#2|)) (-1178 $) (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3185 ((|#3|) 58 T ELT)) (-1673 (($) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3224 (((-1178 (-349 |#2|)) $ (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-349 |#2|)) $) 81 T ELT) (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT)) (-3971 (((-1178 (-349 |#2|)) $) NIL T ELT) (($ (-1178 (-349 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1653 (((-1178 $) (-1178 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 |#2|)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2702 (($ $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-632 $) $) NIL (|has| (-349 |#2|) (-118)) ELT)) (-2449 ((|#3| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1662 (((-85)) 65 T ELT)) (-1661 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-1640 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1664 (((-85)) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| (-349 |#2|) (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 |#2|)) NIL T ELT) (($ (-349 |#2|) $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| (-349 |#2|) (-312)) ELT)))
-(((-916 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1133) (-1154 |#1|) (-1154 (-349 |#2|)) (-349 |#2|) (-694)) (T -916))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3017 (((-583 (-484)) $) 73 T ELT)) (-3013 (($ (-583 (-484))) 81 T ELT)) (-3129 (((-484) $) 48 (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) 60 T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) 57 (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) 60 (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3015 (((-583 (-484)) $) 79 T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-484) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) 45 T ELT)) (-3444 (((-632 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3957 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-484) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-349 (-484)) $) 50 T ELT)) (-3016 (((-1068 (-484)) $) 78 T ELT)) (-3012 (($ (-583 (-484)) (-583 (-484))) 82 T ELT)) (-3130 (((-484) $) 64 (|has| (-484) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1089)) (-583 (-484))) NIL (|has| (-484) (-455 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-455 (-1089) (-484))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) 15 (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) 47 T ELT)) (-3014 (((-583 (-484)) $) 80 T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-484) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3945 (((-772) $) 108 T ELT) (($ (-484)) 51 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 27 T ELT) (($ (-484)) 51 T ELT) (($ (-1089)) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) 25 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) 13 T CONST)) (-3131 (((-484) $) 62 (|has| (-484) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) 14 T CONST)) (-2666 (($) 17 T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) 40 (|has| (-484) (-756)) ELT)) (-3948 (($ $ $) 36 T ELT) (($ (-484) (-484)) 38 T ELT)) (-3836 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3838 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ (-484)) NIL T ELT)))
-(((-917 |#1|) (-13 (-904 (-484)) (-552 (-349 (-484))) (-10 -8 (-15 -3128 ((-349 (-484)) $)) (-15 -3017 ((-583 (-484)) $)) (-15 -3016 ((-1068 (-484)) $)) (-15 -3015 ((-583 (-484)) $)) (-15 -3014 ((-583 (-484)) $)) (-15 -3013 ($ (-583 (-484)))) (-15 -3012 ($ (-583 (-484)) (-583 (-484)))))) (-484)) (T -917))
-((-3128 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3013 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3012 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
-((-3018 (((-51) (-349 (-484)) (-484)) 9 T ELT)))
-(((-918) (-10 -7 (-15 -3018 ((-51) (-349 (-484)) (-484))))) (T -918))
-((-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-918)))))
-((-3136 (((-484)) 21 T ELT)) (-3021 (((-484)) 26 T ELT)) (-3020 (((-1184) (-484)) 24 T ELT)) (-3019 (((-484) (-484)) 27 T ELT) (((-484)) 20 T ELT)))
-(((-919) (-10 -7 (-15 -3019 ((-484))) (-15 -3136 ((-484))) (-15 -3019 ((-484) (-484))) (-15 -3020 ((-1184) (-484))) (-15 -3021 ((-484))))) (T -919))
-((-3021 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-919)))) (-3019 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3136 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3019 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))))
-((-3732 (((-347 |#1|) |#1|) 43 T ELT)) (-3731 (((-347 |#1|) |#1|) 41 T ELT)))
-(((-920 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3732 ((-347 |#1|) |#1|))) (-1154 (-349 (-484)))) (T -920))
-((-3732 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1154 (-349 (-484)))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1154 (-349 (-484)))))))
-((-3024 (((-3 (-349 (-484)) "failed") |#1|) 15 T ELT)) (-3023 (((-85) |#1|) 14 T ELT)) (-3022 (((-349 (-484)) |#1|) 10 T ELT)))
-(((-921 |#1|) (-10 -7 (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -3024 ((-3 (-349 (-484)) "failed") |#1|))) (-950 (-349 (-484)))) (T -921))
-((-3024 (*1 *2 *3) (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))) (-3023 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-349 (-484)))))) (-3022 (*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))))
-((-3787 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3799 ((|#2| $ #1#) 10 T ELT)) (-3028 (((-85) $ $) 18 T ELT)))
-(((-922 |#1| |#2|) (-10 -7 (-15 -3787 (|#2| |#1| #1="value" |#2|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3799 (|#2| |#1| #1#))) (-923 |#2|) (-1128)) (T -922))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ "value") 51 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-923 |#1|) (-113) (-1128)) (T -923))
-((-3521 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3031 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1128)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1128)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3026 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3995)) (-4 *1 (-923 *3)) (-4 *3 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3995)) (-4 *1 (-923 *2)) (-4 *2 (-1128)))) (-3025 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-923 *2)) (-4 *2 (-1128)))))
-(-13 (-428 |t#1|) (-10 -8 (-15 -3521 ((-583 $) $)) (-15 -3031 ((-583 $) $)) (-15 -3526 ((-85) $)) (-15 -3401 (|t#1| $)) (-15 -3799 (|t#1| $ "value")) (-15 -3632 ((-85) $)) (-15 -3030 ((-583 |t#1|) $)) (-15 -3029 ((-484) $ $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3028 ((-85) $ $)) (-15 -3027 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3026 ($ $ (-583 $))) (-15 -3787 (|t#1| $ "value" |t#1|)) (-15 -3025 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-3037 (($ $) 9 T ELT) (($ $ (-830)) 49 T ELT) (($ (-349 (-484))) 13 T ELT) (($ (-484)) 15 T ELT)) (-3183 (((-3 $ #1="failed") (-1084 $) (-830) (-772)) 24 T ELT) (((-3 $ #1#) (-1084 $) (-830)) 32 T ELT)) (-3011 (($ $ (-484)) 58 T ELT)) (-3126 (((-694)) 18 T CONST)) (-3184 (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-1084 (-349 (-484)))) 63 T ELT) (((-583 $) (-1084 (-484))) 68 T ELT) (((-583 $) (-857 $)) 72 T ELT) (((-583 $) (-857 (-349 (-484)))) 76 T ELT) (((-583 $) (-857 (-484))) 80 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-349 (-484))) 53 T ELT)))
-(((-924 |#1|) (-10 -7 (-15 -3037 (|#1| (-484))) (-15 -3037 (|#1| (-349 (-484)))) (-15 -3037 (|#1| |#1| (-830))) (-15 -3184 ((-583 |#1|) (-857 (-484)))) (-15 -3184 ((-583 |#1|) (-857 (-349 (-484))))) (-15 -3184 ((-583 |#1|) (-857 |#1|))) (-15 -3184 ((-583 |#1|) (-1084 (-484)))) (-15 -3184 ((-583 |#1|) (-1084 (-349 (-484))))) (-15 -3184 ((-583 |#1|) (-1084 |#1|))) (-15 -3183 ((-3 |#1| #1="failed") (-1084 |#1|) (-830))) (-15 -3183 ((-3 |#1| #1#) (-1084 |#1|) (-830) (-772))) (-15 ** (|#1| |#1| (-349 (-484)))) (-15 -3011 (|#1| |#1| (-484))) (-15 -3037 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3126 ((-694)) -3951) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-925)) (T -924))
-((-3126 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 111 T ELT)) (-2063 (($ $) 112 T ELT)) (-2061 (((-85) $) 114 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 131 T ELT)) (-3970 (((-347 $) $) 132 T ELT)) (-3037 (($ $) 95 T ELT) (($ $ (-830)) 81 T ELT) (($ (-349 (-484))) 80 T ELT) (($ (-484)) 79 T ELT)) (-1607 (((-85) $ $) 122 T ELT)) (-3622 (((-484) $) 148 T ELT)) (-3723 (($) 23 T CONST)) (-3183 (((-3 $ "failed") (-1084 $) (-830) (-772)) 89 T ELT) (((-3 $ "failed") (-1084 $) (-830)) 88 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 108 (|has| (-349 (-484)) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 106 (|has| (-349 (-484)) (-950 (-349 (-484)))) ELT) (((-3 (-349 (-484)) #1#) $) 103 T ELT)) (-3156 (((-484) $) 107 (|has| (-349 (-484)) (-950 (-484))) ELT) (((-349 (-484)) $) 105 (|has| (-349 (-484)) (-950 (-349 (-484)))) ELT) (((-349 (-484)) $) 104 T ELT)) (-3033 (($ $ (-772)) 78 T ELT)) (-3032 (($ $ (-772)) 77 T ELT)) (-2564 (($ $ $) 126 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 125 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 120 T ELT)) (-3722 (((-85) $) 133 T ELT)) (-3186 (((-85) $) 146 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 94 T ELT)) (-3187 (((-85) $) 147 T ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 129 T ELT)) (-2531 (($ $ $) 140 T ELT)) (-2857 (($ $ $) 141 T ELT)) (-3034 (((-3 (-1084 $) "failed") $) 90 T ELT)) (-3036 (((-3 (-772) "failed") $) 92 T ELT)) (-3035 (((-3 (-1084 $) "failed") $) 91 T ELT)) (-1890 (($ (-583 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 134 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 119 T ELT)) (-3144 (($ (-583 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3731 (((-347 $) $) 130 T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 127 T ELT)) (-3465 (((-3 $ "failed") $ $) 110 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 121 T ELT)) (-1606 (((-694) $) 123 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 124 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 138 T ELT) (($ $) 109 T ELT) (($ (-349 (-484))) 102 T ELT) (($ (-484)) 101 T ELT) (($ (-349 (-484))) 98 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 113 T ELT)) (-3769 (((-349 (-484)) $ $) 76 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3184 (((-583 $) (-1084 $)) 87 T ELT) (((-583 $) (-1084 (-349 (-484)))) 86 T ELT) (((-583 $) (-1084 (-484))) 85 T ELT) (((-583 $) (-857 $)) 84 T ELT) (((-583 $) (-857 (-349 (-484)))) 83 T ELT) (((-583 $) (-857 (-484))) 82 T ELT)) (-3382 (($ $) 149 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 142 T ELT)) (-2567 (((-85) $ $) 144 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 143 T ELT)) (-2685 (((-85) $ $) 145 T ELT)) (-3948 (($ $ $) 139 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 135 T ELT) (($ $ (-349 (-484))) 93 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-349 (-484)) $) 137 T ELT) (($ $ (-349 (-484))) 136 T ELT) (($ (-484) $) 100 T ELT) (($ $ (-484)) 99 T ELT) (($ (-349 (-484)) $) 97 T ELT) (($ $ (-349 (-484))) 96 T ELT)))
-(((-925) (-113)) (T -925))
-((-3037 (*1 *1 *1) (-4 *1 (-925))) (-3036 (*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3035 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-925)))) (-3034 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-925)))) (-3183 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-830)) (-5 *4 (-772)) (-4 *1 (-925)))) (-3183 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-830)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1084 (-349 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-857 (-349 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-925)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-925)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3769 (*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-349 (-484))))))
-(-13 (-120) (-755) (-146) (-312) (-354 (-349 (-484))) (-38 (-484)) (-38 (-349 (-484))) (-915) (-10 -8 (-15 -3036 ((-3 (-772) "failed") $)) (-15 -3035 ((-3 (-1084 $) "failed") $)) (-15 -3034 ((-3 (-1084 $) "failed") $)) (-15 -3183 ((-3 $ "failed") (-1084 $) (-830) (-772))) (-15 -3183 ((-3 $ "failed") (-1084 $) (-830))) (-15 -3184 ((-583 $) (-1084 $))) (-15 -3184 ((-583 $) (-1084 (-349 (-484))))) (-15 -3184 ((-583 $) (-1084 (-484)))) (-15 -3184 ((-583 $) (-857 $))) (-15 -3184 ((-583 $) (-857 (-349 (-484))))) (-15 -3184 ((-583 $) (-857 (-484)))) (-15 -3037 ($ $ (-830))) (-15 -3037 ($ $)) (-15 -3037 ($ (-349 (-484)))) (-15 -3037 ($ (-484))) (-15 -3033 ($ $ (-772))) (-15 -3032 ($ $ (-772))) (-15 -3769 ((-349 (-484)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 (-484)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 (-484) (-484)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-354 (-349 (-484))) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 (-484)) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 (-484)) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 (-484)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-832) . T) ((-915) . T) ((-950 (-349 (-484))) . T) ((-950 (-484)) |has| (-349 (-484)) (-950 (-484))) ((-963 (-349 (-484))) . T) ((-963 (-484)) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 (-484)) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
-((-3038 (((-2 (|:| |ans| |#2|) (|:| -3137 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT)))
-(((-926 |#1| |#2|) (-10 -7 (-15 -3038 ((-2 (|:| |ans| |#2|) (|:| -3137 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-391) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-27) (-363 |#1|))) (T -926))
-((-3038 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-363 *8))) (-4 *8 (-13 (-391) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85)))) (-5 *1 (-926 *8 *4)))))
-((-3039 (((-3 (-583 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT)))
-(((-927 |#1| |#2|) (-10 -7 (-15 -3039 ((-3 (-583 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-391) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-27) (-363 |#1|))) (T -927))
-((-3039 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-363 *8))) (-4 *8 (-13 (-391) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4)))))
-((-3042 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3266 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)) 39 T ELT)) (-3040 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |c| (-349 |#2|)) (|:| -3093 |#2|)) "failed") (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3041 (((-2 (|:| |ans| (-349 |#2|)) (|:| |nosol| (-85))) (-349 |#2|) (-349 |#2|)) 76 T ELT)))
-(((-928 |#1| |#2|) (-10 -7 (-15 -3040 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |c| (-349 |#2|)) (|:| -3093 |#2|)) "failed") (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|))) (-15 -3041 ((-2 (|:| |ans| (-349 |#2|)) (|:| |nosol| (-85))) (-349 |#2|) (-349 |#2|))) (-15 -3042 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3266 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-950 (-484))) (-1154 |#1|)) (T -928))
-((-3042 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1154 *6)) (-4 *6 (-13 (-312) (-120) (-950 *4))) (-5 *4 (-484)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3266 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-928 *6 *3)))) (-3041 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |ans| (-349 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5)) (-5 *3 (-349 *5)))) (-3040 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |c| (-349 *6)) (|:| -3093 *6))) (-5 *1 (-928 *5 *6)) (-5 *3 (-349 *6)))))
-((-3043 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |h| |#2|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| -3093 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3044 (((-3 (-583 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|)) 34 T ELT)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -3043 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |h| |#2|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| -3093 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|))) (-15 -3044 ((-3 (-583 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|)))) (-13 (-312) (-120) (-950 (-484))) (-1154 |#1|)) (T -929))
-((-3044 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-349 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-349 *5)))) (-3043 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |h| *6) (|:| |c1| (-349 *6)) (|:| |c2| (-349 *6)) (|:| -3093 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-349 *6)))))
-((-3045 (((-1 |#1|) (-583 (-2 (|:| -3401 |#1|) (|:| -1521 (-484))))) 34 T ELT)) (-3100 (((-1 |#1|) (-1009 |#1|)) 42 T ELT)) (-3046 (((-1 |#1|) (-1178 |#1|) (-1178 (-484)) (-484)) 31 T ELT)))
-(((-930 |#1|) (-10 -7 (-15 -3100 ((-1 |#1|) (-1009 |#1|))) (-15 -3045 ((-1 |#1|) (-583 (-2 (|:| -3401 |#1|) (|:| -1521 (-484)))))) (-15 -3046 ((-1 |#1|) (-1178 |#1|) (-1178 (-484)) (-484)))) (-1013)) (T -930))
-((-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1178 *6)) (-5 *4 (-1178 (-484))) (-5 *5 (-484)) (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-930 *6)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3401 *4) (|:| -1521 (-484))))) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))))
-((-3771 (((-694) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT)))
-(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3771 ((-694) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-319) (-312))) (T -931))
-((-3771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-4 *4 (-1154 (-349 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-319) (-312))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3594 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-932) (-13 (-995) (-10 -8 (-15 -3594 ((-1048) $)) (-15 -3233 ((-1048) $))))) (T -932))
-((-3594 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-932)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-932)))))
-((-3971 (((-179) $) 6 T ELT) (((-329) $) 9 T ELT)))
-(((-933) (-113)) (T -933))
-NIL
-(-13 (-553 (-179)) (-553 (-329)))
-(((-553 (-179)) . T) ((-553 (-329)) . T))
-((-3134 (((-3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) "failed") |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 32 T ELT) (((-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484))) 29 T ELT)) (-3049 (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484))) 34 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-349 (-484))) 30 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 33 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1|) 28 T ELT)) (-3048 (((-583 (-349 (-484))) (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) 20 T ELT)) (-3047 (((-349 (-484)) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 17 T ELT)))
-(((-934 |#1|) (-10 -7 (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1|)) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-349 (-484)))) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484)))) (-15 -3134 ((-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484)))) (-15 -3134 ((-3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) "failed") |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-15 -3047 ((-349 (-484)) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-15 -3048 ((-583 (-349 (-484))) (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))))) (-1154 (-484))) (T -934))
-((-3048 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *2 (-583 (-349 (-484)))) (-5 *1 (-934 *4)) (-4 *4 (-1154 (-484))))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *2 (-349 (-484))) (-5 *1 (-934 *4)) (-4 *4 (-1154 (-484))))) (-3134 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))))) (-3134 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *4 (-349 (-484))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))))) (-3049 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5))))) (-3049 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-349 (-484))))) (-3049 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))) (-3049 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))))))
-((-3134 (((-3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) "failed") |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 35 T ELT) (((-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484))) 32 T ELT)) (-3049 (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484))) 30 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-349 (-484))) 26 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 28 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1|) 24 T ELT)))
-(((-935 |#1|) (-10 -7 (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1|)) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-349 (-484)))) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484)))) (-15 -3134 ((-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484)))) (-15 -3134 ((-3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) "failed") |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))) (-1154 (-349 (-484)))) (T -935))
-((-3134 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484)))))) (-3134 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *4 (-349 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1154 *4)))) (-3049 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1154 *5)) (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5))))) (-3049 (*1 *2 *3 *4) (-12 (-5 *4 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *4) (|:| -3137 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1154 *4)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484)))) (-5 *4 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))) (-3049 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484)))))))
-((-3572 (((-583 (-329)) (-857 (-484)) (-329)) 28 T ELT) (((-583 (-329)) (-857 (-349 (-484))) (-329)) 27 T ELT)) (-3968 (((-583 (-583 (-329))) (-583 (-857 (-484))) (-583 (-1089)) (-329)) 37 T ELT)))
-(((-936) (-10 -7 (-15 -3572 ((-583 (-329)) (-857 (-349 (-484))) (-329))) (-15 -3572 ((-583 (-329)) (-857 (-484)) (-329))) (-15 -3968 ((-583 (-583 (-329))) (-583 (-857 (-484))) (-583 (-1089)) (-329))))) (T -936))
-((-3968 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-583 (-1089))) (-5 *2 (-583 (-583 (-329)))) (-5 *1 (-936)) (-5 *5 (-329)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 (-329))) (-5 *1 (-936)) (-5 *4 (-329)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-349 (-484)))) (-5 *2 (-583 (-329))) (-5 *1 (-936)) (-5 *4 (-329)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 75 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-484)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) 70 T ELT)) (-3723 (($) NIL T CONST)) (-3183 (((-3 $ #1#) (-1084 $) (-830) (-772)) NIL T ELT) (((-3 $ #1#) (-1084 $) (-830)) 55 T ELT)) (-3157 (((-3 (-349 (-484)) #1#) $) NIL (|has| (-349 (-484)) (-950 (-349 (-484)))) ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-349 (-484)) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT)) (-3156 (((-349 (-484)) $) 17 (|has| (-349 (-484)) (-950 (-349 (-484)))) ELT) (((-349 (-484)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-484) $) NIL (OR (|has| (-349 (-484)) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT)) (-3033 (($ $ (-772)) 47 T ELT)) (-3032 (($ $ (-772)) 48 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3182 (((-349 (-484)) $ $) 21 T ELT)) (-3466 (((-3 $ #1#) $) 88 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) 66 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3187 (((-85) $) 69 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3034 (((-3 (-1084 $) #1#) $) 83 T ELT)) (-3036 (((-3 (-772) #1#) $) 82 T ELT)) (-3035 (((-3 (-1084 $) #1#) $) 80 T ELT)) (-3050 (((-3 (-974 $ (-1084 $)) #1#) $) 78 T ELT)) (-1890 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 89 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3945 (((-772) $) 87 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) 63 T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-349 (-484)) $ $) 27 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3184 (((-583 $) (-1084 $)) 61 T ELT) (((-583 $) (-1084 (-349 (-484)))) NIL T ELT) (((-583 $) (-1084 (-484))) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-857 (-349 (-484)))) NIL T ELT) (((-583 $) (-857 (-484))) NIL T ELT)) (-3051 (($ (-974 $ (-1084 $)) (-772)) 46 T ELT)) (-3382 (($ $) 22 T ELT)) (-2660 (($) 32 T CONST)) (-2666 (($) 39 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 76 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 24 T ELT)) (-3948 (($ $ $) 37 T ELT)) (-3836 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3838 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ (-484)) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-937 |#1|) (-13 (-925) (-354 |#1|) (-38 |#1|) (-10 -8 (-15 -3051 ($ (-974 $ (-1084 $)) (-772))) (-15 -3050 ((-3 (-974 $ (-1084 $)) "failed") $)) (-15 -3182 ((-349 (-484)) $ $)))) (-13 (-755) (-312) (-933))) (T -937))
-((-3051 (*1 *1 *2 *3) (-12 (-5 *2 (-974 (-937 *4) (-1084 (-937 *4)))) (-5 *3 (-772)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-312) (-933))))) (-3050 (*1 *2 *1) (|partial| -12 (-5 *2 (-974 (-937 *3) (-1084 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-312) (-933))))) (-3182 (*1 *2 *1 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-312) (-933))))))
-((-3052 (((-2 (|:| -3266 |#2|) (|:| -2513 (-583 |#1|))) |#2| (-583 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
-(((-938 |#1| |#2|) (-10 -7 (-15 -3052 (|#2| |#2| |#1|)) (-15 -3052 ((-2 (|:| -3266 |#2|) (|:| -2513 (-583 |#1|))) |#2| (-583 |#1|)))) (-312) (-600 |#1|)) (T -938))
-((-3052 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3266 *3) (|:| -2513 (-583 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5)))) (-3052 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3053 ((|#1| $ |#1|) 12 T ELT)) (-3055 (($ |#1|) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3054 ((|#1| $) 11 T ELT)) (-3945 (((-772) $) 17 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT)))
-(((-939 |#1|) (-13 (-1013) (-10 -8 (-15 -3055 ($ |#1|)) (-15 -3054 (|#1| $)) (-15 -3053 (|#1| $ |#1|)) (-15 -3056 ((-85) $ $)))) (-1128)) (T -939))
-((-3056 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1128)))) (-3055 (*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128)))) (-3054 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128)))) (-3053 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3681 (((-583 $) (-583 |#4|)) 114 T ELT) (((-583 $) (-583 |#4|) (-85)) 115 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 113 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 108 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3798 (((-3 $ #1#) $) 45 T ELT)) (-3684 ((|#4| |#4| $) 66 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3437 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 129 T ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 19 T ELT)) (-3245 (((-85) |#4| $) 27 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 106 T ELT)) (-3797 (((-3 |#4| #1#) $) 42 T ELT)) (-3192 (((-583 $) |#4| $) 89 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3238 (((-583 $) |#4| $) 111 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 112 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3438 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3439 (($ |#4| $) 78 T ELT) (($ (-583 |#4|) $) 79 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3696 (((-583 |#4|) $) NIL T ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 40 T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3768 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 91 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 85 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 14 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) |#4| $) NIL (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3399 (($ $) 13 T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 22 T ELT)) (-2910 (($ $ |#3|) 49 T ELT)) (-2912 (($ $ |#3|) 51 T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3677 (((-694) $) NIL (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3189 (((-583 $) |#4| $) 88 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-583 |#3|) $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3932 (((-85) |#3| $) 62 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-940 |#1| |#2| |#3| |#4|) (-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3439 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3681 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3681 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3438 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3437 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -940))
-((-3439 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3681 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3681 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-((-3057 (((-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484))))))) (-630 (-349 (-857 (-484))))) 67 T ELT)) (-3058 (((-583 (-630 (-265 (-484)))) (-265 (-484)) (-630 (-349 (-857 (-484))))) 52 T ELT)) (-3059 (((-583 (-265 (-484))) (-630 (-349 (-857 (-484))))) 45 T ELT)) (-3063 (((-583 (-630 (-265 (-484)))) (-630 (-349 (-857 (-484))))) 85 T ELT)) (-3061 (((-630 (-265 (-484))) (-630 (-265 (-484)))) 38 T ELT)) (-3062 (((-583 (-630 (-265 (-484)))) (-583 (-630 (-265 (-484))))) 74 T ELT)) (-3060 (((-3 (-630 (-265 (-484))) "failed") (-630 (-349 (-857 (-484))))) 82 T ELT)))
-(((-941) (-10 -7 (-15 -3057 ((-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484))))))) (-630 (-349 (-857 (-484)))))) (-15 -3058 ((-583 (-630 (-265 (-484)))) (-265 (-484)) (-630 (-349 (-857 (-484)))))) (-15 -3059 ((-583 (-265 (-484))) (-630 (-349 (-857 (-484)))))) (-15 -3060 ((-3 (-630 (-265 (-484))) "failed") (-630 (-349 (-857 (-484)))))) (-15 -3061 ((-630 (-265 (-484))) (-630 (-265 (-484))))) (-15 -3062 ((-583 (-630 (-265 (-484)))) (-583 (-630 (-265 (-484)))))) (-15 -3063 ((-583 (-630 (-265 (-484)))) (-630 (-349 (-857 (-484)))))))) (T -941))
-((-3063 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))) (-3061 (*1 *2 *2) (-12 (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))) (-3060 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-265 (-484)))) (-5 *1 (-941)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)) (-5 *3 (-265 (-484))))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484)))))))) (-5 *1 (-941)))))
-((-3067 (((-583 (-630 |#1|)) (-583 (-630 |#1|))) 69 T ELT) (((-630 |#1|) (-630 |#1|)) 68 T ELT) (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 67 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 64 T ELT)) (-3066 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 62 T ELT) (((-630 |#1|) (-630 |#1|) (-830)) 61 T ELT)) (-3068 (((-583 (-630 (-484))) (-583 (-583 (-484)))) 80 T ELT) (((-583 (-630 (-484))) (-583 (-813 (-484))) (-484)) 79 T ELT) (((-630 (-484)) (-583 (-484))) 76 T ELT) (((-630 (-484)) (-813 (-484)) (-484)) 74 T ELT)) (-3065 (((-630 (-857 |#1|)) (-694)) 94 T ELT)) (-3064 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 48 (|has| |#1| (-6 (-3996 #1="*"))) ELT) (((-630 |#1|) (-630 |#1|) (-830)) 46 (|has| |#1| (-6 (-3996 #1#))) ELT)))
-(((-942 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3996 #1="*"))) (-15 -3064 ((-630 |#1|) (-630 |#1|) (-830))) |%noBranch|) (IF (|has| |#1| (-6 (-3996 #1#))) (-15 -3064 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) |%noBranch|) (-15 -3065 ((-630 (-857 |#1|)) (-694))) (-15 -3066 ((-630 |#1|) (-630 |#1|) (-830))) (-15 -3066 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) (-15 -3067 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -3067 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3067 ((-630 |#1|) (-630 |#1|))) (-15 -3067 ((-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3068 ((-630 (-484)) (-813 (-484)) (-484))) (-15 -3068 ((-630 (-484)) (-583 (-484)))) (-15 -3068 ((-583 (-630 (-484))) (-583 (-813 (-484))) (-484))) (-15 -3068 ((-583 (-630 (-484))) (-583 (-583 (-484)))))) (-961)) (T -942))
-((-3068 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-484)))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-813 (-484)))) (-5 *4 (-484)) (-5 *2 (-583 (-630 *4))) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-484))) (-5 *4 (-484)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3996 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3996 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4)))))
-((-3072 (((-630 |#1|) (-583 (-630 |#1|)) (-1178 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3417 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1178 (-1178 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1178 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3076 (((-1178 |#1|) (-583 (-1178 |#1|)) (-484)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT)) (-3075 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-484) (-484)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT)) (-3074 (((-85) (-583 (-630 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-583 (-630 |#1|)) (-484)) 100 (|has| |#1| (-312)) ELT)) (-3071 (((-1178 (-1178 |#1|)) (-583 (-630 |#1|)) (-1178 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3070 (((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|)) 46 T ELT)) (-3069 (((-630 |#1|) (-1178 (-1178 |#1|))) 39 T ELT)) (-3073 (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-484)) 93 (|has| |#1| (-312)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-484)) 91 (|has| |#1| (-312)) ELT)))
-(((-943 |#1|) (-10 -7 (-15 -3069 ((-630 |#1|) (-1178 (-1178 |#1|)))) (-15 -3070 ((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3071 ((-1178 (-1178 |#1|)) (-583 (-630 |#1|)) (-1178 |#1|))) (-15 -3072 ((-630 |#1|) (-583 (-630 |#1|)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-484))) (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-484))) (-15 -3074 ((-85) (-583 (-630 |#1|)) (-484))) (-15 -3074 ((-85) (-583 (-630 |#1|)))) (-15 -3417 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1178 |#1|))) (-15 -3417 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1178 (-1178 |#1|))))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-312)) (PROGN (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-484) (-484))) (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)))) (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85))) (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830))) (-15 -3076 ((-1178 |#1|) (-583 (-1178 |#1|)) (-484)))) |%noBranch|) |%noBranch|)) (-961)) (T -943))
-((-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1178 *5))) (-5 *4 (-484)) (-5 *2 (-1178 *5)) (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-319)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4))))) (-3075 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-312)) (-4 *6 (-319)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-583 (-630 *6))))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 (-1178 *5))) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *4)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *5)))) (-3073 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-961)))) (-3073 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)) (-4 *4 (-312)) (-4 *4 (-961)))) (-3073 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-630 *6)) (-5 *1 (-943 *6)) (-4 *6 (-312)) (-4 *6 (-961)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1178 *5)) (-4 *5 (-258)) (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-258)) (-4 *5 (-961)) (-5 *2 (-1178 (-1178 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1178 *5)))) (-3070 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)))))
-((-3077 ((|#1| (-830) |#1|) 18 T ELT)))
-(((-944 |#1|) (-10 -7 (-15 -3077 (|#1| (-830) |#1|))) (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $))))) (T -944))
-((-3077 (*1 *2 *3 *2) (-12 (-5 *3 (-830)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $))))))))
-((-3078 ((|#1| |#1| (-830)) 18 T ELT)))
-(((-945 |#1|) (-10 -7 (-15 -3078 (|#1| |#1| (-830)))) (-13 (-1013) (-10 -8 (-15 * ($ $ $))))) (T -945))
-((-3078 (*1 *2 *2 *3) (-12 (-5 *3 (-830)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
-((-3945 ((|#1| (-262)) 11 T ELT) (((-1184) |#1|) 9 T ELT)))
-(((-946 |#1|) (-10 -7 (-15 -3945 ((-1184) |#1|)) (-15 -3945 (|#1| (-262)))) (-1128)) (T -946))
-((-3945 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-946 *2)) (-4 *2 (-1128)))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-946 *3)) (-4 *3 (-1128)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3841 (($ |#4|) 24 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3079 ((|#4| $) 26 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3126 (((-694)) 42 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 22 T CONST)) (-3056 (((-85) $ $) 39 T ELT)) (-3836 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-947 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3841 ($ |#4|)) (-15 -3945 ($ |#4|)) (-15 -3079 (|#4| $)))) (-312) (-717) (-756) (-861 |#1| |#2| |#3|) (-583 |#4|)) (T -947))
-((-3841 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3945 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3079 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-948) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $))))) (T -948))
-((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-948)))))
-((-3156 ((|#2| $) 10 T ELT)))
-(((-949 |#1| |#2|) (-10 -7 (-15 -3156 (|#2| |#1|))) (-950 |#2|) (-1128)) (T -949))
-NIL
-((-3157 (((-3 |#1| "failed") $) 9 T ELT)) (-3156 ((|#1| $) 8 T ELT)) (-3945 (($ |#1|) 6 T ELT)))
-(((-950 |#1|) (-113) (-1128)) (T -950))
-((-3157 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1128)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1128)))))
-(-13 (-555 |t#1|) (-10 -8 (-15 -3157 ((-3 |t#1| "failed") $)) (-15 -3156 (|t#1| $))))
-(((-555 |#1|) . T))
-((-3080 (((-583 (-583 (-249 (-349 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1089))) 38 T ELT)))
-(((-951 |#1| |#2|) (-10 -7 (-15 -3080 ((-583 (-583 (-249 (-349 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1089))))) (-495) (-13 (-495) (-950 |#1|))) (T -951))
-((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-4 *6 (-13 (-495) (-950 *5))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *6)))))) (-5 *1 (-951 *5 *6)))))
-((-3081 (((-583 (-1089)) (-349 (-857 |#1|))) 17 T ELT)) (-3083 (((-349 (-1084 (-349 (-857 |#1|)))) (-349 (-857 |#1|)) (-1089)) 24 T ELT)) (-3084 (((-349 (-857 |#1|)) (-349 (-1084 (-349 (-857 |#1|)))) (-1089)) 26 T ELT)) (-3082 (((-3 (-1089) "failed") (-349 (-857 |#1|))) 20 T ELT)) (-3767 (((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-583 (-249 (-349 (-857 |#1|))))) 32 T ELT) (((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|)))) 33 T ELT) (((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-583 (-1089)) (-583 (-349 (-857 |#1|)))) 28 T ELT) (((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|))) 29 T ELT)) (-3945 (((-349 (-857 |#1|)) |#1|) 11 T ELT)))
-(((-952 |#1|) (-10 -7 (-15 -3081 ((-583 (-1089)) (-349 (-857 |#1|)))) (-15 -3082 ((-3 (-1089) "failed") (-349 (-857 |#1|)))) (-15 -3083 ((-349 (-1084 (-349 (-857 |#1|)))) (-349 (-857 |#1|)) (-1089))) (-15 -3084 ((-349 (-857 |#1|)) (-349 (-1084 (-349 (-857 |#1|)))) (-1089))) (-15 -3767 ((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|)))) (-15 -3767 ((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-583 (-1089)) (-583 (-349 (-857 |#1|))))) (-15 -3767 ((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))))) (-15 -3767 ((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-583 (-249 (-349 (-857 |#1|)))))) (-15 -3945 ((-349 (-857 |#1|)) |#1|))) (-495)) (T -952))
-((-3945 (*1 *2 *3) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-495)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-249 (-349 (-857 *4))))) (-5 *2 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-349 (-857 *4)))) (-5 *2 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3767 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1089))) (-5 *4 (-583 (-349 (-857 *5)))) (-5 *2 (-349 (-857 *5))) (-4 *5 (-495)) (-5 *1 (-952 *5)))) (-3767 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-349 (-857 *4))) (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-1084 (-349 (-857 *5))))) (-5 *4 (-1089)) (-5 *2 (-349 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-495)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-349 (-1084 (-349 (-857 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-349 (-857 *5))))) (-3082 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-1089)) (-5 *1 (-952 *4)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-1089))) (-5 *1 (-952 *4)))))
-((-3085 (((-329)) 17 T ELT)) (-3100 (((-1 (-329)) (-329) (-329)) 22 T ELT)) (-3093 (((-1 (-329)) (-694)) 48 T ELT)) (-3086 (((-329)) 37 T ELT)) (-3089 (((-1 (-329)) (-329) (-329)) 38 T ELT)) (-3087 (((-329)) 29 T ELT)) (-3090 (((-1 (-329)) (-329)) 30 T ELT)) (-3088 (((-329) (-694)) 43 T ELT)) (-3091 (((-1 (-329)) (-694)) 44 T ELT)) (-3092 (((-1 (-329)) (-694) (-694)) 47 T ELT)) (-3383 (((-1 (-329)) (-694) (-694)) 45 T ELT)))
-(((-953) (-10 -7 (-15 -3085 ((-329))) (-15 -3086 ((-329))) (-15 -3087 ((-329))) (-15 -3088 ((-329) (-694))) (-15 -3100 ((-1 (-329)) (-329) (-329))) (-15 -3089 ((-1 (-329)) (-329) (-329))) (-15 -3090 ((-1 (-329)) (-329))) (-15 -3091 ((-1 (-329)) (-694))) (-15 -3383 ((-1 (-329)) (-694) (-694))) (-15 -3092 ((-1 (-329)) (-694) (-694))) (-15 -3093 ((-1 (-329)) (-694))))) (T -953))
-((-3093 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))) (-3092 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))) (-3383 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))) (-3090 (*1 *2 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329)))) (-3089 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329)))) (-3100 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-329)) (-5 *1 (-953)))) (-3087 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953)))) (-3086 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953)))) (-3085 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953)))))
-((-3731 (((-347 |#1|) |#1|) 33 T ELT)))
-(((-954 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1|))) (-1154 (-349 (-857 (-484))))) (T -954))
-((-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1154 (-349 (-857 (-484))))))))
-((-3094 (((-349 (-347 (-857 |#1|))) (-349 (-857 |#1|))) 14 T ELT)))
-(((-955 |#1|) (-10 -7 (-15 -3094 ((-349 (-347 (-857 |#1|))) (-349 (-857 |#1|))))) (-258)) (T -955))
-((-3094 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-258)) (-5 *2 (-349 (-347 (-857 *4)))) (-5 *1 (-955 *4)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3723 (($) 23 T CONST)) (-3098 ((|#1| $) 29 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3097 ((|#1| $) 28 T ELT)) (-3095 ((|#1|) 26 T CONST)) (-3945 (((-772) $) 13 T ELT)) (-3096 ((|#1| $) 27 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT)))
-(((-956 |#1|) (-113) (-23)) (T -956))
-((-3098 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3095 (*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -3098 (|t#1| $)) (-15 -3097 (|t#1| $)) (-15 -3096 (|t#1| $)) (-15 -3095 (|t#1|) -3951)))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3099 (($) 31 T CONST)) (-3723 (($) 23 T CONST)) (-3098 ((|#1| $) 29 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3097 ((|#1| $) 28 T ELT)) (-3095 ((|#1|) 26 T CONST)) (-3945 (((-772) $) 13 T ELT)) (-3096 ((|#1| $) 27 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT)))
+((-2556 (((-633 (-1138)) $ (-1138)) NIL T ELT)) (-2557 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2555 (((-695) $ (-102)) NIL T ELT)) (-2558 (((-633 (-101)) $ (-101)) 22 T ELT)) (-2560 (($ (-338)) 12 T ELT) (($ (-1073)) 14 T ELT)) (-2559 (((-85) $) 19 T ELT)) (-3946 (((-773) $) 26 T ELT)) (-1700 (($ $) 23 T ELT)))
+(((-772) (-13 (-771) (-553 (-773)) (-10 -8 (-15 -2560 ($ (-338))) (-15 -2560 ($ (-1073))) (-15 -2559 ((-85) $))))) (T -772))
+((-2560 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-772)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))))
+((-2569 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2590 (($ $ $) 125 T ELT)) (-2605 (((-485) $) 31 T ELT) (((-485)) 36 T ELT)) (-2600 (($ (-485)) 53 T ELT)) (-2597 (($ $ $) 54 T ELT) (($ (-584 $)) 84 T ELT)) (-2581 (($ $ (-584 $)) 82 T ELT)) (-2602 (((-485) $) 34 T ELT)) (-2584 (($ $ $) 73 T ELT)) (-3532 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2603 (((-485) $) 33 T ELT)) (-2585 (($ $ $) 72 T ELT)) (-3535 (($ $) 114 T ELT)) (-2588 (($ $ $) 129 T ELT)) (-2571 (($ (-584 $)) 61 T ELT)) (-3540 (($ $ (-584 $)) 79 T ELT)) (-2599 (($ (-485) (-485)) 55 T ELT)) (-2612 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3138 (($ $ (-485)) 43 T ELT) (($ $) 46 T ELT)) (-2565 (($ $ $) 97 T ELT)) (-2586 (($ $ $) 132 T ELT)) (-2580 (($ $) 115 T ELT)) (-2564 (($ $ $) 98 T ELT)) (-2576 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2838 (((-1185) $) 10 T ELT)) (-2579 (($ $) 118 T ELT) (($ $ (-695)) 122 T ELT)) (-2582 (($ $ $) 75 T ELT)) (-2583 (($ $ $) 74 T ELT)) (-2596 (($ $ (-584 $)) 110 T ELT)) (-2594 (($ $ $) 113 T ELT)) (-2573 (($ (-584 $)) 59 T ELT)) (-2574 (($ $) 70 T ELT) (($ (-584 $)) 71 T ELT)) (-2577 (($ $ $) 123 T ELT)) (-2578 (($ $) 116 T ELT)) (-2589 (($ $ $) 128 T ELT)) (-3533 (($ (-485)) 21 T ELT) (($ (-1090)) 23 T ELT) (($ (-1073)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2562 (($ $ $) 101 T ELT)) (-2561 (($ $) 102 T ELT)) (-2607 (((-1185) (-1073)) 15 T ELT)) (-2608 (($ (-1073)) 14 T ELT)) (-3124 (($ (-584 (-584 $))) 58 T ELT)) (-3139 (($ $ (-485)) 42 T ELT) (($ $) 45 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2592 (($ $ $) 131 T ELT)) (-3470 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2593 (((-85) $) 108 T ELT)) (-2595 (($ $ (-584 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2601 (($ (-485)) 39 T ELT)) (-2604 (((-485) $) 32 T ELT) (((-485)) 35 T ELT)) (-2598 (($ $ $) 40 T ELT) (($ (-584 $)) 83 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3466 (($ $ $) 99 T ELT)) (-3565 (($) 13 T ELT)) (-3800 (($ $ (-584 $)) 109 T ELT)) (-2606 (((-1073) (-1073)) 8 T ELT)) (-3836 (($ $) 117 T ELT) (($ $ (-695)) 121 T ELT)) (-2566 (($ $ $) 96 T ELT)) (-3758 (($ $ (-695)) 139 T ELT)) (-2572 (($ (-584 $)) 60 T ELT)) (-3946 (((-773) $) 19 T ELT)) (-3773 (($ $ (-485)) 41 T ELT) (($ $) 44 T ELT)) (-2575 (($ $) 68 T ELT) (($ (-584 $)) 69 T ELT)) (-3241 (($ $) 66 T ELT) (($ (-584 $)) 67 T ELT)) (-2591 (($ $) 124 T ELT)) (-2570 (($ (-584 $)) 65 T ELT)) (-3102 (($ $ $) 105 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2587 (($ $ $) 130 T ELT)) (-2563 (($ $ $) 100 T ELT)) (-3737 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2567 (($ $ $) 89 T ELT)) (-2568 (($ $ $) 87 T ELT)) (-3057 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2685 (($ $ $) 88 T ELT)) (-2686 (($ $ $) 86 T ELT)) (-3949 (($ $ $) 94 T ELT)) (-3837 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3839 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT)))
+(((-773) (-13 (-1014) (-10 -8 (-15 -2838 ((-1185) $)) (-15 -2608 ($ (-1073))) (-15 -2607 ((-1185) (-1073))) (-15 -3533 ($ (-485))) (-15 -3533 ($ (-1090))) (-15 -3533 ($ (-1073))) (-15 -3533 ($ (-179))) (-15 -3565 ($)) (-15 -2606 ((-1073) (-1073))) (-15 -2605 ((-485) $)) (-15 -2604 ((-485) $)) (-15 -2605 ((-485))) (-15 -2604 ((-485))) (-15 -2603 ((-485) $)) (-15 -2602 ((-485) $)) (-15 -2601 ($ (-485))) (-15 -2600 ($ (-485))) (-15 -2599 ($ (-485) (-485))) (-15 -3139 ($ $ (-485))) (-15 -3138 ($ $ (-485))) (-15 -3773 ($ $ (-485))) (-15 -3139 ($ $)) (-15 -3138 ($ $)) (-15 -3773 ($ $)) (-15 -2598 ($ $ $)) (-15 -2597 ($ $ $)) (-15 -2598 ($ (-584 $))) (-15 -2597 ($ (-584 $))) (-15 -2596 ($ $ (-584 $))) (-15 -2595 ($ $ (-584 $))) (-15 -2595 ($ $ $ $)) (-15 -2594 ($ $ $)) (-15 -2593 ((-85) $)) (-15 -3800 ($ $ (-584 $))) (-15 -3535 ($ $)) (-15 -2592 ($ $ $)) (-15 -2591 ($ $)) (-15 -3124 ($ (-584 (-584 $)))) (-15 -2590 ($ $ $)) (-15 -2612 ($ $)) (-15 -2612 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -3758 ($ $ (-695))) (-15 -3102 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -3540 ($ $ (-584 $))) (-15 -2581 ($ $ (-584 $))) (-15 -2580 ($ $)) (-15 -3836 ($ $)) (-15 -3836 ($ $ (-695))) (-15 -2579 ($ $)) (-15 -2579 ($ $ (-695))) (-15 -2578 ($ $)) (-15 -2577 ($ $ $)) (-15 -3532 ($ $)) (-15 -3532 ($ $ $)) (-15 -3532 ($ $ $ $)) (-15 -2576 ($ $)) (-15 -2576 ($ $ $)) (-15 -2576 ($ $ $ $)) (-15 -3470 ($ $)) (-15 -3470 ($ $ $)) (-15 -3470 ($ $ $ $)) (-15 -3241 ($ $)) (-15 -3241 ($ (-584 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-584 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-584 $))) (-15 -2573 ($ (-584 $))) (-15 -2572 ($ (-584 $))) (-15 -2571 ($ (-584 $))) (-15 -2570 ($ (-584 $))) (-15 -3057 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -3839 ($ $ $)) (-15 -3837 ($ $ $)) (-15 -3837 ($ $)) (-15 * ($ $ $)) (-15 -3949 ($ $ $)) (-15 ** ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -3466 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $)) (-15 -3737 ($ $ $)) (-15 -3737 ($ $))))) (T -773))
+((-2838 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-773)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-773)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-773)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-773)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-773)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773)))) (-3565 (*1 *1) (-5 *1 (-773))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-773)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2605 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2604 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2599 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3773 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3139 (*1 *1 *1) (-5 *1 (-773))) (-3138 (*1 *1 *1) (-5 *1 (-773))) (-3773 (*1 *1 *1) (-5 *1 (-773))) (-2598 (*1 *1 *1 *1) (-5 *1 (-773))) (-2597 (*1 *1 *1 *1) (-5 *1 (-773))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2595 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2594 (*1 *1 *1 *1) (-5 *1 (-773))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3535 (*1 *1 *1) (-5 *1 (-773))) (-2592 (*1 *1 *1 *1) (-5 *1 (-773))) (-2591 (*1 *1 *1) (-5 *1 (-773))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) (-2590 (*1 *1 *1 *1) (-5 *1 (-773))) (-2612 (*1 *1 *1) (-5 *1 (-773))) (-2612 (*1 *1 *1 *1) (-5 *1 (-773))) (-2589 (*1 *1 *1 *1) (-5 *1 (-773))) (-2588 (*1 *1 *1 *1) (-5 *1 (-773))) (-2587 (*1 *1 *1 *1) (-5 *1 (-773))) (-2586 (*1 *1 *1 *1) (-5 *1 (-773))) (-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-3102 (*1 *1 *1 *1) (-5 *1 (-773))) (-2585 (*1 *1 *1 *1) (-5 *1 (-773))) (-2584 (*1 *1 *1 *1) (-5 *1 (-773))) (-2583 (*1 *1 *1 *1) (-5 *1 (-773))) (-2582 (*1 *1 *1 *1) (-5 *1 (-773))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2581 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2580 (*1 *1 *1) (-5 *1 (-773))) (-3836 (*1 *1 *1) (-5 *1 (-773))) (-3836 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2579 (*1 *1 *1) (-5 *1 (-773))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2578 (*1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *1 *1) (-5 *1 (-773))) (-3532 (*1 *1 *1) (-5 *1 (-773))) (-3532 (*1 *1 *1 *1) (-5 *1 (-773))) (-3532 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3470 (*1 *1 *1) (-5 *1 (-773))) (-3470 (*1 *1 *1 *1) (-5 *1 (-773))) (-3470 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3241 (*1 *1 *1) (-5 *1 (-773))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2575 (*1 *1 *1) (-5 *1 (-773))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2574 (*1 *1 *1) (-5 *1 (-773))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3057 (*1 *1 *1 *1) (-5 *1 (-773))) (-2569 (*1 *1 *1 *1) (-5 *1 (-773))) (-2686 (*1 *1 *1 *1) (-5 *1 (-773))) (-2568 (*1 *1 *1 *1) (-5 *1 (-773))) (-2685 (*1 *1 *1 *1) (-5 *1 (-773))) (-2567 (*1 *1 *1 *1) (-5 *1 (-773))) (-3839 (*1 *1 *1 *1) (-5 *1 (-773))) (-3837 (*1 *1 *1 *1) (-5 *1 (-773))) (-3837 (*1 *1 *1) (-5 *1 (-773))) (* (*1 *1 *1 *1) (-5 *1 (-773))) (-3949 (*1 *1 *1 *1) (-5 *1 (-773))) (** (*1 *1 *1 *1) (-5 *1 (-773))) (-2566 (*1 *1 *1 *1) (-5 *1 (-773))) (-2565 (*1 *1 *1 *1) (-5 *1 (-773))) (-2564 (*1 *1 *1 *1) (-5 *1 (-773))) (-3466 (*1 *1 *1 *1) (-5 *1 (-773))) (-2563 (*1 *1 *1 *1) (-5 *1 (-773))) (-2562 (*1 *1 *1 *1) (-5 *1 (-773))) (-2561 (*1 *1 *1) (-5 *1 (-773))) (-3737 (*1 *1 *1 *1) (-5 *1 (-773))) (-3737 (*1 *1 *1) (-5 *1 (-773))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3831 (((-3 $ "failed") (-1090)) 36 T ELT)) (-3137 (((-695)) 32 T ELT)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3243 (((-1073) $) 43 T ELT)) (-2401 (($ (-831)) 28 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3972 (((-1090) $) 13 T ELT) (((-474) $) 19 T ELT) (((-801 (-330)) $) 26 T ELT) (((-801 (-485)) $) 22 T ELT)) (-3946 (((-773) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 40 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 38 T ELT)))
+(((-774 |#1|) (-13 (-753) (-554 (-1090)) (-554 (-474)) (-554 (-801 (-330))) (-554 (-801 (-485))) (-10 -8 (-15 -3831 ((-3 $ "failed") (-1090))))) (-584 (-1090))) (T -774))
+((-3831 (*1 *1 *2) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3542 (((-447) $) 12 T ELT)) (-2609 (((-584 (-381)) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT)))
+(((-775) (-13 (-1014) (-10 -8 (-15 -3542 ((-447) $)) (-15 -2609 ((-584 (-381)) $))))) (T -775))
+((-3542 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-775)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-584 (-381))) (-5 *1 (-775)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT) (((-858 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3923 (((-1185) (-695)) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-776 |#1| |#2| |#3| |#4|) (-13 (-962) (-430 (-858 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3949 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3923 ((-1185) (-695))))) (-962) (-584 (-1090)) (-584 (-695)) (-695)) (T -776))
+((-3949 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-962)) (-14 *3 (-584 (-1090))) (-14 *4 (-584 (-695))) (-14 *5 (-695)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) (-14 *5 (-584 (-1090))) (-14 *6 (-584 *3)) (-14 *7 *3))))
+((-2610 (((-3 (-148 |#3|) #1="failed") (-695) (-695) |#2| |#2|) 38 T ELT)) (-2611 (((-3 (-350 |#3|) #1#) (-695) (-695) |#2| |#2|) 29 T ELT)))
+(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-3 (-350 |#3|) #1="failed") (-695) (-695) |#2| |#2|)) (-15 -2610 ((-3 (-148 |#3|) #1#) (-695) (-695) |#2| |#2|))) (-312) (-1172 |#1|) (-1155 |#1|)) (T -777))
+((-2610 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))) (-2611 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-350 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))))
+((-2611 (((-3 (-350 (-1148 |#2| |#1|)) #1="failed") (-695) (-695) (-1169 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-350 (-1148 |#2| |#1|)) #1#) (-695) (-695) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) 28 T ELT)))
+(((-778 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-3 (-350 (-1148 |#2| |#1|)) #1="failed") (-695) (-695) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (-15 -2611 ((-3 (-350 (-1148 |#2| |#1|)) #1#) (-695) (-695) (-1169 |#1| |#2| |#3|)))) (-312) (-1090) |#1|) (T -778))
+((-2611 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5))) (-5 *1 (-778 *5 *6 *7)))) (-2611 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5))) (-5 *1 (-778 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $ (-485)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2612 (($ (-1085 (-485)) (-485)) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2613 (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3772 (((-695) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 (((-485)) NIL T ELT)) (-2614 (((-485) $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3769 (($ $ (-485)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-1069 (-485)) $) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3770 (((-485) $ (-485)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-779 |#1|) (-780 |#1|) (-485)) (T -779))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $ (-485)) 78 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-2612 (($ (-1085 (-485)) (-485)) 77 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2613 (($ $) 80 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3772 (((-695) $) 85 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2615 (((-485)) 82 T ELT)) (-2614 (((-485) $) 81 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3769 (($ $ (-485)) 84 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-2616 (((-1069 (-485)) $) 86 T ELT)) (-2892 (($ $) 83 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3770 (((-485) $ (-485)) 79 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-780 |#1|) (-113) (-485)) (T -780))
+((-2616 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1069 (-485))))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2892 (*1 *1 *1) (-4 *1 (-780 *2))) (-2615 (*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2613 (*1 *1 *1) (-4 *1 (-780 *2))) (-3770 (*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-3038 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4)))))
+(-13 (-258) (-120) (-10 -8 (-15 -2616 ((-1069 (-485)) $)) (-15 -3772 ((-695) $)) (-15 -3769 ($ $ (-485))) (-15 -2892 ($ $)) (-15 -2615 ((-485))) (-15 -2614 ((-485) $)) (-15 -2613 ($ $)) (-15 -3770 ((-485) $ (-485))) (-15 -3038 ($ $ (-485))) (-15 -2612 ($ (-1085 (-485)) (-485)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-779 |#1|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-779 |#1|) (-951 (-1090))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3157 (((-779 |#1|) $) NIL T ELT) (((-1090) $) NIL (|has| (-779 |#1|) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3730 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1179 (-779 |#1|)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-779 |#1|)) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-779 |#1|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-779 |#1|) (-797 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-779 |#1|) $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| (-779 |#1|) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3958 (($ (-1 (-779 |#1|) (-779 |#1|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1179 (-779 |#1|)))) (-1179 $) $) NIL T ELT) (((-631 (-779 |#1|)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-779 |#1|) (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-779 |#1|) (-258)) ELT)) (-3131 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3768 (($ $ (-584 (-779 |#1|)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-779 |#1|) (-779 |#1|)) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-249 (-779 |#1|))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-584 (-249 (-779 |#1|)))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-584 (-1090)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-456 (-1090) (-779 |#1|))) ELT) (($ $ (-1090) (-779 |#1|)) NIL (|has| (-779 |#1|) (-456 (-1090) (-779 |#1|))) ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ $ (-779 |#1|)) NIL (|has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-779 |#1|) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-779 |#1|) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-779 |#1|) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1090))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-779 |#1|) $) NIL T ELT)) (-3972 (((-801 (-485)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-779 |#1|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-779 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-779 |#1|) (-934)) ELT)) (-2617 (((-148 (-350 (-485))) $) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-779 |#1|)) NIL T ELT) (($ (-1090)) NIL (|has| (-779 |#1|) (-951 (-1090))) ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) (|has| (-779 |#1|) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3770 (((-350 (-485)) $ (-485)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-779 |#1|) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-779 |#1|) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-779 |#1|) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1090))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-779 |#1|) (-779 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-779 |#1|) $) NIL T ELT) (($ $ (-779 |#1|)) NIL T ELT)))
+(((-781 |#1|) (-13 (-905 (-779 |#1|)) (-10 -8 (-15 -3770 ((-350 (-485)) $ (-485))) (-15 -2617 ((-148 (-350 (-485))) $)) (-15 -3730 ($ $)) (-15 -3730 ($ (-485) $)))) (-485)) (T -781))
+((-3770 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-781 *3)) (-14 *3 (-485)))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-485)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-14 *3 *2))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| |#2| (-741)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| |#2| (-951 (-1090))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3157 ((|#2| $) NIL T ELT) (((-1090) $) NIL (|has| |#2| (-951 (-1090))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3730 (($ $) 35 T ELT) (($ (-485) $) 38 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 64 T ELT)) (-2995 (($) NIL (|has| |#2| (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#2| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#2| (-797 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#2| $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| |#2| (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 60 T ELT)) (-3446 (($) NIL (|has| |#2| (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3131 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3768 (($ $ (-584 |#2|) (-584 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-584 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-584 (-1090)) (-584 |#2|)) NIL (|has| |#2| (-456 (-1090) |#2|)) ELT) (($ $ (-1090) |#2|) NIL (|has| |#2| (-456 (-1090) |#2|)) ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#2| $) NIL T ELT)) (-3972 (((-801 (-485)) $) NIL (|has| |#2| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#2| (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| |#2| (-554 (-474))) ELT) (((-330) $) NIL (|has| |#2| (-934)) ELT) (((-179) $) NIL (|has| |#2| (-934)) ELT)) (-2617 (((-148 (-350 (-485))) $) 78 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3946 (((-773) $) 105 T ELT) (($ (-485)) 20 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1090)) NIL (|has| |#2| (-951 (-1090))) ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3770 (((-350 (-485)) $ (-485)) 71 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| |#2| (-741)) ELT)) (-2661 (($) 15 T CONST)) (-2667 (($) 17 T CONST)) (-2670 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) 46 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3949 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3837 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3839 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 61 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-782 |#1| |#2|) (-13 (-905 |#2|) (-10 -8 (-15 -3770 ((-350 (-485)) $ (-485))) (-15 -2617 ((-148 (-350 (-485))) $)) (-15 -3730 ($ $)) (-15 -3730 ($ (-485) $)))) (-485) (-780 |#1|)) (T -782))
+((-3770 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-350 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485)) (-4 *5 (-780 *4)))) (-2617 (*1 *2 *1) (-12 (-14 *3 (-485)) (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) (-3730 (*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))))
+((-2569 (((-85) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3796 ((|#2| $) 12 T ELT)) (-2618 (($ |#1| |#2|) 9 T ELT)) (-3243 (((-1073) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3244 (((-1034) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3801 ((|#1| $) 11 T ELT)) (-3530 (($ |#1| |#2|) 10 T ELT)) (-3946 (((-773) $) 18 (OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))) ELT)) (-1265 (((-85) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3057 (((-85) $ $) 23 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)))
+(((-783 |#1| |#2|) (-13 (-1129) (-10 -8 (IF (|has| |#1| (-553 (-773))) (IF (|has| |#2| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1014)) (IF (|has| |#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -2618 ($ |#1| |#2|)) (-15 -3530 ($ |#1| |#2|)) (-15 -3801 (|#1| $)) (-15 -3796 (|#2| $)))) (-1129) (-1129)) (T -783))
+((-2618 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129)))) (-3530 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129)))) (-3801 (*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1129)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1129)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2958 (((-485) $) 16 T ELT)) (-2620 (($ (-130)) 13 T ELT)) (-2619 (($ (-130)) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2957 (((-130) $) 15 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2622 (($ (-130)) 11 T ELT)) (-2623 (($ (-130)) 10 T ELT)) (-3946 (((-773) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2621 (($ (-130)) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-784) (-13 (-1014) (-556 (-130)) (-10 -8 (-15 -2623 ($ (-130))) (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2619 ($ (-130))) (-15 -2957 ((-130) $)) (-15 -2958 ((-485) $))))) (T -784))
+((-2623 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-784)))))
+((-3946 (((-265 (-485)) (-350 (-858 (-48)))) 23 T ELT) (((-265 (-485)) (-858 (-48))) 18 T ELT)))
+(((-785) (-10 -7 (-15 -3946 ((-265 (-485)) (-858 (-48)))) (-15 -3946 ((-265 (-485)) (-350 (-858 (-48))))))) (T -785))
+((-3946 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3566 (((-85) $ (|[\|\|]| (-447))) 9 T ELT) (((-85) $ (|[\|\|]| (-1073))) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3572 (((-447) $) 10 T ELT) (((-1073) $) 14 T ELT)) (-3057 (((-85) $ $) 15 T ELT)))
+(((-786) (-13 (-996) (-1175) (-10 -8 (-15 -3566 ((-85) $ (|[\|\|]| (-447)))) (-15 -3572 ((-447) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1073)))) (-15 -3572 ((-1073) $))))) (T -786))
+((-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-786)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-786)))))
+((-3958 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 15 T ELT)))
+(((-787 |#1| |#2|) (-10 -7 (-15 -3958 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1129) (-1129)) (T -787))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))))
+((-3371 (($ |#1| |#1|) 8 T ELT)) (-2626 ((|#1| $ (-695)) 15 T ELT)))
+(((-788 |#1|) (-10 -8 (-15 -3371 ($ |#1| |#1|)) (-15 -2626 (|#1| $ (-695)))) (-1129)) (T -788))
+((-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1129)))) (-3371 (*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1129)))))
+((-3958 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 15 T ELT)))
+(((-789 |#1| |#2|) (-10 -7 (-15 -3958 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)))) (-1129) (-1129)) (T -789))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))))
+((-3371 (($ |#1| |#1| |#1|) 8 T ELT)) (-2626 ((|#1| $ (-695)) 15 T ELT)))
+(((-790 |#1|) (-10 -8 (-15 -3371 ($ |#1| |#1| |#1|)) (-15 -2626 (|#1| $ (-695)))) (-1129)) (T -790))
+((-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1129)))) (-3371 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1129)))))
+((-2624 (((-584 (-1095)) (-1073)) 9 T ELT)))
+(((-791) (-10 -7 (-15 -2624 ((-584 (-1095)) (-1073))))) (T -791))
+((-2624 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-584 (-1095))) (-5 *1 (-791)))))
+((-3958 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 15 T ELT)))
+(((-792 |#1| |#2|) (-10 -7 (-15 -3958 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1129) (-1129)) (T -792))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))))
+((-2625 (($ |#1| |#1| |#1|) 8 T ELT)) (-2626 ((|#1| $ (-695)) 15 T ELT)))
+(((-793 |#1|) (-10 -8 (-15 -2625 ($ |#1| |#1| |#1|)) (-15 -2626 (|#1| $ (-695)))) (-1129)) (T -793))
+((-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1129)))) (-2625 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1129)))))
+((-2629 (((-1069 (-584 (-485))) (-584 (-485)) (-1069 (-584 (-485)))) 41 T ELT)) (-2628 (((-1069 (-584 (-485))) (-584 (-485)) (-584 (-485))) 31 T ELT)) (-2630 (((-1069 (-584 (-485))) (-584 (-485))) 53 T ELT) (((-1069 (-584 (-485))) (-584 (-485)) (-584 (-485))) 50 T ELT)) (-2631 (((-1069 (-584 (-485))) (-485)) 55 T ELT)) (-2627 (((-1069 (-584 (-831))) (-1069 (-584 (-831)))) 22 T ELT)) (-3010 (((-584 (-831)) (-584 (-831))) 18 T ELT)))
+(((-794) (-10 -7 (-15 -3010 ((-584 (-831)) (-584 (-831)))) (-15 -2627 ((-1069 (-584 (-831))) (-1069 (-584 (-831))))) (-15 -2628 ((-1069 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-15 -2629 ((-1069 (-584 (-485))) (-584 (-485)) (-1069 (-584 (-485))))) (-15 -2630 ((-1069 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-15 -2630 ((-1069 (-584 (-485))) (-584 (-485)))) (-15 -2631 ((-1069 (-584 (-485))) (-485))))) (T -794))
+((-2631 (*1 *2 *3) (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485)))) (-2630 (*1 *2 *3) (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2630 (*1 *2 *3 *3) (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2629 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794)))) (-2628 (*1 *2 *3 *3) (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-1069 (-584 (-831)))) (-5 *1 (-794)))) (-3010 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794)))))
+((-3972 (((-801 (-330)) $) 9 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-801 (-485)) $) 8 (|has| |#1| (-554 (-801 (-485)))) ELT)))
+(((-795 |#1|) (-113) (-1129)) (T -795))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-330)))) (-6 (-554 (-801 (-330)))) |%noBranch|)))
+(((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3614 (($) 14 T ELT)) (-2633 (($ (-799 |#1| |#2|) (-799 |#1| |#3|)) 28 T ELT)) (-2632 (((-799 |#1| |#3|) $) 16 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2641 (((-85) $) 22 T ELT)) (-2640 (($) 19 T ELT)) (-3946 (((-773) $) 31 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2851 (((-799 |#1| |#2|) $) 15 T ELT)) (-3057 (((-85) $ $) 26 T ELT)))
+(((-796 |#1| |#2| |#3|) (-13 (-1014) (-10 -8 (-15 -2641 ((-85) $)) (-15 -2640 ($)) (-15 -3614 ($)) (-15 -2633 ($ (-799 |#1| |#2|) (-799 |#1| |#3|))) (-15 -2851 ((-799 |#1| |#2|) $)) (-15 -2632 ((-799 |#1| |#3|) $)))) (-1014) (-1014) (-609 |#2|)) (T -796))
+((-2641 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2640 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-3614 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-2633 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))) (-2851 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2632 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-2797 (((-799 |#1| $) $ (-801 |#1|) (-799 |#1| $)) 17 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-797 |#1|) (-113) (-1014)) (T -797))
+((-2797 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) (-4 *4 (-1014)))))
+(-13 (-1014) (-10 -8 (-15 -2797 ((-799 |t#1| $) $ (-801 |t#1|) (-799 |t#1| $)))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2634 (((-85) (-584 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2635 (((-799 |#1| |#2|) |#2| |#3|) 45 (-12 (-2561 (|has| |#2| (-951 (-1090)))) (-2561 (|has| |#2| (-962)))) ELT) (((-584 (-249 (-858 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-962)) (-2561 (|has| |#2| (-951 (-1090))))) ELT) (((-584 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-951 (-1090))) ELT) (((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|) 21 T ELT)))
+(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2634 ((-85) |#2| |#3|)) (-15 -2634 ((-85) (-584 |#2|) |#3|)) (-15 -2635 ((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|)) (IF (|has| |#2| (-951 (-1090))) (-15 -2635 ((-584 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-962)) (-15 -2635 ((-584 (-249 (-858 |#2|))) |#2| |#3|)) (-15 -2635 ((-799 |#1| |#2|) |#2| |#3|))))) (-1014) (-797 |#1|) (-554 (-801 |#1|))) (T -798))
+((-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) (-2561 (-4 *3 (-951 (-1090)))) (-2561 (-4 *3 (-962))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-962)) (-2561 (-4 *3 (-951 (-1090)))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 *3))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-951 (-1090))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3235 (($ $ $) 40 T ELT)) (-2662 (((-3 (-85) #1="failed") $ (-801 |#1|)) 37 T ELT)) (-3614 (($) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2637 (($ (-801 |#1|) |#2| $) 20 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2639 (((-3 |#2| #1#) (-801 |#1|) $) 51 T ELT)) (-2641 (((-85) $) 15 T ELT)) (-2640 (($) 13 T ELT)) (-3258 (((-584 (-2 (|:| -3860 (-1090)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3530 (($ (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| |#2|)))) 23 T ELT)) (-3946 (((-773) $) 45 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2636 (($ (-801 |#1|) |#2| $ |#2|) 49 T ELT)) (-2638 (($ (-801 |#1|) |#2| $) 48 T ELT)) (-3057 (((-85) $ $) 42 T ELT)))
+(((-799 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -2641 ((-85) $)) (-15 -2640 ($)) (-15 -3614 ($)) (-15 -3235 ($ $ $)) (-15 -2639 ((-3 |#2| #1="failed") (-801 |#1|) $)) (-15 -2638 ($ (-801 |#1|) |#2| $)) (-15 -2637 ($ (-801 |#1|) |#2| $)) (-15 -2636 ($ (-801 |#1|) |#2| $ |#2|)) (-15 -3258 ((-584 (-2 (|:| -3860 (-1090)) (|:| |entry| |#2|))) $)) (-15 -3530 ($ (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| |#2|))))) (-15 -2662 ((-3 (-85) #1#) $ (-801 |#1|))))) (-1014) (-1014)) (T -799))
+((-2641 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2640 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3614 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3235 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2639 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-799 *4 *2)))) (-2638 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2637 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2636 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| *4)))) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| *4)))) (-4 *4 (-1014)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)))) (-2662 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-799 *4 *5)) (-4 *5 (-1014)))))
+((-3958 (((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)) 22 T ELT)))
+(((-800 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)))) (-1014) (-1014) (-1014)) (T -800))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2649 (($ $ (-584 (-51))) 74 T ELT)) (-3082 (((-584 $) $) 139 T ELT)) (-2646 (((-2 (|:| |var| (-584 (-1090))) (|:| |pred| (-51))) $) 30 T ELT)) (-3261 (((-85) $) 35 T ELT)) (-2647 (($ $ (-584 (-1090)) (-51)) 31 T ELT)) (-2650 (($ $ (-584 (-51))) 73 T ELT)) (-3158 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1090) #1#) $) 167 T ELT)) (-3157 ((|#1| $) 68 T ELT) (((-1090) $) NIL T ELT)) (-2644 (($ $) 126 T ELT)) (-2656 (((-85) $) 55 T ELT)) (-2651 (((-584 (-51)) $) 50 T ELT)) (-2648 (($ (-1090) (-85) (-85) (-85)) 75 T ELT)) (-2642 (((-3 (-584 $) #1#) (-584 $)) 82 T ELT)) (-2653 (((-85) $) 58 T ELT)) (-2654 (((-85) $) 57 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) 41 T ELT)) (-2659 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 $)) #1#) $) 97 T ELT)) (-2823 (((-3 (-584 $) #1#) $) 40 T ELT)) (-2660 (((-3 (-584 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2514 (-86)) (|:| |arg| (-584 $))) #1#) $) 107 T ELT)) (-2658 (((-3 (-584 $) #1#) $) 42 T ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2402 (-695))) #1#) $) 45 T ELT)) (-2657 (((-85) $) 34 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2645 (((-85) $) 28 T ELT)) (-2652 (((-85) $) 52 T ELT)) (-2643 (((-584 (-51)) $) 130 T ELT)) (-2655 (((-85) $) 56 T ELT)) (-3800 (($ (-86) (-584 $)) 104 T ELT)) (-3323 (((-695) $) 33 T ELT)) (-3400 (($ $) 72 T ELT)) (-3972 (($ (-584 $)) 69 T ELT)) (-3953 (((-85) $) 32 T ELT)) (-3946 (((-773) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1090)) 76 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2663 (($ $ (-51)) 129 T ELT)) (-2661 (($) 103 T CONST)) (-2667 (($) 83 T CONST)) (-3057 (((-85) $ $) 93 T ELT)) (-3949 (($ $ $) 117 T ELT)) (-3839 (($ $ $) 121 T ELT)) (** (($ $ (-695)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT)))
+(((-801 |#1|) (-13 (-1014) (-951 |#1|) (-951 (-1090)) (-10 -8 (-15 -2661 ($) -3952) (-15 -2667 ($) -3952) (-15 -2823 ((-3 (-584 $) #1="failed") $)) (-15 -2824 ((-3 (-584 $) #1#) $)) (-15 -2660 ((-3 (-584 $) #1#) $ (-86))) (-15 -2660 ((-3 (-2 (|:| -2514 (-86)) (|:| |arg| (-584 $))) #1#) $)) (-15 -2825 ((-3 (-2 (|:| |val| $) (|:| -2402 (-695))) #1#) $)) (-15 -2659 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2658 ((-3 (-584 $) #1#) $)) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -2402 $)) #1#) $)) (-15 -3800 ($ (-86) (-584 $))) (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ $)) (-15 -3949 ($ $ $)) (-15 -3323 ((-695) $)) (-15 -3972 ($ (-584 $))) (-15 -3400 ($ $)) (-15 -2657 ((-85) $)) (-15 -2656 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3953 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-584 (-51)) $)) (-15 -2650 ($ $ (-584 (-51)))) (-15 -2649 ($ $ (-584 (-51)))) (-15 -2648 ($ (-1090) (-85) (-85) (-85))) (-15 -2647 ($ $ (-584 (-1090)) (-51))) (-15 -2646 ((-2 (|:| |var| (-584 (-1090))) (|:| |pred| (-51))) $)) (-15 -2645 ((-85) $)) (-15 -2644 ($ $)) (-15 -2663 ($ $ (-51))) (-15 -2643 ((-584 (-51)) $)) (-15 -3082 ((-584 $) $)) (-15 -2642 ((-3 (-584 $) #1#) (-584 $))))) (-1014)) (T -801))
+((-2661 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2667 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2823 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2660 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2660 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2514 (-86)) (|:| |arg| (-584 (-801 *3))))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-695)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2659 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2826 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3800 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-3839 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3949 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3400 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2649 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2648 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2647 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-584 (-1090))) (|:| |pred| (-51)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2644 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2663 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2642 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+((-3210 (((-801 |#1|) (-801 |#1|) (-584 (-1090)) (-1 (-85) (-584 |#2|))) 32 T ELT) (((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|))) 46 T ELT) (((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2662 (((-85) (-584 |#2|) (-801 |#1|)) 42 T ELT) (((-85) |#2| (-801 |#1|)) 36 T ELT)) (-3531 (((-1 (-85) |#2|) (-801 |#1|)) 16 T ELT)) (-2664 (((-584 |#2|) (-801 |#1|)) 24 T ELT)) (-2663 (((-801 |#1|) (-801 |#1|) |#2|) 20 T ELT)))
+(((-802 |#1| |#2|) (-10 -7 (-15 -3210 ((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|))) (-15 -3210 ((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|)))) (-15 -3210 ((-801 |#1|) (-801 |#1|) (-584 (-1090)) (-1 (-85) (-584 |#2|)))) (-15 -3531 ((-1 (-85) |#2|) (-801 |#1|))) (-15 -2662 ((-85) |#2| (-801 |#1|))) (-15 -2662 ((-85) (-584 |#2|) (-801 |#1|))) (-15 -2663 ((-801 |#1|) (-801 |#1|) |#2|)) (-15 -2664 ((-584 |#2|) (-801 |#1|)))) (-1014) (-1129)) (T -802))
+((-2664 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1129)))) (-2663 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1129)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1129)) (-5 *2 (-85)) (-5 *1 (-802 *5 *6)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3)) (-4 *3 (-1129)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1129)))) (-3210 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1090))) (-5 *4 (-1 (-85) (-584 *6))) (-4 *5 (-1014)) (-4 *6 (-1129)) (-5 *1 (-802 *5 *6)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1014)) (-4 *5 (-1129)) (-5 *1 (-802 *4 *5)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1014)) (-4 *5 (-1129)) (-5 *1 (-802 *4 *5)))))
+((-3958 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 19 T ELT)))
+(((-803 |#1| |#2|) (-10 -7 (-15 -3958 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1014) (-1014)) (T -803))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3934 (((-584 |#1|) $) 20 T ELT)) (-2665 (((-85) $) 49 T ELT)) (-3158 (((-3 (-615 |#1|) "failed") $) 55 T ELT)) (-3157 (((-615 |#1|) $) 53 T ELT)) (-3799 (($ $) 24 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3833 (((-695) $) 60 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (((-615 |#1|) $) 22 T ELT)) (-3946 (((-773) $) 47 T ELT) (($ (-615 |#1|)) 27 T ELT) (((-740 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 11 T CONST)) (-2666 (((-584 (-615 |#1|)) $) 28 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 14 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 66 T ELT)))
+(((-804 |#1|) (-13 (-757) (-951 (-615 |#1|)) (-10 -8 (-15 -2667 ($) -3952) (-15 -3946 ((-740 |#1|) $)) (-15 -3946 ($ |#1|)) (-15 -3801 ((-615 |#1|) $)) (-15 -3833 ((-695) $)) (-15 -2666 ((-584 (-615 |#1|)) $)) (-15 -3799 ($ $)) (-15 -2665 ((-85) $)) (-15 -3934 ((-584 |#1|) $)))) (-757)) (T -804))
+((-2667 (*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3946 (*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
+((-3474 ((|#1| |#1| |#1|) 19 T ELT)))
+(((-805 |#1| |#2|) (-10 -7 (-15 -3474 (|#1| |#1| |#1|))) (-1155 |#2|) (-962)) (T -805))
+((-3474 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1155 *3)))))
+((-2670 ((|#2| $ |#3|) 10 T ELT)))
+(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -2670 (|#2| |#1| |#3|))) (-807 |#2| |#3|) (-1129) (-1129)) (T -806))
+NIL
+((-3758 ((|#1| $ |#2|) 7 T ELT)) (-2670 ((|#1| $ |#2|) 6 T ELT)))
+(((-807 |#1| |#2|) (-113) (-1129) (-1129)) (T -807))
+((-3758 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129)))) (-2670 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129)))))
+(-13 (-1129) (-10 -8 (-15 -3758 (|t#1| $ |t#2|)) (-15 -2670 (|t#1| $ |t#2|))))
+(((-13) . T) ((-1129) . T))
+((-2669 ((|#1| |#1| (-695)) 26 T ELT)) (-2668 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3435 (((-3 (-2 (|:| -3139 |#1|) (|:| -3138 |#1|)) #1#) |#1| (-695) (-695)) 29 T ELT) (((-584 |#1|) |#1|) 38 T ELT)))
+(((-808 |#1| |#2|) (-10 -7 (-15 -3435 ((-584 |#1|) |#1|)) (-15 -3435 ((-3 (-2 (|:| -3139 |#1|) (|:| -3138 |#1|)) #1="failed") |#1| (-695) (-695))) (-15 -2668 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2669 (|#1| |#1| (-695)))) (-1155 |#2|) (-312)) (T -808))
+((-2669 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1155 *4)))) (-2668 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1155 *3)))) (-3435 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-808 *3 *5)) (-4 *3 (-1155 *5)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3758 (($ $ (-584 |#2|) (-584 (-695))) 45 T ELT) (($ $ |#2| (-695)) 44 T ELT) (($ $ (-584 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) 48 T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-809 |#1| |#2|) (-113) (-962) (-1014)) (T -809))
+NIL
+(-13 (-82 |t#1| |t#1|) (-812 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-807 $ |#2|) . T) ((-812 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3758 (($ $ (-584 |#1|) (-584 (-695))) 52 T ELT) (($ $ |#1| (-695)) 51 T ELT) (($ $ (-584 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 |#1|) (-584 (-695))) 55 T ELT) (($ $ |#1| (-695)) 54 T ELT) (($ $ (-584 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-810 |#1|) (-113) (-1014)) (T -810))
+NIL
+(-13 (-962) (-812 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ |#1|) . T) ((-812 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3758 (($ $ |#2|) NIL T ELT) (($ $ (-584 |#2|)) 10 T ELT) (($ $ |#2| (-695)) 12 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 15 T ELT)) (-2670 (($ $ |#2|) 16 T ELT) (($ $ (-584 |#2|)) 18 T ELT) (($ $ |#2| (-695)) 19 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 21 T ELT)))
+(((-811 |#1| |#2|) (-10 -7 (-15 -2670 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -2670 (|#1| |#1| |#2| (-695))) (-15 -2670 (|#1| |#1| (-584 |#2|))) (-15 -3758 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -3758 (|#1| |#1| |#2| (-695))) (-15 -3758 (|#1| |#1| (-584 |#2|))) (-15 -2670 (|#1| |#1| |#2|)) (-15 -3758 (|#1| |#1| |#2|))) (-812 |#2|) (-1014)) (T -811))
+NIL
+((-3758 (($ $ |#1|) 7 T ELT) (($ $ (-584 |#1|)) 15 T ELT) (($ $ |#1| (-695)) 14 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 13 T ELT)) (-2670 (($ $ |#1|) 6 T ELT) (($ $ (-584 |#1|)) 12 T ELT) (($ $ |#1| (-695)) 11 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 10 T ELT)))
+(((-812 |#1|) (-113) (-1014)) (T -812))
+((-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) (-3758 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) (-3758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1014)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1014)))))
+(-13 (-807 $ |t#1|) (-10 -8 (-15 -3758 ($ $ (-584 |t#1|))) (-15 -3758 ($ $ |t#1| (-695))) (-15 -3758 ($ $ (-584 |t#1|) (-584 (-695)))) (-15 -2670 ($ $ (-584 |t#1|))) (-15 -2670 ($ $ |t#1| (-695))) (-15 -2670 ($ $ (-584 |t#1|) (-584 (-695))))))
+(((-13) . T) ((-807 $ |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 26 T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3138 (($ $) 25 T ELT)) (-2671 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 23 T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3527 (((-85) $) 20 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1116 |#1|) $) 9 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL (|has| $ (-6 -3995)) ELT)))
+(((-813 |#1|) (-13 (-92 |#1|) (-553 (-1116 |#1|)) (-10 -8 (-15 -2671 ($ |#1|)) (-15 -2671 ($ $ $)))) (-1014)) (T -813))
+((-2671 (*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))) (-2671 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2687 (((-1010 |#1|) $) 61 T ELT)) (-2910 (((-584 $) (-584 $)) 104 T ELT)) (-3623 (((-485) $) 84 T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-3772 (((-695) $) 81 T ELT)) (-2691 (((-1010 |#1|) $ |#1|) 71 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2674 (((-85) $) 89 T ELT)) (-2676 (((-695) $) 85 T ELT)) (-2532 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2858 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2680 (((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $) 56 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 131 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2673 (((-1010 |#1|) $) 136 (|has| |#1| (-320)) ELT)) (-2675 (((-85) $) 82 T ELT)) (-3800 ((|#1| $ |#1|) 69 T ELT)) (-3948 (((-695) $) 63 T ELT)) (-2682 (($ (-584 (-584 |#1|))) 119 T ELT)) (-2677 (((-885) $) 75 T ELT)) (-2683 (($ (-584 |#1|)) 32 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-2679 (($ (-584 (-584 |#1|))) 58 T ELT)) (-2678 (($ (-584 (-584 |#1|))) 124 T ELT)) (-2672 (($ (-584 |#1|)) 133 T ELT)) (-3946 (((-773) $) 118 T ELT) (($ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 |#1|)) 93 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 24 T CONST)) (-2567 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2568 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-3057 (((-85) $ $) 67 T ELT)) (-2685 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2686 (((-85) $ $) 91 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 33 T ELT)))
+(((-814 |#1|) (-13 (-816 |#1|) (-10 -8 (-15 -2680 ((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $)) (-15 -2679 ($ (-584 (-584 |#1|)))) (-15 -3946 ($ (-584 (-584 |#1|)))) (-15 -3946 ($ (-584 |#1|))) (-15 -2678 ($ (-584 (-584 |#1|)))) (-15 -3948 ((-695) $)) (-15 -2677 ((-885) $)) (-15 -3772 ((-695) $)) (-15 -2676 ((-695) $)) (-15 -3623 ((-485) $)) (-15 -2675 ((-85) $)) (-15 -2674 ((-85) $)) (-15 -2910 ((-584 $) (-584 $))) (IF (|has| |#1| (-320)) (-15 -2673 ((-1010 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-484)) (-15 -2672 ($ (-584 |#1|))) (IF (|has| |#1| (-320)) (-15 -2672 ($ (-584 |#1|))) |%noBranch|)))) (-1014)) (T -814))
+((-2680 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2679 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-320)) (-4 *3 (-1014)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
+((-2681 ((|#2| (-1056 |#1| |#2|)) 48 T ELT)))
+(((-815 |#1| |#2|) (-10 -7 (-15 -2681 (|#2| (-1056 |#1| |#2|)))) (-831) (-13 (-962) (-10 -7 (-6 (-3997 "*"))))) (T -815))
+((-2681 (*1 *2 *3) (-12 (-5 *3 (-1056 *4 *2)) (-14 *4 (-831)) (-4 *2 (-13 (-962) (-10 -7 (-6 (-3997 "*"))))) (-5 *1 (-815 *4 *2)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-2687 (((-1010 |#1|) $) 42 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 20 T ELT)) (-2691 (((-1010 |#1|) $ |#1|) 41 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-2532 (($ $ $) 35 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2858 (($ $ $) 36 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 30 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3800 ((|#1| $ |#1|) 45 T ELT)) (-2682 (($ (-584 (-584 |#1|))) 43 T ELT)) (-2683 (($ (-584 |#1|)) 44 T ELT)) (-3010 (($ $ $) 27 T ELT)) (-2436 (($ $ $) 26 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-2567 (((-85) $ $) 37 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2568 (((-85) $ $) 39 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 38 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2686 (((-85) $ $) 40 T ELT)) (-3949 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-816 |#1|) (-113) (-1014)) (T -816))
+((-2683 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2687 (*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2691 (*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
+(-13 (-413) (-241 |t#1| |t#1|) (-10 -8 (-15 -2683 ($ (-584 |t#1|))) (-15 -2682 ($ (-584 (-584 |t#1|)))) (-15 -2687 ((-1010 |t#1|) $)) (-15 -2691 ((-1010 |t#1|) $ |t#1|)) (-15 -2686 ((-85) $ $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-320)) (-6 (-757)) |%noBranch|)))
+(((-72) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-413) . T) ((-13) . T) ((-664) . T) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-320))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-320))) ((-1026) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2693 (((-584 (-584 (-695))) $) 163 T ELT)) (-2689 (((-584 (-695)) (-814 |#1|) $) 191 T ELT)) (-2688 (((-584 (-695)) (-814 |#1|) $) 192 T ELT)) (-2687 (((-1010 |#1|) $) 155 T ELT)) (-2694 (((-584 (-814 |#1|)) $) 152 T ELT)) (-2995 (((-814 |#1|) $ (-485)) 157 T ELT) (((-814 |#1|) $) 158 T ELT)) (-2692 (($ (-584 (-814 |#1|))) 165 T ELT)) (-3772 (((-695) $) 159 T ELT)) (-2690 (((-1010 (-1010 |#1|)) $) 189 T ELT)) (-2691 (((-1010 |#1|) $ |#1|) 180 T ELT) (((-1010 (-1010 |#1|)) $ (-1010 |#1|)) 201 T ELT) (((-1010 (-584 |#1|)) $ (-584 |#1|)) 204 T ELT)) (-3246 (((-85) (-814 |#1|) $) 140 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2684 (((-1185) $) 145 T ELT) (((-1185) $ (-485) (-485)) 205 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2696 (((-584 (-814 |#1|)) $) 146 T ELT)) (-3800 (((-814 |#1|) $ (-695)) 153 T ELT)) (-3948 (((-695) $) 160 T ELT)) (-3946 (((-773) $) 177 T ELT) (((-584 (-814 |#1|)) $) 28 T ELT) (($ (-584 (-814 |#1|))) 164 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (((-584 |#1|) $) 162 T ELT)) (-3057 (((-85) $ $) 198 T ELT)) (-2685 (((-85) $ $) 195 T ELT)) (-2686 (((-85) $ $) 194 T ELT)))
+(((-817 |#1|) (-13 (-1014) (-10 -8 (-15 -3946 ((-584 (-814 |#1|)) $)) (-15 -2696 ((-584 (-814 |#1|)) $)) (-15 -3800 ((-814 |#1|) $ (-695))) (-15 -2995 ((-814 |#1|) $ (-485))) (-15 -2995 ((-814 |#1|) $)) (-15 -3772 ((-695) $)) (-15 -3948 ((-695) $)) (-15 -2695 ((-584 |#1|) $)) (-15 -2694 ((-584 (-814 |#1|)) $)) (-15 -2693 ((-584 (-584 (-695))) $)) (-15 -3946 ($ (-584 (-814 |#1|)))) (-15 -2692 ($ (-584 (-814 |#1|)))) (-15 -2691 ((-1010 |#1|) $ |#1|)) (-15 -2690 ((-1010 (-1010 |#1|)) $)) (-15 -2691 ((-1010 (-1010 |#1|)) $ (-1010 |#1|))) (-15 -2691 ((-1010 (-584 |#1|)) $ (-584 |#1|))) (-15 -3246 ((-85) (-814 |#1|) $)) (-15 -2689 ((-584 (-695)) (-814 |#1|) $)) (-15 -2688 ((-584 (-695)) (-814 |#1|) $)) (-15 -2687 ((-1010 |#1|) $)) (-15 -2686 ((-85) $ $)) (-15 -2685 ((-85) $ $)) (-15 -2684 ((-1185) $)) (-15 -2684 ((-1185) $ (-485) (-485))))) (-1014)) (T -817))
+((-3946 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2995 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2692 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2691 (*1 *2 *1 *3) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2691 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4)) (-5 *3 (-1010 *4)))) (-2691 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4)) (-5 *3 (-584 *4)))) (-3246 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-817 *4)))) (-2689 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2688 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2686 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2685 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2684 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-695)) NIL T ELT)) (-3330 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 $ #1#) $) NIL T ELT)) (-3157 (($ $) NIL T ELT)) (-1792 (($ (-1179 $)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL T ELT)) (-1680 (((-85) $) NIL T ELT)) (-1764 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| $ (-320)) ELT)) (-2012 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3133 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3445 (((-633 $) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1085 $) $ (-831)) NIL (|has| $ (-320)) ELT) (((-1085 $) $) NIL T ELT)) (-2011 (((-831) $) NIL T ELT)) (-1627 (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1626 (((-3 (-1085 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1628 (($ $ (-1085 $)) NIL (|has| $ (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2401 (($ (-831)) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| $ (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-831)) NIL T ELT) (((-744 (-831))) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1765 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3948 (((-831) $) NIL T ELT) (((-744 (-831)) $) NIL T ELT)) (-3186 (((-1085 $)) NIL T ELT)) (-1674 (($) NIL T ELT)) (-1629 (($) NIL (|has| $ (-320)) ELT)) (-3225 (((-631 $) (-1179 $)) NIL T ELT) (((-1179 $) $) NIL T ELT)) (-3972 (((-485) $) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $) (-831)) NIL T ELT) (((-1179 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3928 (($ $ (-695)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
+(((-818 |#1|) (-13 (-299) (-280 $) (-554 (-485))) (-831)) (T -818))
+NIL
+((-2698 (((-3 (-584 (-1085 |#4|)) #1="failed") (-584 (-1085 |#4|)) (-1085 |#4|)) 164 T ELT)) (-2701 ((|#1|) 101 T ELT)) (-2700 (((-348 (-1085 |#4|)) (-1085 |#4|)) 173 T ELT)) (-2702 (((-348 (-1085 |#4|)) (-584 |#3|) (-1085 |#4|)) 83 T ELT)) (-2699 (((-348 (-1085 |#4|)) (-1085 |#4|)) 183 T ELT)) (-2697 (((-3 (-584 (-1085 |#4|)) #1#) (-584 (-1085 |#4|)) (-1085 |#4|) |#3|) 117 T ELT)))
+(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2698 ((-3 (-584 (-1085 |#4|)) #1="failed") (-584 (-1085 |#4|)) (-1085 |#4|))) (-15 -2699 ((-348 (-1085 |#4|)) (-1085 |#4|))) (-15 -2700 ((-348 (-1085 |#4|)) (-1085 |#4|))) (-15 -2701 (|#1|)) (-15 -2697 ((-3 (-584 (-1085 |#4|)) #1#) (-584 (-1085 |#4|)) (-1085 |#4|) |#3|)) (-15 -2702 ((-348 (-1085 |#4|)) (-584 |#3|) (-1085 |#4|)))) (-822) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -819))
+((-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-348 (-1085 *8))) (-5 *1 (-819 *5 *6 *7 *8)) (-5 *4 (-1085 *8)))) (-2697 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-584 (-1085 *7))) (-5 *3 (-1085 *7)) (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) (-5 *1 (-819 *5 *6 *4 *7)))) (-2701 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-2698 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1085 *7))) (-5 *3 (-1085 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-819 *4 *5 *6 *7)))))
+((-2698 (((-3 (-584 (-1085 |#2|)) "failed") (-584 (-1085 |#2|)) (-1085 |#2|)) 39 T ELT)) (-2701 ((|#1|) 71 T ELT)) (-2700 (((-348 (-1085 |#2|)) (-1085 |#2|)) 125 T ELT)) (-2702 (((-348 (-1085 |#2|)) (-1085 |#2|)) 109 T ELT)) (-2699 (((-348 (-1085 |#2|)) (-1085 |#2|)) 136 T ELT)))
+(((-820 |#1| |#2|) (-10 -7 (-15 -2698 ((-3 (-584 (-1085 |#2|)) "failed") (-584 (-1085 |#2|)) (-1085 |#2|))) (-15 -2699 ((-348 (-1085 |#2|)) (-1085 |#2|))) (-15 -2700 ((-348 (-1085 |#2|)) (-1085 |#2|))) (-15 -2701 (|#1|)) (-15 -2702 ((-348 (-1085 |#2|)) (-1085 |#2|)))) (-822) (-1155 |#1|)) (T -820))
+((-2702 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1085 *5)))) (-2701 (*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1155 *2)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1085 *5)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1085 *5)))) (-2698 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5)))))
+((-2705 (((-3 (-584 (-1085 $)) "failed") (-584 (-1085 $)) (-1085 $)) 46 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 18 T ELT)) (-2703 (((-633 $) $) 40 T ELT)))
+(((-821 |#1|) (-10 -7 (-15 -2703 ((-633 |#1|) |#1|)) (-15 -2705 ((-3 (-584 (-1085 |#1|)) "failed") (-584 (-1085 |#1|)) (-1085 |#1|))) (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) (-822)) (T -821))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 75 T ELT)) (-3775 (($ $) 66 T ELT)) (-3971 (((-348 $) $) 67 T ELT)) (-2705 (((-3 (-584 (-1085 $)) "failed") (-584 (-1085 $)) (-1085 $)) 72 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3723 (((-85) $) 68 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 73 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 74 T ELT)) (-3732 (((-348 $) $) 65 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-631 $)) 71 (|has| $ (-118)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-2703 (((-633 $) $) 70 (|has| $ (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-822) (-113)) (T -822))
+((-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-822)))) (-2708 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))) (-2707 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))) (-2706 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))) (-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1085 *1))) (-5 *3 (-1085 *1)) (-4 *1 (-822)))) (-2704 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822)) (-5 *2 (-1179 *1)))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822)))))
+(-13 (-1134) (-10 -8 (-15 -2708 ((-348 (-1085 $)) (-1085 $))) (-15 -2707 ((-348 (-1085 $)) (-1085 $))) (-15 -2706 ((-348 (-1085 $)) (-1085 $))) (-15 -2709 ((-1085 $) (-1085 $) (-1085 $))) (-15 -2705 ((-3 (-584 (-1085 $)) "failed") (-584 (-1085 $)) (-1085 $))) (IF (|has| $ (-118)) (PROGN (-15 -2704 ((-3 (-1179 $) "failed") (-631 $))) (-15 -2703 ((-633 $) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) . T))
+((-2711 (((-3 (-2 (|:| -3772 (-695)) (|:| -2384 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2710 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3772 (((-3 (-695) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT)))
+(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-3 (-695) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2710 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2711 ((-3 (-2 (|:| -3772 (-695)) (|:| -2384 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-496) (-951 (-485))) (-364 |#1|) (-1155 |#2|) (-1155 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -823))
+((-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-2 (|:| -3772 (-695)) (|:| -2384 *8))) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-3772 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-695)) (-5 *1 (-823 *4 *5 *6 *7 *8)))))
+((-2711 (((-3 (-2 (|:| -3772 (-695)) (|:| -2384 |#3|)) #1="failed") (-283 (-350 (-485)) |#1| |#2| |#3|)) 64 T ELT)) (-2710 (((-85) (-283 (-350 (-485)) |#1| |#2| |#3|)) 16 T ELT)) (-3772 (((-3 (-695) #1#) (-283 (-350 (-485)) |#1| |#2| |#3|)) 14 T ELT)))
+(((-824 |#1| |#2| |#3|) (-10 -7 (-15 -3772 ((-3 (-695) #1="failed") (-283 (-350 (-485)) |#1| |#2| |#3|))) (-15 -2710 ((-85) (-283 (-350 (-485)) |#1| |#2| |#3|))) (-15 -2711 ((-3 (-2 (|:| -3772 (-695)) (|:| -2384 |#3|)) #1#) (-283 (-350 (-485)) |#1| |#2| |#3|)))) (-1155 (-350 (-485))) (-1155 (-350 |#1|)) (-291 (-350 (-485)) |#1| |#2|)) (T -824))
+((-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-485)))) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-2 (|:| -3772 (-695)) (|:| -2384 *6))) (-5 *1 (-824 *4 *5 *6)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-485)))) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-824 *4 *5 *6)))) (-3772 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-485)))) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6)))))
+((-2716 ((|#2| |#2|) 26 T ELT)) (-2714 (((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) 15 T ELT)) (-2712 (((-831) (-485)) 38 T ELT)) (-2715 (((-485) |#2|) 45 T ELT)) (-2713 (((-485) |#2|) 21 T ELT) (((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|) 20 T ELT)))
+(((-825 |#1| |#2|) (-10 -7 (-15 -2712 ((-831) (-485))) (-15 -2713 ((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|)) (-15 -2713 ((-485) |#2|)) (-15 -2714 ((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))))) (-15 -2715 ((-485) |#2|)) (-15 -2716 (|#2| |#2|))) (-1155 (-350 (-485))) (-1155 (-350 |#1|))) (T -825))
+((-2716 (*1 *2 *2) (-12 (-4 *3 (-1155 (-350 (-485)))) (-5 *1 (-825 *3 *2)) (-4 *2 (-1155 (-350 *3))))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1155 (-350 *4))))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) (-4 *4 (-1155 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1155 (-350 *4))))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1155 (-350 *4))))) (-2713 (*1 *2 *3) (-12 (-4 *3 (-1155 (-350 (-485)))) (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4)) (-4 *4 (-1155 (-350 *3))))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1155 (-350 *3))) (-5 *2 (-831)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1155 (-350 *4))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 ((|#1| $) 99 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 93 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2724 (($ |#1| (-348 |#1|)) 91 T ELT)) (-2718 (((-1085 |#1|) |#1| |#1|) 52 T ELT)) (-2717 (($ $) 60 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2719 (((-485) $) 96 T ELT)) (-2720 (($ $ (-485)) 98 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2721 ((|#1| $) 95 T ELT)) (-2722 (((-348 |#1|) $) 94 T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) 92 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2723 (($ $) 49 T ELT)) (-3946 (((-773) $) 123 T ELT) (($ (-485)) 72 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 40 T ELT) (((-350 |#1|) $) 77 T ELT) (($ (-350 (-348 |#1|))) 85 T ELT)) (-3127 (((-695)) 70 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 12 T CONST)) (-3057 (((-85) $ $) 86 T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-826 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3946 ((-350 |#1|) $)) (-15 -3946 ($ (-350 (-348 |#1|)))) (-15 -2723 ($ $)) (-15 -2722 ((-348 |#1|) $)) (-15 -2721 (|#1| $)) (-15 -2720 ($ $ (-485))) (-15 -2719 ((-485) $)) (-15 -2718 ((-1085 |#1|) |#1| |#1|)) (-15 -2717 ($ $)) (-15 -2724 ($ |#1| (-348 |#1|))) (-15 -3130 (|#1| $)))) (-258)) (T -826))
+((-3946 (*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-826 *3)))) (-2723 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2721 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2720 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2718 (*1 *2 *3 *3) (-12 (-5 *2 (-1085 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2717 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2724 (*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-826 *2)))) (-3130 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))))
+((-2724 (((-51) (-858 |#1|) (-348 (-858 |#1|)) (-1090)) 17 T ELT) (((-51) (-350 (-858 |#1|)) (-1090)) 18 T ELT)))
+(((-827 |#1|) (-10 -7 (-15 -2724 ((-51) (-350 (-858 |#1|)) (-1090))) (-15 -2724 ((-51) (-858 |#1|) (-348 (-858 |#1|)) (-1090)))) (-13 (-258) (-120))) (T -827))
+((-2724 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-348 (-858 *6))) (-5 *5 (-1090)) (-5 *3 (-858 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *5)))))
+((-2725 ((|#4| (-584 |#4|)) 148 T ELT) (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3145 (((-1085 |#4|) (-584 (-1085 |#4|))) 141 T ELT) (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 61 T ELT) ((|#4| (-584 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT)))
+(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3145 (|#4| |#4| |#4|)) (-15 -3145 (|#4| (-584 |#4|))) (-15 -3145 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -3145 ((-1085 |#4|) (-584 (-1085 |#4|)))) (-15 -2725 (|#4| |#4| |#4|)) (-15 -2725 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2725 (|#4| (-584 |#4|)))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -828))
+((-2725 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) (-2725 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) (-2725 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-584 (-1085 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-1085 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-3145 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) (-3145 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))))
+((-2738 (((-817 (-485)) (-885)) 38 T ELT) (((-817 (-485)) (-584 (-485))) 34 T ELT)) (-2726 (((-817 (-485)) (-584 (-485))) 66 T ELT) (((-817 (-485)) (-831)) 67 T ELT)) (-2737 (((-817 (-485))) 39 T ELT)) (-2735 (((-817 (-485))) 53 T ELT) (((-817 (-485)) (-584 (-485))) 52 T ELT)) (-2734 (((-817 (-485))) 51 T ELT) (((-817 (-485)) (-584 (-485))) 50 T ELT)) (-2733 (((-817 (-485))) 49 T ELT) (((-817 (-485)) (-584 (-485))) 48 T ELT)) (-2732 (((-817 (-485))) 47 T ELT) (((-817 (-485)) (-584 (-485))) 46 T ELT)) (-2731 (((-817 (-485))) 45 T ELT) (((-817 (-485)) (-584 (-485))) 44 T ELT)) (-2736 (((-817 (-485))) 55 T ELT) (((-817 (-485)) (-584 (-485))) 54 T ELT)) (-2730 (((-817 (-485)) (-584 (-485))) 71 T ELT) (((-817 (-485)) (-831)) 73 T ELT)) (-2729 (((-817 (-485)) (-584 (-485))) 68 T ELT) (((-817 (-485)) (-831)) 69 T ELT)) (-2727 (((-817 (-485)) (-584 (-485))) 64 T ELT) (((-817 (-485)) (-831)) 65 T ELT)) (-2728 (((-817 (-485)) (-584 (-831))) 57 T ELT)))
+(((-829) (-10 -7 (-15 -2726 ((-817 (-485)) (-831))) (-15 -2726 ((-817 (-485)) (-584 (-485)))) (-15 -2727 ((-817 (-485)) (-831))) (-15 -2727 ((-817 (-485)) (-584 (-485)))) (-15 -2728 ((-817 (-485)) (-584 (-831)))) (-15 -2729 ((-817 (-485)) (-831))) (-15 -2729 ((-817 (-485)) (-584 (-485)))) (-15 -2730 ((-817 (-485)) (-831))) (-15 -2730 ((-817 (-485)) (-584 (-485)))) (-15 -2731 ((-817 (-485)) (-584 (-485)))) (-15 -2731 ((-817 (-485)))) (-15 -2732 ((-817 (-485)) (-584 (-485)))) (-15 -2732 ((-817 (-485)))) (-15 -2733 ((-817 (-485)) (-584 (-485)))) (-15 -2733 ((-817 (-485)))) (-15 -2734 ((-817 (-485)) (-584 (-485)))) (-15 -2734 ((-817 (-485)))) (-15 -2735 ((-817 (-485)) (-584 (-485)))) (-15 -2735 ((-817 (-485)))) (-15 -2736 ((-817 (-485)) (-584 (-485)))) (-15 -2736 ((-817 (-485)))) (-15 -2737 ((-817 (-485)))) (-15 -2738 ((-817 (-485)) (-584 (-485)))) (-15 -2738 ((-817 (-485)) (-885))))) (T -829))
+((-2738 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2737 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+((-2740 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1090))) 14 T ELT)) (-2739 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1090))) 13 T ELT)))
+(((-830 |#1|) (-10 -7 (-15 -2739 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1090)))) (-15 -2740 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1090))))) (-392)) (T -830))
+((-2740 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1090))) (-4 *4 (-392)) (-5 *1 (-830 *4)))) (-2739 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1090))) (-4 *4 (-392)) (-5 *1 (-830 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3145 (($ $ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-831) (-13 (-719) (-664) (-10 -8 (-15 -3145 ($ $ $)) (-6 (-3997 "*"))))) (T -831))
+((-3145 (*1 *1 *1 *1) (-5 *1 (-831))))
+((-695) (|%ilt| 0 |#1|))
+((-3946 (((-265 |#1|) (-417)) 16 T ELT)))
+(((-832 |#1|) (-10 -7 (-15 -3946 ((-265 |#1|) (-417)))) (-496)) (T -832))
+((-3946 (*1 *2 *3) (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-833) (-113)) (T -833))
+((-2742 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3954 (-584 *1)) (|:| -2410 *1))) (-5 *3 (-584 *1)))) (-2741 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1)))))
+(-13 (-392) (-10 -8 (-15 -2742 ((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $))) (-15 -2741 ((-633 (-584 $)) (-584 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3106 (((-1085 |#2|) (-584 |#2|) (-584 |#2|)) 17 T ELT) (((-1148 |#1| |#2|) (-1148 |#1| |#2|) (-584 |#2|) (-584 |#2|)) 13 T ELT)))
+(((-834 |#1| |#2|) (-10 -7 (-15 -3106 ((-1148 |#1| |#2|) (-1148 |#1| |#2|) (-584 |#2|) (-584 |#2|))) (-15 -3106 ((-1085 |#2|) (-584 |#2|) (-584 |#2|)))) (-1090) (-312)) (T -834))
+((-3106 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-312)) (-5 *2 (-1085 *5)) (-5 *1 (-834 *4 *5)) (-14 *4 (-1090)))) (-3106 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1090)) (-4 *5 (-312)) (-5 *1 (-834 *4 *5)))))
+((-2743 ((|#2| (-584 |#1|) (-584 |#1|)) 28 T ELT)))
+(((-835 |#1| |#2|) (-10 -7 (-15 -2743 (|#2| (-584 |#1|) (-584 |#1|)))) (-312) (-1155 |#1|)) (T -835))
+((-2743 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-4 *2 (-1155 *4)) (-5 *1 (-835 *4 *2)))))
+((-2745 (((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-1073)) 175 T ELT)) (-2764 ((|#4| |#4|) 194 T ELT)) (-2749 (((-584 (-350 (-858 |#1|))) (-584 (-1090))) 146 T ELT)) (-2763 (((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485)) 88 T ELT)) (-2753 (((-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))) (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))) (-584 |#4|)) 69 T ELT)) (-2762 (((-631 |#4|) (-631 |#4|) (-584 |#4|)) 65 T ELT)) (-2746 (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-1073)) 187 T ELT)) (-2744 (((-485) (-631 |#4|) (-831) (-1073)) 167 T ELT) (((-485) (-631 |#4|) (-584 (-1090)) (-831) (-1073)) 166 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-831) (-1073)) 165 T ELT) (((-485) (-631 |#4|) (-1073)) 154 T ELT) (((-485) (-631 |#4|) (-584 (-1090)) (-1073)) 153 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-1073)) 152 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-831)) 151 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1090)) (-831)) 150 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831)) 149 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|)) 148 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1090))) 147 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|)) 143 T ELT)) (-2750 ((|#4| (-858 |#1|)) 80 T ELT)) (-2760 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 191 T ELT)) (-2759 (((-584 (-584 (-485))) (-485) (-485)) 161 T ELT)) (-2758 (((-584 (-584 |#4|)) (-584 (-584 |#4|))) 106 T ELT)) (-2757 (((-695) (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 100 T ELT)) (-2756 (((-695) (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 99 T ELT)) (-2765 (((-85) (-584 (-858 |#1|))) 19 T ELT) (((-85) (-584 |#4|)) 15 T ELT)) (-2751 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-2755 (((-584 |#4|) |#4|) 57 T ELT)) (-2748 (((-584 (-350 (-858 |#1|))) (-584 |#4|)) 142 T ELT) (((-631 (-350 (-858 |#1|))) (-631 |#4|)) 66 T ELT) (((-350 (-858 |#1|)) |#4|) 139 T ELT)) (-2747 (((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-695) (-1073) (-485)) 112 T ELT)) (-2752 (((-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695)) 98 T ELT)) (-2761 (((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695)) 121 T ELT)) (-2754 (((-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-350 (-858 |#1|)))) (|:| |vec| (-584 (-350 (-858 |#1|)))) (|:| -3109 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) 56 T ELT)))
+(((-836 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1090)))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1090)) (-831))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-631 |#4|) (-831))) (-15 -2744 ((-485) (-631 |#4|) (-584 |#4|) (-1073))) (-15 -2744 ((-485) (-631 |#4|) (-584 (-1090)) (-1073))) (-15 -2744 ((-485) (-631 |#4|) (-1073))) (-15 -2744 ((-485) (-631 |#4|) (-584 |#4|) (-831) (-1073))) (-15 -2744 ((-485) (-631 |#4|) (-584 (-1090)) (-831) (-1073))) (-15 -2744 ((-485) (-631 |#4|) (-831) (-1073))) (-15 -2745 ((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-1073))) (-15 -2746 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|))))))))) (-1073))) (-15 -2747 ((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-695) (-1073) (-485))) (-15 -2748 ((-350 (-858 |#1|)) |#4|)) (-15 -2748 ((-631 (-350 (-858 |#1|))) (-631 |#4|))) (-15 -2748 ((-584 (-350 (-858 |#1|))) (-584 |#4|))) (-15 -2749 ((-584 (-350 (-858 |#1|))) (-584 (-1090)))) (-15 -2750 (|#4| (-858 |#1|))) (-15 -2751 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|))) (-15 -2752 ((-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695))) (-15 -2753 ((-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))) (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))) (-584 |#4|))) (-15 -2754 ((-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-350 (-858 |#1|)))) (|:| |vec| (-584 (-350 (-858 |#1|)))) (|:| -3109 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-15 -2755 ((-584 |#4|) |#4|)) (-15 -2756 ((-695) (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2757 ((-695) (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2758 ((-584 (-584 |#4|)) (-584 (-584 |#4|)))) (-15 -2759 ((-584 (-584 (-485))) (-485) (-485))) (-15 -2760 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2761 ((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695))) (-15 -2762 ((-631 |#4|) (-631 |#4|) (-584 |#4|))) (-15 -2763 ((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1179 (-350 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485))) (-15 -2764 (|#4| |#4|)) (-15 -2765 ((-85) (-584 |#4|))) (-15 -2765 ((-85) (-584 (-858 |#1|))))) (-13 (-258) (-120)) (-13 (-757) (-554 (-1090))) (-718) (-862 |#1| |#3| |#2|)) (T -836))
+((-2765 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1090)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))) (-2763 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-5 *4 (-631 *12)) (-5 *5 (-584 (-350 (-858 *9)))) (-5 *6 (-584 (-584 *12))) (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1090)))) (-4 *11 (-718)) (-5 *2 (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) (|:| |wcond| (-584 (-858 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *9)))) (|:| -2013 (-584 (-1179 (-350 (-858 *9))))))))) (-5 *1 (-836 *9 *10 *11 *12)))) (-2762 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2759 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1090)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2755 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-631 (-350 (-858 *4)))) (|:| |vec| (-584 (-350 (-858 *4)))) (|:| -3109 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-2 (|:| |partsol| (-1179 (-350 (-858 *4)))) (|:| -2013 (-584 (-1179 (-350 (-858 *4))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2753 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1179 (-350 (-858 *4)))) (|:| -2013 (-584 (-1179 (-350 (-858 *4))))))) (-5 *3 (-584 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-862 *4 *6 *5)) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *8))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))) (-2751 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-862 *4 *6 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-584 (-1090))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-631 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-350 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2747 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-350 (-858 *8)))) (-5 *5 (-695)) (-5 *6 (-1073)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-862 *8 *10 *9)) (-4 *9 (-13 (-757) (-554 (-1090)))) (-4 *10 (-718)) (-5 *2 (-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) (|:| |wcond| (-584 (-858 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *8)))) (|:| -2013 (-584 (-1179 (-350 (-858 *8)))))))))) (|:| |rgsz| (-485)))) (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *4)))) (|:| -2013 (-584 (-1179 (-350 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *5)))) (|:| -2013 (-584 (-1179 (-350 (-858 *5)))))))))) (-5 *4 (-1073)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-862 *5 *7 *6)) (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1073)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1090)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1090))) (-5 *5 (-831)) (-5 *6 (-1073)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-757) (-554 (-1090)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2744 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1073)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-757) (-554 (-1090)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-1073)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1090))) (-5 *5 (-1073)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1090)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1073)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1090)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *5)))) (|:| -2013 (-584 (-1179 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1090))) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1090)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *6)))) (|:| -2013 (-584 (-1179 (-350 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1090)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *6)))) (|:| -2013 (-584 (-1179 (-350 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *4)))) (|:| -2013 (-584 (-1179 (-350 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1090))) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *5)))) (|:| -2013 (-584 (-1179 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-858 *5)))) (|:| -2013 (-584 (-1179 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
+((-3874 (($ $ (-1002 (-179))) 125 T ELT) (($ $ (-1002 (-179)) (-1002 (-179))) 126 T ELT)) (-2897 (((-1002 (-179)) $) 73 T ELT)) (-2898 (((-1002 (-179)) $) 72 T ELT)) (-2789 (((-1002 (-179)) $) 74 T ELT)) (-2770 (((-485) (-485)) 66 T ELT)) (-2774 (((-485) (-485)) 61 T ELT)) (-2772 (((-485) (-485)) 64 T ELT)) (-2768 (((-85) (-85)) 68 T ELT)) (-2771 (((-485)) 65 T ELT)) (-3135 (($ $ (-1002 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2791 (($ (-1 (-855 (-179)) (-179)) (-1002 (-179))) 148 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 149 T ELT)) (-2777 (($ (-1 (-179) (-179)) (-1002 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2790 (($ (-1 (-179) (-179)) (-1002 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179))) 145 T ELT) (($ (-584 (-1 (-179) (-179))) (-1002 (-179))) 153 T ELT) (($ (-584 (-1 (-179) (-179))) (-1002 (-179)) (-1002 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 147 T ELT) (($ $ (-1002 (-179))) 131 T ELT)) (-2776 (((-85) $) 69 T ELT)) (-2767 (((-485)) 70 T ELT)) (-2775 (((-485)) 59 T ELT)) (-2773 (((-485)) 62 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 35 T ELT)) (-2766 (((-85) (-85)) 71 T ELT)) (-3946 (((-773) $) 174 T ELT)) (-2769 (((-85)) 67 T ELT)))
+(((-837) (-13 (-867) (-10 -8 (-15 -2790 ($ (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2790 ($ (-584 (-1 (-179) (-179))) (-1002 (-179)))) (-15 -2790 ($ (-584 (-1 (-179) (-179))) (-1002 (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2777 ($ (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2777 ($ (-1 (-179) (-179)))) (-15 -2790 ($ $ (-1002 (-179)))) (-15 -2776 ((-85) $)) (-15 -3874 ($ $ (-1002 (-179)))) (-15 -3874 ($ $ (-1002 (-179)) (-1002 (-179)))) (-15 -3135 ($ $ (-1002 (-179)))) (-15 -3135 ($ $)) (-15 -2789 ((-1002 (-179)) $)) (-15 -2775 ((-485))) (-15 -2774 ((-485) (-485))) (-15 -2773 ((-485))) (-15 -2772 ((-485) (-485))) (-15 -2771 ((-485))) (-15 -2770 ((-485) (-485))) (-15 -2769 ((-85))) (-15 -2768 ((-85) (-85))) (-15 -2767 ((-485))) (-15 -2766 ((-85) (-85)))))) (T -837))
+((-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2777 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-3874 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3874 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3135 (*1 *1 *1) (-5 *1 (-837))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-2775 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2773 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2771 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2769 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2767 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+((-2777 (((-837) |#1| (-1090)) 17 T ELT) (((-837) |#1| (-1090) (-1002 (-179))) 21 T ELT)) (-2790 (((-837) |#1| |#1| (-1090) (-1002 (-179))) 19 T ELT) (((-837) |#1| (-1090) (-1002 (-179))) 15 T ELT)))
+(((-838 |#1|) (-10 -7 (-15 -2790 ((-837) |#1| (-1090) (-1002 (-179)))) (-15 -2790 ((-837) |#1| |#1| (-1090) (-1002 (-179)))) (-15 -2777 ((-837) |#1| (-1090) (-1002 (-179)))) (-15 -2777 ((-837) |#1| (-1090)))) (-554 (-474))) (T -838))
+((-2777 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2777 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2790 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2790 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))))
+((-3874 (($ $ (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 123 T ELT)) (-2896 (((-1002 (-179)) $) 64 T ELT)) (-2897 (((-1002 (-179)) $) 63 T ELT)) (-2898 (((-1002 (-179)) $) 62 T ELT)) (-2788 (((-584 (-584 (-179))) $) 69 T ELT)) (-2789 (((-1002 (-179)) $) 65 T ELT)) (-2782 (((-485) (-485)) 57 T ELT)) (-2786 (((-485) (-485)) 52 T ELT)) (-2784 (((-485) (-485)) 55 T ELT)) (-2780 (((-85) (-85)) 59 T ELT)) (-2783 (((-485)) 56 T ELT)) (-3135 (($ $ (-1002 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2791 (($ (-1 (-855 (-179)) (-179)) (-1002 (-179))) 133 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 134 T ELT)) (-2790 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 141 T ELT) (($ $ (-1002 (-179))) 129 T ELT)) (-2779 (((-485)) 60 T ELT)) (-2787 (((-485)) 50 T ELT)) (-2785 (((-485)) 53 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 157 T ELT)) (-2778 (((-85) (-85)) 61 T ELT)) (-3946 (((-773) $) 155 T ELT)) (-2781 (((-85)) 58 T ELT)))
+(((-839) (-13 (-888) (-10 -8 (-15 -2791 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2790 ($ $ (-1002 (-179)))) (-15 -3874 ($ $ (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -3135 ($ $ (-1002 (-179)))) (-15 -3135 ($ $)) (-15 -2789 ((-1002 (-179)) $)) (-15 -2788 ((-584 (-584 (-179))) $)) (-15 -2787 ((-485))) (-15 -2786 ((-485) (-485))) (-15 -2785 ((-485))) (-15 -2784 ((-485) (-485))) (-15 -2783 ((-485))) (-15 -2782 ((-485) (-485))) (-15 -2781 ((-85))) (-15 -2780 ((-85) (-85))) (-15 -2779 ((-485))) (-15 -2778 ((-85) (-85)))))) (T -839))
+((-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2791 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2790 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2790 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3874 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3135 (*1 *1 *1) (-5 *1 (-839))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839)))) (-2787 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2785 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2783 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2781 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2779 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2778 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
+((-2792 (((-584 (-1002 (-179))) (-584 (-584 (-855 (-179))))) 34 T ELT)))
+(((-840) (-10 -7 (-15 -2792 ((-584 (-1002 (-179))) (-584 (-584 (-855 (-179)))))))) (T -840))
+((-2792 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1002 (-179)))) (-5 *1 (-840)))))
+((-2794 (((-265 (-485)) (-1090)) 16 T ELT)) (-2795 (((-265 (-485)) (-1090)) 14 T ELT)) (-3952 (((-265 (-485)) (-1090)) 12 T ELT)) (-2793 (((-265 (-485)) (-1090) (-447)) 19 T ELT)))
+(((-841) (-10 -7 (-15 -2793 ((-265 (-485)) (-1090) (-447))) (-15 -3952 ((-265 (-485)) (-1090))) (-15 -2794 ((-265 (-485)) (-1090))) (-15 -2795 ((-265 (-485)) (-1090))))) (T -841))
+((-2795 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-447)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))))
+((-2794 ((|#2| |#2|) 28 T ELT)) (-2795 ((|#2| |#2|) 29 T ELT)) (-3952 ((|#2| |#2|) 27 T ELT)) (-2793 ((|#2| |#2| (-447)) 26 T ELT)))
+(((-842 |#1| |#2|) (-10 -7 (-15 -2793 (|#2| |#2| (-447))) (-15 -3952 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2795 (|#2| |#2|))) (-1014) (-364 |#1|)) (T -842))
+((-2795 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-2793 (*1 *2 *2 *3) (-12 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-364 *4)))))
+((-2797 (((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)) (-2796 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT)))
+(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2797 ((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-797 |#1|) (-13 (-1014) (-951 |#2|))) (T -843))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1014) (-951 *5))) (-4 *5 (-797 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6)))))
+((-2797 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 30 T ELT)))
+(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-13 (-496) (-797 |#1|)) (-13 (-364 |#2|) (-554 (-801 |#1|)) (-797 |#1|) (-951 (-551 $)))) (T -844))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-364 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) (-5 *4 (-801 *5)) (-4 *6 (-13 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3)))))
+((-2797 (((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)) 13 T ELT)))
+(((-845 |#1|) (-10 -7 (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)))) (-484)) (T -845))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484)) (-5 *1 (-845 *3)))))
+((-2797 (((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)) 57 T ELT)))
+(((-846 |#1| |#2|) (-10 -7 (-15 -2797 ((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)))) (-1014) (-13 (-1014) (-951 (-551 $)) (-554 (-801 |#1|)) (-797 |#1|))) (T -846))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) (-5 *1 (-846 *5 *6)))))
+((-2797 (((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)) 17 T ELT)))
+(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)))) (-1014) (-797 |#1|) (-609 |#2|)) (T -847))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3)))))
+((-2797 (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|)) 17 (|has| |#3| (-797 |#1|)) ELT) (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|))) 16 T ELT)))
+(((-848 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2797 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|)))) (IF (|has| |#3| (-797 |#1|)) (-15 -2797 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|))) |%noBranch|)) (-1014) (-718) (-757) (-13 (-962) (-797 |#1|)) (-13 (-862 |#4| |#2| |#3|) (-554 (-801 |#1|)))) (T -848))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5))) (-5 *1 (-848 *5 *6 *7 *8 *3)))) (-2797 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014)) (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3)))))
+((-3210 (((-265 (-485)) (-1090) (-584 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-485)) (-1090) (-1 (-85) |#1|)) 15 T ELT)))
+(((-849 |#1|) (-10 -7 (-15 -3210 ((-265 (-485)) (-1090) (-1 (-85) |#1|))) (-15 -3210 ((-265 (-485)) (-1090) (-584 (-1 (-85) |#1|))))) (-1129)) (T -849))
+((-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1129)) (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1129)) (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))))
+((-3210 ((|#2| |#2| (-584 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT)))
+(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -3210 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3210 (|#2| |#2| (-584 (-1 (-85) |#3|))))) (-1014) (-364 |#1|) (-1129)) (T -850))
+((-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1129)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1129)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))))
+((-2797 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)))
+(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-13 (-496) (-797 |#1|) (-554 (-801 |#1|))) (-905 |#2|)) (T -851))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6)) (-4 *6 (-13 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) (-5 *1 (-851 *5 *6 *3)))))
+((-2797 (((-799 |#1| (-1090)) (-1090) (-801 |#1|) (-799 |#1| (-1090))) 18 T ELT)))
+(((-852 |#1|) (-10 -7 (-15 -2797 ((-799 |#1| (-1090)) (-1090) (-801 |#1|) (-799 |#1| (-1090))))) (-1014)) (T -852))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *1 (-852 *5)))))
+((-2798 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 34 T ELT)) (-2797 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 33 T ELT)))
+(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-15 -2798 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))))) (-1014) (-962) (-13 (-962) (-554 (-801 |#1|)) (-951 |#2|))) (T -853))
+((-2798 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014)) (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))) (-2797 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014)) (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9)))))
+((-2806 (((-1085 (-350 (-485))) (-485)) 80 T ELT)) (-2805 (((-1085 (-485)) (-485)) 83 T ELT)) (-3334 (((-1085 (-485)) (-485)) 77 T ELT)) (-2804 (((-485) (-1085 (-485))) 73 T ELT)) (-2803 (((-1085 (-350 (-485))) (-485)) 66 T ELT)) (-2802 (((-1085 (-485)) (-485)) 49 T ELT)) (-2801 (((-1085 (-485)) (-485)) 85 T ELT)) (-2800 (((-1085 (-485)) (-485)) 84 T ELT)) (-2799 (((-1085 (-350 (-485))) (-485)) 68 T ELT)))
+(((-854) (-10 -7 (-15 -2799 ((-1085 (-350 (-485))) (-485))) (-15 -2800 ((-1085 (-485)) (-485))) (-15 -2801 ((-1085 (-485)) (-485))) (-15 -2802 ((-1085 (-485)) (-485))) (-15 -2803 ((-1085 (-350 (-485))) (-485))) (-15 -2804 ((-485) (-1085 (-485)))) (-15 -3334 ((-1085 (-485)) (-485))) (-15 -2805 ((-1085 (-485)) (-485))) (-15 -2806 ((-1085 (-350 (-485))) (-485))))) (T -854))
+((-2806 (*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-3334 (*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-1085 (-485))) (-5 *2 (-485)) (-5 *1 (-854)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3838 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3788 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-3706 (($ (-584 |#1|)) 9 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3835 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3614 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3832 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 |#1|)) 25 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-3836 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-3911 (((-831) $) 13 T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-3834 (($ $ $) 23 T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 14 T ELT)) (-3530 (($ (-584 |#1|)) NIL T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-584 $)) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3837 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3957 (((-695) $) 11 T ELT)))
+(((-855 |#1|) (-894 |#1|) (-962)) (T -855))
+NIL
+((-2809 (((-421 |#1| |#2|) (-858 |#2|)) 22 T ELT)) (-2812 (((-206 |#1| |#2|) (-858 |#2|)) 35 T ELT)) (-2810 (((-858 |#2|) (-421 |#1| |#2|)) 27 T ELT)) (-2808 (((-206 |#1| |#2|) (-421 |#1| |#2|)) 57 T ELT)) (-2811 (((-858 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2807 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT)))
+(((-856 |#1| |#2|) (-10 -7 (-15 -2807 ((-421 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2808 ((-206 |#1| |#2|) (-421 |#1| |#2|))) (-15 -2809 ((-421 |#1| |#2|) (-858 |#2|))) (-15 -2810 ((-858 |#2|) (-421 |#1| |#2|))) (-15 -2811 ((-858 |#2|) (-206 |#1| |#2|))) (-15 -2812 ((-206 |#1| |#2|) (-858 |#2|)))) (-584 (-1090)) (-962)) (T -856))
+((-2812 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1090))))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1090))))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)))))
+((-2813 (((-584 |#2|) |#2| |#2|) 10 T ELT)) (-2816 (((-695) (-584 |#1|)) 47 (|has| |#1| (-756)) ELT)) (-2814 (((-584 |#2|) |#2|) 11 T ELT)) (-2817 (((-695) (-584 |#1|) (-485) (-485)) 45 (|has| |#1| (-756)) ELT)) (-2815 ((|#1| |#2|) 37 (|has| |#1| (-756)) ELT)))
+(((-857 |#1| |#2|) (-10 -7 (-15 -2813 ((-584 |#2|) |#2| |#2|)) (-15 -2814 ((-584 |#2|) |#2|)) (IF (|has| |#1| (-756)) (PROGN (-15 -2815 (|#1| |#2|)) (-15 -2816 ((-695) (-584 |#1|))) (-15 -2817 ((-695) (-584 |#1|) (-485) (-485)))) |%noBranch|)) (-312) (-1155 |#1|)) (T -857))
+((-2817 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-312)) (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1155 *5)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-857 *4 *5)) (-4 *5 (-1155 *4)))) (-2815 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1155 *2)))) (-2814 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1155 *4)))) (-2813 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-1090)) $) 16 T ELT)) (-3084 (((-1085 $) $ (-1090)) 21 T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1090))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1090) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1090) $) NIL T ELT)) (-3756 (($ $ $ (-1090)) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| (-470 (-1090)) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1090) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1090) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1085 |#1|) (-1090)) NIL T ELT) (($ (-1085 $) (-1090)) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-1090)) NIL T ELT)) (-2821 (((-470 (-1090)) $) NIL T ELT) (((-695) $ (-1090)) NIL T ELT) (((-584 (-695)) $ (-584 (-1090))) NIL T ELT)) (-1625 (($ (-1 (-470 (-1090)) (-470 (-1090))) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3083 (((-3 (-1090) #1#) $) 19 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-1090)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3812 (($ $ (-1090)) 29 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1090) |#1|) NIL T ELT) (($ $ (-584 (-1090)) (-584 |#1|)) NIL T ELT) (($ $ (-1090) $) NIL T ELT) (($ $ (-584 (-1090)) (-584 $)) NIL T ELT)) (-3757 (($ $ (-1090)) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3948 (((-470 (-1090)) $) NIL T ELT) (((-695) $ (-1090)) NIL T ELT) (((-584 (-695)) $ (-584 (-1090))) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-1090) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1090) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1090) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) 25 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1090)) 27 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-470 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-858 |#1|) (-13 (-862 |#1| (-470 (-1090)) (-1090)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3812 ($ $ (-1090))) |%noBranch|))) (-962)) (T -858))
+((-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))))
+((-3958 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 19 T ELT)))
+(((-859 |#1| |#2|) (-10 -7 (-15 -3958 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-962) (-962)) (T -859))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6)))))
+((-3084 (((-1148 |#1| (-858 |#2|)) (-858 |#2|) (-1176 |#1|)) 18 T ELT)))
+(((-860 |#1| |#2|) (-10 -7 (-15 -3084 ((-1148 |#1| (-858 |#2|)) (-858 |#2|) (-1176 |#1|)))) (-1090) (-962)) (T -860))
+((-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-1176 *5)) (-14 *5 (-1090)) (-4 *6 (-962)) (-5 *2 (-1148 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6)))))
+((-2820 (((-695) $) 88 T ELT) (((-695) $ (-584 |#4|)) 93 T ELT)) (-3775 (($ $) 214 T ELT)) (-3971 (((-348 $) $) 206 T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1="failed") (-584 (-1085 $)) (-1085 $)) 141 T ELT)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3756 (($ $ $ |#4|) 95 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) 131 T ELT) (((-631 |#2|) (-631 $)) 121 T ELT)) (-3503 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2819 (((-584 $) $) 77 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 240 T ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 233 T ELT)) (-2822 (((-584 $) $) 34 T ELT)) (-2894 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|) (-584 (-695))) 71 T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#4|) 203 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 52 T ELT)) (-2823 (((-3 (-584 $) #1#) $) 39 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#4|) (|:| -2402 (-695))) #1#) $) 57 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 134 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 147 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 145 T ELT)) (-3732 (((-348 $) $) 165 T ELT)) (-3768 (($ $ (-584 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT)) (-3757 (($ $ |#4|) 97 T ELT)) (-3972 (((-801 (-330)) $) 254 T ELT) (((-801 (-485)) $) 247 T ELT) (((-474) $) 262 T ELT)) (-2818 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) 185 T ELT)) (-3677 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-695)) 62 T ELT) (($ $ (-584 |#4|) (-584 (-695))) 69 T ELT)) (-2703 (((-633 $) $) 195 T ELT)) (-1265 (((-85) $ $) 227 T ELT)))
+(((-861 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -2703 ((-633 |#1|) |#1|)) (-15 -3972 ((-474) |#1|)) (-15 -3972 ((-801 (-485)) |#1|)) (-15 -3972 ((-801 (-330)) |#1|)) (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -2797 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -2707 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2706 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2705 ((-3 (-584 (-1085 |#1|)) #1="failed") (-584 (-1085 |#1|)) (-1085 |#1|))) (-15 -2704 ((-3 (-1179 |#1|) #1#) (-631 |#1|))) (-15 -3503 (|#1| |#1| |#4|)) (-15 -2818 (|#1| |#1| |#4|)) (-15 -3757 (|#1| |#1| |#4|)) (-15 -3756 (|#1| |#1| |#1| |#4|)) (-15 -2819 ((-584 |#1|) |#1|)) (-15 -2820 ((-695) |#1| (-584 |#4|))) (-15 -2820 ((-695) |#1|)) (-15 -2825 ((-3 (-2 (|:| |var| |#4|) (|:| -2402 (-695))) #1#) |#1|)) (-15 -2824 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2823 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2894 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -2894 (|#1| |#1| |#4| (-695))) (-15 -3763 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1| |#4|)) (-15 -2822 ((-584 |#1|) |#1|)) (-15 -3677 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3677 (|#1| |#1| |#4| (-695))) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3158 ((-3 |#4| #1#) |#1|)) (-15 -3157 (|#4| |#1|)) (-15 -3768 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3768 (|#1| |#1| |#4| |#1|)) (-15 -3768 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3768 (|#1| |#1| |#4| |#2|)) (-15 -3768 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -2894 (|#1| |#2| |#3|)) (-15 -3677 (|#2| |#1| |#3|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -1265 ((-85) |#1| |#1|))) (-862 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -861))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 |#3|) $) 123 T ELT)) (-3084 (((-1085 $) $ |#3|) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-822)) ELT)) (-3775 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1="failed") (-584 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-822)) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT)) (-3756 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3959 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) 122 T ELT)) (-3723 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| |#2| $) 189 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3085 (($ (-1085 |#1|) |#3|) 130 T ELT) (($ (-1085 $) |#3|) 129 T ELT)) (-2822 (((-584 $) $) 139 T ELT)) (-3937 (((-85) $) 169 T ELT)) (-2894 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) 133 T ELT)) (-2821 ((|#2| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3083 (((-3 |#3| "failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-631 |#1|) (-1179 $)) 144 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT)) (-1891 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2824 (((-3 (-584 $) "failed") $) 127 T ELT)) (-2823 (((-3 (-584 $) "failed") $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) "failed") $) 126 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1797 (((-85) $) 183 T ELT)) (-1796 ((|#1| $) 184 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT)) (-3757 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3948 ((|#2| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT)) (-3972 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-496)) ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3817 (((-584 |#1|) $) 185 T ELT)) (-3677 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2703 (((-633 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1623 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
+(((-862 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -862))
+((-3503 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3948 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3677 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-3677 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3084 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1085 *1)) (-4 *1 (-862 *4 *5 *3)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1085 *3)))) (-3083 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-2821 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3763 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-862 *4 *5 *3)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) (-4 *3 (-757)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-695)))))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2819 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3756 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-2818 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3503 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3775 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3971 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-348 *1)) (-4 *1 (-862 *3 *4 *5)))))
+(-13 (-810 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-456 |t#3| |t#1|) (-456 |t#3| $) (-951 |t#3|) (-329 |t#1|) (-10 -8 (-15 -3948 ((-695) $ |t#3|)) (-15 -3948 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3677 ($ $ |t#3| (-695))) (-15 -3677 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -2822 ((-584 $) $)) (-15 -3084 ((-1085 $) $ |t#3|)) (-15 -3084 ((-1085 |t#1|) $)) (-15 -3083 ((-3 |t#3| "failed") $)) (-15 -2821 ((-695) $ |t#3|)) (-15 -2821 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3763 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |t#3|)) (-15 -2894 ($ $ |t#3| (-695))) (-15 -2894 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -3085 ($ (-1085 |t#1|) |t#3|)) (-15 -3085 ($ (-1085 $) |t#3|)) (-15 -2823 ((-3 (-584 $) "failed") $)) (-15 -2824 ((-3 (-584 $) "failed") $)) (-15 -2825 ((-3 (-2 (|:| |var| |t#3|) (|:| -2402 (-695))) "failed") $)) (-15 -2820 ((-695) $)) (-15 -2820 ((-695) $ (-584 |t#3|))) (-15 -3082 ((-584 |t#3|) $)) (-15 -2819 ((-584 $) $)) (IF (|has| |t#1| (-554 (-474))) (IF (|has| |t#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-485)))) (IF (|has| |t#3| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-330)))) (IF (|has| |t#3| (-554 (-801 (-330)))) (-6 (-554 (-801 (-330)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-485))) (IF (|has| |t#3| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-330))) (IF (|has| |t#3| (-797 (-330))) (-6 (-797 (-330))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3756 ($ $ $ |t#3|)) (-15 -3757 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-6 (-392)) (-15 -2818 ($ $ |t#3|)) (-15 -3503 ($ $)) (-15 -3503 ($ $ |t#3|)) (-15 -3971 ((-348 $) $)) (-15 -3775 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) |has| |#1| (-822)))
+((-3082 (((-584 |#2|) |#5|) 40 T ELT)) (-3084 (((-1085 |#5|) |#5| |#2| (-1085 |#5|)) 23 T ELT) (((-350 (-1085 |#5|)) |#5| |#2|) 16 T ELT)) (-3085 ((|#5| (-350 (-1085 |#5|)) |#2|) 30 T ELT)) (-3083 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2824 (((-3 (-584 |#5|) #1#) |#5|) 64 T ELT)) (-2826 (((-3 (-2 (|:| |val| |#5|) (|:| -2402 (-485))) #1#) |#5|) 53 T ELT)) (-2823 (((-3 (-584 |#5|) #1#) |#5|) 66 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-485))) #1#) |#5|) 56 T ELT)))
+(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3082 ((-584 |#2|) |#5|)) (-15 -3083 ((-3 |#2| #1="failed") |#5|)) (-15 -3084 ((-350 (-1085 |#5|)) |#5| |#2|)) (-15 -3085 (|#5| (-350 (-1085 |#5|)) |#2|)) (-15 -3084 ((-1085 |#5|) |#5| |#2| (-1085 |#5|))) (-15 -2823 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2824 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2825 ((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-485))) #1#) |#5|)) (-15 -2826 ((-3 (-2 (|:| |val| |#5|) (|:| -2402 (-485))) #1#) |#5|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3946 ($ |#4|)) (-15 -2999 (|#4| $)) (-15 -2998 (|#4| $))))) (T -863))
+((-2826 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2402 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-2823 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-3084 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))) (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-5 *1 (-863 *5 *4 *6 *7 *3)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1085 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))) (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-350 (-1085 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-3083 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *6)) (-15 -2999 (*6 $)) (-15 -2998 (*6 $))))))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
+((-3958 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT)))
+(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3958 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (T -864))
+((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *6 (-718)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7)))))
+((-2827 (((-2 (|:| -2402 (-695)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) |#3| (-695)) 48 T ELT)) (-2828 (((-2 (|:| -2402 (-695)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) (-350 (-485)) (-695)) 43 T ELT)) (-2830 (((-2 (|:| -2402 (-695)) (|:| -3954 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)) 64 T ELT)) (-2829 (((-2 (|:| -2402 (-695)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) |#5| (-695)) 73 (|has| |#3| (-392)) ELT)))
+(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2827 ((-2 (|:| -2402 (-695)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) |#3| (-695))) (-15 -2828 ((-2 (|:| -2402 (-695)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) (-350 (-485)) (-695))) (IF (|has| |#3| (-392)) (-15 -2829 ((-2 (|:| -2402 (-695)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) |#5| (-695))) |%noBranch|) (-15 -2830 ((-2 (|:| -2402 (-695)) (|:| -3954 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3946 ($ |#4|)) (-15 -2999 (|#4| $)) (-15 -2998 (|#4| $))))) (T -865))
+((-2830 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *3) (|:| |radicand| (-584 *3)))) (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3946 ($ *3)) (-15 -2999 (*3 $)) (-15 -2998 (*3 $))))))) (-2829 (*1 *2 *3 *4) (-12 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *3) (|:| |radicand| *3))) (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))) (-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *9) (|:| |radicand| *9))) (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3946 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))) (-2827 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *8) (|:| |radicand| *8))) (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2831 (($ (-1034)) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 15 T ELT) (((-1034) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-866) (-13 (-1014) (-553 (-1034)) (-10 -8 (-15 -2831 ($ (-1034)))))) (T -866))
+((-2831 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-866)))))
+((-2897 (((-1002 (-179)) $) 8 T ELT)) (-2898 (((-1002 (-179)) $) 9 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 10 T ELT)) (-3946 (((-773) $) 6 T ELT)))
+(((-867) (-113)) (T -867))
+((-2899 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))))
+(-13 (-553 (-773)) (-10 -8 (-15 -2899 ((-584 (-584 (-855 (-179)))) $)) (-15 -2898 ((-1002 (-179)) $)) (-15 -2897 ((-1002 (-179)) $))))
+(((-553 (-773)) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 80 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 81 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) 32 T ELT)) (-3467 (((-3 $ #1#) $) 43 T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1624 (($ $ |#1| |#2| $) 64 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 18 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-2821 ((|#2| $) 25 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2895 (($ $) 29 T ELT)) (-3175 ((|#1| $) 27 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) 52 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-3738 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-496))) ELT)) (-3466 (((-3 $ #1#) $ $) 92 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-496)) ELT)) (-3948 ((|#2| $) 23 T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) 47 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 42 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ |#2|) 38 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 15 T CONST)) (-1623 (($ $ $ (-695)) 76 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) 86 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 28 T CONST)) (-2667 (($) 12 T CONST)) (-3057 (((-85) $ $) 85 T ELT)) (-3949 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 71 T ELT) (($ $ (-695)) 69 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-868 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| |#2| (-104)) (-15 -3738 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3993)) (-6 -3993) |%noBranch|))) (-962) (-717)) (T -868))
+((-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-962)) (-4 *2 (-717)))))
+((-2832 (((-3 (-631 |#1|) "failed") |#2| (-831)) 18 T ELT)))
+(((-869 |#1| |#2|) (-10 -7 (-15 -2832 ((-3 (-631 |#1|) "failed") |#2| (-831)))) (-496) (-601 |#1|)) (T -869))
+((-2832 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5)) (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3788 ((|#1| $ (-485) |#1|) 18 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) 17 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 15 T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 23 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) |#1|) 14 T ELT)) (-2201 (((-485) $) 10 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 24 T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 22 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) 19 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 11 T ELT)) (-3800 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 16 T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 20 T ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 13 T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3957 (((-695) $) 8 T ELT)))
+(((-870 |#1|) (-19 |#1|) (-1129)) (T -870))
+NIL
+((-3841 (((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 16 T ELT)) (-3842 ((|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 18 T ELT)) (-3958 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 13 T ELT)))
+(((-871 |#1| |#2|) (-10 -7 (-15 -3841 ((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3842 (|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3958 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1129) (-1129)) (T -871))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-871 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5)))))
+((-2833 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1090)) 6 T ELT)))
+(((-872) (-113)) (T -872))
+((-2833 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-872)))) (-2833 (*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1090)))))
+(-13 (-10 -8 (-15 -2833 ($ $ (-1090))) (-15 -2833 ($ $ (-1005 $)))))
+((-2834 (((-2 (|:| -3954 (-584 (-485))) (|:| |poly| (-584 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-584 (-858 |#1|)) (-584 (-1090)) (-1090)) 26 T ELT) (((-2 (|:| -3954 (-584 (-485))) (|:| |poly| (-584 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-584 (-858 |#1|)) (-584 (-1090))) 27 T ELT) (((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1085 |#1|))) (-858 |#1|) (-1090) (-858 |#1|) (-1090)) 49 T ELT)))
+(((-873 |#1|) (-10 -7 (-15 -2834 ((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1085 |#1|))) (-858 |#1|) (-1090) (-858 |#1|) (-1090))) (-15 -2834 ((-2 (|:| -3954 (-584 (-485))) (|:| |poly| (-584 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-584 (-858 |#1|)) (-584 (-1090)))) (-15 -2834 ((-2 (|:| -3954 (-584 (-485))) (|:| |poly| (-584 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-584 (-858 |#1|)) (-584 (-1090)) (-1090)))) (-13 (-312) (-120))) (T -873))
+((-2834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1090))) (-5 *5 (-1090)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3954 (-584 (-485))) (|:| |poly| (-584 (-1085 *6))) (|:| |prim| (-1085 *6)))) (-5 *1 (-873 *6)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1090))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3954 (-584 (-485))) (|:| |poly| (-584 (-1085 *5))) (|:| |prim| (-1085 *5)))) (-5 *1 (-873 *5)))) (-2834 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1085 *5)))) (-5 *1 (-873 *5)))))
+((-2837 (((-584 |#1|) |#1| |#1|) 47 T ELT)) (-3723 (((-85) |#1|) 44 T ELT)) (-2836 ((|#1| |#1|) 80 T ELT)) (-2835 ((|#1| |#1|) 79 T ELT)))
+(((-874 |#1|) (-10 -7 (-15 -3723 ((-85) |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2837 ((-584 |#1|) |#1| |#1|))) (-484)) (T -874))
+((-2837 (*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484)))) (-2836 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-2835 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-3723 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-484)))))
+((-2838 (((-1185) (-773)) 9 T ELT)))
+(((-875) (-10 -7 (-15 -2838 ((-1185) (-773))))) (T -875))
+((-2838 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-875)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2484 (($ $ $) 65 (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1312 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-3137 (((-695)) 36 (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-2839 ((|#2| $) 22 T ELT)) (-2840 ((|#1| $) 21 T ELT)) (-3724 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-3467 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2995 (($) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1214 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2411 (((-85) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2532 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2858 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2841 (($ |#1| |#2|) 20 T ELT)) (-2011 (((-831) $) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 39 (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2401 (($ (-831)) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3010 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2436 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3946 (((-773) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-2667 (($) 25 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) CONST)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3057 (((-85) $ $) 19 T ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2686 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3949 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3837 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3839 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (** (($ $ (-485)) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT) (($ $ (-695)) 32 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT) (($ $ (-831)) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (* (($ (-485) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-695) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ (-831) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)))
+(((-876 |#1| |#2|) (-13 (-1014) (-10 -8 (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-413)) (IF (|has| |#2| (-413)) (-6 (-413)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-718)) (IF (|has| |#2| (-718)) (-6 (-718)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (-15 -2841 ($ |#1| |#2|)) (-15 -2840 (|#1| $)) (-15 -2839 (|#2| $)))) (-1014) (-1014)) (T -876))
+((-2841 (*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2840 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014)))) (-2839 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014)))))
+((-3402 (((-1016) $) 13 T ELT)) (-2842 (($ (-447) (-1016)) 15 T ELT)) (-3542 (((-447) $) 11 T ELT)) (-3946 (((-773) $) 25 T ELT)))
+(((-877) (-13 (-553 (-773)) (-10 -8 (-15 -3542 ((-447) $)) (-15 -3402 ((-1016) $)) (-15 -2842 ($ (-447) (-1016)))))) (T -877))
+((-3542 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-877)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-877)))) (-2842 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 29 T ELT)) (-2856 (($) 17 T CONST)) (-2562 (($ $ $) NIL T ELT)) (-2561 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2847 (((-633 (-783 $ $)) $) 62 T ELT)) (-2849 (((-633 $) $) 52 T ELT)) (-2846 (((-633 (-783 $ $)) $) 63 T ELT)) (-2845 (((-633 (-783 $ $)) $) 64 T ELT)) (-2850 (((-633 |#1|) $) 43 T ELT)) (-2848 (((-633 (-783 $ $)) $) 61 T ELT)) (-2854 (($ $ $) 38 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2855 (($) 16 T CONST)) (-2853 (($ $ $) 39 T ELT)) (-2843 (($ $ $) 36 T ELT)) (-2844 (($ $ $) 34 T ELT)) (-3946 (((-773) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2312 (($ $ $) 37 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 35 T ELT)))
+(((-878 |#1|) (-13 (-881) (-556 |#1|) (-10 -8 (-15 -2850 ((-633 |#1|) $)) (-15 -2849 ((-633 $) $)) (-15 -2848 ((-633 (-783 $ $)) $)) (-15 -2847 ((-633 (-783 $ $)) $)) (-15 -2846 ((-633 (-783 $ $)) $)) (-15 -2845 ((-633 (-783 $ $)) $)) (-15 -2844 ($ $ $)) (-15 -2843 ($ $ $)))) (-1014)) (T -878))
+((-2850 (*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))) (-2843 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))))
+((-3649 (((-878 |#1|) (-878 |#1|)) 46 T ELT)) (-2852 (((-878 |#1|) (-878 |#1|)) 22 T ELT)) (-2851 (((-1010 |#1|) (-878 |#1|)) 41 T ELT)))
+(((-879 |#1|) (-13 (-1129) (-10 -7 (-15 -2852 ((-878 |#1|) (-878 |#1|))) (-15 -2851 ((-1010 |#1|) (-878 |#1|))) (-15 -3649 ((-878 |#1|) (-878 |#1|))))) (-1014)) (T -879))
+((-2852 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))))
+((-3958 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 29 T ELT)))
+(((-880 |#1| |#2|) (-13 (-1129) (-10 -7 (-15 -3958 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))) (-1014) (-1014)) (T -880))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6)))))
+((-2569 (((-85) $ $) 19 T ELT)) (-2314 (($ $) 8 T ELT)) (-2856 (($) 17 T CONST)) (-2562 (($ $ $) 9 T ELT)) (-2561 (($ $) 11 T ELT)) (-3243 (((-1073) $) 23 T ELT)) (-2854 (($ $ $) 15 T ELT)) (-3244 (((-1034) $) 22 T ELT)) (-2855 (($) 16 T CONST)) (-2853 (($ $ $) 14 T ELT)) (-3946 (((-773) $) 21 T ELT)) (-1265 (((-85) $ $) 20 T ELT)) (-2563 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-2313 (($ $ $) 7 T ELT)))
+(((-881) (-113)) (T -881))
+((-2856 (*1 *1) (-4 *1 (-881))) (-2855 (*1 *1) (-4 *1 (-881))) (-2854 (*1 *1 *1 *1) (-4 *1 (-881))) (-2853 (*1 *1 *1 *1) (-4 *1 (-881))))
+(-13 (-84) (-1014) (-10 -8 (-15 -2856 ($) -3952) (-15 -2855 ($) -3952) (-15 -2854 ($ $ $)) (-15 -2853 ($ $ $))))
+(((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-13) . T) ((-605) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2857 (($ $ $) 48 T ELT)) (-3518 (($ $ $) 49 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 50 T ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-882 |#1|) (-113) (-757)) (T -882))
+((-2858 (*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-3518 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
+(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -2858 (|t#1| $)) (-15 -3518 ($ $ $)) (-15 -2857 ($ $ $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2870 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|) 105 T ELT)) (-3755 ((|#2| |#2| |#2|) 103 T ELT)) (-2871 (((-2 (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|) 107 T ELT)) (-2872 (((-2 (|:| |coef1| |#2|) (|:| -3145 |#2|)) |#2| |#2|) 109 T ELT)) (-2879 (((-2 (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|) 132 (|has| |#1| (-392)) ELT)) (-2886 (((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 56 T ELT)) (-2860 (((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 80 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 82 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2864 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 89 T ELT)) (-2874 (((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2|) 121 T ELT)) (-2867 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 92 T ELT)) (-2876 (((-584 (-695)) |#2| |#2|) 102 T ELT)) (-2884 ((|#1| |#2| |#2|) 50 T ELT)) (-2878 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|) 130 (|has| |#1| (-392)) ELT)) (-2877 ((|#1| |#2| |#2|) 128 (|has| |#1| (-392)) ELT)) (-2885 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 54 T ELT)) (-2859 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 79 T ELT)) (-3756 ((|#1| |#2| |#2|) 76 T ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2|) 41 T ELT)) (-2883 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3191 ((|#2| |#2| |#2|) 93 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 87 T ELT)) (-2862 ((|#2| |#2| |#2| (-695)) 85 T ELT)) (-3145 ((|#2| |#2| |#2|) 136 (|has| |#1| (-392)) ELT)) (-3466 (((-1179 |#2|) (-1179 |#2|) |#1|) 22 T ELT)) (-2880 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2|) 46 T ELT)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2|) 119 T ELT)) (-3757 ((|#1| |#2|) 116 T ELT)) (-2866 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 91 T ELT)) (-2865 ((|#2| |#2| |#2| (-695)) 90 T ELT)) (-2875 (((-584 |#2|) |#2| |#2|) 99 T ELT)) (-2882 ((|#2| |#2| |#1| |#1| (-695)) 62 T ELT)) (-2881 ((|#1| |#1| |#1| (-695)) 61 T ELT)) (* (((-1179 |#2|) |#1| (-1179 |#2|)) 17 T ELT)))
+(((-883 |#1| |#2|) (-10 -7 (-15 -3756 (|#1| |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|)) (-15 -2860 ((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|)) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| -3756 |#1|)) |#2| |#2|)) (-15 -2862 (|#2| |#2| |#2| (-695))) (-15 -2863 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2864 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2865 (|#2| |#2| |#2| (-695))) (-15 -2866 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2867 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -3191 (|#2| |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3755 (|#2| |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|)) (-15 -2872 ((-2 (|:| |coef1| |#2|) (|:| -3145 |#2|)) |#2| |#2|)) (-15 -3757 (|#1| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2|)) (-15 -2874 ((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2|)) (-15 -2875 ((-584 |#2|) |#2| |#2|)) (-15 -2876 ((-584 (-695)) |#2| |#2|)) (IF (|has| |#1| (-392)) (PROGN (-15 -2877 (|#1| |#2| |#2|)) (-15 -2878 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|)) (-15 -2879 ((-2 (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|)) (-15 -3145 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1179 |#2|) |#1| (-1179 |#2|))) (-15 -3466 ((-1179 |#2|) (-1179 |#2|) |#1|)) (-15 -3752 ((-2 (|:| -3954 |#1|) (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2|)) (-15 -2880 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2|)) (-15 -2881 (|#1| |#1| |#1| (-695))) (-15 -2882 (|#2| |#2| |#1| |#1| (-695))) (-15 -2883 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2884 (|#1| |#2| |#2|)) (-15 -2885 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|)) (-15 -2886 ((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|))) (-496) (-1155 |#1|)) (T -883))
+((-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2885 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2884 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1155 *2)))) (-2883 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3)))) (-2882 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3)))) (-2881 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1155 *2)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-3752 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3954 *4) (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (-3145 (*1 *2 *2 *2) (-12 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2877 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2877 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1155 *2)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-3757 (*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1155 *2)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3145 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3145 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3145 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-3755 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-3191 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3)))) (-2867 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1155 *5)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1155 *5)))) (-2865 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1155 *4)))) (-2864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1155 *5)))) (-2863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1155 *5)))) (-2862 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1155 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3756 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))) (-3756 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1155 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1130) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1049) $) 11 T ELT)) (-3946 (((-773) $) 21 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-884) (-13 (-996) (-10 -8 (-15 -3207 ((-1049) $)) (-15 -3319 ((-1130) $))))) (T -884))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-884)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-884)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 40 T ELT)) (-1312 (((-3 $ "failed") $ $) 54 T ELT)) (-3724 (($) NIL T CONST)) (-2888 (((-584 (-783 (-831) (-831))) $) 64 T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2887 (((-831) $) 91 T ELT)) (-2890 (((-584 (-831)) $) 17 T ELT)) (-2889 (((-1069 $) (-695)) 39 T ELT)) (-2891 (($ (-584 (-831))) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3010 (($ $) 67 T ELT)) (-3946 (((-773) $) 87 T ELT) (((-584 (-831)) $) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 44 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 42 T ELT)) (-3839 (($ $ $) 46 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 49 T ELT)) (-3957 (((-695) $) 22 T ELT)))
+(((-885) (-13 (-722) (-553 (-584 (-831))) (-10 -8 (-15 -2891 ($ (-584 (-831)))) (-15 -2890 ((-584 (-831)) $)) (-15 -3957 ((-695) $)) (-15 -2889 ((-1069 $) (-695))) (-15 -2888 ((-584 (-783 (-831) (-831))) $)) (-15 -2887 ((-831) $)) (-15 -3010 ($ $))))) (T -885))
+((-2891 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1069 (-885))) (-5 *1 (-885)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885)))) (-3010 (*1 *1 *1) (-5 *1 (-885))))
+((-3949 (($ $ |#2|) 31 T ELT)) (-3837 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-350 (-485)) $) 27 T ELT) (($ $ (-350 (-485))) 29 T ELT)))
+(((-886 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3949 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-887 |#2| |#3| |#4|) (-962) (-717) (-757)) (T -886))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 |#3|) $) 95 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2893 (((-85) $) 94 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3948 ((|#2| $) 84 T ELT)) (-2892 (($ $) 93 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-887 |#1| |#2| |#3|) (-113) (-962) (-717) (-757)) (T -887))
+((-3175 (*1 *2 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) (-2895 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-85)))) (-2892 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2894 ($ $ |t#3| |t#2|)) (-15 -2894 ($ $ (-584 |t#3|) (-584 |t#2|))) (-15 -2895 ($ $)) (-15 -3175 (|t#1| $)) (-15 -3948 (|t#2| $)) (-15 -3082 ((-584 |t#3|) $)) (-15 -2893 ((-85) $)) (-15 -2892 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2896 (((-1002 (-179)) $) 8 T ELT)) (-2897 (((-1002 (-179)) $) 9 T ELT)) (-2898 (((-1002 (-179)) $) 10 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 11 T ELT)) (-3946 (((-773) $) 6 T ELT)))
+(((-888) (-113)) (T -888))
+((-2899 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))))
+(-13 (-553 (-773)) (-10 -8 (-15 -2899 ((-584 (-584 (-855 (-179)))) $)) (-15 -2898 ((-1002 (-179)) $)) (-15 -2897 ((-1002 (-179)) $)) (-15 -2896 ((-1002 (-179)) $))))
+(((-553 (-773)) . T))
+((-3082 (((-584 |#4|) $) 23 T ELT)) (-2909 (((-85) $) 55 T ELT)) (-2900 (((-85) $) 54 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2905 (((-85) $) 56 T ELT)) (-2907 (((-85) $ $) 62 T ELT)) (-2906 (((-85) $ $) 65 T ELT)) (-2908 (((-85) $) 60 T ELT)) (-2901 (((-584 |#5|) (-584 |#5|) $) 98 T ELT)) (-2902 (((-584 |#5|) (-584 |#5|) $) 95 T ELT)) (-2903 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2915 (((-584 |#4|) $) 27 T ELT)) (-2914 (((-85) |#4| $) 34 T ELT)) (-2904 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2911 (($ $ |#4|) 39 T ELT)) (-2913 (($ $ |#4|) 38 T ELT)) (-2912 (($ $ |#4|) 40 T ELT)) (-3057 (((-85) $ $) 46 T ELT)))
+(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2900 ((-85) |#1|)) (-15 -2901 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2902 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2903 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2904 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2905 ((-85) |#1|)) (-15 -2906 ((-85) |#1| |#1|)) (-15 -2907 ((-85) |#1| |#1|)) (-15 -2908 ((-85) |#1|)) (-15 -2909 ((-85) |#1|)) (-15 -2910 ((-2 (|:| |under| |#1|) (|:| -3131 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2914 ((-85) |#4| |#1|)) (-15 -2915 ((-584 |#4|) |#1|)) (-15 -3082 ((-584 |#4|) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-890 |#2| |#3| |#4| |#5|) (-962) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -889))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-1946 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3946 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3957 (((-695) $) 43 T ELT)))
+(((-890 |#1| |#2| |#3| |#4|) (-113) (-962) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -890))
+((-3158 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2914 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) (-2913 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2910 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3131 *1) (|:| |upper| *1))) (-4 *1 (-890 *4 *5 *3 *6)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2907 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2906 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2904 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2903 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2902 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2901 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
+(-13 (-1014) (-124 |t#4|) (-318 |t#4|) (-553 (-584 |t#4|)) (-10 -8 (-15 -3158 ((-3 $ "failed") (-584 |t#4|))) (-15 -3157 ($ (-584 |t#4|))) (-15 -3181 (|t#3| $)) (-15 -3082 ((-584 |t#3|) $)) (-15 -2915 ((-584 |t#3|) $)) (-15 -2914 ((-85) |t#3| $)) (-15 -2913 ($ $ |t#3|)) (-15 -2912 ($ $ |t#3|)) (-15 -2911 ($ $ |t#3|)) (-15 -2910 ((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |t#3|)) (-15 -2909 ((-85) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -2908 ((-85) $)) (-15 -2907 ((-85) $ $)) (-15 -2906 ((-85) $ $)) (-15 -2905 ((-85) $)) (-15 -2904 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2903 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2902 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2901 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2900 ((-85) $))) |%noBranch|)))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2917 (((-584 |#4|) |#4| |#4|) 135 T ELT)) (-2940 (((-584 |#4|) (-584 |#4|) (-85)) 123 (|has| |#1| (-392)) ELT) (((-584 |#4|) (-584 |#4|)) 124 (|has| |#1| (-392)) ELT)) (-2927 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 44 T ELT)) (-2926 (((-85) |#4|) 43 T ELT)) (-2939 (((-584 |#4|) |#4|) 120 (|has| |#1| (-392)) ELT)) (-2922 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|)) 24 T ELT)) (-2923 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 30 T ELT)) (-2924 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 31 T ELT)) (-2935 (((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3324 (-584 |#4|))) "failed") (-584 |#4|)) 90 T ELT)) (-2937 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2938 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2916 (((-584 |#4|) (-584 |#4|)) 126 T ELT)) (-2932 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85)) 59 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 61 T ELT)) (-2933 ((|#4| |#4| (-584 |#4|)) 60 T ELT)) (-2941 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 131 (|has| |#1| (-392)) ELT)) (-2943 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 134 (|has| |#1| (-392)) ELT)) (-2942 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 133 (|has| |#1| (-392)) ELT)) (-2918 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|))) 105 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 107 T ELT) (((-584 |#4|) (-584 |#4|) |#4|) 139 T ELT) (((-584 |#4|) |#4| |#4|) 136 T ELT) (((-584 |#4|) (-584 |#4|)) 106 T ELT)) (-2946 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2925 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 52 T ELT)) (-2921 (((-85) (-584 |#4|)) 79 T ELT)) (-2920 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 67 T ELT)) (-2929 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 37 T ELT)) (-2928 (((-85) |#4|) 36 T ELT)) (-2945 (((-584 |#4|) (-584 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2944 (((-584 |#4|) (-584 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2934 (((-584 |#4|) (-584 |#4|)) 83 T ELT)) (-2936 (((-584 |#4|) (-584 |#4|)) 97 T ELT)) (-2919 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-2931 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 50 T ELT)) (-2930 (((-85) |#4|) 45 T ELT)))
+(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2918 ((-584 |#4|) (-584 |#4|))) (-15 -2918 ((-584 |#4|) |#4| |#4|)) (-15 -2916 ((-584 |#4|) (-584 |#4|))) (-15 -2917 ((-584 |#4|) |#4| |#4|)) (-15 -2918 ((-584 |#4|) (-584 |#4|) |#4|)) (-15 -2918 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2918 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|)))) (-15 -2919 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -2920 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2921 ((-85) (-584 |#4|))) (-15 -2922 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2925 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2926 ((-85) |#4|)) (-15 -2927 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2928 ((-85) |#4|)) (-15 -2929 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2930 ((-85) |#4|)) (-15 -2931 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2932 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2932 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85))) (-15 -2933 (|#4| |#4| (-584 |#4|))) (-15 -2934 ((-584 |#4|) (-584 |#4|))) (-15 -2935 ((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3324 (-584 |#4|))) "failed") (-584 |#4|))) (-15 -2936 ((-584 |#4|) (-584 |#4|))) (-15 -2937 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2938 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-392)) (PROGN (-15 -2939 ((-584 |#4|) |#4|)) (-15 -2940 ((-584 |#4|) (-584 |#4|))) (-15 -2940 ((-584 |#4|) (-584 |#4|) (-85))) (-15 -2941 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2942 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2943 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2944 ((-584 |#4|) (-584 |#4|))) (-15 -2945 ((-584 |#4|) (-584 |#4|))) (-15 -2946 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) |%noBranch|)) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -891))
+((-2946 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2940 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2939 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2938 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2937 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))) (-2936 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2935 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3324 (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2933 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))) (-2932 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2932 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2919 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2918 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2918 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2918 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) (-2917 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2918 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2918 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+((-2947 (((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2949 (((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1179 |#1|)))) (-631 |#1|) (-1179 |#1|)) 45 T ELT)) (-2948 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT)))
+(((-892 |#1|) (-10 -7 (-15 -2947 ((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2948 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2949 ((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1179 |#1|)))) (-631 |#1|) (-1179 |#1|)))) (-312)) (T -892))
+((-2949 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1179 *5))))) (-5 *1 (-892 *5)) (-5 *3 (-631 *5)) (-5 *4 (-1179 *5)))) (-2948 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-892 *5)))) (-2947 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) (-5 *1 (-892 *6)) (-5 *3 (-631 *6)))))
+((-3971 (((-348 |#4|) |#4|) 61 T ELT)))
+(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3971 ((-348 |#4|) |#4|))) (-757) (-718) (-392) (-862 |#3| |#2| |#1|)) (T -893))
+((-3971 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-348 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3838 (($ (-695)) 122 (|has| |#1| (-23)) ELT)) (-2199 (((-1185) $ (-485) (-485)) 44 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3996))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-757)) ELT)) (-3788 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2298 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) 110 T ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) 107 T ELT) (((-485) |#1| $) 106 (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) 105 (|has| |#1| (-1014)) ELT)) (-3706 (($ (-584 |#1|)) 128 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3835 (((-631 |#1|) $ $) 115 (|has| |#1| (-962)) ELT)) (-3614 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3832 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3833 ((|#1| $) 113 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 |#1|)) 126 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1146 (-485))) 75 T ELT)) (-3836 ((|#1| $ $) 116 (|has| |#1| (-962)) ELT)) (-3911 (((-831) $) 127 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1146 (-485))) 67 T ELT)) (-3834 (($ $ $) 114 T ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-1731 (($ $ $ (-485)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 129 T ELT)) (-3530 (($ (-584 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3837 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-664)) ELT) (($ $ |#1|) 117 (|has| |#1| (-664)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-894 |#1|) (-113) (-962)) (T -894))
+((-3706 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) (-3911 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962)))))
+(-13 (-1178 |t#1|) (-558 (-584 |t#1|)) (-10 -8 (-15 -3706 ($ (-584 |t#1|))) (-15 -3911 ((-831) $)) (-15 -3834 ($ $ $)) (-15 -3769 ($ $ (-584 |t#1|)))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-558 (-584 |#1|)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1129) . T) ((-1178 |#1|) . T))
+((-3958 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 17 T ELT)))
+(((-895 |#1| |#2|) (-10 -7 (-15 -3958 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-962) (-962)) (T -895))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6)))))
+((-2952 ((|#1| (-855 |#1|)) 14 T ELT)) (-2951 ((|#1| (-855 |#1|)) 13 T ELT)) (-2950 ((|#1| (-855 |#1|)) 12 T ELT)) (-2954 ((|#1| (-855 |#1|)) 16 T ELT)) (-2958 ((|#1| (-855 |#1|)) 24 T ELT)) (-2953 ((|#1| (-855 |#1|)) 15 T ELT)) (-2955 ((|#1| (-855 |#1|)) 17 T ELT)) (-2957 ((|#1| (-855 |#1|)) 23 T ELT)) (-2956 ((|#1| (-855 |#1|)) 22 T ELT)))
+(((-896 |#1|) (-10 -7 (-15 -2950 (|#1| (-855 |#1|))) (-15 -2951 (|#1| (-855 |#1|))) (-15 -2952 (|#1| (-855 |#1|))) (-15 -2953 (|#1| (-855 |#1|))) (-15 -2954 (|#1| (-855 |#1|))) (-15 -2955 (|#1| (-855 |#1|))) (-15 -2956 (|#1| (-855 |#1|))) (-15 -2957 (|#1| (-855 |#1|))) (-15 -2958 (|#1| (-855 |#1|)))) (-962)) (T -896))
+((-2958 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+((-2976 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2959 (((-3 |#1| "failed") |#1| (-695)) 1 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 11 T ELT)))
+(((-897 |#1|) (-113) (-1115)) (T -897))
+((-2985 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))) (-2959 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(-13 (-10 -7 (-15 -2959 ((-3 |t#1| "failed") |t#1| (-695))) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2985 ((-3 |t#1| "failed") |t#1|))))
+((-2987 ((|#4| |#4| (-584 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2986 ((|#4| |#4| (-584 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3958 ((|#4| (-1 |#4| (-858 |#1|)) |#4|) 33 T ELT)))
+(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2986 (|#4| |#4| |#3|)) (-15 -2986 (|#4| |#4| (-584 |#3|))) (-15 -2987 (|#4| |#4| |#3|)) (-15 -2987 (|#4| |#4| (-584 |#3|))) (-15 -3958 (|#4| (-1 |#4| (-858 |#1|)) |#4|))) (-962) (-718) (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090))))) (-862 (-858 |#1|) |#2| |#3|)) (T -898))
+((-3958 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) (-4 *5 (-718)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1="failed") (-1090)))))) (-5 *1 (-898 *4 *5 *6 *2)))) (-2987 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) (-2986 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))))
+((-2988 ((|#2| |#3|) 35 T ELT)) (-3919 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 79 T ELT)) (-3918 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 100 T ELT)))
+(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3918 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3919 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|)) (-15 -2988 (|#2| |#3|))) (-299) (-1155 |#1|) (-1155 |#2|) (-662 |#2| |#3|)) (T -899))
+((-2988 (*1 *2 *3) (-12 (-4 *3 (-1155 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-899 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-662 *2 *3)))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) (-3918 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3401 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3649 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2992 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2993 (($ (-584 |#4|) |#4|) 25 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2989 (($ $) 69 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3403 (((-85) $) 70 T ELT)) (-3565 (($) 30 T ELT)) (-2990 ((|#4| $) 74 T ELT)) (-2991 (((-584 |#4|) $) 73 T ELT)) (-3946 (((-773) $) 68 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-900 |#1| |#2| |#3| |#4|) (-13 (-1014) (-553 (-773)) (-10 -8 (-15 -3565 ($)) (-15 -2993 ($ (-584 |#4|) |#4|)) (-15 -3401 ((-3 (-85) #1="failed") $)) (-15 -2992 ($ $ (-3 (-85) #1#))) (-15 -3403 ((-85) $)) (-15 -2991 ((-584 |#4|) $)) (-15 -2990 (|#4| $)) (-15 -2989 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3649 ($ $)) |%noBranch|) |%noBranch|))) (-392) (-757) (-718) (-862 |#1| |#3| |#2|)) (T -900))
+((-3565 (*1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-2993 (*1 *1 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2992 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-3403 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2991 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2990 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)))) (-2989 (*1 *1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-3649 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))))
+((-2994 (((-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485)))) (-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485))))) 82 T ELT)))
+(((-901 |#1| |#2|) (-10 -7 (-15 -2994 ((-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485)))) (-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485))))))) (-584 (-1090)) (-695)) (T -901))
+((-2994 (*1 *2 *2) (-12 (-5 *2 (-900 (-350 (-485)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-350 (-485))))) (-14 *3 (-584 (-1090))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4)))))
+((-3270 (((-85) |#5| |#5|) 44 T ELT)) (-3273 (((-85) |#5| |#5|) 59 T ELT)) (-3278 (((-85) |#5| (-584 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3274 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3280 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) 70 T ELT)) (-3269 (((-1185)) 32 T ELT)) (-3268 (((-1185) (-1073) (-1073) (-1073)) 28 T ELT)) (-3279 (((-584 |#5|) (-584 |#5|)) 100 T ELT)) (-3281 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)))) 92 T ELT)) (-3282 (((-584 (-2 (|:| -3267 (-584 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 122 T ELT)) (-3272 (((-85) |#5| |#5|) 53 T ELT)) (-3277 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3275 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3276 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3699 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3283 (((-3 (-2 (|:| -3267 (-584 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3271 (((-584 |#5|) (-584 |#5|)) 49 T ELT)))
+(((-902 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3268 ((-1185) (-1073) (-1073) (-1073))) (-15 -3269 ((-1185))) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-584 |#5|) (-584 |#5|))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3275 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3276 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3699 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3277 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3278 ((-85) |#5| |#5|)) (-15 -3278 ((-85) |#5| (-584 |#5|))) (-15 -3279 ((-584 |#5|) (-584 |#5|))) (-15 -3280 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)))) (-15 -3281 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) (-15 -3282 ((-584 (-2 (|:| -3267 (-584 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3283 ((-3 (-2 (|:| -3267 (-584 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -902))
+((-3283 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3267 (-584 *9)) (|:| -1600 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3282 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3267 (-584 *9)) (|:| -1600 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1600 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1600 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-902 *5 *6 *7 *8 *3)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3271 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3269 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
+((-3831 (((-1090) $) 15 T ELT)) (-3402 (((-1073) $) 16 T ELT)) (-3227 (($ (-1090) (-1073)) 14 T ELT)) (-3946 (((-773) $) 13 T ELT)))
+(((-903) (-13 (-553 (-773)) (-10 -8 (-15 -3227 ($ (-1090) (-1073))) (-15 -3831 ((-1090) $)) (-15 -3402 ((-1073) $))))) (T -903))
+((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-903)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-903)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-903)))))
+((-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1090) #1#) $) 72 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) 102 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-1090) $) 67 T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) 99 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) 121 T ELT) (((-631 |#2|) (-631 $)) 35 T ELT)) (-2995 (($) 105 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 82 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 91 T ELT)) (-2997 (($ $) 10 T ELT)) (-3445 (((-633 $) $) 27 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3446 (($) 16 T CONST)) (-3129 (($ $) 61 T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2996 (($ $) 12 T ELT)) (-3972 (((-801 (-485)) $) 77 T ELT) (((-801 (-330)) $) 86 T ELT) (((-474) $) 47 T ELT) (((-330) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1090)) 64 T ELT)) (-3127 (((-695)) 38 T CONST)) (-2686 (((-85) $ $) 57 T ELT)))
+(((-904 |#1| |#2|) (-10 -7 (-15 -2686 ((-85) |#1| |#1|)) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3446 (|#1|) -3952) (-15 -3445 ((-633 |#1|) |#1|)) (-15 -3158 ((-3 (-485) #1="failed") |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3972 ((-179) |#1|)) (-15 -3972 ((-330) |#1|)) (-15 -3972 ((-474) |#1|)) (-15 -3946 (|#1| (-1090))) (-15 -3158 ((-3 (-1090) #1#) |#1|)) (-15 -3157 ((-1090) |#1|)) (-15 -2995 (|#1|)) (-15 -3129 (|#1| |#1|)) (-15 -2996 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -2797 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3972 ((-801 (-330)) |#1|)) (-15 -3972 ((-801 (-485)) |#1|)) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3946 (|#1| |#1|)) (-15 -3127 ((-695)) -3952) (-15 -3946 (|#1| (-485))) (-15 -3946 ((-773) |#1|))) (-905 |#2|) (-496)) (T -904))
+((-3127 (*1 *2) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 164 (|has| |#1| (-822)) ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1="failed") (-584 (-1085 $)) (-1085 $)) 167 (|has| |#1| (-822)) ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3623 (((-485) $) 154 (|has| |#1| (-741)) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1090) #2#) $) 162 (|has| |#1| (-951 (-1090))) ELT) (((-3 (-350 (-485)) #2#) $) 145 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #2#) $) 143 (|has| |#1| (-951 (-485))) ELT)) (-3157 ((|#1| $) 204 T ELT) (((-1090) $) 163 (|has| |#1| (-951 (-1090))) ELT) (((-350 (-485)) $) 146 (|has| |#1| (-951 (-485))) ELT) (((-485) $) 144 (|has| |#1| (-951 (-485))) ELT)) (-2565 (($ $ $) 71 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 186 T ELT) (((-631 |#1|) (-631 $)) 185 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2995 (($) 171 (|has| |#1| (-484)) ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-3187 (((-85) $) 156 (|has| |#1| (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 180 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 179 (|has| |#1| (-797 (-330))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2997 (($ $) 175 T ELT)) (-2999 ((|#1| $) 177 T ELT)) (-3445 (((-633 $) $) 142 (|has| |#1| (-1066)) ELT)) (-3188 (((-85) $) 155 (|has| |#1| (-741)) ELT)) (-1605 (((-3 (-584 $) #3="failed") (-584 $) $) 68 T ELT)) (-2532 (($ $ $) 147 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 148 (|has| |#1| (-757)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 190 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 189 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 184 T ELT) (((-631 |#1|) (-1179 $)) 183 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3446 (($) 141 (|has| |#1| (-1066)) CONST)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3129 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3131 ((|#1| $) 169 (|has| |#1| (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 166 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 165 (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) 197 (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 196 (|has| |#1| (-456 (-1090) |#1|)) ELT)) (-1607 (((-695) $) 74 T ELT)) (-3800 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-695)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 136 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 134 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 133 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 132 (|has| |#1| (-812 (-1090))) ELT)) (-2996 (($ $) 174 T ELT)) (-2998 ((|#1| $) 176 T ELT)) (-3972 (((-801 (-485)) $) 182 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 181 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) 159 (|has| |#1| (-554 (-474))) ELT) (((-330) $) 158 (|has| |#1| (-934)) ELT) (((-179) $) 157 (|has| |#1| (-934)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) 168 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1090)) 161 (|has| |#1| (-951 (-1090))) ELT)) (-2703 (((-633 $) $) 160 (OR (|has| |#1| (-118)) (-2563 (|has| $ (-118)) (|has| |#1| (-822)))) ELT)) (-3127 (((-695)) 40 T CONST)) (-3132 ((|#1| $) 170 (|has| |#1| (-484)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3383 (($ $) 153 (|has| |#1| (-741)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-695)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 135 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 131 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 130 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 129 (|has| |#1| (-812 (-1090))) ELT)) (-2567 (((-85) $ $) 149 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 151 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 150 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 152 (|has| |#1| (-757)) ELT)) (-3949 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT)))
+(((-905 |#1|) (-113) (-496)) (T -905))
+((-3949 (*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-3129 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-2995 (*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))))
+(-13 (-312) (-38 |t#1|) (-951 |t#1|) (-288 |t#1|) (-184 |t#1|) (-329 |t#1|) (-795 |t#1|) (-343 |t#1|) (-10 -8 (-15 -3949 ($ |t#1| |t#1|)) (-15 -2999 (|t#1| $)) (-15 -2998 (|t#1| $)) (-15 -2997 ($ $)) (-15 -2996 ($ $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-951 (-485))) (PROGN (-6 (-951 (-485))) (-6 (-951 (-350 (-485))))) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-951 (-1090))) (-6 (-951 (-1090))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3130 (|t#1| $)) (-15 -3129 ($ $))) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -2995 ($)) (-15 -3132 (|t#1| $)) (-15 -3131 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-741)) (|has| |#1| (-120))) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 (-1090)) |has| |#1| (-951 (-1090))) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) |has| |#1| (-934)) ((-554 (-330)) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-392) . T) ((-456 (-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-715) |has| |#1| (-741)) ((-717) |has| |#1| (-741)) ((-719) |has| |#1| (-741)) ((-722) |has| |#1| (-741)) ((-741) |has| |#1| (-741)) ((-756) |has| |#1| (-741)) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-807 $ (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-810 (-1090)) |has| |#1| (-810 (-1090))) ((-812 (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) |has| |#1| (-822)) ((-833) . T) ((-934) |has| |#1| (-934)) ((-951 (-350 (-485))) |has| |#1| (-951 (-485))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-1090)) |has| |#1| (-951 (-1090))) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1066) |has| |#1| (-1066)) ((-1129) . T) ((-1134) . T))
+((-3958 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT)))
+(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#2| |#1|) |#3|))) (-496) (-496) (-905 |#1|) (-905 |#2|)) (T -906))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6)) (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3000 (($ (-1056 |#1| |#2|)) 11 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3124 (((-1056 |#1| |#2|) $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT)))
+(((-907 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -3000 ($ (-1056 |#1| |#2|))) (-15 -3124 ((-1056 |#1| |#2|) $)))) (-831) (-312)) (T -907))
+((-3000 (*1 *1 *2) (-12 (-5 *2 (-1056 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312)) (-5 *1 (-907 *3 *4)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1049) $) 10 T ELT)) (-3946 (((-773) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-908) (-13 (-996) (-10 -8 (-15 -3207 ((-1049) $))))) (T -908))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-908)))))
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-3003 (($ $) 51 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3833 (((-695) $) 50 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3002 ((|#1| $) 49 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3005 ((|#1| |#1| $) 53 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3004 ((|#1| $) 52 T ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-3001 ((|#1| $) 48 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-909 |#1|) (-113) (-1129)) (T -909))
+((-3005 (*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))) (-3003 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1129)) (-5 *2 (-695)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))))
+(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3005 (|t#1| |t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3003 ($ $)) (-15 -3833 ((-695) $)) (-15 -3002 (|t#1| $)) (-15 -3001 (|t#1| $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3643 ((|#1| $) 12 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3006 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3133 ((|#1| $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3007 ((|#1| $) 15 T ELT)) (-3008 ((|#1| $) 14 T ELT)) (-3009 ((|#1| $) 13 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-456 (-1090) |#1|)) ELT)) (-3800 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2661 (($) 8 T CONST)) (-2667 (($) 10 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT)))
+(((-910 |#1|) (-912 |#1|) (-146)) (T -910))
+NIL
+((-3189 (((-85) $) 43 T ELT)) (-3158 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 78 T ELT)) (-3024 (((-85) $) 72 T ELT)) (-3023 (((-350 (-485)) $) 76 T ELT)) (-2411 (((-85) $) 42 T ELT)) (-3133 ((|#2| $) 22 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2485 (($ $) 58 T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3972 (((-474) $) 67 T ELT)) (-3010 (($ $) 17 T ELT)) (-3946 (((-773) $) 53 T ELT) (($ (-485)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3127 (((-695)) 10 T CONST)) (-3383 ((|#2| $) 71 T ELT)) (-3057 (((-85) $ $) 26 T ELT)) (-2686 (((-85) $ $) 69 T ELT)) (-3837 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3839 (($ $ $) 27 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
+(((-911 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| (-350 (-485)))) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -2686 ((-85) |#1| |#1|)) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 * (|#1| |#1| (-350 (-485)))) (-15 -2485 (|#1| |#1|)) (-15 -3972 ((-474) |#1|)) (-15 -3025 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -3383 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3010 (|#1| |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3127 ((-695)) -3952) (-15 -3946 (|#1| (-485))) (-15 -2411 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-912 |#2|) (-146)) (T -911))
+((-3127 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 143 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 141 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3157 (((-485) $) 142 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 140 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 139 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 123 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 122 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 121 T ELT) (((-631 |#1|) (-631 $)) 120 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3643 ((|#1| $) 111 T ELT)) (-3025 (((-3 (-350 (-485)) "failed") $) 107 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 109 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 108 (|has| |#1| (-484)) ELT)) (-3006 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 113 T ELT)) (-2532 (($ $ $) 95 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 96 (|has| |#1| (-757)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 125 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 124 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 119 T ELT) (((-631 |#1|) (-1179 $)) 118 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3007 ((|#1| $) 114 T ELT)) (-3008 ((|#1| $) 115 T ELT)) (-3009 ((|#1| $) 116 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) 128 (|has| |#1| (-456 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 127 (|has| |#1| (-456 (-1090) |#1|)) ELT)) (-3800 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-695)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 90 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 88 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 87 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 86 (|has| |#1| (-812 (-1090))) ELT)) (-3972 (((-474) $) 105 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) 117 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (((-633 $) $) 106 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3383 ((|#1| $) 110 (|has| |#1| (-974)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-695)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 89 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 85 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 84 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 83 (|has| |#1| (-812 (-1090))) ELT)) (-2567 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 99 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 98 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 100 (|has| |#1| (-757)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-350 (-485))) 102 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) 101 (|has| |#1| (-312)) ELT)))
+(((-912 |#1|) (-113) (-146)) (T -912))
+((-3010 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3006 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))))
+(-13 (-38 |t#1|) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-329 |t#1|) (-10 -8 (-15 -3010 ($ $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3133 (|t#1| $)) (-15 -3006 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3643 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3383 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-456 (-1090) |#1|) |has| |#1| (-456 (-1090) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-312)) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-312)) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-312)) ((-583 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-312)) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-807 $ (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-810 (-1090)) |has| |#1| (-810 (-1090))) ((-812 (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-312)) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-969 (-350 (-485))) |has| |#1| (-312)) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3958 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT)))
+(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#3| (-1 |#4| |#2|) |#1|))) (-912 |#2|) (-146) (-912 |#4|) (-146)) (T -913))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3724 (($) NIL T CONST)) (-3003 (($ $) 24 T ELT)) (-3011 (($ (-584 |#1|)) 34 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3833 (((-695) $) 27 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 29 T ELT)) (-3609 (($ |#1| $) 18 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3002 ((|#1| $) 28 T ELT)) (-1275 ((|#1| $) 23 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3005 ((|#1| |#1| $) 17 T ELT)) (-3403 (((-85) $) 19 T ELT)) (-3565 (($) NIL T ELT)) (-3004 ((|#1| $) 22 T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) NIL T ELT)) (-3001 ((|#1| $) 31 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-914 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -3011 ($ (-584 |#1|))))) (-1014)) (T -914))
+((-3011 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3)))))
+((-3038 (($ $) 12 T ELT)) (-3012 (($ $ (-485)) 13 T ELT)))
+(((-915 |#1|) (-10 -7 (-15 -3038 (|#1| |#1|)) (-15 -3012 (|#1| |#1| (-485)))) (-916)) (T -915))
+NIL
+((-3038 (($ $) 6 T ELT)) (-3012 (($ $ (-485)) 7 T ELT)) (** (($ $ (-350 (-485))) 8 T ELT)))
+(((-916) (-113)) (T -916))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-350 (-485))))) (-3012 (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-485)))) (-3038 (*1 *1 *1) (-4 *1 (-916))))
+(-13 (-10 -8 (-15 -3038 ($ $)) (-15 -3012 ($ $ (-485))) (-15 ** ($ $ (-350 (-485))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1647 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1782 (((-631 (-350 |#2|)) (-1179 $)) NIL T ELT) (((-631 (-350 |#2|))) NIL T ELT)) (-3330 (((-350 |#2|) $) NIL T ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3137 (((-695)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) NIL T ELT)) (-1660 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1792 (($ (-1179 (-350 |#2|)) (-1179 $)) NIL T ELT) (($ (-1179 (-350 |#2|))) 79 T ELT) (($ (-1179 |#2|) |#2|) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1781 (((-631 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-631 (-350 |#2|)) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-350 |#2|)) (-631 $)) NIL T ELT)) (-1652 (((-1179 $) (-1179 $)) NIL T ELT)) (-3842 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1639 (((-584 (-584 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1664 (((-85) |#1| |#1|) NIL T ELT)) (-3109 (((-831)) NIL T ELT)) (-2995 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2564 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3503 (($ $) NIL T ELT)) (-2834 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1680 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1764 (($ $ (-695)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3723 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3772 (((-831) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3377 (((-695)) NIL T ELT)) (-1653 (((-1179 $) (-1179 $)) NIL T ELT)) (-3133 (((-350 |#2|) $) NIL T ELT)) (-1640 (((-584 (-858 |#1|)) (-1090)) NIL (|has| |#1| (-312)) ELT)) (-3445 (((-633 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3080 ((|#3| $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-1179 $) $) NIL T ELT) (((-631 (-350 |#2|)) (-1179 $)) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1648 (((-631 (-350 |#2|))) 57 T ELT)) (-1650 (((-631 (-350 |#2|))) 56 T ELT)) (-2485 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1645 (($ (-1179 |#2|) |#2|) 80 T ELT)) (-1649 (((-631 (-350 |#2|))) 55 T ELT)) (-1651 (((-631 (-350 |#2|))) 54 T ELT)) (-1644 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1646 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1657 (((-1179 $)) 51 T ELT)) (-3918 (((-1179 $)) 50 T ELT)) (-1656 (((-85) $) NIL T ELT)) (-1655 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3446 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1642 (((-3 |#2| #1#)) 70 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1666 (((-695)) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3732 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-695) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3800 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1643 (((-3 |#2| #1#)) 68 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3757 (((-350 |#2|) (-1179 $)) NIL T ELT) (((-350 |#2|)) 47 T ELT)) (-1765 (((-695) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3758 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1179 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3186 ((|#3|) 58 T ELT)) (-1674 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3225 (((-1179 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-631 (-350 |#2|)) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 (-350 |#2|)) $) 81 T ELT) (((-631 (-350 |#2|)) (-1179 $)) NIL T ELT)) (-3972 (((-1179 (-350 |#2|)) $) NIL T ELT) (($ (-1179 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1654 (((-1179 $) (-1179 $)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2703 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2450 ((|#3| $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1663 (((-85)) 65 T ELT)) (-1662 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1665 (((-85)) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1090))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| (-350 |#2|) (-312)) ELT)))
+(((-917 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1134) (-1155 |#1|) (-1155 (-350 |#2|)) (-350 |#2|) (-695)) (T -917))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3018 (((-584 (-485)) $) 73 T ELT)) (-3014 (($ (-584 (-485))) 81 T ELT)) (-3130 (((-485) $) 48 (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) 60 T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-485) (-951 (-1090))) ELT) (((-3 (-350 (-485)) #1#) $) 57 (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) 60 (|has| (-485) (-951 (-485))) ELT)) (-3157 (((-485) $) NIL T ELT) (((-1090) $) NIL (|has| (-485) (-951 (-1090))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-485) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3016 (((-584 (-485)) $) 79 T ELT)) (-3187 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) 45 T ELT)) (-3445 (((-633 $) $) NIL (|has| (-485) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3958 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL T ELT) (((-631 (-485)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-485) (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) 50 T ELT)) (-3017 (((-1069 (-485)) $) 78 T ELT)) (-3013 (($ (-584 (-485)) (-584 (-485))) 82 T ELT)) (-3131 (((-485) $) 64 (|has| (-485) (-484)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-485) (-822)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3768 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1090)) (-584 (-485))) NIL (|has| (-485) (-456 (-1090) (-485))) ELT) (($ $ (-1090) (-485)) NIL (|has| (-485) (-456 (-1090) (-485))) ELT)) (-1607 (((-695) $) NIL T ELT)) (-3800 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $) 15 (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-485) $) 47 T ELT)) (-3015 (((-584 (-485)) $) 80 T ELT)) (-3972 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3946 (((-773) $) 108 T ELT) (($ (-485)) 51 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 27 T ELT) (($ (-485)) 51 T ELT) (($ (-1090)) NIL (|has| (-485) (-951 (-1090))) ELT) (((-350 (-485)) $) 25 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3127 (((-695)) 13 T CONST)) (-3132 (((-485) $) 62 (|has| (-485) (-484)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2661 (($) 14 T CONST)) (-2667 (($) 17 T CONST)) (-2670 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| (-485) (-812 (-1090))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-2685 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2686 (((-85) $ $) 40 (|has| (-485) (-757)) ELT)) (-3949 (($ $ $) 36 T ELT) (($ (-485) (-485)) 38 T ELT)) (-3837 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3839 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ (-485)) NIL T ELT)))
+(((-918 |#1|) (-13 (-905 (-485)) (-553 (-350 (-485))) (-10 -8 (-15 -3129 ((-350 (-485)) $)) (-15 -3018 ((-584 (-485)) $)) (-15 -3017 ((-1069 (-485)) $)) (-15 -3016 ((-584 (-485)) $)) (-15 -3015 ((-584 (-485)) $)) (-15 -3014 ($ (-584 (-485)))) (-15 -3013 ($ (-584 (-485)) (-584 (-485)))))) (-485)) (T -918))
+((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1069 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3013 (*1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
+((-3019 (((-51) (-350 (-485)) (-485)) 9 T ELT)))
+(((-919) (-10 -7 (-15 -3019 ((-51) (-350 (-485)) (-485))))) (T -919))
+((-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-919)))))
+((-3137 (((-485)) 21 T ELT)) (-3022 (((-485)) 26 T ELT)) (-3021 (((-1185) (-485)) 24 T ELT)) (-3020 (((-485) (-485)) 27 T ELT) (((-485)) 20 T ELT)))
+(((-920) (-10 -7 (-15 -3020 ((-485))) (-15 -3137 ((-485))) (-15 -3020 ((-485) (-485))) (-15 -3021 ((-1185) (-485))) (-15 -3022 ((-485))))) (T -920))
+((-3022 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-920)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3137 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3020 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))))
+((-3733 (((-348 |#1|) |#1|) 43 T ELT)) (-3732 (((-348 |#1|) |#1|) 41 T ELT)))
+(((-921 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1|))) (-1155 (-350 (-485)))) (T -921))
+((-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1155 (-350 (-485)))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1155 (-350 (-485)))))))
+((-3025 (((-3 (-350 (-485)) "failed") |#1|) 15 T ELT)) (-3024 (((-85) |#1|) 14 T ELT)) (-3023 (((-350 (-485)) |#1|) 10 T ELT)))
+(((-922 |#1|) (-10 -7 (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -3025 ((-3 (-350 (-485)) "failed") |#1|))) (-951 (-350 (-485)))) (T -922))
+((-3025 (*1 *2 *3) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-350 (-485)))))) (-3023 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
+((-3788 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3800 ((|#2| $ #1#) 10 T ELT)) (-3029 (((-85) $ $) 18 T ELT)))
+(((-923 |#1| |#2|) (-10 -7 (-15 -3788 (|#2| |#1| #1="value" |#2|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3800 (|#2| |#1| #1#))) (-924 |#2|) (-1129)) (T -923))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ "value") 51 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-924 |#1|) (-113) (-1129)) (T -924))
+((-3522 (*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3032 (*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1129)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1129)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-5 *2 (-584 *3)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-5 *2 (-485)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3027 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *1)) (|has| *1 (-6 -3996)) (-4 *1 (-924 *3)) (-4 *3 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3996)) (-4 *1 (-924 *2)) (-4 *2 (-1129)))) (-3026 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-924 *2)) (-4 *2 (-1129)))))
+(-13 (-429 |t#1|) (-10 -8 (-15 -3522 ((-584 $) $)) (-15 -3032 ((-584 $) $)) (-15 -3527 ((-85) $)) (-15 -3402 (|t#1| $)) (-15 -3800 (|t#1| $ "value")) (-15 -3633 ((-85) $)) (-15 -3031 ((-584 |t#1|) $)) (-15 -3030 ((-485) $ $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3029 ((-85) $ $)) (-15 -3028 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3027 ($ $ (-584 $))) (-15 -3788 (|t#1| $ "value" |t#1|)) (-15 -3026 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-3038 (($ $) 9 T ELT) (($ $ (-831)) 49 T ELT) (($ (-350 (-485))) 13 T ELT) (($ (-485)) 15 T ELT)) (-3184 (((-3 $ #1="failed") (-1085 $) (-831) (-773)) 24 T ELT) (((-3 $ #1#) (-1085 $) (-831)) 32 T ELT)) (-3012 (($ $ (-485)) 58 T ELT)) (-3127 (((-695)) 18 T CONST)) (-3185 (((-584 $) (-1085 $)) NIL T ELT) (((-584 $) (-1085 (-350 (-485)))) 63 T ELT) (((-584 $) (-1085 (-485))) 68 T ELT) (((-584 $) (-858 $)) 72 T ELT) (((-584 $) (-858 (-350 (-485)))) 76 T ELT) (((-584 $) (-858 (-485))) 80 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-350 (-485))) 53 T ELT)))
+(((-925 |#1|) (-10 -7 (-15 -3038 (|#1| (-485))) (-15 -3038 (|#1| (-350 (-485)))) (-15 -3038 (|#1| |#1| (-831))) (-15 -3185 ((-584 |#1|) (-858 (-485)))) (-15 -3185 ((-584 |#1|) (-858 (-350 (-485))))) (-15 -3185 ((-584 |#1|) (-858 |#1|))) (-15 -3185 ((-584 |#1|) (-1085 (-485)))) (-15 -3185 ((-584 |#1|) (-1085 (-350 (-485))))) (-15 -3185 ((-584 |#1|) (-1085 |#1|))) (-15 -3184 ((-3 |#1| #1="failed") (-1085 |#1|) (-831))) (-15 -3184 ((-3 |#1| #1#) (-1085 |#1|) (-831) (-773))) (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -3012 (|#1| |#1| (-485))) (-15 -3038 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3127 ((-695)) -3952) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-926)) (T -925))
+((-3127 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 111 T ELT)) (-2064 (($ $) 112 T ELT)) (-2062 (((-85) $) 114 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 131 T ELT)) (-3971 (((-348 $) $) 132 T ELT)) (-3038 (($ $) 95 T ELT) (($ $ (-831)) 81 T ELT) (($ (-350 (-485))) 80 T ELT) (($ (-485)) 79 T ELT)) (-1608 (((-85) $ $) 122 T ELT)) (-3623 (((-485) $) 148 T ELT)) (-3724 (($) 23 T CONST)) (-3184 (((-3 $ "failed") (-1085 $) (-831) (-773)) 89 T ELT) (((-3 $ "failed") (-1085 $) (-831)) 88 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 108 (|has| (-350 (-485)) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) 103 T ELT)) (-3157 (((-485) $) 107 (|has| (-350 (-485)) (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-350 (-485)) $) 104 T ELT)) (-3034 (($ $ (-773)) 78 T ELT)) (-3033 (($ $ (-773)) 77 T ELT)) (-2565 (($ $ $) 126 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 125 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 120 T ELT)) (-3723 (((-85) $) 133 T ELT)) (-3187 (((-85) $) 146 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 94 T ELT)) (-3188 (((-85) $) 147 T ELT)) (-1605 (((-3 (-584 $) #2="failed") (-584 $) $) 129 T ELT)) (-2532 (($ $ $) 140 T ELT)) (-2858 (($ $ $) 141 T ELT)) (-3035 (((-3 (-1085 $) "failed") $) 90 T ELT)) (-3037 (((-3 (-773) "failed") $) 92 T ELT)) (-3036 (((-3 (-1085 $) "failed") $) 91 T ELT)) (-1891 (($ (-584 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 134 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 119 T ELT)) (-3145 (($ (-584 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3732 (((-348 $) $) 130 T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 127 T ELT)) (-3466 (((-3 $ "failed") $ $) 110 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 121 T ELT)) (-1607 (((-695) $) 123 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 124 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 138 T ELT) (($ $) 109 T ELT) (($ (-350 (-485))) 102 T ELT) (($ (-485)) 101 T ELT) (($ (-350 (-485))) 98 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 113 T ELT)) (-3770 (((-350 (-485)) $ $) 76 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3185 (((-584 $) (-1085 $)) 87 T ELT) (((-584 $) (-1085 (-350 (-485)))) 86 T ELT) (((-584 $) (-1085 (-485))) 85 T ELT) (((-584 $) (-858 $)) 84 T ELT) (((-584 $) (-858 (-350 (-485)))) 83 T ELT) (((-584 $) (-858 (-485))) 82 T ELT)) (-3383 (($ $) 149 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 142 T ELT)) (-2568 (((-85) $ $) 144 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 143 T ELT)) (-2686 (((-85) $ $) 145 T ELT)) (-3949 (($ $ $) 139 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 135 T ELT) (($ $ (-350 (-485))) 93 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-485)) $) 137 T ELT) (($ $ (-350 (-485))) 136 T ELT) (($ (-485) $) 100 T ELT) (($ $ (-485)) 99 T ELT) (($ (-350 (-485)) $) 97 T ELT) (($ $ (-350 (-485))) 96 T ELT)))
+(((-926) (-113)) (T -926))
+((-3038 (*1 *1 *1) (-4 *1 (-926))) (-3037 (*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3036 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-926)))) (-3035 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-926)))) (-3184 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-831)) (-5 *4 (-773)) (-4 *1 (-926)))) (-3184 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1085 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1085 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3038 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831)))) (-3038 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-926)))) (-3038 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-926)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3770 (*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-350 (-485))))))
+(-13 (-120) (-756) (-146) (-312) (-355 (-350 (-485))) (-38 (-485)) (-38 (-350 (-485))) (-916) (-10 -8 (-15 -3037 ((-3 (-773) "failed") $)) (-15 -3036 ((-3 (-1085 $) "failed") $)) (-15 -3035 ((-3 (-1085 $) "failed") $)) (-15 -3184 ((-3 $ "failed") (-1085 $) (-831) (-773))) (-15 -3184 ((-3 $ "failed") (-1085 $) (-831))) (-15 -3185 ((-584 $) (-1085 $))) (-15 -3185 ((-584 $) (-1085 (-350 (-485))))) (-15 -3185 ((-584 $) (-1085 (-485)))) (-15 -3185 ((-584 $) (-858 $))) (-15 -3185 ((-584 $) (-858 (-350 (-485))))) (-15 -3185 ((-584 $) (-858 (-485)))) (-15 -3038 ($ $ (-831))) (-15 -3038 ($ $)) (-15 -3038 ($ (-350 (-485)))) (-15 -3038 ($ (-485))) (-15 -3034 ($ $ (-773))) (-15 -3033 ($ $ (-773))) (-15 -3770 ((-350 (-485)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 (-485)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 (-485) (-485)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-355 (-350 (-485))) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 (-485)) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-833) . T) ((-916) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) |has| (-350 (-485)) (-951 (-485))) ((-964 (-350 (-485))) . T) ((-964 (-485)) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 (-485)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) . T))
+((-3039 (((-2 (|:| |ans| |#2|) (|:| -3138 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT)))
+(((-927 |#1| |#2|) (-10 -7 (-15 -3039 ((-2 (|:| |ans| |#2|) (|:| -3138 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1115) (-27) (-364 |#1|))) (T -927))
+((-3039 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1115) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85)))) (-5 *1 (-927 *8 *4)))))
+((-3040 (((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT)))
+(((-928 |#1| |#2|) (-10 -7 (-15 -3040 ((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1115) (-27) (-364 |#1|))) (T -928))
+((-3040 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1115) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4)))))
+((-3043 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3267 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)) 39 T ELT)) (-3041 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3094 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3042 (((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|)) 76 T ELT)))
+(((-929 |#1| |#2|) (-10 -7 (-15 -3041 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3094 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3042 ((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|))) (-15 -3043 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3267 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-951 (-485))) (-1155 |#1|)) (T -929))
+((-3043 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1155 *6)) (-4 *6 (-13 (-312) (-120) (-951 *4))) (-5 *4 (-485)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3267 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))) (-3042 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-350 *5)))) (-3041 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3094 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6)))))
+((-3044 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3094 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3045 (((-3 (-584 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 34 T ELT)))
+(((-930 |#1| |#2|) (-10 -7 (-15 -3044 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3094 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3045 ((-3 (-584 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)))) (-13 (-312) (-120) (-951 (-485))) (-1155 |#1|)) (T -930))
+((-3045 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1155 *4)) (-5 *2 (-584 (-350 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5)))) (-3044 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) (|:| |c2| (-350 *6)) (|:| -3094 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6)))))
+((-3046 (((-1 |#1|) (-584 (-2 (|:| -3402 |#1|) (|:| -1522 (-485))))) 34 T ELT)) (-3101 (((-1 |#1|) (-1010 |#1|)) 42 T ELT)) (-3047 (((-1 |#1|) (-1179 |#1|) (-1179 (-485)) (-485)) 31 T ELT)))
+(((-931 |#1|) (-10 -7 (-15 -3101 ((-1 |#1|) (-1010 |#1|))) (-15 -3046 ((-1 |#1|) (-584 (-2 (|:| -3402 |#1|) (|:| -1522 (-485)))))) (-15 -3047 ((-1 |#1|) (-1179 |#1|) (-1179 (-485)) (-485)))) (-1014)) (T -931))
+((-3047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *6)) (-5 *4 (-1179 (-485))) (-5 *5 (-485)) (-4 *6 (-1014)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3402 *4) (|:| -1522 (-485))))) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
+((-3772 (((-695) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT)))
+(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-695) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-320) (-312))) (T -932))
+((-3772 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-4 *4 (-1155 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-320) (-312))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3595 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-933) (-13 (-996) (-10 -8 (-15 -3595 ((-1049) $)) (-15 -3234 ((-1049) $))))) (T -933))
+((-3595 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-933)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-933)))))
+((-3972 (((-179) $) 6 T ELT) (((-330) $) 9 T ELT)))
+(((-934) (-113)) (T -934))
+NIL
+(-13 (-554 (-179)) (-554 (-330)))
+(((-554 (-179)) . T) ((-554 (-330)) . T))
+((-3135 (((-3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) "failed") |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 32 T ELT) (((-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485))) 29 T ELT)) (-3050 (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485))) 34 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-350 (-485))) 30 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 33 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1|) 28 T ELT)) (-3049 (((-584 (-350 (-485))) (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) 20 T ELT)) (-3048 (((-350 (-485)) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 17 T ELT)))
+(((-935 |#1|) (-10 -7 (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1|)) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-350 (-485)))) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485)))) (-15 -3135 ((-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485)))) (-15 -3135 ((-3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) "failed") |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-15 -3048 ((-350 (-485)) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-15 -3049 ((-584 (-350 (-485))) (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))))) (-1155 (-485))) (T -935))
+((-3049 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *2 (-584 (-350 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1155 (-485))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *2 (-350 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1155 (-485))))) (-3135 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485))))) (-3135 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *4 (-350 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485))))) (-3050 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *5) (|:| -3138 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485))) (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485))) (-5 *4 (-350 (-485))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485))) (-5 *4 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485))))))
+((-3135 (((-3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) "failed") |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 35 T ELT) (((-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485))) 32 T ELT)) (-3050 (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485))) 30 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-350 (-485))) 26 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 28 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1|) 24 T ELT)))
+(((-936 |#1|) (-10 -7 (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1|)) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-350 (-485)))) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485)))) (-15 -3135 ((-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485)))) (-15 -3135 ((-3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) "failed") |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))) (-1155 (-350 (-485)))) (T -936))
+((-3135 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *1 (-936 *3)) (-4 *3 (-1155 (-350 (-485)))))) (-3135 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *4 (-350 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1155 *4)))) (-3050 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *5) (|:| -3138 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1155 *5)) (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *4) (|:| -3138 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1155 *4)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1155 (-350 (-485)))) (-5 *4 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1155 (-350 (-485)))))))
+((-3573 (((-584 (-330)) (-858 (-485)) (-330)) 28 T ELT) (((-584 (-330)) (-858 (-350 (-485))) (-330)) 27 T ELT)) (-3969 (((-584 (-584 (-330))) (-584 (-858 (-485))) (-584 (-1090)) (-330)) 37 T ELT)))
+(((-937) (-10 -7 (-15 -3573 ((-584 (-330)) (-858 (-350 (-485))) (-330))) (-15 -3573 ((-584 (-330)) (-858 (-485)) (-330))) (-15 -3969 ((-584 (-584 (-330))) (-584 (-858 (-485))) (-584 (-1090)) (-330))))) (T -937))
+((-3969 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1090))) (-5 *2 (-584 (-584 (-330)))) (-5 *1 (-937)) (-5 *5 (-330)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 75 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3038 (($ $) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) 70 T ELT)) (-3724 (($) NIL T CONST)) (-3184 (((-3 $ #1#) (-1085 $) (-831) (-773)) NIL T ELT) (((-3 $ #1#) (-1085 $) (-831)) 55 T ELT)) (-3158 (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-350 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3157 (((-350 (-485)) $) 17 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-350 (-485)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-485) $) NIL (OR (|has| (-350 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3034 (($ $ (-773)) 47 T ELT)) (-3033 (($ $ (-773)) 48 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3183 (((-350 (-485)) $ $) 21 T ELT)) (-3467 (((-3 $ #1#) $) 88 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3187 (((-85) $) 66 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3188 (((-85) $) 69 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3035 (((-3 (-1085 $) #1#) $) 83 T ELT)) (-3037 (((-3 (-773) #1#) $) 82 T ELT)) (-3036 (((-3 (-1085 $) #1#) $) 80 T ELT)) (-3051 (((-3 (-975 $ (-1085 $)) #1#) $) 78 T ELT)) (-1891 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 89 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3946 (((-773) $) 87 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) 63 T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3770 (((-350 (-485)) $ $) 27 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3185 (((-584 $) (-1085 $)) 61 T ELT) (((-584 $) (-1085 (-350 (-485)))) NIL T ELT) (((-584 $) (-1085 (-485))) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-858 (-350 (-485)))) NIL T ELT) (((-584 $) (-858 (-485))) NIL T ELT)) (-3052 (($ (-975 $ (-1085 $)) (-773)) 46 T ELT)) (-3383 (($ $) 22 T ELT)) (-2661 (($) 32 T CONST)) (-2667 (($) 39 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 76 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 24 T ELT)) (-3949 (($ $ $) 37 T ELT)) (-3837 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3839 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ (-485)) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-938 |#1|) (-13 (-926) (-355 |#1|) (-38 |#1|) (-10 -8 (-15 -3052 ($ (-975 $ (-1085 $)) (-773))) (-15 -3051 ((-3 (-975 $ (-1085 $)) "failed") $)) (-15 -3183 ((-350 (-485)) $ $)))) (-13 (-756) (-312) (-934))) (T -938))
+((-3052 (*1 *1 *2 *3) (-12 (-5 *2 (-975 (-938 *4) (-1085 (-938 *4)))) (-5 *3 (-773)) (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-312) (-934))))) (-3051 (*1 *2 *1) (|partial| -12 (-5 *2 (-975 (-938 *3) (-1085 (-938 *3)))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-312) (-934))))) (-3183 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-312) (-934))))))
+((-3053 (((-2 (|:| -3267 |#2|) (|:| -2514 (-584 |#1|))) |#2| (-584 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
+(((-939 |#1| |#2|) (-10 -7 (-15 -3053 (|#2| |#2| |#1|)) (-15 -3053 ((-2 (|:| -3267 |#2|) (|:| -2514 (-584 |#1|))) |#2| (-584 |#1|)))) (-312) (-601 |#1|)) (T -939))
+((-3053 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3267 *3) (|:| -2514 (-584 *5)))) (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))) (-3053 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3054 ((|#1| $ |#1|) 12 T ELT)) (-3056 (($ |#1|) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3055 ((|#1| $) 11 T ELT)) (-3946 (((-773) $) 17 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT)))
+(((-940 |#1|) (-13 (-1014) (-10 -8 (-15 -3056 ($ |#1|)) (-15 -3055 (|#1| $)) (-15 -3054 (|#1| $ |#1|)) (-15 -3057 ((-85) $ $)))) (-1129)) (T -940))
+((-3057 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1129)))) (-3056 (*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1129)))) (-3055 (*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1129)))) (-3054 (*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1129)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3682 (((-584 $) (-584 |#4|)) 114 T ELT) (((-584 $) (-584 |#4|) (-85)) 115 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 113 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3775 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 108 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3724 (($) NIL T CONST)) (-2905 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3689 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-3799 (((-3 $ #1#) $) 45 T ELT)) (-3685 ((|#4| |#4| $) 66 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#4|)) (|:| -1702 (-584 |#4|))) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3438 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 129 T ELT)) (-2890 (((-584 |#4|) $) 18 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 38 T ELT)) (-2609 (((-584 |#4|) $) 19 T ELT)) (-3246 (((-85) |#4| $) 27 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 106 T ELT)) (-3798 (((-3 |#4| #1#) $) 42 T ELT)) (-3193 (((-584 $) |#4| $) 89 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3239 (((-584 $) |#4| $) 111 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 112 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3439 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3440 (($ |#4| $) 78 T ELT) (($ (-584 |#4|) $) 79 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3697 (((-584 |#4|) $) NIL T ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 40 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3769 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 91 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 85 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 14 T ELT)) (-3948 (((-695) $) NIL T ELT)) (-1946 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) 13 T ELT)) (-3972 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) 22 T ELT)) (-2911 (($ $ |#3|) 49 T ELT)) (-2913 (($ $ |#3|) 51 T ELT)) (-3684 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3946 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3678 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3190 (((-584 $) |#4| $) 88 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-584 |#3|) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3933 (((-85) |#3| $) 62 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-941 |#1| |#2| |#3| |#4|) (-13 (-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3440 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3682 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3682 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3439 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3438 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -941))
+((-3440 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3682 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3682 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
+((-3058 (((-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485))))))) (-631 (-350 (-858 (-485))))) 67 T ELT)) (-3059 (((-584 (-631 (-265 (-485)))) (-265 (-485)) (-631 (-350 (-858 (-485))))) 52 T ELT)) (-3060 (((-584 (-265 (-485))) (-631 (-350 (-858 (-485))))) 45 T ELT)) (-3064 (((-584 (-631 (-265 (-485)))) (-631 (-350 (-858 (-485))))) 85 T ELT)) (-3062 (((-631 (-265 (-485))) (-631 (-265 (-485)))) 38 T ELT)) (-3063 (((-584 (-631 (-265 (-485)))) (-584 (-631 (-265 (-485))))) 74 T ELT)) (-3061 (((-3 (-631 (-265 (-485))) "failed") (-631 (-350 (-858 (-485))))) 82 T ELT)))
+(((-942) (-10 -7 (-15 -3058 ((-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485))))))) (-631 (-350 (-858 (-485)))))) (-15 -3059 ((-584 (-631 (-265 (-485)))) (-265 (-485)) (-631 (-350 (-858 (-485)))))) (-15 -3060 ((-584 (-265 (-485))) (-631 (-350 (-858 (-485)))))) (-15 -3061 ((-3 (-631 (-265 (-485))) "failed") (-631 (-350 (-858 (-485)))))) (-15 -3062 ((-631 (-265 (-485))) (-631 (-265 (-485))))) (-15 -3063 ((-584 (-631 (-265 (-485)))) (-584 (-631 (-265 (-485)))))) (-15 -3064 ((-584 (-631 (-265 (-485)))) (-631 (-350 (-858 (-485)))))))) (T -942))
+((-3064 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))) (-3061 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-265 (-485)))) (-5 *1 (-942)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)) (-5 *3 (-265 (-485))))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485)))))))) (-5 *1 (-942)))))
+((-3068 (((-584 (-631 |#1|)) (-584 (-631 |#1|))) 69 T ELT) (((-631 |#1|) (-631 |#1|)) 68 T ELT) (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 67 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 64 T ELT)) (-3067 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 62 T ELT) (((-631 |#1|) (-631 |#1|) (-831)) 61 T ELT)) (-3069 (((-584 (-631 (-485))) (-584 (-584 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-814 (-485))) (-485)) 79 T ELT) (((-631 (-485)) (-584 (-485))) 76 T ELT) (((-631 (-485)) (-814 (-485)) (-485)) 74 T ELT)) (-3066 (((-631 (-858 |#1|)) (-695)) 94 T ELT)) (-3065 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 48 (|has| |#1| (-6 (-3997 #1="*"))) ELT) (((-631 |#1|) (-631 |#1|) (-831)) 46 (|has| |#1| (-6 (-3997 #1#))) ELT)))
+(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3997 #1="*"))) (-15 -3065 ((-631 |#1|) (-631 |#1|) (-831))) |%noBranch|) (IF (|has| |#1| (-6 (-3997 #1#))) (-15 -3065 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) |%noBranch|) (-15 -3066 ((-631 (-858 |#1|)) (-695))) (-15 -3067 ((-631 |#1|) (-631 |#1|) (-831))) (-15 -3067 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) (-15 -3068 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -3068 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3068 ((-631 |#1|) (-631 |#1|))) (-15 -3068 ((-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3069 ((-631 (-485)) (-814 (-485)) (-485))) (-15 -3069 ((-631 (-485)) (-584 (-485)))) (-15 -3069 ((-584 (-631 (-485))) (-584 (-814 (-485))) (-485))) (-15 -3069 ((-584 (-631 (-485))) (-584 (-584 (-485)))))) (-962)) (T -943))
+((-3069 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4))) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3068 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3068 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3997 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3997 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))))
+((-3073 (((-631 |#1|) (-584 (-631 |#1|)) (-1179 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3418 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1179 (-1179 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1179 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3077 (((-1179 |#1|) (-584 (-1179 |#1|)) (-485)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3076 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-485) (-485)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3075 (((-85) (-584 (-631 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-584 (-631 |#1|)) (-485)) 100 (|has| |#1| (-312)) ELT)) (-3072 (((-1179 (-1179 |#1|)) (-584 (-631 |#1|)) (-1179 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3071 (((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|)) 46 T ELT)) (-3070 (((-631 |#1|) (-1179 (-1179 |#1|))) 39 T ELT)) (-3074 (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485)) 93 (|has| |#1| (-312)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-485)) 91 (|has| |#1| (-312)) ELT)))
+(((-944 |#1|) (-10 -7 (-15 -3070 ((-631 |#1|) (-1179 (-1179 |#1|)))) (-15 -3071 ((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3072 ((-1179 (-1179 |#1|)) (-584 (-631 |#1|)) (-1179 |#1|))) (-15 -3073 ((-631 |#1|) (-584 (-631 |#1|)) (-1179 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3074 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-485))) (-15 -3074 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3074 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485))) (-15 -3075 ((-85) (-584 (-631 |#1|)) (-485))) (-15 -3075 ((-85) (-584 (-631 |#1|)))) (-15 -3418 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1179 |#1|))) (-15 -3418 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1179 (-1179 |#1|))))) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#1| (-312)) (PROGN (-15 -3076 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-485) (-485))) (-15 -3076 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)))) (-15 -3076 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85))) (-15 -3076 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831))) (-15 -3077 ((-1179 |#1|) (-584 (-1179 |#1|)) (-485)))) |%noBranch|) |%noBranch|)) (-962)) (T -944))
+((-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1179 *5))) (-5 *4 (-485)) (-5 *2 (-1179 *5)) (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3076 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-962)) (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) (-3076 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-320)) (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-584 (-631 *6))))) (-3418 (*1 *2 *3 *4) (-12 (-5 *4 (-1179 (-1179 *5))) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3418 (*1 *2 *3 *4) (-12 (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *4)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *5)))) (-3074 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-962)))) (-3074 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) (-4 *4 (-312)) (-4 *4 (-962)))) (-3074 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-631 *6)) (-5 *1 (-944 *6)) (-4 *6 (-312)) (-4 *6 (-962)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1179 *5)) (-4 *5 (-258)) (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-258)) (-4 *5 (-962)) (-5 *2 (-1179 (-1179 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1179 *5)))) (-3071 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)))))
+((-3078 ((|#1| (-831) |#1|) 18 T ELT)))
+(((-945 |#1|) (-10 -7 (-15 -3078 (|#1| (-831) |#1|))) (-13 (-1014) (-10 -8 (-15 -3839 ($ $ $))))) (T -945))
+((-3078 (*1 *2 *3 *2) (-12 (-5 *3 (-831)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -3839 ($ $ $))))))))
+((-3079 ((|#1| |#1| (-831)) 18 T ELT)))
+(((-946 |#1|) (-10 -7 (-15 -3079 (|#1| |#1| (-831)))) (-13 (-1014) (-10 -8 (-15 * ($ $ $))))) (T -946))
+((-3079 (*1 *2 *2 *3) (-12 (-5 *3 (-831)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $))))))))
+((-3946 ((|#1| (-262)) 11 T ELT) (((-1185) |#1|) 9 T ELT)))
+(((-947 |#1|) (-10 -7 (-15 -3946 ((-1185) |#1|)) (-15 -3946 (|#1| (-262)))) (-1129)) (T -947))
+((-3946 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-947 *2)) (-4 *2 (-1129)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-947 *3)) (-4 *3 (-1129)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3842 (($ |#4|) 24 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3080 ((|#4| $) 26 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3127 (((-695)) 42 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 22 T CONST)) (-3057 (((-85) $ $) 39 T ELT)) (-3837 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-948 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3842 ($ |#4|)) (-15 -3946 ($ |#4|)) (-15 -3080 (|#4| $)))) (-312) (-718) (-757) (-862 |#1| |#2| |#3|) (-584 |#4|)) (T -948))
+((-3842 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3946 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3080 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1049) $) 11 T ELT)) (-3946 (((-773) $) 17 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-949) (-13 (-996) (-10 -8 (-15 -3207 ((-1049) $))))) (T -949))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-949)))))
+((-3157 ((|#2| $) 10 T ELT)))
+(((-950 |#1| |#2|) (-10 -7 (-15 -3157 (|#2| |#1|))) (-951 |#2|) (-1129)) (T -950))
+NIL
+((-3158 (((-3 |#1| "failed") $) 9 T ELT)) (-3157 ((|#1| $) 8 T ELT)) (-3946 (($ |#1|) 6 T ELT)))
+(((-951 |#1|) (-113) (-1129)) (T -951))
+((-3158 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1129)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1129)))))
+(-13 (-556 |t#1|) (-10 -8 (-15 -3158 ((-3 |t#1| "failed") $)) (-15 -3157 (|t#1| $))))
+(((-556 |#1|) . T))
+((-3081 (((-584 (-584 (-249 (-350 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1090))) 38 T ELT)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -3081 ((-584 (-584 (-249 (-350 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1090))))) (-496) (-13 (-496) (-951 |#1|))) (T -952))
+((-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1090))) (-4 *6 (-13 (-496) (-951 *5))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *6)))))) (-5 *1 (-952 *5 *6)))))
+((-3082 (((-584 (-1090)) (-350 (-858 |#1|))) 17 T ELT)) (-3084 (((-350 (-1085 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1090)) 24 T ELT)) (-3085 (((-350 (-858 |#1|)) (-350 (-1085 (-350 (-858 |#1|)))) (-1090)) 26 T ELT)) (-3083 (((-3 (-1090) "failed") (-350 (-858 |#1|))) 20 T ELT)) (-3768 (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-249 (-350 (-858 |#1|))))) 32 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 33 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-1090)) (-584 (-350 (-858 |#1|)))) 28 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-1090) (-350 (-858 |#1|))) 29 T ELT)) (-3946 (((-350 (-858 |#1|)) |#1|) 11 T ELT)))
+(((-953 |#1|) (-10 -7 (-15 -3082 ((-584 (-1090)) (-350 (-858 |#1|)))) (-15 -3083 ((-3 (-1090) "failed") (-350 (-858 |#1|)))) (-15 -3084 ((-350 (-1085 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1090))) (-15 -3085 ((-350 (-858 |#1|)) (-350 (-1085 (-350 (-858 |#1|)))) (-1090))) (-15 -3768 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-1090) (-350 (-858 |#1|)))) (-15 -3768 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-1090)) (-584 (-350 (-858 |#1|))))) (-15 -3768 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -3768 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3946 ((-350 (-858 |#1|)) |#1|))) (-496)) (T -953))
+((-3946 (*1 *2 *3) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496)))) (-3768 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3768 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3768 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-1090))) (-5 *4 (-584 (-350 (-858 *5)))) (-5 *2 (-350 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5)))) (-3768 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1085 (-350 (-858 *5))))) (-5 *4 (-1090)) (-5 *2 (-350 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-496)) (-5 *2 (-350 (-1085 (-350 (-858 *5))))) (-5 *1 (-953 *5)) (-5 *3 (-350 (-858 *5))))) (-3083 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1090)) (-5 *1 (-953 *4)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1090))) (-5 *1 (-953 *4)))))
+((-3086 (((-330)) 17 T ELT)) (-3101 (((-1 (-330)) (-330) (-330)) 22 T ELT)) (-3094 (((-1 (-330)) (-695)) 48 T ELT)) (-3087 (((-330)) 37 T ELT)) (-3090 (((-1 (-330)) (-330) (-330)) 38 T ELT)) (-3088 (((-330)) 29 T ELT)) (-3091 (((-1 (-330)) (-330)) 30 T ELT)) (-3089 (((-330) (-695)) 43 T ELT)) (-3092 (((-1 (-330)) (-695)) 44 T ELT)) (-3093 (((-1 (-330)) (-695) (-695)) 47 T ELT)) (-3384 (((-1 (-330)) (-695) (-695)) 45 T ELT)))
+(((-954) (-10 -7 (-15 -3086 ((-330))) (-15 -3087 ((-330))) (-15 -3088 ((-330))) (-15 -3089 ((-330) (-695))) (-15 -3101 ((-1 (-330)) (-330) (-330))) (-15 -3090 ((-1 (-330)) (-330) (-330))) (-15 -3091 ((-1 (-330)) (-330))) (-15 -3092 ((-1 (-330)) (-695))) (-15 -3384 ((-1 (-330)) (-695) (-695))) (-15 -3093 ((-1 (-330)) (-695) (-695))) (-15 -3094 ((-1 (-330)) (-695))))) (T -954))
+((-3094 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3093 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3384 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3091 (*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3090 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3101 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-330)) (-5 *1 (-954)))) (-3088 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))) (-3087 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))) (-3086 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))))
+((-3732 (((-348 |#1|) |#1|) 33 T ELT)))
+(((-955 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1|))) (-1155 (-350 (-858 (-485))))) (T -955))
+((-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1155 (-350 (-858 (-485))))))))
+((-3095 (((-350 (-348 (-858 |#1|))) (-350 (-858 |#1|))) 14 T ELT)))
+(((-956 |#1|) (-10 -7 (-15 -3095 ((-350 (-348 (-858 |#1|))) (-350 (-858 |#1|))))) (-258)) (T -956))
+((-3095 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-858 *4)))) (-5 *1 (-956 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3724 (($) 23 T CONST)) (-3099 ((|#1| $) 29 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3098 ((|#1| $) 28 T ELT)) (-3096 ((|#1|) 26 T CONST)) (-3946 (((-773) $) 13 T ELT)) (-3097 ((|#1| $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
(((-957 |#1|) (-113) (-23)) (T -957))
-((-3099 (*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
-(-13 (-956 |t#1|) (-10 -8 (-15 -3099 ($) -3951)))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-956 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 (-703 |#1| (-773 |#2|)))))) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3681 (((-583 $) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85)) NIL T ELT)) (-3081 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3774 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1599 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ (-773 |#2|)) NIL T ELT)) (-3709 (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 (-703 |#1| (-773 |#2|)) #1="failed") $ (-773 |#2|)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2900 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3156 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3798 (((-3 $ #1#) $) NIL T ELT)) (-3684 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT)) (-3405 (($ (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) (-703 |#1| (-773 |#2|)) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3682 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3841 (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 (-703 |#1| (-773 |#2|)))) (|:| -1701 (-583 (-703 |#1| (-773 |#2|))))) $) NIL T ELT)) (-3197 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3195 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3198 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2889 (((-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 (((-773 |#2|) $) NIL T ELT)) (-2608 (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3245 (((-85) (-703 |#1| (-773 |#2|)) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-1013)) ELT)) (-1948 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-2914 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2913 (((-85) (-773 |#2|) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3191 (((-3 (-703 |#1| (-773 |#2|)) (-583 $)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3190 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1599 $))) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3797 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-3192 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3194 (((-3 (-85) (-583 $)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3238 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT)) (-3439 (($ (-703 |#1| (-773 |#2|)) $) NIL T ELT) (($ (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3696 (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3690 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-1353 (((-3 (-703 |#1| (-773 |#2|)) #1#) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ (-703 |#1| (-773 |#2|))) NIL T ELT)) (-3768 (($ $ (-703 |#1| (-773 |#2|))) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-249 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-703 |#1| (-773 |#2|))))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) (-703 |#1| (-773 |#2|)) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2910 (($ $ (-773 |#2|)) NIL T ELT)) (-2912 (($ $ (-773 |#2|)) NIL T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ (-773 |#2|)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3677 (((-694) $) NIL (|has| (-773 |#2|) (-319)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-583 (-703 |#1| (-773 |#2|))))) NIL T ELT)) (-3189 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3679 (((-583 (-773 |#2|)) $) NIL T ELT)) (-3196 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3932 (((-85) (-773 |#2|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-958 |#1| |#2|) (-13 (-983 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) (-10 -8 (-15 -3681 ((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85))))) (-391) (-583 (-1089))) (T -958))
-((-3681 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))))
-((-3100 (((-1 (-484)) (-1001 (-484))) 32 T ELT)) (-3104 (((-484) (-484) (-484) (-484) (-484)) 29 T ELT)) (-3102 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3103 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3101 (((-1 (-484)) (-484) |RationalNumber|) NIL T ELT)))
-(((-959) (-10 -7 (-15 -3100 ((-1 (-484)) (-1001 (-484)))) (-15 -3101 ((-1 (-484)) (-484) |RationalNumber|)) (-15 -3102 ((-1 (-484)) |RationalNumber|)) (-15 -3103 ((-1 (-484)) |RationalNumber|)) (-15 -3104 ((-484) (-484) (-484) (-484) (-484))))) (T -959))
-((-3104 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-959)))) (-3103 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))) (-3102 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))) (-3101 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)) (-5 *3 (-484)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-959)))))
-((-3945 (((-772) $) NIL T ELT) (($ (-484)) 10 T ELT)))
-(((-960 |#1|) (-10 -7 (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-961)) (T -960))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-961) (-113)) (T -961))
-((-3126 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694)))))
-(-13 (-970) (-1060) (-590 $) (-555 (-484)) (-10 -7 (-15 -3126 ((-694)) -3951) (-6 -3991)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3105 (((-349 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)) 55 T ELT)))
-(((-962 |#1| |#2|) (-10 -7 (-15 -3105 ((-349 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)))) (-1089) (-312)) (T -962))
-((-3105 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-312)) (-5 *2 (-349 (-857 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1089)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT)))
-(((-963 |#1|) (-113) (-1025)) (T -963))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1025)))))
-(-13 (-1013) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-3120 (((-85) $) 38 T ELT)) (-3122 (((-85) $) 17 T ELT)) (-3114 (((-694) $) 13 T ELT)) (-3113 (((-694) $) 14 T ELT)) (-3121 (((-85) $) 30 T ELT)) (-3119 (((-85) $) 40 T ELT)))
-(((-964 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3113 ((-694) |#1|)) (-15 -3114 ((-694) |#1|)) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|))) (-965 |#2| |#3| |#4| |#5| |#6|) (-694) (-694) (-961) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -964))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3120 (((-85) $) 62 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3122 (((-85) $) 64 T ELT)) (-3723 (($) 23 T CONST)) (-3109 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3111 ((|#4| $ (-484)) 50 T ELT)) (-3108 (((-694) $) 44 (|has| |#3| (-495)) ELT)) (-3112 ((|#3| $ (-484) (-484)) 52 T ELT)) (-2889 (((-583 |#3|) $) 72 (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3107 (((-694) $) 43 (|has| |#3| (-495)) ELT)) (-3106 (((-583 |#5|) $) 42 (|has| |#3| (-495)) ELT)) (-3114 (((-694) $) 56 T ELT)) (-3113 (((-694) $) 55 T ELT)) (-3118 (((-484) $) 60 T ELT)) (-3116 (((-484) $) 58 T ELT)) (-2608 (((-583 |#3|) $) 81 T ELT)) (-3245 (((-85) |#3| $) 83 (|has| |#3| (-1013)) ELT)) (-3117 (((-484) $) 59 T ELT)) (-3115 (((-484) $) 57 T ELT)) (-3123 (($ (-583 (-583 |#3|))) 65 T ELT)) (-1948 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3593 (((-583 (-583 |#3|)) $) 54 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) 79 T ELT)) (-3767 (($ $ (-583 |#3|) (-583 |#3|)) 76 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) 75 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) 74 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 (-249 |#3|))) 73 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1221 (((-85) $ $) 66 T ELT)) (-3402 (((-85) $) 69 T ELT)) (-3564 (($) 68 T ELT)) (-3799 ((|#3| $ (-484) (-484)) 53 T ELT) ((|#3| $ (-484) (-484) |#3|) 51 T ELT)) (-3121 (((-85) $) 63 T ELT)) (-1945 (((-694) |#3| $) 82 (|has| |#3| (-1013)) ELT) (((-694) (-1 (-85) |#3|) $) 80 T ELT)) (-3399 (($ $) 67 T ELT)) (-3110 ((|#5| $ (-484)) 49 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) 78 T ELT)) (-3119 (((-85) $) 61 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3956 (((-694) $) 77 T ELT)))
-(((-965 |#1| |#2| |#3| |#4| |#5|) (-113) (-694) (-694) (-961) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -965))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-3799 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3799 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3109 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-583 *7)))))
-(-13 (-82 |t#3| |t#3|) (-317 |t#3|) (-10 -8 (IF (|has| |t#3| (-146)) (-6 (-654 |t#3|)) |%noBranch|) (-15 -3123 ($ (-583 (-583 |t#3|)))) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3118 ((-484) $)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-694) $)) (-15 -3113 ((-694) $)) (-15 -3593 ((-583 (-583 |t#3|)) $)) (-15 -3799 (|t#3| $ (-484) (-484))) (-15 -3112 (|t#3| $ (-484) (-484))) (-15 -3799 (|t#3| $ (-484) (-484) |t#3|)) (-15 -3111 (|t#4| $ (-484))) (-15 -3110 (|t#5| $ (-484))) (-15 -3957 ($ (-1 |t#3| |t#3|) $)) (-15 -3957 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-495)) (-15 -3465 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3948 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3109 ($ $)) |%noBranch|) (IF (|has| |t#3| (-495)) (PROGN (-15 -3108 ((-694) $)) (-15 -3107 ((-694) $)) (-15 -3106 ((-583 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-552 (-772)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ((-317 |#3|) . T) ((-428 |#3|) . T) ((-455 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ((-13) . T) ((-588 (-484)) . T) ((-588 |#3|) . T) ((-590 |#3|) . T) ((-582 |#3|) |has| |#3| (-146)) ((-654 |#3|) |has| |#3| (-146)) ((-963 |#3|) . T) ((-968 |#3|) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3111 (((-197 |#2| |#3|) $ (-484)) 35 T ELT)) (-3124 (($ (-630 |#3|)) 44 T ELT)) (-3108 (((-694) $) 48 (|has| |#3| (-495)) ELT)) (-3112 ((|#3| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-3107 (((-694) $) 50 (|has| |#3| (-495)) ELT)) (-3106 (((-583 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#3|) $) NIL T ELT)) (-3245 (((-85) |#3| $) NIL (|has| |#3| (-1013)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#3|))) 30 T ELT)) (-1948 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3593 (((-583 (-583 |#3|)) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3767 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#3| $ (-484) (-484)) NIL T ELT) ((|#3| $ (-484) (-484) |#3|) NIL T ELT)) (-3910 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3121 (((-85) $) NIL T ELT)) (-1945 (((-694) |#3| $) NIL (|has| |#3| (-1013)) ELT) (((-694) (-1 (-85) |#3|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) 65 (|has| |#3| (-553 (-473))) ELT)) (-3110 (((-197 |#1| |#3|) $ (-484)) 39 T ELT)) (-3945 (((-772) $) 18 T ELT) (((-630 |#3|) $) 41 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-966 |#1| |#2| |#3|) (-13 (-965 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-552 (-630 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1186 |#3|)) |%noBranch|) (IF (|has| |#3| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (-15 -3124 ($ (-630 |#3|))))) (-694) (-694) (-961)) (T -966))
-((-3124 (*1 *1 *2) (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)))))
-((-3841 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3957 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT)))
-(((-967 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3957 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3841 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-694) (-694) (-961) (-196 |#2| |#3|) (-196 |#1| |#3|) (-965 |#1| |#2| |#3| |#4| |#5|) (-961) (-196 |#2| |#7|) (-196 |#1| |#7|) (-965 |#1| |#2| |#7| |#8| |#9|)) (T -967))
-((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-965 *5 *6 *10 *11 *12)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ |#1|) 33 T ELT)))
-(((-968 |#1|) (-113) (-970)) (T -968))
-NIL
-(-13 (-21) (-963 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-963 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-3125 (((-85) $ $) 10 T ELT)))
-(((-969 |#1|) (-10 -7 (-15 -3125 ((-85) |#1| |#1|))) (-970)) (T -969))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-970) (-113)) (T -970))
-((-3125 (*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-85)))))
-(-13 (-21) (-1025) (-10 -8 (-15 -3125 ((-85) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3830 (((-1089) $) 11 T ELT)) (-3735 ((|#1| $) 12 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3226 (($ (-1089) |#1|) 10 T ELT)) (-3945 (((-772) $) 22 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3056 (((-85) $ $) 17 (|has| |#1| (-1013)) ELT)))
-(((-971 |#1| |#2|) (-13 (-1128) (-10 -8 (-15 -3226 ($ (-1089) |#1|)) (-15 -3830 ((-1089) $)) (-15 -3735 (|#1| $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1006 |#2|) (-1128)) (T -971))
-((-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-4 *4 (-1128)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3830 (*1 *2 *1) (-12 (-4 *4 (-1128)) (-5 *2 (-1089)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3735 (*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1128)))))
-((-3770 (($ $) 17 T ELT)) (-3127 (($ $) 25 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 54 T ELT)) (-3132 (($ $) 27 T ELT)) (-3128 (($ $) 12 T ELT)) (-3130 (($ $) 40 T ELT)) (-3971 (((-329) $) NIL T ELT) (((-179) $) NIL T ELT) (((-800 (-329)) $) 36 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 31 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) 31 T ELT)) (-3126 (((-694)) 9 T CONST)) (-3131 (($ $) 44 T ELT)))
-(((-972 |#1|) (-10 -7 (-15 -3127 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -2796 ((-798 (-329) |#1|) |#1| (-800 (-329)) (-798 (-329) |#1|))) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| (-484))) (-15 -3971 ((-179) |#1|)) (-15 -3971 ((-329) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| |#1|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-973)) (T -972))
-((-3126 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-972 *3)) (-4 *3 (-973)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 (((-484) $) 108 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3770 (($ $) 106 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-3037 (($ $) 116 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3622 (((-484) $) 133 T ELT)) (-3723 (($) 23 T CONST)) (-3127 (($ $) 105 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 121 T ELT) (((-3 (-349 (-484)) #1#) $) 118 T ELT)) (-3156 (((-484) $) 122 T ELT) (((-349 (-484)) $) 119 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-3186 (((-85) $) 131 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 112 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 115 T ELT)) (-3132 (($ $) 111 T ELT)) (-3187 (((-85) $) 132 T ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-2531 (($ $ $) 125 T ELT)) (-2857 (($ $ $) 126 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3128 (($ $) 107 T ELT)) (-3130 (($ $) 109 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3971 (((-329) $) 124 T ELT) (((-179) $) 123 T ELT) (((-800 (-329)) $) 113 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ (-484)) 120 T ELT) (($ (-349 (-484))) 117 T ELT)) (-3126 (((-694)) 40 T CONST)) (-3131 (($ $) 110 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 (($ $) 134 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 127 T ELT)) (-2567 (((-85) $ $) 129 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 128 T ELT)) (-2685 (((-85) $ $) 130 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-349 (-484))) 114 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT)))
-(((-973) (-113)) (T -973))
-((-3132 (*1 *1 *1) (-4 *1 (-973))) (-3131 (*1 *1 *1) (-4 *1 (-973))) (-3130 (*1 *1 *1) (-4 *1 (-973))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484)))) (-3128 (*1 *1 *1) (-4 *1 (-973))) (-3770 (*1 *1 *1) (-4 *1 (-973))) (-3127 (*1 *1 *1) (-4 *1 (-973))))
-(-13 (-312) (-755) (-933) (-950 (-484)) (-950 (-349 (-484))) (-915) (-553 (-800 (-329))) (-796 (-329)) (-120) (-10 -8 (-15 -3132 ($ $)) (-15 -3131 ($ $)) (-15 -3130 ($ $)) (-15 -3129 ((-484) $)) (-15 -3128 ($ $)) (-15 -3770 ($ $)) (-15 -3127 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-329)) . T) ((-553 (-800 (-329))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-329)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-950 (-349 (-484))) . T) ((-950 (-484)) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) |#2| $) 26 T ELT)) (-3136 ((|#1| $) 10 T ELT)) (-3622 (((-484) |#2| $) 119 T ELT)) (-3183 (((-3 $ #1="failed") |#2| (-830)) 76 T ELT)) (-3137 ((|#1| $) 31 T ELT)) (-3182 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3134 (($ $) 28 T ELT)) (-3466 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3186 (((-85) |#2| $) NIL T ELT)) (-3187 (((-85) |#2| $) NIL T ELT)) (-3133 (((-85) |#2| $) 27 T ELT)) (-3135 ((|#1| $) 120 T ELT)) (-3138 ((|#1| $) 30 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3185 ((|#2| $) 104 T ELT)) (-3945 (((-772) $) 95 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3769 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3184 (((-583 $) |#2|) 78 T ELT)) (-3056 (((-85) $ $) 99 T ELT)))
-(((-974 |#1| |#2|) (-13 (-980 |#1| |#2|) (-10 -8 (-15 -3138 (|#1| $)) (-15 -3137 (|#1| $)) (-15 -3136 (|#1| $)) (-15 -3135 (|#1| $)) (-15 -3134 ($ $)) (-15 -3133 ((-85) |#2| $)) (-15 -3182 (|#1| |#2| $ |#1|)))) (-13 (-755) (-312)) (-1154 |#1|)) (T -974))
-((-3182 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3136 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3135 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3134 (*1 *1 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3133 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-755) (-312))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1154 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3139 (($ (-1089)) 10 T ELT) (($ (-484)) 7 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3023 (((-85) $) NIL T ELT)) (-3022 (((-349 (-484)) $) NIL T ELT)) (-2994 (($) NIL T ELT) (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1368 (($ $ $) NIL T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2673 (((-85) $) NIL T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2044 (($ $) NIL T ELT)) (-3832 (($ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2046 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1366 (($ $) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-484) $) 16 T ELT) (((-473) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-329) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1089)) 9 T ELT)) (-3945 (((-772) $) 23 T ELT) (($ (-484)) 6 T ELT) (($ $) NIL T ELT) (($ (-484)) 6 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3101 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (($) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-3382 (($ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3836 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT)))
-(((-975) (-13 (-483) (-557 (-1089)) (-10 -8 (-6 -3981) (-6 -3986) (-6 -3982) (-15 -3139 ($ (-1089))) (-15 -3139 ($ (-484)))))) (T -975))
-((-3139 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-975)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975)))))
-((-3796 (($ $) 46 T ELT)) (-3166 (((-85) $ $) 82 T ELT)) (-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-349 (-484)))) 247 T ELT) (((-3 $ #1#) (-857 (-484))) 246 T ELT) (((-3 $ #1#) (-857 |#2|)) 249 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-857 (-349 (-484)))) 235 T ELT) (($ (-857 (-484))) 231 T ELT) (($ (-857 |#2|)) 255 T ELT)) (-3958 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3693 (((-85) $ $) 131 T ELT) (((-85) $ (-583 $)) 135 T ELT)) (-3172 (((-85) $) 60 T ELT)) (-3751 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 125 T ELT)) (-3143 (($ $) 160 T ELT)) (-3154 (($ $) 156 T ELT)) (-3155 (($ $) 155 T ELT)) (-3165 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3164 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3694 (((-85) $ $) 143 T ELT) (((-85) $ (-583 $)) 144 T ELT)) (-3180 ((|#4| $) 32 T ELT)) (-3159 (($ $ $) 128 T ELT)) (-3173 (((-85) $) 59 T ELT)) (-3179 (((-694) $) 35 T ELT)) (-3140 (($ $) 174 T ELT)) (-3141 (($ $) 171 T ELT)) (-3168 (((-583 $) $) 72 T ELT)) (-3171 (($ $) 62 T ELT)) (-3142 (($ $) 167 T ELT)) (-3169 (((-583 $) $) 69 T ELT)) (-3170 (($ $) 64 T ELT)) (-3174 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3480 (-694))) $ $) 130 T ELT)) (-3160 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 126 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |#4|) 127 T ELT)) (-3161 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $) 121 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |#4|) 123 T ELT)) (-3163 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3162 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3176 (((-583 $) $) 54 T ELT)) (-3690 (((-85) $ $) 140 T ELT) (((-85) $ (-583 $)) 141 T ELT)) (-3685 (($ $ $) 116 T ELT)) (-3445 (($ $) 37 T ELT)) (-3698 (((-85) $ $) 80 T ELT)) (-3691 (((-85) $ $) 136 T ELT) (((-85) $ (-583 $)) 138 T ELT)) (-3686 (($ $ $) 112 T ELT)) (-3178 (($ $) 41 T ELT)) (-3144 ((|#2| |#2| $) 164 T ELT) (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3152 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3153 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3177 (($ $) 49 T ELT)) (-3175 (($ $) 55 T ELT)) (-3971 (((-800 (-329)) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-473) $) NIL T ELT) (($ (-857 (-349 (-484)))) 237 T ELT) (($ (-857 (-484))) 233 T ELT) (($ (-857 |#2|)) 248 T ELT) (((-1072) $) 278 T ELT) (((-857 |#2|) $) 184 T ELT)) (-3945 (((-772) $) 29 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-857 |#2|) $) 185 T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3167 (((-3 (-85) #1#) $ $) 79 T ELT)))
-(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3945 (|#1| |#1|)) (-15 -3144 (|#1| |#1| |#1|)) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 ((-857 |#2|) |#1|)) (-15 -3971 ((-857 |#2|) |#1|)) (-15 -3971 ((-1072) |#1|)) (-15 -3140 (|#1| |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#2| |#2| |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3153 (|#1| |#1| |#1|)) (-15 -3152 (|#1| |#1| |#2|)) (-15 -3153 (|#1| |#1| |#2|)) (-15 -3154 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3971 (|#1| (-857 |#2|))) (-15 -3156 (|#1| (-857 |#2|))) (-15 -3157 ((-3 |#1| #1="failed") (-857 |#2|))) (-15 -3971 (|#1| (-857 (-484)))) (-15 -3156 (|#1| (-857 (-484)))) (-15 -3157 ((-3 |#1| #1#) (-857 (-484)))) (-15 -3971 (|#1| (-857 (-349 (-484))))) (-15 -3156 (|#1| (-857 (-349 (-484))))) (-15 -3157 ((-3 |#1| #1#) (-857 (-349 (-484))))) (-15 -3685 (|#1| |#1| |#1|)) (-15 -3686 (|#1| |#1| |#1|)) (-15 -3158 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3480 (-694))) |#1| |#1|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3751 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3160 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1| |#4|)) (-15 -3160 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3161 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -2902 |#1|)) |#1| |#1| |#4|)) (-15 -3161 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3162 (|#1| |#1| |#1| |#4|)) (-15 -3163 (|#1| |#1| |#1| |#4|)) (-15 -3162 (|#1| |#1| |#1|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3694 ((-85) |#1| (-583 |#1|))) (-15 -3694 ((-85) |#1| |#1|)) (-15 -3690 ((-85) |#1| (-583 |#1|))) (-15 -3690 ((-85) |#1| |#1|)) (-15 -3691 ((-85) |#1| (-583 |#1|))) (-15 -3691 ((-85) |#1| |#1|)) (-15 -3693 ((-85) |#1| (-583 |#1|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3166 ((-85) |#1| |#1|)) (-15 -3698 ((-85) |#1| |#1|)) (-15 -3167 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3168 ((-583 |#1|) |#1|)) (-15 -3169 ((-583 |#1|) |#1|)) (-15 -3170 (|#1| |#1|)) (-15 -3171 (|#1| |#1|)) (-15 -3172 ((-85) |#1|)) (-15 -3173 ((-85) |#1|)) (-15 -3958 (|#1| |#1| |#4|)) (-15 -3174 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1|)) (-15 -3176 ((-583 |#1|) |#1|)) (-15 -3177 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -3445 (|#1| |#1|)) (-15 -3179 ((-694) |#1|)) (-15 -3180 (|#4| |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3945 (|#1| |#4|)) (-15 -3157 ((-3 |#4| #1#) |#1|)) (-15 -3156 (|#4| |#1|)) (-15 -3174 (|#2| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-977 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -976))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#3|) $) 123 T ELT)) (-3083 (((-1084 $) $ |#3|) 138 T ELT) (((-1084 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-3796 (($ $) 293 T ELT)) (-3166 (((-85) $ $) 279 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3754 (($ $ $) 238 (|has| |#1| (-495)) ELT)) (-3148 (((-583 $) $ $) 233 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 111 (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) 110 (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 116 (|has| |#1| (-821)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-349 (-484)) #2#) $) 178 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-857 (-349 (-484)))) 253 (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089)))) ELT) (((-3 $ "failed") (-857 (-484))) 250 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT) (((-3 $ "failed") (-857 |#1|)) 247 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-38 (-484)))) (|has| |#3| (-553 (-1089)))) (-12 (-2560 (|has| |#1| (-483))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (-2560 (|has| |#1| (-904 (-484)))) (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT)) (-3156 ((|#1| $) 180 T ELT) (((-349 (-484)) $) 179 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT) (($ (-857 (-349 (-484)))) 252 (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089)))) ELT) (($ (-857 (-484))) 249 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT) (($ (-857 |#1|)) 246 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-38 (-484)))) (|has| |#3| (-553 (-1089)))) (-12 (-2560 (|has| |#1| (-483))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (-2560 (|has| |#1| (-904 (-484)))) (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT)) (-3755 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-495)) ELT)) (-3958 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3693 (((-85) $ $) 278 T ELT) (((-85) $ (-583 $)) 277 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3172 (((-85) $) 286 T ELT)) (-3751 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 258 T ELT)) (-3143 (($ $) 227 (|has| |#1| (-391)) ELT)) (-3502 (($ $) 193 (|has| |#1| (-391)) ELT) (($ $ |#3|) 118 (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3722 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-3154 (($ $) 243 (|has| |#1| (-495)) ELT)) (-3155 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3165 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3164 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1623 (($ $ |#1| |#2| $) 189 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 97 (-12 (|has| |#3| (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3694 (((-85) $ $) 272 T ELT) (((-85) $ (-583 $)) 271 T ELT)) (-3145 (($ $ $ $ $) 229 (|has| |#1| (-495)) ELT)) (-3180 ((|#3| $) 297 T ELT)) (-3084 (($ (-1084 |#1|) |#3|) 130 T ELT) (($ (-1084 $) |#3|) 129 T ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3936 (((-85) $) 169 T ELT)) (-2893 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3159 (($ $ $) 257 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 133 T ELT)) (-3173 (((-85) $) 287 T ELT)) (-2820 ((|#2| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-3179 (((-694) $) 296 T ELT)) (-1624 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3082 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3140 (($ $) 224 (|has| |#1| (-391)) ELT)) (-3141 (($ $) 225 (|has| |#1| (-391)) ELT)) (-3168 (((-583 $) $) 282 T ELT)) (-3171 (($ $) 285 T ELT)) (-3142 (($ $) 226 (|has| |#1| (-391)) ELT)) (-3169 (((-583 $) $) 283 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 145 T ELT) (((-630 |#1|) (-1178 $)) 144 T ELT)) (-3170 (($ $) 284 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1890 (($ (-583 $)) 107 (|has| |#1| (-391)) ELT) (($ $ $) 106 (|has| |#1| (-391)) ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3480 (-694))) $ $) 256 T ELT)) (-3160 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 260 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 259 T ELT)) (-3161 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $) 262 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |#3|) 261 T ELT)) (-3163 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3162 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3190 (($ $ $) 232 (|has| |#1| (-495)) ELT)) (-3176 (((-583 $) $) 291 T ELT)) (-2823 (((-3 (-583 $) #3#) $) 127 T ELT)) (-2822 (((-3 (-583 $) #3#) $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #3#) $) 126 T ELT)) (-3690 (((-85) $ $) 274 T ELT) (((-85) $ (-583 $)) 273 T ELT)) (-3685 (($ $ $) 254 T ELT)) (-3445 (($ $) 295 T ELT)) (-3698 (((-85) $ $) 280 T ELT)) (-3691 (((-85) $ $) 276 T ELT) (((-85) $ (-583 $)) 275 T ELT)) (-3686 (($ $ $) 255 T ELT)) (-3178 (($ $) 294 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3149 (((-2 (|:| -3144 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-495)) ELT)) (-3150 (((-2 (|:| -3144 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-495)) ELT)) (-1796 (((-85) $) 183 T ELT)) (-1795 ((|#1| $) 184 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 108 (|has| |#1| (-391)) ELT)) (-3144 ((|#1| |#1| $) 228 (|has| |#1| (-391)) ELT) (($ (-583 $)) 105 (|has| |#1| (-391)) ELT) (($ $ $) 104 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 112 (|has| |#1| (-821)) ELT)) (-3151 (((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-495)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3152 (($ $ |#1|) 241 (|has| |#1| (-495)) ELT) (($ $ $) 239 (|has| |#1| (-495)) ELT)) (-3153 (($ $ |#1|) 242 (|has| |#1| (-495)) ELT) (($ $ $) 240 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT)) (-3756 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3947 ((|#2| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT)) (-3177 (($ $) 292 T ELT)) (-3175 (($ $) 290 T ELT)) (-3971 (((-800 (-329)) $) 95 (-12 (|has| |#3| (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT) (($ (-857 (-349 (-484)))) 251 (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089)))) ELT) (($ (-857 (-484))) 248 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT) (($ (-857 |#1|)) 245 (|has| |#3| (-553 (-1089))) ELT) (((-1072) $) 223 (-12 (|has| |#1| (-950 (-484))) (|has| |#3| (-553 (-1089)))) ELT) (((-857 |#1|) $) 222 (|has| |#3| (-553 (-1089))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-391)) ELT) (($ $ |#3|) 119 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-857 |#1|) $) 221 (|has| |#3| (-553 (-1089))) ELT) (($ (-349 (-484))) 91 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) 185 T ELT)) (-3676 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3167 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2666 (($) 45 T CONST)) (-3146 (($ $ $ $ (-694)) 230 (|has| |#1| (-495)) ELT)) (-3147 (($ $ $ (-694)) 231 (|has| |#1| (-495)) ELT)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
-(((-977 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -977))
-((-3180 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-3445 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3177 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3176 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3175 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3174 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3958 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3171 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3170 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3169 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3168 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3167 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3698 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3166 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3163 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3162 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3162 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3161 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -2902 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3160 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3160 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3751 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3158 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3480 (-694)))) (-4 *1 (-977 *3 *4 *5)))) (-3686 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3685 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3157 (*1 *1 *2) (|partial| -12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3156 (*1 *1 *2) (-12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3157 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3156 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3971 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3157 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-2560 (-4 *3 (-38 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3156 (*1 *1 *2) (OR (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-2560 (-4 *3 (-38 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *5 (-553 (-1089))) (-4 *4 (-717)) (-4 *5 (-756)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3152 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3153 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3152 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3144 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3190 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3147 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-495)))) (-3146 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-495)))) (-3145 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3144 (*1 *2 *2 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3141 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))))
-(-13 (-861 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3180 (|t#3| $)) (-15 -3179 ((-694) $)) (-15 -3445 ($ $)) (-15 -3178 ($ $)) (-15 -3796 ($ $)) (-15 -3177 ($ $)) (-15 -3176 ((-583 $) $)) (-15 -3175 ($ $)) (-15 -3174 ($ $ |t#3|)) (-15 -3958 ($ $ |t#3|)) (-15 -3173 ((-85) $)) (-15 -3172 ((-85) $)) (-15 -3171 ($ $)) (-15 -3170 ($ $)) (-15 -3169 ((-583 $) $)) (-15 -3168 ((-583 $) $)) (-15 -3167 ((-3 (-85) "failed") $ $)) (-15 -3698 ((-85) $ $)) (-15 -3166 ((-85) $ $)) (-15 -3693 ((-85) $ $)) (-15 -3693 ((-85) $ (-583 $))) (-15 -3691 ((-85) $ $)) (-15 -3691 ((-85) $ (-583 $))) (-15 -3690 ((-85) $ $)) (-15 -3690 ((-85) $ (-583 $))) (-15 -3694 ((-85) $ $)) (-15 -3694 ((-85) $ (-583 $))) (-15 -3165 ($ $ $)) (-15 -3164 ($ $ $)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ($ $ $)) (-15 -3162 ($ $ $)) (-15 -3163 ($ $ $ |t#3|)) (-15 -3162 ($ $ $ |t#3|)) (-15 -3161 ((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $)) (-15 -3161 ((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |t#3|)) (-15 -3160 ((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3160 ((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |t#3|)) (-15 -3751 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3159 ($ $ $)) (-15 -3158 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3480 (-694))) $ $)) (-15 -3686 ($ $ $)) (-15 -3685 ($ $ $)) (IF (|has| |t#3| (-553 (-1089))) (PROGN (-6 (-552 (-857 |t#1|))) (-6 (-553 (-857 |t#1|))) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3157 ((-3 $ "failed") (-857 (-349 (-484))))) (-15 -3156 ($ (-857 (-349 (-484))))) (-15 -3971 ($ (-857 (-349 (-484))))) (-15 -3157 ((-3 $ "failed") (-857 (-484)))) (-15 -3156 ($ (-857 (-484)))) (-15 -3971 ($ (-857 (-484)))) (IF (|has| |t#1| (-904 (-484))) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 |t#1|))) (-15 -3156 ($ (-857 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) (IF (|has| |t#1| (-38 (-349 (-484)))) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 (-484)))) (-15 -3156 ($ (-857 (-484)))) (-15 -3971 ($ (-857 (-484)))) (IF (|has| |t#1| (-483)) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 |t#1|))) (-15 -3156 ($ (-857 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) |%noBranch| (IF (|has| |t#1| (-38 (-349 (-484)))) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 |t#1|))) (-15 -3156 ($ (-857 |t#1|)))))) (-15 -3971 ($ (-857 |t#1|))) (IF (|has| |t#1| (-950 (-484))) (-6 (-553 (-1072))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3155 ($ $)) (-15 -3154 ($ $)) (-15 -3153 ($ $ |t#1|)) (-15 -3152 ($ $ |t#1|)) (-15 -3153 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -3754 ($ $ $)) (-15 -3151 ((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3150 ((-2 (|:| -3144 $) (|:| |coef1| $)) $ $)) (-15 -3149 ((-2 (|:| -3144 $) (|:| |coef2| $)) $ $)) (-15 -3755 ($ $ $)) (-15 -3148 ((-583 $) $ $)) (-15 -3190 ($ $ $)) (-15 -3147 ($ $ $ (-694))) (-15 -3146 ($ $ $ $ (-694))) (-15 -3145 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-391)) (PROGN (-15 -3144 (|t#1| |t#1| $)) (-15 -3143 ($ $)) (-15 -3142 ($ $)) (-15 -3141 ($ $)) (-15 -3140 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-552 (-772)) . T) ((-552 (-857 |#1|)) |has| |#3| (-553 (-1089))) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-553 (-857 |#1|)) |has| |#3| (-553 (-1089))) ((-553 (-1072)) -12 (|has| |#1| (-950 (-484))) (|has| |#3| (-553 (-1089)))) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-821)) (|has| |#1| (-391))) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-861 |#1| |#2| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-821)))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3181 (((-583 (-1048)) $) 18 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 20 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-978) (-13 (-995) (-10 -8 (-15 -3181 ((-583 (-1048)) $)) (-15 -3233 ((-1048) $))))) (T -978))
-((-3181 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-978)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-978)))))
-((-3188 (((-85) |#3| $) 15 T ELT)) (-3183 (((-3 $ #1="failed") |#3| (-830)) 29 T ELT)) (-3466 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3186 (((-85) |#3| $) 19 T ELT)) (-3187 (((-85) |#3| $) 17 T ELT)))
-(((-979 |#1| |#2| |#3|) (-10 -7 (-15 -3183 ((-3 |#1| #1="failed") |#3| (-830))) (-15 -3466 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3186 ((-85) |#3| |#1|)) (-15 -3187 ((-85) |#3| |#1|)) (-15 -3188 ((-85) |#3| |#1|))) (-980 |#2| |#3|) (-13 (-755) (-312)) (-1154 |#2|)) (T -979))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) |#2| $) 25 T ELT)) (-3622 (((-484) |#2| $) 26 T ELT)) (-3183 (((-3 $ "failed") |#2| (-830)) 19 T ELT)) (-3182 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3466 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3186 (((-85) |#2| $) 23 T ELT)) (-3187 (((-85) |#2| $) 24 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3185 ((|#2| $) 21 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3769 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3184 (((-583 $) |#2|) 20 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-980 |#1| |#2|) (-113) (-13 (-755) (-312)) (-1154 |t#1|)) (T -980))
-((-3622 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-484)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3186 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3466 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1154 *3)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1154 *3)))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *3)))) (-3183 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-312))) (-4 *1 (-980 *4 *2)) (-4 *2 (-1154 *4)))) (-3769 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1154 *2)))) (-3182 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1154 *2)))))
-(-13 (-1013) (-10 -8 (-15 -3622 ((-484) |t#2| $)) (-15 -3188 ((-85) |t#2| $)) (-15 -3187 ((-85) |t#2| $)) (-15 -3186 ((-85) |t#2| $)) (-15 -3466 ((-3 |t#2| "failed") |t#2| $)) (-15 -3185 (|t#2| $)) (-15 -3184 ((-583 $) |t#2|)) (-15 -3183 ((-3 $ "failed") |t#2| (-830))) (-15 -3769 (|t#1| |t#2| $ |t#1|)) (-15 -3182 (|t#1| |t#2| $ |t#1|))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-3435 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-694)) 114 T ELT)) (-3432 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694)) 63 T ELT)) (-3436 (((-1184) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-694)) 99 T ELT)) (-3430 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3433 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694)) 65 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694) (-85)) 67 T ELT)) (-3434 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 87 T ELT)) (-3971 (((-1072) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) 92 T ELT)) (-3431 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3429 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT)))
-(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3429 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3430 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3431 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-85))) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694))) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3434 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3434 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3435 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-694))) (-15 -3971 ((-1072) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) (-15 -3436 ((-1184) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-694)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -981))
-((-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *4 (-694)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1184)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1072)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3435 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1599 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1599 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-981 *7 *8 *9 *10 *11)))) (-3434 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3434 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3431 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))))
-((-3197 (((-85) |#5| $) 26 T ELT)) (-3195 (((-85) |#5| $) 29 T ELT)) (-3198 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3238 (((-583 $) |#5| $) NIL T ELT) (((-583 $) (-583 |#5|) $) 94 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 92 T ELT) (((-583 $) |#5| (-583 $)) 95 T ELT)) (-3768 (($ $ |#5|) NIL T ELT) (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 73 T ELT) (((-583 $) (-583 |#5|) $) 75 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 77 T ELT)) (-3189 (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 64 T ELT) (((-583 $) (-583 |#5|) $) 69 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 71 T ELT)) (-3196 (((-85) |#5| $) 32 T ELT)))
-(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3768 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3768 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3768 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3768 ((-583 |#1|) |#5| |#1|)) (-15 -3189 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3189 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3189 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3189 ((-583 |#1|) |#5| |#1|)) (-15 -3238 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3238 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3238 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3238 ((-583 |#1|) |#5| |#1|)) (-15 -3195 ((-85) |#5| |#1|)) (-15 -3198 ((-85) |#1|)) (-15 -3196 ((-85) |#5| |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3768 (|#1| |#1| |#5|))) (-983 |#2| |#3| |#4| |#5|) (-391) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -982))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3687 ((|#4| |#4| $) 98 T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 134 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3723 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3798 (((-3 $ #1#) $) 88 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-1352 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3682 ((|#4| |#4| $) 93 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 111 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT)) (-3195 (((-85) |#4| $) 141 T ELT)) (-3198 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 135 T ELT)) (-3797 (((-3 |#4| #1#) $) 89 T ELT)) (-3192 (((-583 $) |#4| $) 137 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3238 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3439 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3696 (((-583 |#4|) $) 113 T ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3698 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| #1#) $) 90 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3768 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 50 T ELT)) (-3402 (((-85) $) 53 T ELT)) (-3564 (($) 52 T ELT)) (-3947 (((-694) $) 112 T ELT)) (-1945 (((-694) |#4| $) 48 (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3399 (($ $) 51 T ELT)) (-3971 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3683 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3677 (((-694) $) 82 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3189 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3679 (((-583 |#3|) $) 87 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3932 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 43 T ELT)))
-(((-983 |#1| |#2| |#3| |#4|) (-113) (-391) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -983))
-((-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3774 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3238 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3238 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3238 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3238 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3189 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3439 (*1 *1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)))) (-3768 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3768 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3768 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3768 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8)))))
-(-13 (-1123 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3198 ((-85) |t#4| $)) (-15 -3197 ((-85) |t#4| $)) (-15 -3196 ((-85) |t#4| $)) (-15 -3198 ((-85) $)) (-15 -3195 ((-85) |t#4| $)) (-15 -3194 ((-3 (-85) (-583 $)) |t#4| $)) (-15 -3193 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |t#4| $)) (-15 -3193 ((-85) |t#4| $)) (-15 -3192 ((-583 $) |t#4| $)) (-15 -3191 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -3190 ((-583 (-2 (|:| |val| |t#4|) (|:| -1599 $))) |t#4| |t#4| $)) (-15 -3774 ((-583 (-2 (|:| |val| |t#4|) (|:| -1599 $))) |t#4| $)) (-15 -3238 ((-583 $) |t#4| $)) (-15 -3238 ((-583 $) (-583 |t#4|) $)) (-15 -3238 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3238 ((-583 $) |t#4| (-583 $))) (-15 -3189 ((-583 $) |t#4| $)) (-15 -3189 ((-583 $) |t#4| (-583 $))) (-15 -3189 ((-583 $) (-583 |t#4|) $)) (-15 -3189 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3439 ($ |t#4| $)) (-15 -3439 ($ (-583 |t#4|) $)) (-15 -3768 ((-583 $) |t#4| $)) (-15 -3768 ((-583 $) |t#4| (-583 $))) (-15 -3768 ((-583 $) (-583 |t#4|) $)) (-15 -3768 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3681 ((-583 $) (-583 |t#4|) (-85)))))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-317 |#4|) . T) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
-((-3205 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|) 86 T ELT)) (-3202 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3204 (((-583 |#5|) |#4| |#5|) 74 T ELT)) (-3203 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3286 (((-1184)) 36 T ELT)) (-3284 (((-1184)) 25 T ELT)) (-3285 (((-1184) (-1072) (-1072) (-1072)) 32 T ELT)) (-3283 (((-1184) (-1072) (-1072) (-1072)) 21 T ELT)) (-3199 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3200 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#3| (-85)) 117 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3201 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|) 112 T ELT)))
-(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3283 ((-1184) (-1072) (-1072) (-1072))) (-15 -3284 ((-1184))) (-15 -3285 ((-1184) (-1072) (-1072) (-1072))) (-15 -3286 ((-1184))) (-15 -3199 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3200 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3200 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#3| (-85))) (-15 -3201 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3202 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3203 ((-85) |#4| |#5|)) (-15 -3203 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -3204 ((-583 |#5|) |#4| |#5|)) (-15 -3205 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -984))
-((-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3200 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1599 *9)))) (-5 *1 (-984 *6 *7 *4 *8 *9)))) (-3200 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3199 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3286 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3284 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3283 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1129) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-985) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $)) (-15 -3318 ((-1129) $))))) (T -985))
-((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-985)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-985)))))
-((-3266 (((-85) $ $) 7 T ELT)))
-(((-986) (-13 (-1128) (-10 -8 (-15 -3266 ((-85) $ $))))) (T -986))
-((-3266 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3209 (($ $ (-583 (-1089)) (-1 (-85) (-583 |#3|))) 34 T ELT)) (-3210 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-583 (-1089))) 21 T ELT)) (-3527 ((|#3| $) 13 T ELT)) (-3157 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3156 (((-249 |#3|) $) NIL T ELT)) (-3207 (((-583 (-1089)) $) 16 T ELT)) (-3208 (((-800 |#1|) $) 11 T ELT)) (-3528 ((|#3| $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-830)) 41 T ELT)) (-3945 (((-772) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 38 T ELT)))
-(((-987 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-950 (-249 |#3|)) (-10 -8 (-15 -3210 ($ |#3| |#3|)) (-15 -3210 ($ |#3| |#3| (-583 (-1089)))) (-15 -3209 ($ $ (-583 (-1089)) (-1 (-85) (-583 |#3|)))) (-15 -3208 ((-800 |#1|) $)) (-15 -3528 (|#3| $)) (-15 -3527 (|#3| $)) (-15 -3799 (|#3| $ |#3| (-830))) (-15 -3207 ((-583 (-1089)) $)))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-363 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -987))
-((-3210 (*1 *1 *2 *2) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))))) (-3210 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))) (-3209 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-1 (-85) (-583 *6))) (-4 *6 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *6)))) (-3208 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2))) (-5 *2 (-800 *3)) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-363 *4) (-796 *3) (-553 *2))))) (-3528 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3527 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3799 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))) (-3207 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-1089))) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3541 (((-1089) $) 8 T ELT)) (-3242 (((-1072) $) 17 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 14 T ELT)))
-(((-988 |#1|) (-13 (-1013) (-10 -8 (-15 -3541 ((-1089) $)))) (-1089)) (T -988))
-((-3541 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-988 *3)) (-14 *3 *2))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3212 (($ (-583 (-987 |#1| |#2| |#3|))) 15 T ELT)) (-3211 (((-583 (-987 |#1| |#2| |#3|)) $) 22 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-830)) 28 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 21 T ELT)))
-(((-989 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-10 -8 (-15 -3212 ($ (-583 (-987 |#1| |#2| |#3|)))) (-15 -3211 ((-583 (-987 |#1| |#2| |#3|)) $)) (-15 -3799 (|#3| $ |#3| (-830))))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-363 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -989))
-((-3212 (*1 *1 *2) (-12 (-5 *2 (-583 (-987 *3 *4 *5))) (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-989 *3 *4 *5)))) (-3211 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))))) (-3799 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))))
-((-3213 (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 88 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 92 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 90 T ELT)))
-(((-990 |#1| |#2|) (-10 -7 (-15 -3213 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3213 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3213 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-583 (-1089))) (T -990))
-((-3213 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4)))))) (-5 *1 (-990 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1089))))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 132 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1781 (((-630 |#1|) (-1178 $)) NIL T ELT) (((-630 |#1|)) 117 T ELT)) (-3329 ((|#1| $) 121 T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-299)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3136 (((-694)) 43 (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) 46 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 109 T ELT) (((-630 |#1|) (-630 $)) 104 T ELT)) (-3841 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-349 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3108 (((-830)) 80 T ELT)) (-2994 (($) 47 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-2833 (($) NIL (|has| |#1| (-299)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1763 (($ $ (-694)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-299)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-299)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-299)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2014 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2010 (((-830) $) 140 (|has| |#1| (-319)) ELT)) (-3079 ((|#2| $) 59 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3445 (($) NIL (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 131 (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) 123 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-299)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3757 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-312)) ELT)) (-2408 (((-630 |#1|) (-1178 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3185 ((|#2|) 77 T ELT)) (-1673 (($) NIL (|has| |#1| (-299)) ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 92 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) 72 T ELT) (((-630 |#1|) (-1178 $)) 88 T ELT)) (-3971 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-299)) ELT)) (-3945 (((-772) $) 58 T ELT) (($ (-484)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (($ $) NIL (|has| |#1| (-299)) ELT) (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 85 T ELT)) (-3126 (((-694)) 79 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 84 T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 32 T CONST)) (-2666 (($) 19 T CONST)) (-2669 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-312)) ELT)) (-3056 (((-85) $ $) 64 T ELT)) (-3948 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-312)) ELT)))
-(((-991 |#1| |#2| |#3|) (-661 |#1| |#2|) (-146) (-1154 |#1|) |#2|) (T -991))
-NIL
-((-3731 (((-347 |#3|) |#3|) 18 T ELT)))
-(((-992 |#1| |#2| |#3|) (-10 -7 (-15 -3731 ((-347 |#3|) |#3|))) (-1154 (-349 (-484))) (-13 (-312) (-120) (-661 (-349 (-484)) |#1|)) (-1154 |#2|)) (T -992))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-13 (-312) (-120) (-661 (-349 (-484)) *4))) (-5 *2 (-347 *3)) (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1154 *5)))))
-((-3731 (((-347 |#3|) |#3|) 19 T ELT)))
-(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3731 ((-347 |#3|) |#3|))) (-1154 (-349 (-857 (-484)))) (-13 (-312) (-120) (-661 (-349 (-857 (-484))) |#1|)) (-1154 |#2|)) (T -993))
-((-3731 (*1 *2 *3) (-12 (-4 *4 (-1154 (-349 (-857 (-484))))) (-4 *5 (-13 (-312) (-120) (-661 (-349 (-857 (-484))) *4))) (-5 *2 (-347 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1154 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) 16 T ELT)) (-2857 (($ $ $) 17 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3214 (($) 6 T ELT)) (-3971 (((-1089) $) 20 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 15 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 9 T ELT)))
-(((-994) (-13 (-756) (-553 (-1089)) (-10 -8 (-15 -3214 ($))))) (T -994))
-((-3214 (*1 *1) (-5 *1 (-994))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-995) (-113)) (T -995))
+((-3099 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3096 (*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -3099 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -3097 (|t#1| $)) (-15 -3096 (|t#1|) -3952)))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3100 (($) 31 T CONST)) (-3724 (($) 23 T CONST)) (-3099 ((|#1| $) 29 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3098 ((|#1| $) 28 T ELT)) (-3096 ((|#1|) 26 T CONST)) (-3946 (((-773) $) 13 T ELT)) (-3097 ((|#1| $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
+(((-958 |#1|) (-113) (-23)) (T -958))
+((-3100 (*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))))
+(-13 (-957 |t#1|) (-10 -8 (-15 -3100 ($) -3952)))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-957 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 (-704 |#1| (-774 |#2|)))))) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3682 (((-584 $) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85)) NIL T ELT)) (-3082 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3775 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1600 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ (-774 |#2|)) NIL T ELT)) (-3710 (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 (-704 |#1| (-774 |#2|)) #1="failed") $ (-774 |#2|)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2905 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3689 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2901 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3157 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3799 (((-3 $ #1#) $) NIL T ELT)) (-3685 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT)) (-3406 (($ (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) (-704 |#1| (-774 |#2|)) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3683 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3842 (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-584 (-704 |#1| (-774 |#2|)))) (|:| -1702 (-584 (-704 |#1| (-774 |#2|))))) $) NIL T ELT)) (-3198 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3196 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3199 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2890 (((-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 (((-774 |#2|) $) NIL T ELT)) (-2609 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3246 (((-85) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT)) (-1949 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-2915 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2914 (((-85) (-774 |#2|) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3192 (((-3 (-704 |#1| (-774 |#2|)) (-584 $)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3191 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1600 $))) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3798 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-3193 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3195 (((-3 (-85) (-584 $)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3239 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT)) (-3440 (($ (-704 |#1| (-774 |#2|)) $) NIL T ELT) (($ (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3697 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3691 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-1354 (((-3 (-704 |#1| (-774 |#2|)) #1#) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ (-704 |#1| (-774 |#2|))) NIL T ELT)) (-3769 (($ $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-249 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-704 |#1| (-774 |#2|))))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3948 (((-695) $) NIL T ELT)) (-1946 (((-695) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2911 (($ $ (-774 |#2|)) NIL T ELT)) (-2913 (($ $ (-774 |#2|)) NIL T ELT)) (-3684 (($ $) NIL T ELT)) (-2912 (($ $ (-774 |#2|)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3678 (((-695) $) NIL (|has| (-774 |#2|) (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-584 (-704 |#1| (-774 |#2|))))) NIL T ELT)) (-3190 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3680 (((-584 (-774 |#2|)) $) NIL T ELT)) (-3197 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3933 (((-85) (-774 |#2|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-959 |#1| |#2|) (-13 (-984 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) (-10 -8 (-15 -3682 ((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85))))) (-392) (-584 (-1090))) (T -959))
+((-3682 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1090))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6)))))
+((-3101 (((-1 (-485)) (-1002 (-485))) 32 T ELT)) (-3105 (((-485) (-485) (-485) (-485) (-485)) 29 T ELT)) (-3103 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3104 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3102 (((-1 (-485)) (-485) |RationalNumber|) NIL T ELT)))
+(((-960) (-10 -7 (-15 -3101 ((-1 (-485)) (-1002 (-485)))) (-15 -3102 ((-1 (-485)) (-485) |RationalNumber|)) (-15 -3103 ((-1 (-485)) |RationalNumber|)) (-15 -3104 ((-1 (-485)) |RationalNumber|)) (-15 -3105 ((-485) (-485) (-485) (-485) (-485))))) (T -960))
+((-3105 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-960)))) (-3104 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3103 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)) (-5 *3 (-485)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
+((-3946 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT)))
+(((-961 |#1|) (-10 -7 (-15 -3946 (|#1| (-485))) (-15 -3946 ((-773) |#1|))) (-962)) (T -961))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-962) (-113)) (T -962))
+((-3127 (*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695)))))
+(-13 (-971) (-1061) (-591 $) (-556 (-485)) (-10 -7 (-15 -3127 ((-695)) -3952) (-6 -3992)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3106 (((-350 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)) 55 T ELT)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -3106 ((-350 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)))) (-1090) (-312)) (T -963))
+((-3106 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-312)) (-5 *2 (-350 (-858 *6))) (-5 *1 (-963 *5 *6)) (-14 *5 (-1090)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT)))
+(((-964 |#1|) (-113) (-1026)) (T -964))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1026)))))
+(-13 (-1014) (-10 -8 (-15 * ($ $ |t#1|))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-3121 (((-85) $) 38 T ELT)) (-3123 (((-85) $) 17 T ELT)) (-3115 (((-695) $) 13 T ELT)) (-3114 (((-695) $) 14 T ELT)) (-3122 (((-85) $) 30 T ELT)) (-3120 (((-85) $) 40 T ELT)))
+(((-965 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3114 ((-695) |#1|)) (-15 -3115 ((-695) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|))) (-966 |#2| |#3| |#4| |#5| |#6|) (-695) (-695) (-962) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -965))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3121 (((-85) $) 62 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3123 (((-85) $) 64 T ELT)) (-3724 (($) 23 T CONST)) (-3110 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3112 ((|#4| $ (-485)) 50 T ELT)) (-3109 (((-695) $) 44 (|has| |#3| (-496)) ELT)) (-3113 ((|#3| $ (-485) (-485)) 52 T ELT)) (-2890 (((-584 |#3|) $) 72 (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3108 (((-695) $) 43 (|has| |#3| (-496)) ELT)) (-3107 (((-584 |#5|) $) 42 (|has| |#3| (-496)) ELT)) (-3115 (((-695) $) 56 T ELT)) (-3114 (((-695) $) 55 T ELT)) (-3119 (((-485) $) 60 T ELT)) (-3117 (((-485) $) 58 T ELT)) (-2609 (((-584 |#3|) $) 81 T ELT)) (-3246 (((-85) |#3| $) 83 (|has| |#3| (-72)) ELT)) (-3118 (((-485) $) 59 T ELT)) (-3116 (((-485) $) 57 T ELT)) (-3124 (($ (-584 (-584 |#3|))) 65 T ELT)) (-1949 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3594 (((-584 (-584 |#3|)) $) 54 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-496)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) 79 T ELT)) (-3768 (($ $ (-584 |#3|) (-584 |#3|)) 76 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) 75 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) 74 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-249 |#3|))) 73 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1222 (((-85) $ $) 66 T ELT)) (-3403 (((-85) $) 69 T ELT)) (-3565 (($) 68 T ELT)) (-3800 ((|#3| $ (-485) (-485)) 53 T ELT) ((|#3| $ (-485) (-485) |#3|) 51 T ELT)) (-3122 (((-85) $) 63 T ELT)) (-1946 (((-695) |#3| $) 82 (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) 80 T ELT)) (-3400 (($ $) 67 T ELT)) (-3111 ((|#5| $ (-485)) 49 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) 78 T ELT)) (-3120 (((-85) $) 61 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3957 (((-695) $) 77 T ELT)))
+(((-966 |#1| |#2| |#3| |#4| |#5|) (-113) (-695) (-695) (-962) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -966))
+((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5))))) (-3800 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3113 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3800 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3958 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496)))) (-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3110 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7)))))
+(-13 (-82 |t#3| |t#3|) (-318 |t#3|) (-10 -8 (IF (|has| |t#3| (-146)) (-6 (-655 |t#3|)) |%noBranch|) (-15 -3124 ($ (-584 (-584 |t#3|)))) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-485) $)) (-15 -3115 ((-695) $)) (-15 -3114 ((-695) $)) (-15 -3594 ((-584 (-584 |t#3|)) $)) (-15 -3800 (|t#3| $ (-485) (-485))) (-15 -3113 (|t#3| $ (-485) (-485))) (-15 -3800 (|t#3| $ (-485) (-485) |t#3|)) (-15 -3112 (|t#4| $ (-485))) (-15 -3111 (|t#5| $ (-485))) (-15 -3958 ($ (-1 |t#3| |t#3|) $)) (-15 -3958 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-496)) (-15 -3466 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3949 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3110 ($ $)) |%noBranch|) (IF (|has| |t#3| (-496)) (PROGN (-15 -3109 ((-695) $)) (-15 -3108 ((-695) $)) (-15 -3107 ((-584 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-553 (-773)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ((-318 |#3|) . T) ((-429 |#3|) . T) ((-456 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ((-13) . T) ((-589 (-485)) . T) ((-589 |#3|) . T) ((-591 |#3|) . T) ((-583 |#3|) |has| |#3| (-146)) ((-655 |#3|) |has| |#3| (-146)) ((-964 |#3|) . T) ((-969 |#3|) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3110 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3112 (((-197 |#2| |#3|) $ (-485)) 35 T ELT)) (-3125 (($ (-631 |#3|)) 44 T ELT)) (-3109 (((-695) $) 48 (|has| |#3| (-496)) ELT)) (-3113 ((|#3| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3108 (((-695) $) 50 (|has| |#3| (-496)) ELT)) (-3107 (((-584 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-496)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#3|) $) NIL T ELT)) (-3246 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-3124 (($ (-584 (-584 |#3|))) 30 T ELT)) (-1949 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3594 (((-584 (-584 |#3|)) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-496)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3768 (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#3| $ (-485) (-485)) NIL T ELT) ((|#3| $ (-485) (-485) |#3|) NIL T ELT)) (-3911 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3122 (((-85) $) NIL T ELT)) (-1946 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) 65 (|has| |#3| (-554 (-474))) ELT)) (-3111 (((-197 |#1| |#3|) $ (-485)) 39 T ELT)) (-3946 (((-773) $) 18 T ELT) (((-631 |#3|) $) 41 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-967 |#1| |#2| |#3|) (-13 (-966 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-553 (-631 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1187 |#3|)) |%noBranch|) (IF (|has| |#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (-15 -3125 ($ (-631 |#3|))))) (-695) (-695) (-962)) (T -967))
+((-3125 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)))))
+((-3842 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3958 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT)))
+(((-968 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3958 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3842 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-695) (-695) (-962) (-196 |#2| |#3|) (-196 |#1| |#3|) (-966 |#1| |#2| |#3| |#4| |#5|) (-962) (-196 |#2| |#7|) (-196 |#1| |#7|) (-966 |#1| |#2| |#7| |#8| |#9|)) (T -968))
+((-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-966 *5 *6 *10 *11 *12)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ |#1|) 33 T ELT)))
+(((-969 |#1|) (-113) (-971)) (T -969))
+NIL
+(-13 (-21) (-964 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-3126 (((-85) $ $) 10 T ELT)))
+(((-970 |#1|) (-10 -7 (-15 -3126 ((-85) |#1| |#1|))) (-971)) (T -970))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-971) (-113)) (T -971))
+((-3126 (*1 *2 *1 *1) (-12 (-4 *1 (-971)) (-5 *2 (-85)))))
+(-13 (-21) (-1026) (-10 -8 (-15 -3126 ((-85) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1026) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3831 (((-1090) $) 11 T ELT)) (-3736 ((|#1| $) 12 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3227 (($ (-1090) |#1|) 10 T ELT)) (-3946 (((-773) $) 22 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3057 (((-85) $ $) 17 (|has| |#1| (-1014)) ELT)))
+(((-972 |#1| |#2|) (-13 (-1129) (-10 -8 (-15 -3227 ($ (-1090) |#1|)) (-15 -3831 ((-1090) $)) (-15 -3736 (|#1| $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1007 |#2|) (-1129)) (T -972))
+((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-4 *4 (-1129)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3831 (*1 *2 *1) (-12 (-4 *4 (-1129)) (-5 *2 (-1090)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3736 (*1 *2 *1) (-12 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1129)))))
+((-3771 (($ $) 17 T ELT)) (-3128 (($ $) 25 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 54 T ELT)) (-3133 (($ $) 27 T ELT)) (-3129 (($ $) 12 T ELT)) (-3131 (($ $) 40 T ELT)) (-3972 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-801 (-330)) $) 36 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 31 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) 31 T ELT)) (-3127 (((-695)) 9 T CONST)) (-3132 (($ $) 44 T ELT)))
+(((-973 |#1|) (-10 -7 (-15 -3128 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -2797 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -3972 ((-801 (-330)) |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3946 (|#1| (-485))) (-15 -3972 ((-179) |#1|)) (-15 -3972 ((-330) |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3946 (|#1| |#1|)) (-15 -3127 ((-695)) -3952) (-15 -3946 (|#1| (-485))) (-15 -3946 ((-773) |#1|))) (-974)) (T -973))
+((-3127 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 (((-485) $) 108 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3771 (($ $) 106 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 116 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3623 (((-485) $) 133 T ELT)) (-3724 (($) 23 T CONST)) (-3128 (($ $) 105 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-350 (-485)) #1#) $) 118 T ELT)) (-3157 (((-485) $) 122 T ELT) (((-350 (-485)) $) 119 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-3187 (((-85) $) 131 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 112 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 115 T ELT)) (-3133 (($ $) 111 T ELT)) (-3188 (((-85) $) 132 T ELT)) (-1605 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2532 (($ $ $) 125 T ELT)) (-2858 (($ $ $) 126 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3129 (($ $) 107 T ELT)) (-3131 (($ $) 109 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3972 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-801 (-330)) $) 113 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-350 (-485))) 117 T ELT)) (-3127 (((-695)) 40 T CONST)) (-3132 (($ $) 110 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3383 (($ $) 134 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 127 T ELT)) (-2568 (((-85) $ $) 129 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 128 T ELT)) (-2686 (((-85) $ $) 130 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
+(((-974) (-113)) (T -974))
+((-3133 (*1 *1 *1) (-4 *1 (-974))) (-3132 (*1 *1 *1) (-4 *1 (-974))) (-3131 (*1 *1 *1) (-4 *1 (-974))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-485)))) (-3129 (*1 *1 *1) (-4 *1 (-974))) (-3771 (*1 *1 *1) (-4 *1 (-974))) (-3128 (*1 *1 *1) (-4 *1 (-974))))
+(-13 (-312) (-756) (-934) (-951 (-485)) (-951 (-350 (-485))) (-916) (-554 (-801 (-330))) (-797 (-330)) (-120) (-10 -8 (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3131 ($ $)) (-15 -3130 ((-485) $)) (-15 -3129 ($ $)) (-15 -3771 ($ $)) (-15 -3128 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-801 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-330)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) |#2| $) 26 T ELT)) (-3137 ((|#1| $) 10 T ELT)) (-3623 (((-485) |#2| $) 119 T ELT)) (-3184 (((-3 $ #1="failed") |#2| (-831)) 76 T ELT)) (-3138 ((|#1| $) 31 T ELT)) (-3183 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3135 (($ $) 28 T ELT)) (-3467 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3187 (((-85) |#2| $) NIL T ELT)) (-3188 (((-85) |#2| $) NIL T ELT)) (-3134 (((-85) |#2| $) 27 T ELT)) (-3136 ((|#1| $) 120 T ELT)) (-3139 ((|#1| $) 30 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3186 ((|#2| $) 104 T ELT)) (-3946 (((-773) $) 95 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3770 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3185 (((-584 $) |#2|) 78 T ELT)) (-3057 (((-85) $ $) 99 T ELT)))
+(((-975 |#1| |#2|) (-13 (-981 |#1| |#2|) (-10 -8 (-15 -3139 (|#1| $)) (-15 -3138 (|#1| $)) (-15 -3137 (|#1| $)) (-15 -3136 (|#1| $)) (-15 -3135 ($ $)) (-15 -3134 ((-85) |#2| $)) (-15 -3183 (|#1| |#2| $ |#1|)))) (-13 (-756) (-312)) (-1155 |#1|)) (T -975))
+((-3183 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))) (-3136 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))) (-3135 (*1 *1 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))) (-3134 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-756) (-312))) (-5 *2 (-85)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-485) $) NIL T ELT)) (-2442 (($ $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3140 (($ (-1090)) 10 T ELT) (($ (-485)) 7 T ELT)) (-3158 (((-3 (-485) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3024 (((-85) $) NIL T ELT)) (-3023 (((-350 (-485)) $) NIL T ELT)) (-2995 (($) NIL T ELT) (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2674 (((-85) $) NIL T ELT)) (-3445 (((-633 $) $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-3833 (($ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL T ELT) (((-631 (-485)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2047 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) NIL T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-485) $) 16 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1090)) 9 T ELT)) (-3946 (((-773) $) 23 T ELT) (($ (-485)) 6 T ELT) (($ $) NIL T ELT) (($ (-485)) 6 T ELT)) (-3127 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3102 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (($) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2044 (($ $ $ $) NIL T ELT)) (-3383 (($ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3837 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT)))
+(((-976) (-13 (-484) (-558 (-1090)) (-10 -8 (-6 -3982) (-6 -3987) (-6 -3983) (-15 -3140 ($ (-1090))) (-15 -3140 ($ (-485)))))) (T -976))
+((-3140 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-976)))) (-3140 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-976)))))
+((-3797 (($ $) 46 T ELT)) (-3167 (((-85) $ $) 82 T ELT)) (-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-350 (-485)))) 247 T ELT) (((-3 $ #1#) (-858 (-485))) 246 T ELT) (((-3 $ #1#) (-858 |#2|)) 249 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-858 (-350 (-485)))) 235 T ELT) (($ (-858 (-485))) 231 T ELT) (($ (-858 |#2|)) 255 T ELT)) (-3959 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3694 (((-85) $ $) 131 T ELT) (((-85) $ (-584 $)) 135 T ELT)) (-3173 (((-85) $) 60 T ELT)) (-3752 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 125 T ELT)) (-3144 (($ $) 160 T ELT)) (-3155 (($ $) 156 T ELT)) (-3156 (($ $) 155 T ELT)) (-3166 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3165 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3695 (((-85) $ $) 143 T ELT) (((-85) $ (-584 $)) 144 T ELT)) (-3181 ((|#4| $) 32 T ELT)) (-3160 (($ $ $) 128 T ELT)) (-3174 (((-85) $) 59 T ELT)) (-3180 (((-695) $) 35 T ELT)) (-3141 (($ $) 174 T ELT)) (-3142 (($ $) 171 T ELT)) (-3169 (((-584 $) $) 72 T ELT)) (-3172 (($ $) 62 T ELT)) (-3143 (($ $) 167 T ELT)) (-3170 (((-584 $) $) 69 T ELT)) (-3171 (($ $) 64 T ELT)) (-3175 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3481 (-695))) $ $) 130 T ELT)) (-3161 (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $) 126 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $ |#4|) 127 T ELT)) (-3162 (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $) 121 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $ |#4|) 123 T ELT)) (-3164 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3163 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3177 (((-584 $) $) 54 T ELT)) (-3691 (((-85) $ $) 140 T ELT) (((-85) $ (-584 $)) 141 T ELT)) (-3686 (($ $ $) 116 T ELT)) (-3446 (($ $) 37 T ELT)) (-3699 (((-85) $ $) 80 T ELT)) (-3692 (((-85) $ $) 136 T ELT) (((-85) $ (-584 $)) 138 T ELT)) (-3687 (($ $ $) 112 T ELT)) (-3179 (($ $) 41 T ELT)) (-3145 ((|#2| |#2| $) 164 T ELT) (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3153 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3154 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3178 (($ $) 49 T ELT)) (-3176 (($ $) 55 T ELT)) (-3972 (((-801 (-330)) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-474) $) NIL T ELT) (($ (-858 (-350 (-485)))) 237 T ELT) (($ (-858 (-485))) 233 T ELT) (($ (-858 |#2|)) 248 T ELT) (((-1073) $) 278 T ELT) (((-858 |#2|) $) 184 T ELT)) (-3946 (((-773) $) 29 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-858 |#2|) $) 185 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3168 (((-3 (-85) #1#) $ $) 79 T ELT)))
+(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3946 (|#1| |#1|)) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3145 (|#1| (-584 |#1|))) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3946 ((-858 |#2|) |#1|)) (-15 -3972 ((-858 |#2|) |#1|)) (-15 -3972 ((-1073) |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#1| |#1|)) (-15 -3145 (|#2| |#2| |#1|)) (-15 -3153 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3153 (|#1| |#1| |#2|)) (-15 -3154 (|#1| |#1| |#2|)) (-15 -3155 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3972 (|#1| (-858 |#2|))) (-15 -3157 (|#1| (-858 |#2|))) (-15 -3158 ((-3 |#1| #1="failed") (-858 |#2|))) (-15 -3972 (|#1| (-858 (-485)))) (-15 -3157 (|#1| (-858 (-485)))) (-15 -3158 ((-3 |#1| #1#) (-858 (-485)))) (-15 -3972 (|#1| (-858 (-350 (-485))))) (-15 -3157 (|#1| (-858 (-350 (-485))))) (-15 -3158 ((-3 |#1| #1#) (-858 (-350 (-485))))) (-15 -3686 (|#1| |#1| |#1|)) (-15 -3687 (|#1| |#1| |#1|)) (-15 -3159 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3481 (-695))) |#1| |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -3752 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3161 ((-2 (|:| -3954 |#1|) (|:| |gap| (-695)) (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1| |#4|)) (-15 -3161 ((-2 (|:| -3954 |#1|) (|:| |gap| (-695)) (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3162 ((-2 (|:| -3954 |#1|) (|:| |gap| (-695)) (|:| -2903 |#1|)) |#1| |#1| |#4|)) (-15 -3162 ((-2 (|:| -3954 |#1|) (|:| |gap| (-695)) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3163 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3695 ((-85) |#1| (-584 |#1|))) (-15 -3695 ((-85) |#1| |#1|)) (-15 -3691 ((-85) |#1| (-584 |#1|))) (-15 -3691 ((-85) |#1| |#1|)) (-15 -3692 ((-85) |#1| (-584 |#1|))) (-15 -3692 ((-85) |#1| |#1|)) (-15 -3694 ((-85) |#1| (-584 |#1|))) (-15 -3694 ((-85) |#1| |#1|)) (-15 -3167 ((-85) |#1| |#1|)) (-15 -3699 ((-85) |#1| |#1|)) (-15 -3168 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3169 ((-584 |#1|) |#1|)) (-15 -3170 ((-584 |#1|) |#1|)) (-15 -3171 (|#1| |#1|)) (-15 -3172 (|#1| |#1|)) (-15 -3173 ((-85) |#1|)) (-15 -3174 ((-85) |#1|)) (-15 -3959 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1|)) (-15 -3177 ((-584 |#1|) |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3180 ((-695) |#1|)) (-15 -3181 (|#4| |#1|)) (-15 -3972 ((-474) |#1|)) (-15 -3972 ((-801 (-485)) |#1|)) (-15 -3972 ((-801 (-330)) |#1|)) (-15 -3946 (|#1| |#4|)) (-15 -3158 ((-3 |#4| #1#) |#1|)) (-15 -3157 (|#4| |#1|)) (-15 -3175 (|#2| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| (-485))) (-15 -3946 ((-773) |#1|))) (-978 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -977))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 |#3|) $) 123 T ELT)) (-3084 (((-1085 $) $ |#3|) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-3797 (($ $) 293 T ELT)) (-3167 (((-85) $ $) 279 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3755 (($ $ $) 238 (|has| |#1| (-496)) ELT)) (-3149 (((-584 $) $ $) 233 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-822)) ELT)) (-3775 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1="failed") (-584 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-822)) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-858 (-350 (-485)))) 253 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1090)))) ELT) (((-3 $ "failed") (-858 (-485))) 250 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1090)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1090))))) ELT) (((-3 $ "failed") (-858 |#1|)) 247 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-38 (-485)))) (|has| |#3| (-554 (-1090)))) (-12 (-2561 (|has| |#1| (-484))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1090)))) (-12 (-2561 (|has| |#1| (-905 (-485)))) (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1090))))) ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT) (($ (-858 (-350 (-485)))) 252 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1090)))) ELT) (($ (-858 (-485))) 249 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1090)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1090))))) ELT) (($ (-858 |#1|)) 246 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-38 (-485)))) (|has| |#3| (-554 (-1090)))) (-12 (-2561 (|has| |#1| (-484))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1090)))) (-12 (-2561 (|has| |#1| (-905 (-485)))) (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1090))))) ELT)) (-3756 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-496)) ELT)) (-3959 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3694 (((-85) $ $) 278 T ELT) (((-85) $ (-584 $)) 277 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3173 (((-85) $) 286 T ELT)) (-3752 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 258 T ELT)) (-3144 (($ $) 227 (|has| |#1| (-392)) ELT)) (-3503 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) 122 T ELT)) (-3723 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-3155 (($ $) 243 (|has| |#1| (-496)) ELT)) (-3156 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3166 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3165 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1624 (($ $ |#1| |#2| $) 189 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3695 (((-85) $ $) 272 T ELT) (((-85) $ (-584 $)) 271 T ELT)) (-3146 (($ $ $ $ $) 229 (|has| |#1| (-496)) ELT)) (-3181 ((|#3| $) 297 T ELT)) (-3085 (($ (-1085 |#1|) |#3|) 130 T ELT) (($ (-1085 $) |#3|) 129 T ELT)) (-2822 (((-584 $) $) 139 T ELT)) (-3937 (((-85) $) 169 T ELT)) (-2894 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3160 (($ $ $) 257 T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) 133 T ELT)) (-3174 (((-85) $) 287 T ELT)) (-2821 ((|#2| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-3180 (((-695) $) 296 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3083 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3141 (($ $) 224 (|has| |#1| (-392)) ELT)) (-3142 (($ $) 225 (|has| |#1| (-392)) ELT)) (-3169 (((-584 $) $) 282 T ELT)) (-3172 (($ $) 285 T ELT)) (-3143 (($ $) 226 (|has| |#1| (-392)) ELT)) (-3170 (((-584 $) $) 283 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-631 |#1|) (-1179 $)) 144 T ELT)) (-3171 (($ $) 284 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1891 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3481 (-695))) $ $) 256 T ELT)) (-3161 (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $) 260 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) 259 T ELT)) (-3162 (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $) 262 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $ |#3|) 261 T ELT)) (-3164 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3163 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3191 (($ $ $) 232 (|has| |#1| (-496)) ELT)) (-3177 (((-584 $) $) 291 T ELT)) (-2824 (((-3 (-584 $) #3#) $) 127 T ELT)) (-2823 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #3#) $) 126 T ELT)) (-3691 (((-85) $ $) 274 T ELT) (((-85) $ (-584 $)) 273 T ELT)) (-3686 (($ $ $) 254 T ELT)) (-3446 (($ $) 295 T ELT)) (-3699 (((-85) $ $) 280 T ELT)) (-3692 (((-85) $ $) 276 T ELT) (((-85) $ (-584 $)) 275 T ELT)) (-3687 (($ $ $) 255 T ELT)) (-3179 (($ $) 294 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3150 (((-2 (|:| -3145 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-496)) ELT)) (-3151 (((-2 (|:| -3145 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-496)) ELT)) (-1797 (((-85) $) 183 T ELT)) (-1796 ((|#1| $) 184 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 ((|#1| |#1| $) 228 (|has| |#1| (-392)) ELT) (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3152 (((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-496)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3153 (($ $ |#1|) 241 (|has| |#1| (-496)) ELT) (($ $ $) 239 (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 242 (|has| |#1| (-496)) ELT) (($ $ $) 240 (|has| |#1| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT)) (-3757 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3948 ((|#2| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT)) (-3178 (($ $) 292 T ELT)) (-3176 (($ $) 290 T ELT)) (-3972 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT) (($ (-858 (-350 (-485)))) 251 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1090)))) ELT) (($ (-858 (-485))) 248 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1090)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1090))))) ELT) (($ (-858 |#1|)) 245 (|has| |#3| (-554 (-1090))) ELT) (((-1073) $) 223 (-12 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1090)))) ELT) (((-858 |#1|) $) 222 (|has| |#3| (-554 (-1090))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-858 |#1|) $) 221 (|has| |#3| (-554 (-1090))) ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) 185 T ELT)) (-3677 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2703 (((-633 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1623 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3168 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2667 (($) 45 T CONST)) (-3147 (($ $ $ $ (-695)) 230 (|has| |#1| (-496)) ELT)) (-3148 (($ $ $ (-695)) 231 (|has| |#1| (-496)) ELT)) (-2670 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
+(((-978 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -978))
+((-3181 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3177 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3176 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3959 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3171 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3170 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3169 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3168 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3699 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3167 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3166 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3163 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3162 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-695)) (|:| -2903 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3162 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-695)) (|:| -2903 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3161 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3752 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3159 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3481 (-695)))) (-4 *1 (-978 *3 *4 *5)))) (-3687 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3686 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3158 (*1 *1 *2) (|partial| -12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3158 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3157 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3972 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3158 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-2561 (-4 *3 (-38 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-484))) (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3157 (*1 *1 *2) (OR (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-2561 (-4 *3 (-38 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-484))) (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *5 (-554 (-1090))) (-4 *4 (-718)) (-4 *5 (-757)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3153 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3152 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3145 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3191 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3148 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3147 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3146 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3145 (*1 *2 *2 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3144 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3141 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))))
+(-13 (-862 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3181 (|t#3| $)) (-15 -3180 ((-695) $)) (-15 -3446 ($ $)) (-15 -3179 ($ $)) (-15 -3797 ($ $)) (-15 -3178 ($ $)) (-15 -3177 ((-584 $) $)) (-15 -3176 ($ $)) (-15 -3175 ($ $ |t#3|)) (-15 -3959 ($ $ |t#3|)) (-15 -3174 ((-85) $)) (-15 -3173 ((-85) $)) (-15 -3172 ($ $)) (-15 -3171 ($ $)) (-15 -3170 ((-584 $) $)) (-15 -3169 ((-584 $) $)) (-15 -3168 ((-3 (-85) "failed") $ $)) (-15 -3699 ((-85) $ $)) (-15 -3167 ((-85) $ $)) (-15 -3694 ((-85) $ $)) (-15 -3694 ((-85) $ (-584 $))) (-15 -3692 ((-85) $ $)) (-15 -3692 ((-85) $ (-584 $))) (-15 -3691 ((-85) $ $)) (-15 -3691 ((-85) $ (-584 $))) (-15 -3695 ((-85) $ $)) (-15 -3695 ((-85) $ (-584 $))) (-15 -3166 ($ $ $)) (-15 -3165 ($ $ $)) (-15 -3166 ($ $ $ |t#3|)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ($ $ $)) (-15 -3163 ($ $ $)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ($ $ $ |t#3|)) (-15 -3162 ((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $)) (-15 -3162 ((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $ |t#3|)) (-15 -3161 ((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -3161 ((-2 (|:| -3954 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $ |t#3|)) (-15 -3752 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -3160 ($ $ $)) (-15 -3159 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3481 (-695))) $ $)) (-15 -3687 ($ $ $)) (-15 -3686 ($ $ $)) (IF (|has| |t#3| (-554 (-1090))) (PROGN (-6 (-553 (-858 |t#1|))) (-6 (-554 (-858 |t#1|))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3158 ((-3 $ "failed") (-858 (-350 (-485))))) (-15 -3157 ($ (-858 (-350 (-485))))) (-15 -3972 ($ (-858 (-350 (-485))))) (-15 -3158 ((-3 $ "failed") (-858 (-485)))) (-15 -3157 ($ (-858 (-485)))) (-15 -3972 ($ (-858 (-485)))) (IF (|has| |t#1| (-905 (-485))) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-858 |t#1|))) (-15 -3157 ($ (-858 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) (IF (|has| |t#1| (-38 (-350 (-485)))) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-858 (-485)))) (-15 -3157 ($ (-858 (-485)))) (-15 -3972 ($ (-858 (-485)))) (IF (|has| |t#1| (-484)) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-858 |t#1|))) (-15 -3157 ($ (-858 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) |%noBranch| (IF (|has| |t#1| (-38 (-350 (-485)))) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-858 |t#1|))) (-15 -3157 ($ (-858 |t#1|)))))) (-15 -3972 ($ (-858 |t#1|))) (IF (|has| |t#1| (-951 (-485))) (-6 (-554 (-1073))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3156 ($ $)) (-15 -3155 ($ $)) (-15 -3154 ($ $ |t#1|)) (-15 -3153 ($ $ |t#1|)) (-15 -3154 ($ $ $)) (-15 -3153 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -3152 ((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3151 ((-2 (|:| -3145 $) (|:| |coef1| $)) $ $)) (-15 -3150 ((-2 (|:| -3145 $) (|:| |coef2| $)) $ $)) (-15 -3756 ($ $ $)) (-15 -3149 ((-584 $) $ $)) (-15 -3191 ($ $ $)) (-15 -3148 ($ $ $ (-695))) (-15 -3147 ($ $ $ $ (-695))) (-15 -3146 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -3145 (|t#1| |t#1| $)) (-15 -3144 ($ $)) (-15 -3143 ($ $)) (-15 -3142 ($ $)) (-15 -3141 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-553 (-858 |#1|)) |has| |#3| (-554 (-1090))) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-554 (-858 |#1|)) |has| |#3| (-554 (-1090))) ((-554 (-1073)) -12 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1090)))) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#2| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) |has| |#1| (-822)))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3182 (((-584 (-1049)) $) 18 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 27 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 20 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-979) (-13 (-996) (-10 -8 (-15 -3182 ((-584 (-1049)) $)) (-15 -3234 ((-1049) $))))) (T -979))
+((-3182 (*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-979)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-979)))))
+((-3189 (((-85) |#3| $) 15 T ELT)) (-3184 (((-3 $ #1="failed") |#3| (-831)) 29 T ELT)) (-3467 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3187 (((-85) |#3| $) 19 T ELT)) (-3188 (((-85) |#3| $) 17 T ELT)))
+(((-980 |#1| |#2| |#3|) (-10 -7 (-15 -3184 ((-3 |#1| #1="failed") |#3| (-831))) (-15 -3467 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3187 ((-85) |#3| |#1|)) (-15 -3188 ((-85) |#3| |#1|)) (-15 -3189 ((-85) |#3| |#1|))) (-981 |#2| |#3|) (-13 (-756) (-312)) (-1155 |#2|)) (T -980))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) |#2| $) 25 T ELT)) (-3623 (((-485) |#2| $) 26 T ELT)) (-3184 (((-3 $ "failed") |#2| (-831)) 19 T ELT)) (-3183 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3467 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3187 (((-85) |#2| $) 23 T ELT)) (-3188 (((-85) |#2| $) 24 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3186 ((|#2| $) 21 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3770 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3185 (((-584 $) |#2|) 20 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-981 |#1| |#2|) (-113) (-13 (-756) (-312)) (-1155 |t#1|)) (T -981))
+((-3623 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-485)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-85)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-85)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-85)))) (-3467 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1155 *3)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1155 *3)))) (-3185 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-584 *1)) (-4 *1 (-981 *4 *3)))) (-3184 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-312))) (-4 *1 (-981 *4 *2)) (-4 *2 (-1155 *4)))) (-3770 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1155 *2)))) (-3183 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1155 *2)))))
+(-13 (-1014) (-10 -8 (-15 -3623 ((-485) |t#2| $)) (-15 -3189 ((-85) |t#2| $)) (-15 -3188 ((-85) |t#2| $)) (-15 -3187 ((-85) |t#2| $)) (-15 -3467 ((-3 |t#2| "failed") |t#2| $)) (-15 -3186 (|t#2| $)) (-15 -3185 ((-584 $) |t#2|)) (-15 -3184 ((-3 $ "failed") |t#2| (-831))) (-15 -3770 (|t#1| |t#2| $ |t#1|)) (-15 -3183 (|t#1| |t#2| $ |t#1|))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-3436 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) (-695)) 114 T ELT)) (-3433 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695)) 63 T ELT)) (-3437 (((-1185) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-695)) 99 T ELT)) (-3431 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3434 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695)) 65 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695) (-85)) 67 T ELT)) (-3435 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 87 T ELT)) (-3972 (((-1073) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) 92 T ELT)) (-3432 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3430 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT)))
+(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3430 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3431 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3432 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-85))) (-15 -3433 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695))) (-15 -3433 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3435 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3435 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3436 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) (-695))) (-15 -3972 ((-1073) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)))) (-15 -3437 ((-1185) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -982))
+((-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1600 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1185)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1600 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1073)) (-5 *1 (-982 *4 *5 *6 *7 *8)))) (-3436 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1600 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1600 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-982 *7 *8 *9 *10 *11)))) (-3435 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))))
+((-3198 (((-85) |#5| $) 26 T ELT)) (-3196 (((-85) |#5| $) 29 T ELT)) (-3199 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3239 (((-584 $) |#5| $) NIL T ELT) (((-584 $) (-584 |#5|) $) 94 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 92 T ELT) (((-584 $) |#5| (-584 $)) 95 T ELT)) (-3769 (($ $ |#5|) NIL T ELT) (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 73 T ELT) (((-584 $) (-584 |#5|) $) 75 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 77 T ELT)) (-3190 (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 64 T ELT) (((-584 $) (-584 |#5|) $) 69 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 71 T ELT)) (-3197 (((-85) |#5| $) 32 T ELT)))
+(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3769 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3769 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3769 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3769 ((-584 |#1|) |#5| |#1|)) (-15 -3190 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3190 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3190 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3190 ((-584 |#1|) |#5| |#1|)) (-15 -3239 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3239 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3239 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3239 ((-584 |#1|) |#5| |#1|)) (-15 -3196 ((-85) |#5| |#1|)) (-15 -3199 ((-85) |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3199 ((-85) |#5| |#1|)) (-15 -3769 (|#1| |#1| |#5|))) (-984 |#2| |#3| |#4| |#5|) (-392) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -983))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3682 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-3775 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3689 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3799 (((-3 $ #1#) $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#4|)) (|:| -1702 (-584 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-584 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3440 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3697 (((-584 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3801 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-695) $) 112 T ELT)) (-1946 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3946 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3678 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3190 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-584 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3957 (((-695) $) 43 T ELT)))
+(((-984 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -984))
+((-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3775 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3239 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3239 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3239 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3239 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3190 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3190 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3440 (*1 *1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3440 (*1 *1 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)))) (-3769 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3769 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3769 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3769 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8)))))
+(-13 (-1124 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3199 ((-85) |t#4| $)) (-15 -3198 ((-85) |t#4| $)) (-15 -3197 ((-85) |t#4| $)) (-15 -3199 ((-85) $)) (-15 -3196 ((-85) |t#4| $)) (-15 -3195 ((-3 (-85) (-584 $)) |t#4| $)) (-15 -3194 ((-584 (-2 (|:| |val| (-85)) (|:| -1600 $))) |t#4| $)) (-15 -3194 ((-85) |t#4| $)) (-15 -3193 ((-584 $) |t#4| $)) (-15 -3192 ((-3 |t#4| (-584 $)) |t#4| |t#4| $)) (-15 -3191 ((-584 (-2 (|:| |val| |t#4|) (|:| -1600 $))) |t#4| |t#4| $)) (-15 -3775 ((-584 (-2 (|:| |val| |t#4|) (|:| -1600 $))) |t#4| $)) (-15 -3239 ((-584 $) |t#4| $)) (-15 -3239 ((-584 $) (-584 |t#4|) $)) (-15 -3239 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3239 ((-584 $) |t#4| (-584 $))) (-15 -3190 ((-584 $) |t#4| $)) (-15 -3190 ((-584 $) |t#4| (-584 $))) (-15 -3190 ((-584 $) (-584 |t#4|) $)) (-15 -3190 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3440 ($ |t#4| $)) (-15 -3440 ($ (-584 |t#4|) $)) (-15 -3769 ((-584 $) |t#4| $)) (-15 -3769 ((-584 $) |t#4| (-584 $))) (-15 -3769 ((-584 $) (-584 |t#4|) $)) (-15 -3769 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3682 ((-584 $) (-584 |t#4|) (-85)))))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T))
+((-3206 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|) 86 T ELT)) (-3203 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3205 (((-584 |#5|) |#4| |#5|) 74 T ELT)) (-3204 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3287 (((-1185)) 36 T ELT)) (-3285 (((-1185)) 25 T ELT)) (-3286 (((-1185) (-1073) (-1073) (-1073)) 32 T ELT)) (-3284 (((-1185) (-1073) (-1073) (-1073)) 21 T ELT)) (-3200 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3201 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) |#3| (-85)) 117 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3202 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 112 T ELT)))
+(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3284 ((-1185) (-1073) (-1073) (-1073))) (-15 -3285 ((-1185))) (-15 -3286 ((-1185) (-1073) (-1073) (-1073))) (-15 -3287 ((-1185))) (-15 -3200 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3201 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3201 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) |#3| (-85))) (-15 -3202 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3203 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3204 ((-85) |#4| |#5|)) (-15 -3204 ((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3205 ((-584 |#5|) |#4| |#5|)) (-15 -3206 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -985))
+((-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1600 *9)))) (-5 *5 (-85)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1600 *9)))) (-5 *1 (-985 *6 *7 *4 *8 *9)))) (-3201 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3200 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3287 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3285 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3284 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1130) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1049) $) 11 T ELT)) (-3946 (((-773) $) 21 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-986) (-13 (-996) (-10 -8 (-15 -3207 ((-1049) $)) (-15 -3319 ((-1130) $))))) (T -986))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-986)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-986)))))
+((-3267 (((-85) $ $) 7 T ELT)))
+(((-987) (-13 (-1129) (-10 -8 (-15 -3267 ((-85) $ $))))) (T -987))
+((-3267 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-987)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3210 (($ $ (-584 (-1090)) (-1 (-85) (-584 |#3|))) 34 T ELT)) (-3211 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-584 (-1090))) 21 T ELT)) (-3528 ((|#3| $) 13 T ELT)) (-3158 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3157 (((-249 |#3|) $) NIL T ELT)) (-3208 (((-584 (-1090)) $) 16 T ELT)) (-3209 (((-801 |#1|) $) 11 T ELT)) (-3529 ((|#3| $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-831)) 41 T ELT)) (-3946 (((-773) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 38 T ELT)))
+(((-988 |#1| |#2| |#3|) (-13 (-1014) (-241 |#3| |#3|) (-951 (-249 |#3|)) (-10 -8 (-15 -3211 ($ |#3| |#3|)) (-15 -3211 ($ |#3| |#3| (-584 (-1090)))) (-15 -3210 ($ $ (-584 (-1090)) (-1 (-85) (-584 |#3|)))) (-15 -3209 ((-801 |#1|) $)) (-15 -3529 (|#3| $)) (-15 -3528 (|#3| $)) (-15 -3800 (|#3| $ |#3| (-831))) (-15 -3208 ((-584 (-1090)) $)))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -988))
+((-3211 (*1 *1 *2 *2) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))) (-3211 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-584 (-1090))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-3210 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-1 (-85) (-584 *6))) (-4 *6 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6)))) (-3209 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2))) (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 *2))))) (-3529 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3528 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3800 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-3208 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-1090))) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3542 (((-1090) $) 8 T ELT)) (-3243 (((-1073) $) 17 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 14 T ELT)))
+(((-989 |#1|) (-13 (-1014) (-10 -8 (-15 -3542 ((-1090) $)))) (-1090)) (T -989))
+((-3542 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-989 *3)) (-14 *3 *2))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3213 (($ (-584 (-988 |#1| |#2| |#3|))) 15 T ELT)) (-3212 (((-584 (-988 |#1| |#2| |#3|)) $) 22 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-831)) 28 T ELT)) (-3946 (((-773) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 21 T ELT)))
+(((-990 |#1| |#2| |#3|) (-13 (-1014) (-241 |#3| |#3|) (-10 -8 (-15 -3213 ($ (-584 (-988 |#1| |#2| |#3|)))) (-15 -3212 ((-584 (-988 |#1| |#2| |#3|)) $)) (-15 -3800 (|#3| $ |#3| (-831))))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -990))
+((-3213 (*1 *1 *2) (-12 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5)))) (-3212 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))) (-3800 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))))
+((-3214 (((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 88 T ELT) (((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 92 T ELT) (((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 90 T ELT)))
+(((-991 |#1| |#2|) (-10 -7 (-15 -3214 ((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3214 ((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3214 ((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-584 (-1090))) (T -991))
+((-3214 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090))))) (-3214 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1747 (-1085 *4)) (|:| -3225 (-584 (-858 *4)))))) (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1090))))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 132 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1782 (((-631 |#1|) (-1179 $)) NIL T ELT) (((-631 |#1|)) 117 T ELT)) (-3330 ((|#1| $) 121 T ELT)) (-1675 (((-1102 (-831) (-695)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3137 (((-695)) 43 (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) NIL T ELT) (($ (-1179 |#1|)) 46 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1781 (((-631 |#1|) $ (-1179 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 109 T ELT) (((-631 |#1|) (-631 $)) 104 T ELT)) (-3842 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-350 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3109 (((-831)) 80 T ELT)) (-2995 (($) 47 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-2834 (($) NIL (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1764 (($ $ (-695)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3772 (((-831) $) NIL (|has| |#1| (-299)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3133 ((|#1| $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2015 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2011 (((-831) $) 140 (|has| |#1| (-320)) ELT)) (-3080 ((|#2| $) 59 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3446 (($) NIL (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 131 (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) 123 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1676 (((-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1765 (((-695) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3758 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-312)) ELT)) (-2409 (((-631 |#1|) (-1179 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3186 ((|#2|) 77 T ELT)) (-1674 (($) NIL (|has| |#1| (-299)) ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 92 T ELT) (((-631 |#1|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#1|) $) 72 T ELT) (((-631 |#1|) (-1179 $)) 88 T ELT)) (-3972 (((-1179 |#1|) $) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (|has| |#1| (-299)) ELT)) (-3946 (((-773) $) 58 T ELT) (($ (-485)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (($ $) NIL (|has| |#1| (-299)) ELT) (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 85 T ELT)) (-3127 (((-695)) 79 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2013 (((-1179 $)) 84 T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 32 T CONST)) (-2667 (($) 19 T CONST)) (-2670 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1090)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-312)) ELT)) (-3057 (((-85) $ $) 64 T ELT)) (-3949 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT)))
+(((-992 |#1| |#2| |#3|) (-662 |#1| |#2|) (-146) (-1155 |#1|) |#2|) (T -992))
+NIL
+((-3732 (((-348 |#3|) |#3|) 18 T ELT)))
+(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3732 ((-348 |#3|) |#3|))) (-1155 (-350 (-485))) (-13 (-312) (-120) (-662 (-350 (-485)) |#1|)) (-1155 |#2|)) (T -993))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 (-485)))) (-4 *5 (-13 (-312) (-120) (-662 (-350 (-485)) *4))) (-5 *2 (-348 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+((-3732 (((-348 |#3|) |#3|) 19 T ELT)))
+(((-994 |#1| |#2| |#3|) (-10 -7 (-15 -3732 ((-348 |#3|) |#3|))) (-1155 (-350 (-858 (-485)))) (-13 (-312) (-120) (-662 (-350 (-858 (-485))) |#1|)) (-1155 |#2|)) (T -994))
+((-3732 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 (-858 (-485))))) (-4 *5 (-13 (-312) (-120) (-662 (-350 (-858 (-485))) *4))) (-5 *2 (-348 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) 16 T ELT)) (-2858 (($ $ $) 17 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3215 (($) 6 T ELT)) (-3972 (((-1090) $) 20 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 15 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 9 T ELT)))
+(((-995) (-13 (-757) (-554 (-1090)) (-10 -8 (-15 -3215 ($))))) (T -995))
+((-3215 (*1 *1) (-5 *1 (-995))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-1095)) 20 T ELT) (((-1095) $) 19 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-996) (-113)) (T -996))
NIL
(-13 (-64))
-(((-64) . T) ((-72) . T) ((-555 (-1094)) . T) ((-552 (-772)) . T) ((-552 (-1094)) . T) ((-429 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-3217 ((|#1| |#1| (-1 (-484) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3215 (((-1184)) 21 T ELT)) (-3216 (((-583 |#1|)) 13 T ELT)))
-(((-996 |#1|) (-10 -7 (-15 -3215 ((-1184))) (-15 -3216 ((-583 |#1|))) (-15 -3217 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3217 (|#1| |#1| (-1 (-484) |#1| |#1|)))) (-105)) (T -996))
-((-3217 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3217 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3216 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105)))) (-3215 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-996 *3)) (-4 *3 (-105)))))
-((-3220 (($ (-78) $) 20 T ELT)) (-3221 (((-632 (-78)) (-446) $) 19 T ELT)) (-3564 (($) 7 T ELT)) (-3219 (($) 21 T ELT)) (-3218 (($) 22 T ELT)) (-3222 (((-583 (-149)) $) 10 T ELT)) (-3945 (((-772) $) 25 T ELT)))
-(((-997) (-13 (-552 (-772)) (-10 -8 (-15 -3564 ($)) (-15 -3222 ((-583 (-149)) $)) (-15 -3221 ((-632 (-78)) (-446) $)) (-15 -3220 ($ (-78) $)) (-15 -3219 ($)) (-15 -3218 ($))))) (T -997))
-((-3564 (*1 *1) (-5 *1 (-997))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-997)))) (-3221 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-997)))) (-3220 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997)))) (-3219 (*1 *1) (-5 *1 (-997))) (-3218 (*1 *1) (-5 *1 (-997))))
-((-3223 (((-1178 (-630 |#1|)) (-583 (-630 |#1|))) 45 T ELT) (((-1178 (-630 (-857 |#1|))) (-583 (-1089)) (-630 (-857 |#1|))) 75 T ELT) (((-1178 (-630 (-349 (-857 |#1|)))) (-583 (-1089)) (-630 (-349 (-857 |#1|)))) 92 T ELT)) (-3224 (((-1178 |#1|) (-630 |#1|) (-583 (-630 |#1|))) 39 T ELT)))
-(((-998 |#1|) (-10 -7 (-15 -3223 ((-1178 (-630 (-349 (-857 |#1|)))) (-583 (-1089)) (-630 (-349 (-857 |#1|))))) (-15 -3223 ((-1178 (-630 (-857 |#1|))) (-583 (-1089)) (-630 (-857 |#1|)))) (-15 -3223 ((-1178 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3224 ((-1178 |#1|) (-630 |#1|) (-583 (-630 |#1|))))) (-312)) (T -998))
-((-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-1178 *5)) (-5 *1 (-998 *5)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-998 *4)))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1089))) (-4 *5 (-312)) (-5 *2 (-1178 (-630 (-857 *5)))) (-5 *1 (-998 *5)) (-5 *4 (-630 (-857 *5))))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1089))) (-4 *5 (-312)) (-5 *2 (-1178 (-630 (-349 (-857 *5))))) (-5 *1 (-998 *5)) (-5 *4 (-630 (-349 (-857 *5)))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1487 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1089)) NIL T ELT)) (-1521 (((-694) $) NIL T ELT) (((-694) $ (-1089)) NIL T ELT)) (-3081 (((-583 (-1000 (-1089))) $) NIL T ELT)) (-3083 (((-1084 $) $ (-1000 (-1089))) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1000 (-1089)))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1483 (($ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-1000 (-1089)) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-1038 |#1| (-1089)) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-1000 (-1089)) $) NIL T ELT) (((-1089) $) NIL T ELT) (((-1038 |#1| (-1089)) $) NIL T ELT)) (-3755 (($ $ $ (-1000 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-1000 (-1089))) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 (-1000 (-1089))) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-1000 (-1089)) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1000 (-1089)) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ (-1089)) NIL T ELT) (((-694) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#1|) (-1000 (-1089))) NIL T ELT) (($ (-1084 $) (-1000 (-1089))) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1089))) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-1000 (-1089))) NIL T ELT)) (-2820 (((-469 (-1000 (-1089))) $) NIL T ELT) (((-694) $ (-1000 (-1089))) NIL T ELT) (((-583 (-694)) $ (-583 (-1000 (-1089)))) NIL T ELT)) (-1624 (($ (-1 (-469 (-1000 (-1089))) (-469 (-1000 (-1089)))) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1522 (((-1 $ (-694)) (-1089)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3082 (((-3 (-1000 (-1089)) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1485 (((-1000 (-1089)) $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1486 (((-85) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-1000 (-1089))) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1000 (-1089)) |#1|) NIL T ELT) (($ $ (-583 (-1000 (-1089))) (-583 |#1|)) NIL T ELT) (($ $ (-1000 (-1089)) $) NIL T ELT) (($ $ (-583 (-1000 (-1089))) (-583 $)) NIL T ELT) (($ $ (-1089) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1089)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3756 (($ $ (-1000 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-1000 (-1089))) (-583 (-694))) NIL T ELT) (($ $ (-1000 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1488 (((-583 (-1089)) $) NIL T ELT)) (-3947 (((-469 (-1000 (-1089))) $) NIL T ELT) (((-694) $ (-1000 (-1089))) NIL T ELT) (((-583 (-694)) $ (-583 (-1000 (-1089)))) NIL T ELT) (((-694) $ (-1089)) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-1000 (-1089)) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1000 (-1089)) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1000 (-1089)) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-1000 (-1089))) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1000 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-1038 |#1| (-1089))) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1089))) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-1000 (-1089))) (-583 (-694))) NIL T ELT) (($ $ (-1000 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-999 |#1|) (-13 (-213 |#1| (-1089) (-1000 (-1089)) (-469 (-1000 (-1089)))) (-950 (-1038 |#1| (-1089)))) (-961)) (T -999))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-1521 (((-694) $) NIL T ELT)) (-3830 ((|#1| $) 10 T ELT)) (-3157 (((-3 |#1| "failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3771 (((-694) $) 11 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-1522 (($ |#1| (-694)) 9 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3757 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2669 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 16 T ELT)))
-(((-1000 |#1|) (-228 |#1|) (-756)) (T -1000))
-NIL
-((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3735 (($ |#1| |#1|) 16 T ELT)) (-3957 (((-583 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3229 ((|#1| $) 12 T ELT)) (-3231 ((|#1| $) 11 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3227 (((-484) $) 15 T ELT)) (-3228 ((|#1| $) 14 T ELT)) (-3230 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3962 (((-583 |#1|) $) 42 (|has| |#1| (-755)) ELT) (((-583 |#1|) (-583 $)) 41 (|has| |#1| (-755)) ELT)) (-3971 (($ |#1|) 29 T ELT)) (-3945 (((-772) $) 28 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3736 (($ |#1| |#1|) 10 T ELT)) (-3232 (($ $ (-484)) 17 T ELT)) (-3056 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT)))
-(((-1001 |#1|) (-13 (-1006 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1007 |#1| (-583 |#1|))) |%noBranch|))) (-1128)) (T -1001))
-NIL
-((-3957 (((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 27 (|has| |#1| (-755)) ELT) (((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 14 T ELT)))
-(((-1002 |#1| |#2|) (-10 -7 (-15 -3957 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-755)) (-15 -3957 ((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1002))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-755)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-583 *6)) (-5 *1 (-1002 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3225 (((-583 (-1048)) $) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1003) (-13 (-995) (-10 -8 (-15 -3225 ((-583 (-1048)) $))))) (T -1003))
-((-3225 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-1003)))))
-((-2568 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3830 (((-1089) $) NIL T ELT)) (-3735 (((-1001 |#1|) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3226 (($ (-1089) (-1001 |#1|)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3056 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)))
-(((-1004 |#1|) (-13 (-1128) (-10 -8 (-15 -3226 ($ (-1089) (-1001 |#1|))) (-15 -3830 ((-1089) $)) (-15 -3735 ((-1001 |#1|) $)) (IF (|has| (-1001 |#1|) (-1013)) (-6 (-1013)) |%noBranch|))) (-1128)) (T -1004))
-((-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1001 *4)) (-4 *4 (-1128)) (-5 *1 (-1004 *4)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))))
-((-3957 (((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)) 19 T ELT)))
-(((-1005 |#1| |#2|) (-10 -7 (-15 -3957 ((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)))) (-1128) (-1128)) (T -1005))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6)))))
-((-3735 (($ |#1| |#1|) 8 T ELT)) (-3229 ((|#1| $) 11 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3227 (((-484) $) 9 T ELT)) (-3228 ((|#1| $) 10 T ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3971 (($ |#1|) 6 T ELT)) (-3736 (($ |#1| |#1|) 15 T ELT)) (-3232 (($ $ (-484)) 14 T ELT)))
-(((-1006 |#1|) (-113) (-1128)) (T -1006))
-((-3736 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3232 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1128)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))) (-3735 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
-(-13 (-557 |t#1|) (-10 -8 (-15 -3736 ($ |t#1| |t#1|)) (-15 -3232 ($ $ (-484))) (-15 -3231 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -3229 (|t#1| $)) (-15 -3228 (|t#1| $)) (-15 -3227 ((-484) $)) (-15 -3735 ($ |t#1| |t#1|))))
-(((-557 |#1|) . T))
-((-3735 (($ |#1| |#1|) 8 T ELT)) (-3957 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3229 ((|#1| $) 11 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3227 (((-484) $) 9 T ELT)) (-3228 ((|#1| $) 10 T ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3962 ((|#2| (-583 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3971 (($ |#1|) 6 T ELT)) (-3736 (($ |#1| |#1|) 15 T ELT)) (-3232 (($ $ (-484)) 14 T ELT)))
-(((-1007 |#1| |#2|) (-113) (-755) (-1063 |t#1|)) (T -1007))
-((-3962 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1063 *4)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1063 *3)))) (-3957 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1063 *4)))))
-(-13 (-1006 |t#1|) (-10 -8 (-15 -3962 (|t#2| (-583 $))) (-15 -3962 (|t#2| $)) (-15 -3957 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-557 |#1|) . T) ((-1006 |#1|) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3797 (((-1048) $) 14 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-583 (-1048)) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1008) (-13 (-995) (-10 -8 (-15 -3233 ((-583 (-1048)) $)) (-15 -3797 ((-1048) $))))) (T -1008))
-((-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-1008)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1008)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-1801 (($) NIL (|has| |#1| (-319)) ELT)) (-3234 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3236 (($ $ $) 81 T ELT)) (-3235 (((-85) $ $) 83 T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3239 (($ (-583 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) 75 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3994)) ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2889 (((-583 |#1|) $) 20 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) NIL T ELT)) (-2531 ((|#1| $) 56 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) 74 (|has| |#1| (-1013)) ELT)) (-2857 ((|#1| $) 54 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3238 (($ $ $) 79 T ELT)) (-1273 ((|#1| $) 26 T ELT)) (-3608 (($ |#1| $) 70 T ELT)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1274 ((|#1| $) 28 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 22 T ELT)) (-3564 (($) 12 T ELT)) (-3237 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1465 (($) NIL T ELT) (($ (-583 |#1|)) NIL T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) 17 T ELT)) (-3971 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 63 T ELT)) (-1802 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) NIL T ELT)) (-1803 (((-694) $) NIL T ELT)) (-3240 (($ (-583 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 53 T ELT)) (-3956 (((-694) $) 11 T ELT)))
-(((-1009 |#1|) (-368 |#1|) (-1013)) (T -1009))
-NIL
-((-3234 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3236 (($ $ $) 10 T ELT)) (-3237 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT)))
-(((-1010 |#1| |#2|) (-10 -7 (-15 -3234 (|#1| |#2| |#1|)) (-15 -3234 (|#1| |#1| |#2|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#1| |#1|))) (-1011 |#2|) (-1013)) (T -1010))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3234 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3236 (($ $ $) 24 T ELT)) (-3235 (((-85) $ $) 23 T ELT)) (-3239 (($) 29 T ELT) (($ (-583 |#1|)) 28 T ELT)) (-3709 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 37 T CONST)) (-1352 (($ $) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 59 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 44 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 32 T ELT)) (-2608 (((-583 |#1|) $) 45 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3238 (($ $ $) 27 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 51 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 49 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-249 |#1|))) 48 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 33 T ELT)) (-3402 (((-85) $) 36 T ELT)) (-3564 (($) 35 T ELT)) (-3237 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1945 (((-694) |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 34 T ELT)) (-3971 (((-473) $) 61 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 52 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-3240 (($) 31 T ELT) (($ (-583 |#1|)) 30 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 38 (|has| $ (-6 -3994)) ELT)))
-(((-1011 |#1|) (-113) (-1013)) (T -1011))
-((-3241 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3240 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3239 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3237 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3235 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3234 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3234 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3234 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(-13 (-1013) (-124 |t#1|) (-10 -8 (-6 -3984) (-15 -3241 ((-85) $ $)) (-15 -3240 ($)) (-15 -3240 ($ (-583 |t#1|))) (-15 -3239 ($)) (-15 -3239 ($ (-583 |t#1|))) (-15 -3238 ($ $ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ $ |t#1|)) (-15 -3236 ($ $ $)) (-15 -3235 ((-85) $ $)) (-15 -3234 ($ $ $)) (-15 -3234 ($ $ |t#1|)) (-15 -3234 ($ |t#1| $))))
-(((-34) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-3242 (((-1072) $) 10 T ELT)) (-3243 (((-1033) $) 8 T ELT)))
-(((-1012 |#1|) (-10 -7 (-15 -3242 ((-1072) |#1|)) (-15 -3243 ((-1033) |#1|))) (-1013)) (T -1012))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-1013) (-113)) (T -1013))
-((-3243 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1072)))))
-(-13 (-72) (-552 (-772)) (-10 -8 (-15 -3243 ((-1033) $)) (-15 -3242 ((-1072) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 36 T ELT)) (-3247 (($ (-583 (-830))) 70 T ELT)) (-3249 (((-3 $ #1="failed") $ (-830) (-830)) 81 T ELT)) (-2994 (($) 40 T ELT)) (-3245 (((-85) (-830) $) 42 T ELT)) (-2010 (((-830) $) 64 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 39 T ELT)) (-3250 (((-3 $ #1#) $ (-830)) 77 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3246 (((-1178 $)) 47 T ELT)) (-3248 (((-583 (-830)) $) 27 T ELT)) (-3244 (((-694) $ (-830) (-830)) 78 T ELT)) (-3945 (((-772) $) 32 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 24 T ELT)))
-(((-1014 |#1| |#2|) (-13 (-319) (-10 -8 (-15 -3250 ((-3 $ #1="failed") $ (-830))) (-15 -3249 ((-3 $ #1#) $ (-830) (-830))) (-15 -3248 ((-583 (-830)) $)) (-15 -3247 ($ (-583 (-830)))) (-15 -3246 ((-1178 $))) (-15 -3245 ((-85) (-830) $)) (-15 -3244 ((-694) $ (-830) (-830))))) (-830) (-830)) (T -1014))
-((-3250 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3249 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3247 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3246 (*1 *2) (-12 (-5 *2 (-1178 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3245 (*1 *2 *3 *1) (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3244 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-1089) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3534 (((-1072) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3254 (((-179) $) NIL T ELT)) (-3253 (((-772) $) NIL T ELT)) (-3266 (((-85) $ $) NIL T ELT)) (-3799 (($ $ (-484)) NIL T ELT) (($ $ (-583 (-484))) NIL T ELT)) (-3257 (((-583 $) $) NIL T ELT)) (-3971 (($ (-1072)) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3251 (($ $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-484) $) NIL T ELT)))
-(((-1015) (-1016 (-1072) (-1089) (-484) (-179) (-772))) (T -1015))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3260 (((-85) $) 36 T ELT)) (-3256 ((|#2| $) 31 T ELT)) (-3261 (((-85) $) 37 T ELT)) (-3534 ((|#1| $) 32 T ELT)) (-3263 (((-85) $) 39 T ELT)) (-3265 (((-85) $) 41 T ELT)) (-3262 (((-85) $) 38 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3259 (((-85) $) 35 T ELT)) (-3255 ((|#3| $) 30 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3258 (((-85) $) 34 T ELT)) (-3254 ((|#4| $) 29 T ELT)) (-3253 ((|#5| $) 28 T ELT)) (-3266 (((-85) $ $) 42 T ELT)) (-3799 (($ $ (-484)) 44 T ELT) (($ $ (-583 (-484))) 43 T ELT)) (-3257 (((-583 $) $) 33 T ELT)) (-3971 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-583 $)) 45 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-3251 (($ $) 26 T ELT)) (-3252 (($ $) 27 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3264 (((-85) $) 40 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-484) $) 25 T ELT)))
-(((-1016 |#1| |#2| |#3| |#4| |#5|) (-113) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1016))
-((-3266 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3257 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3251 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484)))))
-(-13 (-1013) (-557 |t#1|) (-557 |t#2|) (-557 |t#3|) (-557 |t#4|) (-557 |t#4|) (-557 |t#5|) (-557 (-583 $)) (-241 (-484) $) (-241 (-583 (-484)) $) (-10 -8 (-15 -3266 ((-85) $ $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -3257 ((-583 $) $)) (-15 -3534 (|t#1| $)) (-15 -3256 (|t#2| $)) (-15 -3255 (|t#3| $)) (-15 -3254 (|t#4| $)) (-15 -3253 (|t#5| $)) (-15 -3252 ($ $)) (-15 -3251 ($ $)) (-15 -3956 ((-484) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-557 (-583 $)) . T) ((-557 |#1|) . T) ((-557 |#2|) . T) ((-557 |#3|) . T) ((-557 |#4|) . T) ((-557 |#5|) . T) ((-241 (-484) $) . T) ((-241 (-583 (-484)) $) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3260 (((-85) $) 45 T ELT)) (-3256 ((|#2| $) 48 T ELT)) (-3261 (((-85) $) 20 T ELT)) (-3534 ((|#1| $) 21 T ELT)) (-3263 (((-85) $) 42 T ELT)) (-3265 (((-85) $) 14 T ELT)) (-3262 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3259 (((-85) $) 46 T ELT)) (-3255 ((|#3| $) 50 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3258 (((-85) $) 47 T ELT)) (-3254 ((|#4| $) 49 T ELT)) (-3253 ((|#5| $) 51 T ELT)) (-3266 (((-85) $ $) 41 T ELT)) (-3799 (($ $ (-484)) 62 T ELT) (($ $ (-583 (-484))) 64 T ELT)) (-3257 (((-583 $) $) 27 T ELT)) (-3971 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-583 $)) 52 T ELT)) (-3945 (((-772) $) 28 T ELT)) (-3251 (($ $) 26 T ELT)) (-3252 (($ $) 58 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3264 (((-85) $) 23 T ELT)) (-3056 (((-85) $ $) 40 T ELT)) (-3956 (((-484) $) 60 T ELT)))
-(((-1017 |#1| |#2| |#3| |#4| |#5|) (-1016 |#1| |#2| |#3| |#4| |#5|) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1017))
-NIL
-((-3269 (((-85) |#5| |#5|) 44 T ELT)) (-3272 (((-85) |#5| |#5|) 59 T ELT)) (-3277 (((-85) |#5| (-583 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3273 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3279 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) 70 T ELT)) (-3268 (((-1184)) 32 T ELT)) (-3267 (((-1184) (-1072) (-1072) (-1072)) 28 T ELT)) (-3278 (((-583 |#5|) (-583 |#5|)) 101 T ELT)) (-3280 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) 93 T ELT)) (-3281 (((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 123 T ELT)) (-3271 (((-85) |#5| |#5|) 53 T ELT)) (-3276 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3274 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3275 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3698 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3282 (((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3270 (((-583 |#5|) (-583 |#5|)) 49 T ELT)))
-(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3267 ((-1184) (-1072) (-1072) (-1072))) (-15 -3268 ((-1184))) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-583 |#5|) (-583 |#5|))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3274 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3275 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3698 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3276 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3277 ((-85) |#5| |#5|)) (-15 -3277 ((-85) |#5| (-583 |#5|))) (-15 -3278 ((-583 |#5|) (-583 |#5|))) (-15 -3279 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) (-15 -3280 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-15 -3281 ((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3282 ((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1018))
-((-3282 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3281 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1599 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3267 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
-((-3297 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|) 106 T ELT)) (-3287 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3290 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3292 (((-583 |#5|) |#4| |#5|) 122 T ELT)) (-3294 (((-583 |#5|) |#4| |#5|) 129 T ELT)) (-3296 (((-583 |#5|) |#4| |#5|) 130 T ELT)) (-3291 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 107 T ELT)) (-3293 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 128 T ELT)) (-3295 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3288 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#3| (-85)) 91 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3289 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3286 (((-1184)) 36 T ELT)) (-3284 (((-1184)) 25 T ELT)) (-3285 (((-1184) (-1072) (-1072) (-1072)) 32 T ELT)) (-3283 (((-1184) (-1072) (-1072) (-1072)) 21 T ELT)))
-(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3283 ((-1184) (-1072) (-1072) (-1072))) (-15 -3284 ((-1184))) (-15 -3285 ((-1184) (-1072) (-1072) (-1072))) (-15 -3286 ((-1184))) (-15 -3287 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3288 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3288 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#3| (-85))) (-15 -3289 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3290 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3295 ((-85) |#4| |#5|)) (-15 -3291 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -3292 ((-583 |#5|) |#4| |#5|)) (-15 -3293 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -3294 ((-583 |#5|) |#4| |#5|)) (-15 -3295 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -3296 ((-583 |#5|) |#4| |#5|)) (-15 -3297 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1019))
-((-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3288 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1599 *9)))) (-5 *1 (-1019 *6 *7 *4 *8 *9)))) (-3288 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3287 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3286 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3284 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3283 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3687 ((|#4| |#4| $) 98 T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 134 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3723 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3798 (((-3 $ #1#) $) 88 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-1352 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3682 ((|#4| |#4| $) 93 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 111 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT)) (-3195 (((-85) |#4| $) 141 T ELT)) (-3198 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 135 T ELT)) (-3797 (((-3 |#4| #1#) $) 89 T ELT)) (-3192 (((-583 $) |#4| $) 137 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3238 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3439 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3696 (((-583 |#4|) $) 113 T ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3698 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| #1#) $) 90 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3768 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 50 T ELT)) (-3402 (((-85) $) 53 T ELT)) (-3564 (($) 52 T ELT)) (-3947 (((-694) $) 112 T ELT)) (-1945 (((-694) |#4| $) 48 (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3399 (($ $) 51 T ELT)) (-3971 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3683 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3677 (((-694) $) 82 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3189 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3679 (((-583 |#3|) $) 87 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3932 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 43 T ELT)))
-(((-1020 |#1| |#2| |#3| |#4|) (-113) (-391) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1020))
-NIL
-(-13 (-983 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-317 |#4|) . T) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
-((-3308 (((-583 (-484)) (-484) (-484) (-484)) 40 T ELT)) (-3307 (((-583 (-484)) (-484) (-484) (-484)) 30 T ELT)) (-3306 (((-583 (-484)) (-484) (-484) (-484)) 35 T ELT)) (-3305 (((-484) (-484) (-484)) 22 T ELT)) (-3304 (((-1178 (-484)) (-583 (-484)) (-1178 (-484)) (-484)) 78 T ELT) (((-1178 (-484)) (-1178 (-484)) (-1178 (-484)) (-484)) 73 T ELT)) (-3303 (((-583 (-484)) (-583 (-830)) (-583 (-484)) (-85)) 56 T ELT)) (-3302 (((-630 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484))) 77 T ELT)) (-3301 (((-630 (-484)) (-583 (-830)) (-583 (-484))) 61 T ELT)) (-3300 (((-583 (-630 (-484))) (-583 (-830))) 66 T ELT)) (-3299 (((-583 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484))) 81 T ELT)) (-3298 (((-630 (-484)) (-583 (-484)) (-583 (-484)) (-583 (-484))) 91 T ELT)))
-(((-1021) (-10 -7 (-15 -3298 ((-630 (-484)) (-583 (-484)) (-583 (-484)) (-583 (-484)))) (-15 -3299 ((-583 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484)))) (-15 -3300 ((-583 (-630 (-484))) (-583 (-830)))) (-15 -3301 ((-630 (-484)) (-583 (-830)) (-583 (-484)))) (-15 -3302 ((-630 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484)))) (-15 -3303 ((-583 (-484)) (-583 (-830)) (-583 (-484)) (-85))) (-15 -3304 ((-1178 (-484)) (-1178 (-484)) (-1178 (-484)) (-484))) (-15 -3304 ((-1178 (-484)) (-583 (-484)) (-1178 (-484)) (-484))) (-15 -3305 ((-484) (-484) (-484))) (-15 -3306 ((-583 (-484)) (-484) (-484) (-484))) (-15 -3307 ((-583 (-484)) (-484) (-484) (-484))) (-15 -3308 ((-583 (-484)) (-484) (-484) (-484))))) (T -1021))
-((-3308 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3307 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3306 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3305 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021)))) (-3304 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-583 (-484))) (-5 *4 (-484)) (-5 *1 (-1021)))) (-3304 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-484)) (-5 *1 (-1021)))) (-3303 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-583 (-484))) (-5 *3 (-583 (-830))) (-5 *4 (-85)) (-5 *1 (-1021)))) (-3302 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-630 (-484))) (-5 *3 (-583 (-484))) (-5 *1 (-1021)))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-1021)))) (-3299 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *3 (-630 (-484))) (-5 *1 (-1021)))) (-3298 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3309 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1022 |#1|) (-13 (-1023 |#1|) (-1013) (-10 -8 (-15 -3309 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1022))
-((-3309 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3)))))
-((-3799 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-1023 |#1|) (-113) (-72)) (T -1023))
-NIL
-(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))))))
-(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T))
-((** (($ $ (-830)) 10 T ELT)))
-(((-1024 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830)))) (-1025)) (T -1024))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-1025) (-113)) (T -1025))
-((* (*1 *1 *1 *1) (-4 *1 (-1025))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-830)))))
-(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-830)))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3706 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#3| (-319)) ELT)) (-3787 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT) ((|#3| $) NIL (|has| |#3| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 $) (-1178 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2994 (($) NIL (|has| |#3| (-319)) ELT)) (-1575 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#3| $ (-484)) 12 T ELT)) (-3186 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2889 (((-583 |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2608 (((-583 |#3|) $) NIL T ELT)) (-3245 (((-85) |#3| $) NIL (|has| |#3| (-1013)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-1948 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#3| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-1178 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1178 $)) NIL (|has| |#3| (-961)) ELT)) (-3242 (((-1072) $) NIL (|has| |#3| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#3| (-319)) ELT)) (-3243 (((-1033) $) NIL (|has| |#3| (-1013)) ELT)) (-3800 ((|#3| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT)) (-2205 (((-583 |#3|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) NIL T ELT)) (-3835 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1467 (($ (-1178 |#3|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3757 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-1945 (((-694) |#3| $) NIL (|has| |#3| (-1013)) ELT) (((-694) (-1 (-85) |#3|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#3|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-772) $) NIL (|has| |#3| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#3| (-961)) ELT)) (-2660 (($) NIL (|has| |#3| (-23)) CONST)) (-2666 (($) NIL (|has| |#3| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2685 (((-85) $ $) 24 (|has| |#3| (-756)) ELT)) (-3948 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3836 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ $ $) NIL (|has| |#3| (-961)) ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ (-484) $) NIL (|has| |#3| (-21)) ELT) (($ (-694) $) NIL (|has| |#3| (-23)) ELT) (($ (-830) $) NIL (|has| |#3| (-25)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-1026 |#1| |#2| |#3|) (-196 |#1| |#3|) (-694) (-694) (-717)) (T -1026))
-NIL
-((-3310 (((-583 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 50 T ELT)) (-3316 (((-484) (-1147 |#2| |#1|)) 95 (|has| |#1| (-391)) ELT)) (-3314 (((-484) (-1147 |#2| |#1|)) 79 T ELT)) (-3311 (((-583 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 58 T ELT)) (-3315 (((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 81 (|has| |#1| (-391)) ELT)) (-3312 (((-583 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 61 T ELT)) (-3313 (((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 78 T ELT)))
-(((-1027 |#1| |#2|) (-10 -7 (-15 -3310 ((-583 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3311 ((-583 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3312 ((-583 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3313 ((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3314 ((-484) (-1147 |#2| |#1|))) (IF (|has| |#1| (-391)) (PROGN (-15 -3315 ((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3316 ((-484) (-1147 |#2| |#1|)))) |%noBranch|)) (-740) (-1089)) (T -1027))
-((-3316 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-391)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-391)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3312 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 *4)) (-5 *1 (-1027 *4 *5)))) (-3311 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 (-1147 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))) (-3310 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 (-1147 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1094) $) 12 T ELT)) (-3317 (((-583 (-1094)) $) 14 T ELT)) (-3319 (($ (-583 (-1094)) (-1094)) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 29 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT)))
-(((-1028) (-13 (-1013) (-10 -8 (-15 -3319 ($ (-583 (-1094)) (-1094))) (-15 -3318 ((-1094) $)) (-15 -3317 ((-583 (-1094)) $))))) (T -1028))
-((-3319 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1094))) (-5 *3 (-1094)) (-5 *1 (-1028)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1028)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1028)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3320 (($ (-446) (-1028)) 14 T ELT)) (-3319 (((-1028) $) 20 T ELT)) (-3541 (((-446) $) 17 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1029) (-13 (-995) (-10 -8 (-15 -3320 ($ (-446) (-1028))) (-15 -3541 ((-446) $)) (-15 -3319 ((-1028) $))))) (T -1029))
-((-3320 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-1029)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1029)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029)))))
-((-3622 (((-3 (-484) #1="failed") |#2| (-1089) |#2| (-1072)) 19 T ELT) (((-3 (-484) #1#) |#2| (-1089) (-750 |#2|)) 17 T ELT) (((-3 (-484) #1#) |#2|) 60 T ELT)))
-(((-1030 |#1| |#2|) (-10 -7 (-15 -3622 ((-3 (-484) #1="failed") |#2|)) (-15 -3622 ((-3 (-484) #1#) |#2| (-1089) (-750 |#2|))) (-15 -3622 ((-3 (-484) #1#) |#2| (-1089) |#2| (-1072)))) (-13 (-495) (-950 (-484)) (-580 (-484)) (-391)) (-13 (-27) (-1114) (-363 |#1|))) (T -1030))
-((-3622 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))))) (-3622 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-750 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)))) (-3622 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484)) (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))))
-((-3622 (((-3 (-484) #1="failed") (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|)) (-1072)) 38 T ELT) (((-3 (-484) #1#) (-349 (-857 |#1|)) (-1089) (-750 (-349 (-857 |#1|)))) 33 T ELT) (((-3 (-484) #1#) (-349 (-857 |#1|))) 14 T ELT)))
-(((-1031 |#1|) (-10 -7 (-15 -3622 ((-3 (-484) #1="failed") (-349 (-857 |#1|)))) (-15 -3622 ((-3 (-484) #1#) (-349 (-857 |#1|)) (-1089) (-750 (-349 (-857 |#1|))))) (-15 -3622 ((-3 (-484) #1#) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|)) (-1072)))) (-391)) (T -1031))
-((-3622 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-349 (-857 *6))) (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3622 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-750 (-349 (-857 *6)))) (-5 *3 (-349 (-857 *6))) (-4 *6 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3622 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *4)))))
-((-3648 (((-265 (-484)) (-48)) 12 T ELT)))
-(((-1032) (-10 -7 (-15 -3648 ((-265 (-484)) (-48))))) (T -1032))
-((-3648 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-484))) (-5 *1 (-1032)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 22 T ELT)) (-3188 (((-85) $) 49 T ELT)) (-3321 (($ $ $) 28 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 75 T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) 59 T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 61 T ELT)) (-3622 (((-484) $) NIL T ELT)) (-2441 (($ $ $) 56 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT)) (-2564 (($ $ $) 42 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 70 T ELT) (((-630 (-484)) (-630 $)) 8 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3023 (((-85) $) NIL T ELT)) (-3022 (((-349 (-484)) $) NIL T ELT)) (-2994 (($) 73 T ELT) (($ $) 72 T ELT)) (-2563 (($ $ $) 41 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) 71 T ELT)) (-3186 (((-85) $) 76 T ELT)) (-1368 (($ $ $) NIL T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-2561 (($ $ $) 27 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 50 T ELT)) (-2673 (((-85) $) 47 T ELT)) (-2560 (($ $) 23 T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-3187 (((-85) $) 60 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) 57 T ELT)) (-2531 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2857 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2044 (($ $) NIL T ELT)) (-2010 (((-830) $) 66 T ELT)) (-3832 (($ $) 55 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2400 (($ (-830)) 65 T ELT)) (-2046 (($ $) 33 T ELT)) (-3243 (((-1033) $) 54 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-1366 (($ $) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) 48 T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 44 T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) 34 T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-484) $) 12 T ELT) (((-473) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-329) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT) (($ (-484)) 13 T ELT) (($ $) NIL T ELT) (($ (-484)) 13 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3101 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (($) 17 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) 26 T ELT)) (-2043 (($ $ $ $) 58 T ELT)) (-3382 (($ $) 46 T ELT)) (-2311 (($ $ $) 25 T ELT)) (-2660 (($) 15 T CONST)) (-2666 (($) 16 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) 32 T ELT)) (-2567 (((-85) $ $) 30 T ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-2684 (((-85) $ $) 31 T ELT)) (-2685 (((-85) $ $) 29 T ELT)) (-2312 (($ $ $) 24 T ELT)) (-3836 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3838 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 40 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-484) $) 14 T ELT)))
-(((-1033) (-13 (-483) (-752) (-84) (-10 -8 (-6 -3981) (-6 -3986) (-6 -3982) (-15 -3321 ($ $ $))))) (T -1033))
-((-3321 (*1 *1 *1 *1) (-5 *1 (-1033))))
-((-484) (|%ismall?| |#1|))
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3323 ((|#1| $) 49 T ELT)) (-3723 (($) 7 T CONST)) (-3325 ((|#1| |#1| $) 51 T ELT)) (-3324 ((|#1| $) 50 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3322 (((-694) $) 48 T ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-1034 |#1|) (-113) (-1128)) (T -1034))
-((-3325 (*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))))
-(-13 (-76 |t#1|) (-317 |t#1|) (-10 -8 (-15 -3325 (|t#1| |t#1| $)) (-15 -3324 (|t#1| $)) (-15 -3323 (|t#1| $)) (-15 -3322 ((-694) $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-3329 ((|#3| $) 87 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 $) (-1178 $)) 84 T ELT) (((-630 |#3|) (-630 $)) 76 T ELT)) (-3757 (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-3328 ((|#3| $) 89 T ELT)) (-3330 ((|#4| $) 43 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 24 T ELT) (($ $ (-484)) 95 T ELT)))
-(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3328 (|#3| |#1|)) (-15 -3329 (|#3| |#1|)) (-15 -3330 (|#4| |#1|)) (-15 -2279 ((-630 |#3|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3945 (|#1| |#3|)) (-15 -3157 ((-3 |#3| #1="failed") |#1|)) (-15 -3156 (|#3| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3945 (|#1| (-484))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3945 ((-772) |#1|))) (-1036 |#2| |#3| |#4| |#5|) (-694) (-961) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1035))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3329 ((|#2| $) 90 T ELT)) (-3120 (((-85) $) 131 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3122 (((-85) $) 129 T ELT)) (-3332 (($ |#2|) 93 T ELT)) (-3723 (($) 23 T CONST)) (-3109 (($ $) 148 (|has| |#2| (-258)) ELT)) (-3111 ((|#3| $ (-484)) 143 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 109 (|has| |#2| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 106 (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3156 (((-484) $) 108 (|has| |#2| (-950 (-484))) ELT) (((-349 (-484)) $) 105 (|has| |#2| (-950 (-349 (-484)))) ELT) ((|#2| $) 104 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 99 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 98 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 97 T ELT) (((-630 |#2|) (-630 $)) 96 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-694) $) 149 (|has| |#2| (-495)) ELT)) (-3112 ((|#2| $ (-484) (-484)) 141 T ELT)) (-2889 (((-583 |#2|) $) 121 (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3107 (((-694) $) 150 (|has| |#2| (-495)) ELT)) (-3106 (((-583 |#4|) $) 151 (|has| |#2| (-495)) ELT)) (-3114 (((-694) $) 137 T ELT)) (-3113 (((-694) $) 138 T ELT)) (-3326 ((|#2| $) 85 (|has| |#2| (-6 (-3996 #2="*"))) ELT)) (-3118 (((-484) $) 133 T ELT)) (-3116 (((-484) $) 135 T ELT)) (-2608 (((-583 |#2|) $) 112 T ELT)) (-3245 (((-85) |#2| $) 110 (|has| |#2| (-1013)) ELT)) (-3117 (((-484) $) 134 T ELT)) (-3115 (((-484) $) 136 T ELT)) (-3123 (($ (-583 (-583 |#2|))) 128 T ELT)) (-1948 (($ (-1 |#2| |#2|) $) 122 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2| |#2|) $ $) 145 T ELT) (($ (-1 |#2| |#2|) $) 123 T ELT)) (-3593 (((-583 (-583 |#2|)) $) 139 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 101 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 100 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 95 T ELT) (((-630 |#2|) (-1178 $)) 94 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3589 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ |#2|) 146 (|has| |#2| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 114 T ELT)) (-3767 (($ $ (-583 (-249 |#2|))) 120 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 119 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 118 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 117 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) 127 T ELT)) (-3402 (((-85) $) 124 T ELT)) (-3564 (($) 125 T ELT)) (-3799 ((|#2| $ (-484) (-484) |#2|) 142 T ELT) ((|#2| $ (-484) (-484)) 140 T ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-694)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1089)) 63 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 61 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 60 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 59 (|has| |#2| (-811 (-1089))) ELT)) (-3328 ((|#2| $) 89 T ELT)) (-3331 (($ (-583 |#2|)) 92 T ELT)) (-3121 (((-85) $) 130 T ELT)) (-3330 ((|#3| $) 91 T ELT)) (-3327 ((|#2| $) 86 (|has| |#2| (-6 (-3996 #2#))) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 113 T ELT) (((-694) |#2| $) 111 (|has| |#2| (-1013)) ELT)) (-3399 (($ $) 126 T ELT)) (-3110 ((|#4| $ (-484)) 144 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 107 (|has| |#2| (-950 (-349 (-484)))) ELT) (($ |#2|) 102 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 115 T ELT)) (-3119 (((-85) $) 132 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-694)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1089)) 62 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 58 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 57 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 56 (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#2|) 147 (|has| |#2| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 153 T ELT) (($ |#2| $) 152 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3956 (((-694) $) 116 T ELT)))
-(((-1036 |#1| |#2| |#3| |#4|) (-113) (-694) (-961) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1036))
-((-3332 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3996 #1="*"))) (-4 *2 (-961)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3996 #1#))) (-4 *2 (-961)))) (-3589 (*1 *1 *1) (|partial| -12 (-4 *1 (-1036 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312)))))
-(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-965 |t#1| |t#1| |t#2| |t#3| |t#4|) (-354 |t#2|) (-328 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (-15 -3332 ($ |t#2|)) (-15 -3331 ($ (-583 |t#2|))) (-15 -3330 (|t#3| $)) (-15 -3329 (|t#2| $)) (-15 -3328 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3996 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3327 (|t#2| $)) (-15 -3326 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3589 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3996 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-349 (-484))) |has| |#2| (-950 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-317 |#2|) . T) ((-328 |#2|) . T) ((-354 |#2|) . T) ((-428 |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 (-484)) |has| |#2| (-580 (-484))) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3996 #1#)))) ((-580 (-484)) |has| |#2| (-580 (-484))) ((-580 |#2|) . T) ((-654 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3996 #1#)))) ((-663) . T) ((-806 $ (-1089)) OR (|has| |#2| (-811 (-1089))) (|has| |#2| (-809 (-1089)))) ((-809 (-1089)) |has| |#2| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#2| (-811 (-1089))) (|has| |#2| (-809 (-1089)))) ((-965 |#1| |#1| |#2| |#3| |#4|) . T) ((-950 (-349 (-484))) |has| |#2| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#2| (-950 (-484))) ((-950 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3335 ((|#4| |#4|) 81 T ELT)) (-3333 ((|#4| |#4|) 76 T ELT)) (-3337 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|) 91 T ELT)) (-3336 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3334 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
-(((-1037 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3333 (|#4| |#4|)) (-15 -3334 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3335 (|#4| |#4|)) (-15 -3336 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3337 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|))) (-258) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|)) (T -1037))
-((-3337 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-323 *5)) (-4 *4 (-323 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-1037 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3335 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3333 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 18 T ELT)) (-3081 (((-583 |#2|) $) 174 T ELT)) (-3083 (((-1084 $) $ |#2|) 60 T ELT) (((-1084 |#1|) $) 49 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 116 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 118 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 120 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) 214 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 ((|#1| $) 165 T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#2| $) NIL T ELT)) (-3755 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) 218 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 90 T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ |#2|) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| |#1| (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 20 T ELT)) (-2420 (((-694) $) 30 T ELT)) (-3084 (($ (-1084 |#1|) |#2|) 54 T ELT) (($ (-1084 $) |#2|) 71 T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) 38 T ELT)) (-2893 (($ |#1| (-469 |#2|)) 78 T ELT) (($ $ |#2| (-694)) 58 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-2820 (((-469 |#2|) $) 205 T ELT) (((-694) $ |#2|) 206 T ELT) (((-583 (-694)) $ (-583 |#2|)) 207 T ELT)) (-1624 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3082 (((-3 |#2| #1#) $) 177 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) 217 T ELT)) (-3174 ((|#1| $) 43 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 39 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 148 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) 153 (|has| |#1| (-391)) ELT) (($ $ $) 138 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-583 |#2|) (-583 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-583 |#2|) (-583 $)) 194 T ELT)) (-3756 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3947 (((-469 |#2|) $) 201 T ELT) (((-694) $ |#2|) 196 T ELT) (((-583 (-694)) $ (-583 |#2|)) 199 T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 134 (|has| |#1| (-391)) ELT) (($ $ |#2|) 137 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 159 T ELT) (($ (-484)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) 162 T ELT)) (-3676 ((|#1| $ (-469 |#2|)) 80 T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 87 T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) 123 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-2666 (($) 14 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3056 (((-85) $ $) 106 T ELT)) (-3948 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3838 (($ $ $) 55 T ELT)) (** (($ $ (-830)) 110 T ELT) (($ $ (-694)) 109 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1038 |#1| |#2|) (-861 |#1| (-469 |#2|) |#2|) (-961) (-756)) (T -1038))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3491 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 125 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 121 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3493 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 129 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3813 (((-857 |#1|) $ (-694)) NIL T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $ |#2|) NIL T ELT) (((-694) $ |#2| (-694)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ $ (-583 |#2|) (-583 (-469 |#2|))) NIL T ELT) (($ $ |#2| (-469 |#2|)) NIL T ELT) (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 63 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) 119 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3811 (($ $ |#2|) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3675 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3768 (($ $ (-694)) 17 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3942 (($ $) 117 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (($ $ |#2| $) 104 T ELT) (($ $ (-583 |#2|) (-583 $)) 99 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3947 (((-469 |#2|) $) NIL T ELT)) (-3338 (((-1 (-1068 |#3|) |#3|) (-583 |#2|) (-583 (-1068 |#3|))) 87 T ELT)) (-3494 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 131 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 127 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 123 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 19 T ELT)) (-3945 (((-772) $) 194 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3676 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) ((|#3| $ (-694)) 43 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 137 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 133 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 141 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 139 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 135 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 52 T CONST)) (-2666 (($) 62 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 109 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-349 (-484))) 114 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 112 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT)))
-(((-1039 |#1| |#2| |#3|) (-13 (-679 |#1| |#2|) (-10 -8 (-15 -3676 (|#3| $ (-694))) (-15 -3945 ($ |#2|)) (-15 -3945 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3338 ((-1 (-1068 |#3|) |#3|) (-583 |#2|) (-583 (-1068 |#3|)))) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $ |#2| |#1|)) (-15 -3675 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-961) (-756) (-861 |#1| (-469 |#2|) |#2|)) (T -1039))
-((-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-469 *5) *5)) (-5 *1 (-1039 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3945 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) (-3945 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-861 *3 (-469 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-861 *3 (-469 *4) *4)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1068 *7))) (-4 *6 (-756)) (-4 *7 (-861 *5 (-469 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1039 *5 *6 *7)))) (-3811 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) (-3675 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1039 *4 *3 *5))) (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *1 (-1039 *4 *3 *5)) (-4 *5 (-861 *4 (-469 *3) *3)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3687 ((|#4| |#4| $) 98 T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 134 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3723 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3798 (((-3 $ #1#) $) 88 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-1352 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3682 ((|#4| |#4| $) 93 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 111 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT)) (-3195 (((-85) |#4| $) 141 T ELT)) (-3198 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 135 T ELT)) (-3797 (((-3 |#4| #1#) $) 89 T ELT)) (-3192 (((-583 $) |#4| $) 137 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3238 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3439 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3696 (((-583 |#4|) $) 113 T ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3698 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| #1#) $) 90 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3768 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 50 T ELT)) (-3402 (((-85) $) 53 T ELT)) (-3564 (($) 52 T ELT)) (-3947 (((-694) $) 112 T ELT)) (-1945 (((-694) |#4| $) 48 (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3399 (($ $) 51 T ELT)) (-3971 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3683 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3677 (((-694) $) 82 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3189 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3679 (((-583 |#3|) $) 87 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3932 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 43 T ELT)))
-(((-1040 |#1| |#2| |#3| |#4|) (-113) (-391) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1040))
-NIL
-(-13 (-1020 |t#1| |t#2| |t#3| |t#4|) (-707 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-317 |#4|) . T) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-707 |#1| |#2| |#3| |#4|) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1020 |#1| |#2| |#3| |#4|) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
-((-3572 (((-583 |#2|) |#1|) 15 T ELT)) (-3344 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-583 |#2|) |#1|) 61 T ELT)) (-3342 (((-583 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-583 |#2|) |#1|) 59 T ELT)) (-3339 ((|#2| |#1|) 54 T ELT)) (-3340 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3341 (((-583 |#2|) |#2| |#2|) 42 T ELT) (((-583 |#2|) |#1|) 58 T ELT)) (-3343 (((-583 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-583 |#2|) |#1|) 60 T ELT)) (-3348 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3346 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3345 ((|#2| |#2| |#2|) 50 T ELT)) (-3347 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
-(((-1041 |#1| |#2|) (-10 -7 (-15 -3572 ((-583 |#2|) |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -3340 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3341 ((-583 |#2|) |#1|)) (-15 -3342 ((-583 |#2|) |#1|)) (-15 -3343 ((-583 |#2|) |#1|)) (-15 -3344 ((-583 |#2|) |#1|)) (-15 -3341 ((-583 |#2|) |#2| |#2|)) (-15 -3342 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3343 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3344 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3345 (|#2| |#2| |#2|)) (-15 -3346 (|#2| |#2| |#2| |#2|)) (-15 -3347 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1154 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (T -1041))
-((-3348 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3347 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3346 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3345 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3344 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3343 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3342 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3341 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1041 *3 *5)) (-4 *3 (-1154 *5)))) (-3339 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))))
-((-3349 (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-349 (-857 |#1|))))) 119 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-349 (-857 |#1|)))) (-583 (-1089))) 118 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-349 (-857 |#1|)))) 116 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-349 (-857 |#1|))) (-583 (-1089))) 113 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-349 (-857 |#1|)))) 97 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-349 (-857 |#1|))) (-1089)) 98 T ELT) (((-583 (-249 (-265 |#1|))) (-349 (-857 |#1|))) 92 T ELT) (((-583 (-249 (-265 |#1|))) (-349 (-857 |#1|)) (-1089)) 82 T ELT)) (-3350 (((-583 (-583 (-265 |#1|))) (-583 (-349 (-857 |#1|))) (-583 (-1089))) 111 T ELT) (((-583 (-265 |#1|)) (-349 (-857 |#1|)) (-1089)) 54 T ELT)) (-3351 (((-1079 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-349 (-857 |#1|)) (-1089)) 123 T ELT) (((-1079 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-249 (-349 (-857 |#1|))) (-1089)) 122 T ELT)))
-(((-1042 |#1|) (-10 -7 (-15 -3349 ((-583 (-249 (-265 |#1|))) (-349 (-857 |#1|)) (-1089))) (-15 -3349 ((-583 (-249 (-265 |#1|))) (-349 (-857 |#1|)))) (-15 -3349 ((-583 (-249 (-265 |#1|))) (-249 (-349 (-857 |#1|))) (-1089))) (-15 -3349 ((-583 (-249 (-265 |#1|))) (-249 (-349 (-857 |#1|))))) (-15 -3349 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-349 (-857 |#1|))) (-583 (-1089)))) (-15 -3349 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-349 (-857 |#1|))))) (-15 -3349 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-349 (-857 |#1|)))) (-583 (-1089)))) (-15 -3349 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-349 (-857 |#1|)))))) (-15 -3350 ((-583 (-265 |#1|)) (-349 (-857 |#1|)) (-1089))) (-15 -3350 ((-583 (-583 (-265 |#1|))) (-583 (-349 (-857 |#1|))) (-583 (-1089)))) (-15 -3351 ((-1079 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-249 (-349 (-857 |#1|))) (-1089))) (-15 -3351 ((-1079 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-349 (-857 |#1|)) (-1089)))) (-13 (-258) (-120))) (T -1042))
-((-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1079 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) (-5 *1 (-1042 *5)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-349 (-857 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1079 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) (-5 *1 (-1042 *5)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-265 *5)))) (-5 *1 (-1042 *5)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-265 *5))) (-5 *1 (-1042 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-583 (-249 (-349 (-857 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1042 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-349 (-857 *5))))) (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1042 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-583 (-349 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1042 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1042 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-249 (-349 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1042 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-349 (-857 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1042 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1042 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1042 *5)))))
-((-3353 (((-349 (-1084 (-265 |#1|))) (-1178 (-265 |#1|)) (-349 (-1084 (-265 |#1|))) (-484)) 36 T ELT)) (-3352 (((-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|)))) 48 T ELT)))
-(((-1043 |#1|) (-10 -7 (-15 -3352 ((-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))))) (-15 -3353 ((-349 (-1084 (-265 |#1|))) (-1178 (-265 |#1|)) (-349 (-1084 (-265 |#1|))) (-484)))) (-495)) (T -1043))
-((-3353 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-349 (-1084 (-265 *5)))) (-5 *3 (-1178 (-265 *5))) (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1043 *5)))) (-3352 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-349 (-1084 (-265 *3)))) (-4 *3 (-495)) (-5 *1 (-1043 *3)))))
-((-3572 (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-265 |#1|))) (-583 (-1089))) 244 T ELT) (((-583 (-249 (-265 |#1|))) (-265 |#1|) (-1089)) 23 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1089)) 29 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-583 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT)))
-(((-1044 |#1|) (-10 -7 (-15 -3572 ((-583 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3572 ((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3572 ((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1089))) (-15 -3572 ((-583 (-249 (-265 |#1|))) (-265 |#1|) (-1089))) (-15 -3572 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-265 |#1|))) (-583 (-1089))))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (T -1044))
-((-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1044 *5)) (-5 *3 (-583 (-249 (-265 *5)))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-265 *5)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-249 (-265 *5))))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-249 (-265 *4))))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-265 *4)))))
-((-3355 ((|#2| |#2|) 28 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3354 ((|#2| |#2|) 27 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT)))
-(((-1045 |#1| |#2|) (-10 -7 (-15 -3354 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3355 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-756)) (PROGN (-15 -3354 (|#2| |#2|)) (-15 -3355 (|#2| |#2|))) |%noBranch|)) (-1128) (-13 (-538 (-484) |#1|) (-317 |#1|) (-10 -7 (-6 -3995)))) (T -1045))
-((-3355 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-13 (-538 (-484) *3) (-317 *3) (-10 -7 (-6 -3995)))))) (-3354 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-13 (-538 (-484) *3) (-317 *3) (-10 -7 (-6 -3995)))))) (-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) (-4 *2 (-13 (-538 (-484) *4) (-317 *4) (-10 -7 (-6 -3995)))))) (-3354 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) (-4 *2 (-13 (-538 (-484) *4) (-317 *4) (-10 -7 (-6 -3995)))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3887 (((-1078 3 |#1|) $) 141 T ELT)) (-3365 (((-85) $) 101 T ELT)) (-3366 (($ $ (-583 (-854 |#1|))) 44 T ELT) (($ $ (-583 (-583 |#1|))) 104 T ELT) (($ (-583 (-854 |#1|))) 103 T ELT) (((-583 (-854 |#1|)) $) 102 T ELT)) (-3371 (((-85) $) 72 T ELT)) (-3705 (($ $ (-854 |#1|)) 76 T ELT) (($ $ (-583 |#1|)) 81 T ELT) (($ $ (-694)) 83 T ELT) (($ (-854 |#1|)) 77 T ELT) (((-854 |#1|) $) 75 T ELT)) (-3357 (((-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 139 T ELT)) (-3375 (((-694) $) 53 T ELT)) (-3376 (((-694) $) 52 T ELT)) (-3886 (($ $ (-694) (-854 |#1|)) 67 T ELT)) (-3363 (((-85) $) 111 T ELT)) (-3364 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 118 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 120 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 127 T ELT) (($ (-583 (-583 (-854 |#1|)))) 116 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 117 T ELT) (((-583 (-583 (-854 |#1|))) $) 114 T ELT)) (-3517 (($ (-583 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3358 (((-583 (-145)) $) 133 T ELT)) (-3362 (((-583 (-854 |#1|)) $) 130 T ELT)) (-3359 (((-583 (-583 (-145))) $) 132 T ELT)) (-3360 (((-583 (-583 (-583 (-854 |#1|)))) $) NIL T ELT)) (-3361 (((-583 (-583 (-583 (-694)))) $) 131 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3372 (((-694) $ (-583 (-854 |#1|))) 65 T ELT)) (-3369 (((-85) $) 84 T ELT)) (-3370 (($ $ (-583 (-854 |#1|))) 86 T ELT) (($ $ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 (-854 |#1|))) 87 T ELT) (((-583 (-854 |#1|)) $) 85 T ELT)) (-3377 (($) 48 T ELT) (($ (-1078 3 |#1|)) 49 T ELT)) (-3399 (($ $) 63 T ELT)) (-3373 (((-583 $) $) 62 T ELT)) (-3753 (($ (-583 $)) 59 T ELT)) (-3374 (((-583 $) $) 61 T ELT)) (-3945 (((-772) $) 146 T ELT)) (-3367 (((-85) $) 94 T ELT)) (-3368 (($ $ (-583 (-854 |#1|))) 96 T ELT) (($ $ (-583 (-583 |#1|))) 99 T ELT) (($ (-583 (-854 |#1|))) 97 T ELT) (((-583 (-854 |#1|)) $) 95 T ELT)) (-3356 (($ $) 140 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1046 |#1|) (-1047 |#1|) (-961)) (T -1046))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3887 (((-1078 3 |#1|) $) 17 T ELT)) (-3365 (((-85) $) 33 T ELT)) (-3366 (($ $ (-583 (-854 |#1|))) 37 T ELT) (($ $ (-583 (-583 |#1|))) 36 T ELT) (($ (-583 (-854 |#1|))) 35 T ELT) (((-583 (-854 |#1|)) $) 34 T ELT)) (-3371 (((-85) $) 48 T ELT)) (-3705 (($ $ (-854 |#1|)) 53 T ELT) (($ $ (-583 |#1|)) 52 T ELT) (($ $ (-694)) 51 T ELT) (($ (-854 |#1|)) 50 T ELT) (((-854 |#1|) $) 49 T ELT)) (-3357 (((-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 19 T ELT)) (-3375 (((-694) $) 62 T ELT)) (-3376 (((-694) $) 63 T ELT)) (-3886 (($ $ (-694) (-854 |#1|)) 54 T ELT)) (-3363 (((-85) $) 25 T ELT)) (-3364 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 32 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 31 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 29 T ELT) (($ (-583 (-583 (-854 |#1|)))) 28 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 27 T ELT) (((-583 (-583 (-854 |#1|))) $) 26 T ELT)) (-3517 (($ (-583 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3358 (((-583 (-145)) $) 20 T ELT)) (-3362 (((-583 (-854 |#1|)) $) 24 T ELT)) (-3359 (((-583 (-583 (-145))) $) 21 T ELT)) (-3360 (((-583 (-583 (-583 (-854 |#1|)))) $) 22 T ELT)) (-3361 (((-583 (-583 (-583 (-694)))) $) 23 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3372 (((-694) $ (-583 (-854 |#1|))) 55 T ELT)) (-3369 (((-85) $) 43 T ELT)) (-3370 (($ $ (-583 (-854 |#1|))) 47 T ELT) (($ $ (-583 (-583 |#1|))) 46 T ELT) (($ (-583 (-854 |#1|))) 45 T ELT) (((-583 (-854 |#1|)) $) 44 T ELT)) (-3377 (($) 65 T ELT) (($ (-1078 3 |#1|)) 64 T ELT)) (-3399 (($ $) 56 T ELT)) (-3373 (((-583 $) $) 57 T ELT)) (-3753 (($ (-583 $)) 59 T ELT)) (-3374 (((-583 $) $) 58 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-3367 (((-85) $) 38 T ELT)) (-3368 (($ $ (-583 (-854 |#1|))) 42 T ELT) (($ $ (-583 (-583 |#1|))) 41 T ELT) (($ (-583 (-854 |#1|))) 40 T ELT) (((-583 (-854 |#1|)) $) 39 T ELT)) (-3356 (($ $) 18 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-1047 |#1|) (-113) (-961)) (T -1047))
-((-3945 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-772)))) (-3377 (*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) (-3377 (*1 *1 *2) (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3517 (*1 *1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3374 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)))) (-3399 (*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) (-3372 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1047 *4)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3886 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1047 *4)) (-4 *4 (-961)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3366 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1047 *5)) (-4 *5 (-961)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1047 *5)) (-4 *5 (-961)))) (-3364 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) (-4 *4 (-961)))) (-3364 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) (-4 *4 (-961)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3364 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961)) (-4 *1 (-1047 *4)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3)))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694))))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-854 *3))))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145)))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145))))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694)))))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-1078 3 *3)))))
-(-13 (-1013) (-10 -8 (-15 -3377 ($)) (-15 -3377 ($ (-1078 3 |t#1|))) (-15 -3376 ((-694) $)) (-15 -3375 ((-694) $)) (-15 -3517 ($ (-583 $))) (-15 -3517 ($ $ $)) (-15 -3753 ($ (-583 $))) (-15 -3374 ((-583 $) $)) (-15 -3373 ((-583 $) $)) (-15 -3399 ($ $)) (-15 -3372 ((-694) $ (-583 (-854 |t#1|)))) (-15 -3886 ($ $ (-694) (-854 |t#1|))) (-15 -3705 ($ $ (-854 |t#1|))) (-15 -3705 ($ $ (-583 |t#1|))) (-15 -3705 ($ $ (-694))) (-15 -3705 ($ (-854 |t#1|))) (-15 -3705 ((-854 |t#1|) $)) (-15 -3371 ((-85) $)) (-15 -3370 ($ $ (-583 (-854 |t#1|)))) (-15 -3370 ($ $ (-583 (-583 |t#1|)))) (-15 -3370 ($ (-583 (-854 |t#1|)))) (-15 -3370 ((-583 (-854 |t#1|)) $)) (-15 -3369 ((-85) $)) (-15 -3368 ($ $ (-583 (-854 |t#1|)))) (-15 -3368 ($ $ (-583 (-583 |t#1|)))) (-15 -3368 ($ (-583 (-854 |t#1|)))) (-15 -3368 ((-583 (-854 |t#1|)) $)) (-15 -3367 ((-85) $)) (-15 -3366 ($ $ (-583 (-854 |t#1|)))) (-15 -3366 ($ $ (-583 (-583 |t#1|)))) (-15 -3366 ($ (-583 (-854 |t#1|)))) (-15 -3366 ((-583 (-854 |t#1|)) $)) (-15 -3365 ((-85) $)) (-15 -3364 ($ $ (-583 (-583 (-854 |t#1|))) (-583 (-145)) (-145))) (-15 -3364 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-145)) (-145))) (-15 -3364 ($ $ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3364 ($ $ (-583 (-583 (-583 |t#1|))) (-85) (-85))) (-15 -3364 ($ (-583 (-583 (-854 |t#1|))))) (-15 -3364 ($ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3364 ((-583 (-583 (-854 |t#1|))) $)) (-15 -3363 ((-85) $)) (-15 -3362 ((-583 (-854 |t#1|)) $)) (-15 -3361 ((-583 (-583 (-583 (-694)))) $)) (-15 -3360 ((-583 (-583 (-583 (-854 |t#1|)))) $)) (-15 -3359 ((-583 (-583 (-145))) $)) (-15 -3358 ((-583 (-145)) $)) (-15 -3357 ((-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $)) (-15 -3356 ($ $)) (-15 -3887 ((-1078 3 |t#1|) $)) (-15 -3945 ((-772) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 185 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) 7 T ELT)) (-3565 (((-85) $ (|[\|\|]| (-462))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-617))) 27 T ELT) (((-85) $ (|[\|\|]| (-1189))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-539))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1029))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-622))) 55 T ELT) (((-85) $ (|[\|\|]| (-458))) 59 T ELT) (((-85) $ (|[\|\|]| (-978))) 63 T ELT) (((-85) $ (|[\|\|]| (-1190))) 67 T ELT) (((-85) $ (|[\|\|]| (-463))) 71 T ELT) (((-85) $ (|[\|\|]| (-1066))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-613))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-948))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-883))) 99 T ELT) (((-85) $ (|[\|\|]| (-985))) 103 T ELT) (((-85) $ (|[\|\|]| (-1003))) 107 T ELT) (((-85) $ (|[\|\|]| (-1008))) 111 T ELT) (((-85) $ (|[\|\|]| (-565))) 116 T ELT) (((-85) $ (|[\|\|]| (-1080))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-417))) 132 T ELT) (((-85) $ (|[\|\|]| (-528))) 136 T ELT) (((-85) $ (|[\|\|]| (-446))) 140 T ELT) (((-85) $ (|[\|\|]| (-1072))) 144 T ELT) (((-85) $ (|[\|\|]| (-484))) 148 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3571 (((-462) $) 20 T ELT) (((-172) $) 24 T ELT) (((-617) $) 28 T ELT) (((-1189) $) 32 T ELT) (((-111) $) 36 T ELT) (((-539) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1029) $) 48 T ELT) (((-67) $) 52 T ELT) (((-622) $) 56 T ELT) (((-458) $) 60 T ELT) (((-978) $) 64 T ELT) (((-1190) $) 68 T ELT) (((-463) $) 72 T ELT) (((-1066) $) 76 T ELT) (((-127) $) 80 T ELT) (((-613) $) 84 T ELT) (((-263) $) 88 T ELT) (((-948) $) 92 T ELT) (((-154) $) 96 T ELT) (((-883) $) 100 T ELT) (((-985) $) 104 T ELT) (((-1003) $) 108 T ELT) (((-1008) $) 112 T ELT) (((-565) $) 117 T ELT) (((-1080) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-417) $) 133 T ELT) (((-528) $) 137 T ELT) (((-446) $) 141 T ELT) (((-1072) $) 145 T ELT) (((-484) $) 149 T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1048) (-1050)) (T -1048))
-NIL
-((-3378 (((-583 (-1094)) (-1072)) 9 T ELT)))
-(((-1049) (-10 -7 (-15 -3378 ((-583 (-1094)) (-1072))))) (T -1049))
-((-3378 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-1094))) (-5 *1 (-1049)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-3565 (((-85) $ (|[\|\|]| (-462))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-617))) 84 T ELT) (((-85) $ (|[\|\|]| (-1189))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-539))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1029))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-622))) 70 T ELT) (((-85) $ (|[\|\|]| (-458))) 68 T ELT) (((-85) $ (|[\|\|]| (-978))) 66 T ELT) (((-85) $ (|[\|\|]| (-1190))) 64 T ELT) (((-85) $ (|[\|\|]| (-463))) 62 T ELT) (((-85) $ (|[\|\|]| (-1066))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-613))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-948))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-883))) 48 T ELT) (((-85) $ (|[\|\|]| (-985))) 46 T ELT) (((-85) $ (|[\|\|]| (-1003))) 44 T ELT) (((-85) $ (|[\|\|]| (-1008))) 42 T ELT) (((-85) $ (|[\|\|]| (-565))) 40 T ELT) (((-85) $ (|[\|\|]| (-1080))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-417))) 32 T ELT) (((-85) $ (|[\|\|]| (-528))) 30 T ELT) (((-85) $ (|[\|\|]| (-446))) 28 T ELT) (((-85) $ (|[\|\|]| (-1072))) 26 T ELT) (((-85) $ (|[\|\|]| (-484))) 24 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3571 (((-462) $) 87 T ELT) (((-172) $) 85 T ELT) (((-617) $) 83 T ELT) (((-1189) $) 81 T ELT) (((-111) $) 79 T ELT) (((-539) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1029) $) 73 T ELT) (((-67) $) 71 T ELT) (((-622) $) 69 T ELT) (((-458) $) 67 T ELT) (((-978) $) 65 T ELT) (((-1190) $) 63 T ELT) (((-463) $) 61 T ELT) (((-1066) $) 59 T ELT) (((-127) $) 57 T ELT) (((-613) $) 55 T ELT) (((-263) $) 53 T ELT) (((-948) $) 51 T ELT) (((-154) $) 49 T ELT) (((-883) $) 47 T ELT) (((-985) $) 45 T ELT) (((-1003) $) 43 T ELT) (((-1008) $) 41 T ELT) (((-565) $) 39 T ELT) (((-1080) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-417) $) 31 T ELT) (((-528) $) 29 T ELT) (((-446) $) 27 T ELT) (((-1072) $) 25 T ELT) (((-484) $) 23 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-1050) (-113)) (T -1050))
-((-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-462)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-172)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-617)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1189)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-111)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-539)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-106)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1029)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-67)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-622)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-458)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-978)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1190)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-463)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1066)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-127)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-613)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-263)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-948)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-154)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-883)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-985)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1003)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1008)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-565)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1080)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-129)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-110)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-417))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-417)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-528)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-446)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1072)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-484)))))
-(-13 (-995) (-1174) (-10 -8 (-15 -3565 ((-85) $ (|[\|\|]| (-462)))) (-15 -3571 ((-462) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-172)))) (-15 -3571 ((-172) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-617)))) (-15 -3571 ((-617) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1189)))) (-15 -3571 ((-1189) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-111)))) (-15 -3571 ((-111) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-539)))) (-15 -3571 ((-539) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-106)))) (-15 -3571 ((-106) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1029)))) (-15 -3571 ((-1029) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-67)))) (-15 -3571 ((-67) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-622)))) (-15 -3571 ((-622) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-458)))) (-15 -3571 ((-458) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-978)))) (-15 -3571 ((-978) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1190)))) (-15 -3571 ((-1190) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-463)))) (-15 -3571 ((-463) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1066)))) (-15 -3571 ((-1066) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-127)))) (-15 -3571 ((-127) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-613)))) (-15 -3571 ((-613) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-263)))) (-15 -3571 ((-263) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-948)))) (-15 -3571 ((-948) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-154)))) (-15 -3571 ((-154) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-883)))) (-15 -3571 ((-883) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-985)))) (-15 -3571 ((-985) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1003)))) (-15 -3571 ((-1003) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1008)))) (-15 -3571 ((-1008) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-565)))) (-15 -3571 ((-565) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1080)))) (-15 -3571 ((-1080) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-129)))) (-15 -3571 ((-129) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-110)))) (-15 -3571 ((-110) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-417)))) (-15 -3571 ((-417) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-528)))) (-15 -3571 ((-528) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-446)))) (-15 -3571 ((-446) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1072)))) (-15 -3571 ((-1072) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-484)))) (-15 -3571 ((-484) $))))
-(((-64) . T) ((-72) . T) ((-555 (-1094)) . T) ((-552 (-772)) . T) ((-552 (-1094)) . T) ((-429 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-995) . T) ((-1128) . T) ((-1174) . T))
-((-3381 (((-1184) (-583 (-772))) 22 T ELT) (((-1184) (-772)) 21 T ELT)) (-3380 (((-1184) (-583 (-772))) 20 T ELT) (((-1184) (-772)) 19 T ELT)) (-3379 (((-1184) (-583 (-772))) 18 T ELT) (((-1184) (-772)) 10 T ELT) (((-1184) (-1072) (-772)) 16 T ELT)))
-(((-1051) (-10 -7 (-15 -3379 ((-1184) (-1072) (-772))) (-15 -3379 ((-1184) (-772))) (-15 -3380 ((-1184) (-772))) (-15 -3381 ((-1184) (-772))) (-15 -3379 ((-1184) (-583 (-772)))) (-15 -3380 ((-1184) (-583 (-772)))) (-15 -3381 ((-1184) (-583 (-772)))))) (T -1051))
-((-3381 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3379 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))))
-((-3385 (($ $ $) 10 T ELT)) (-3384 (($ $) 9 T ELT)) (-3388 (($ $ $) 13 T ELT)) (-3390 (($ $ $) 15 T ELT)) (-3387 (($ $ $) 12 T ELT)) (-3389 (($ $ $) 14 T ELT)) (-3392 (($ $) 17 T ELT)) (-3391 (($ $) 16 T ELT)) (-3382 (($ $) 6 T ELT)) (-3386 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3383 (($ $ $) 8 T ELT)))
-(((-1052) (-113)) (T -1052))
-((-3392 (*1 *1 *1) (-4 *1 (-1052))) (-3391 (*1 *1 *1) (-4 *1 (-1052))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3386 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3384 (*1 *1 *1) (-4 *1 (-1052))) (-3383 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3386 (*1 *1 *1) (-4 *1 (-1052))) (-3382 (*1 *1 *1) (-4 *1 (-1052))))
-(-13 (-10 -8 (-15 -3382 ($ $)) (-15 -3386 ($ $)) (-15 -3383 ($ $ $)) (-15 -3384 ($ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $)) (-15 -3392 ($ $))))
-((-2568 (((-85) $ $) 44 T ELT)) (-3401 ((|#1| $) 17 T ELT)) (-3393 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3400 (((-85) $) 19 T ELT)) (-3398 (($ $ |#1|) 30 T ELT)) (-3396 (($ $ (-85)) 32 T ELT)) (-3395 (($ $) 33 T ELT)) (-3397 (($ $ |#2|) 31 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3394 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3402 (((-85) $) 16 T ELT)) (-3564 (($) 13 T ELT)) (-3399 (($ $) 29 T ELT)) (-3529 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1599 |#2|))) 23 T ELT) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1599 |#2|)))) 26 T ELT) (((-583 $) |#1| (-583 |#2|)) 28 T ELT)) (-3921 ((|#2| $) 18 T ELT)) (-3945 (((-772) $) 53 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 42 T ELT)))
-(((-1053 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3564 ($)) (-15 -3402 ((-85) $)) (-15 -3401 (|#1| $)) (-15 -3921 (|#2| $)) (-15 -3400 ((-85) $)) (-15 -3529 ($ |#1| |#2| (-85))) (-15 -3529 ($ |#1| |#2|)) (-15 -3529 ($ (-2 (|:| |val| |#1|) (|:| -1599 |#2|)))) (-15 -3529 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1599 |#2|))))) (-15 -3529 ((-583 $) |#1| (-583 |#2|))) (-15 -3399 ($ $)) (-15 -3398 ($ $ |#1|)) (-15 -3397 ($ $ |#2|)) (-15 -3396 ($ $ (-85))) (-15 -3395 ($ $)) (-15 -3394 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3393 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1053))
-((-3564 (*1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3401 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *2 *3)) (-4 *3 (-13 (-1013) (-34))))) (-3921 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1599 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *4)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1599 *5)))) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-583 (-1053 *4 *5))) (-5 *1 (-1053 *4 *5)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-583 (-1053 *3 *5))) (-5 *1 (-1053 *3 *5)) (-4 *3 (-13 (-1013) (-34))))) (-3399 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3398 (*1 *1 *1 *2) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3397 (*1 *1 *1 *2) (-12 (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))) (-4 *2 (-13 (-1013) (-34))))) (-3396 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3395 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3394 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *5 *6)))) (-3393 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))))))
-((-2568 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-3401 (((-1053 |#1| |#2|) $) 27 T ELT)) (-3410 (($ $) 91 T ELT)) (-3406 (((-85) (-1053 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3403 (($ $ $ (-583 (-1053 |#1| |#2|))) 108 T ELT) (($ $ $ (-583 (-1053 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3025 (((-1053 |#1| |#2|) $ (-1053 |#1| |#2|)) 46 (|has| $ (-6 -3995)) ELT)) (-3787 (((-1053 |#1| |#2|) $ #1="value" (-1053 |#1| |#2|)) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 44 (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3408 (((-583 (-2 (|:| |val| |#1|) (|:| -1599 |#2|))) $) 95 T ELT)) (-3404 (($ (-1053 |#1| |#2|) $) 42 T ELT)) (-3405 (($ (-1053 |#1| |#2|) $) 34 T ELT)) (-2889 (((-583 (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3407 (((-85) (-1053 |#1| |#2|) $) 97 T ELT)) (-3027 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-2608 (((-583 (-1053 |#1| |#2|)) $) 58 T ELT)) (-3245 (((-85) (-1053 |#1| |#2|) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-1948 (($ (-1 (-1053 |#1| |#2|) (-1053 |#1| |#2|)) $) 50 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-1053 |#1| |#2|) (-1053 |#1| |#2|)) $) 49 T ELT)) (-3030 (((-583 (-1053 |#1| |#2|)) $) 56 T ELT)) (-3526 (((-85) $) 45 T ELT)) (-3242 (((-1072) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-3411 (((-3 $ "failed") $) 89 T ELT)) (-1946 (((-85) (-1 (-85) (-1053 |#1| |#2|)) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-1053 |#1| |#2|)))) NIL (-12 (|has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-249 (-1053 |#1| |#2|))) NIL (-12 (|has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-1053 |#1| |#2|) (-1053 |#1| |#2|)) NIL (-12 (|has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-583 (-1053 |#1| |#2|)) (-583 (-1053 |#1| |#2|))) NIL (-12 (|has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-1221 (((-85) $ $) 53 T ELT)) (-3402 (((-85) $) 24 T ELT)) (-3564 (($) 26 T ELT)) (-3799 (((-1053 |#1| |#2|) $ #1#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) 47 T ELT)) (-1945 (((-694) (-1053 |#1| |#2|) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT) (((-694) (-1 (-85) (-1053 |#1| |#2|)) $) NIL T ELT)) (-3399 (($ $) 52 T ELT)) (-3529 (($ (-1053 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-583 $)) 13 T ELT) (($ |#1| |#2| (-583 (-1053 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-583 |#2|)) 18 T ELT)) (-3409 (((-583 |#2|) $) 96 T ELT)) (-3945 (((-772) $) 87 (|has| (-1053 |#1| |#2|) (-552 (-772))) ELT)) (-3521 (((-583 $) $) 31 T ELT)) (-3028 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-1947 (((-85) (-1 (-85) (-1053 |#1| |#2|)) $) NIL T ELT)) (-3056 (((-85) $ $) 70 (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-3956 (((-694) $) 64 T ELT)))
-(((-1054 |#1| |#2|) (-13 (-923 (-1053 |#1| |#2|)) (-317 (-1053 |#1| |#2|)) (-10 -8 (-6 -3995) (-15 -3411 ((-3 $ "failed") $)) (-15 -3410 ($ $)) (-15 -3529 ($ (-1053 |#1| |#2|))) (-15 -3529 ($ |#1| |#2| (-583 $))) (-15 -3529 ($ |#1| |#2| (-583 (-1053 |#1| |#2|)))) (-15 -3529 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -3409 ((-583 |#2|) $)) (-15 -3408 ((-583 (-2 (|:| |val| |#1|) (|:| -1599 |#2|))) $)) (-15 -3407 ((-85) (-1053 |#1| |#2|) $)) (-15 -3406 ((-85) (-1053 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3405 ($ (-1053 |#1| |#2|) $)) (-15 -3404 ($ (-1053 |#1| |#2|) $)) (-15 -3403 ($ $ $ (-583 (-1053 |#1| |#2|)))) (-15 -3403 ($ $ $ (-583 (-1053 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1054))
-((-3411 (*1 *1 *1) (|partial| -12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3410 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1054 *2 *3))) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1053 *2 *3))) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)))) (-3529 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3407 (*1 *2 *3 *1) (-12 (-5 *3 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5)))) (-3406 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1053 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *5 *6)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3404 (*1 *1 *2 *1) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3403 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1053 *3 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3403 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1053 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *1 (-1054 *4 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3413 (($ $) NIL T ELT)) (-3329 ((|#2| $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3412 (($ (-630 |#2|)) 53 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3332 (($ |#2|) 14 T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3111 (((-197 |#1| |#2|) $ (-484)) 40 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 80 T ELT)) (-3108 (((-694) $) 68 (|has| |#2| (-495)) ELT)) (-3112 ((|#2| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3107 (((-694) $) 70 (|has| |#2| (-495)) ELT)) (-3106 (((-583 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3613 (($ |#2|) 23 T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3326 ((|#2| $) 64 (|has| |#2| (-6 (-3996 #2="*"))) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-1013)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#2|))) 35 T ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3593 (((-583 (-583 |#2|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3589 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) NIL T ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3328 ((|#2| $) NIL T ELT)) (-3331 (($ (-583 |#2|)) 48 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3330 (((-197 |#1| |#2|) $) NIL T ELT)) (-3327 ((|#2| $) 62 (|has| |#2| (-6 (-3996 #2#))) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) NIL T ELT) (((-694) |#2| $) NIL (|has| |#2| (-1013)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) 87 (|has| |#2| (-553 (-473))) ELT)) (-3110 (((-197 |#1| |#2|) $ (-484)) 42 T ELT)) (-3945 (((-772) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) 50 T ELT)) (-3126 (((-694)) 21 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-2666 (($) 19 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-484)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-1055 |#1| |#2|) (-13 (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-10 -8 (-15 -3613 ($ |#2|)) (-15 -3413 ($ $)) (-15 -3412 ($ (-630 |#2|))) (IF (|has| |#2| (-6 (-3996 #1="*"))) (-6 -3983) |%noBranch|) (IF (|has| |#2| (-6 (-3996 #1#))) (IF (|has| |#2| (-6 -3991)) (-6 -3991) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) (-694) (-961)) (T -1055))
-((-3613 (*1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961)))) (-3413 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961)))) (-3412 (*1 *1 *2) (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1055 *3 *4)) (-14 *3 (-694)))))
-((-3426 (($ $) 19 T ELT)) (-3416 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3424 (((-85) $ $) 24 T ELT)) (-3428 (($ $) 17 T ELT)) (-3799 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) (($ $ $) 31 T ELT)) (-3945 (($ (-117)) 29 T ELT) (((-772) $) NIL T ELT)))
-(((-1056 |#1|) (-10 -7 (-15 -3945 ((-772) |#1|)) (-15 -3799 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| (-114))) (-15 -3416 (|#1| |#1| (-117))) (-15 -3945 (|#1| (-117))) (-15 -3424 ((-85) |#1| |#1|)) (-15 -3426 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3799 (|#1| |#1| (-1145 (-484)))) (-15 -3799 ((-117) |#1| (-484))) (-15 -3799 ((-117) |#1| (-484) (-117)))) (-1057)) (T -1056))
-NIL
-((-2568 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3425 (($ $) 130 T ELT)) (-3426 (($ $) 131 T ELT)) (-3416 (($ $ (-117)) 118 T ELT) (($ $ (-114)) 117 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-3423 (((-85) $ $) 128 T ELT)) (-3422 (((-85) $ $ (-484)) 127 T ELT)) (-3417 (((-583 $) $ (-117)) 120 T ELT) (((-583 $) $ (-114)) 119 T ELT)) (-1731 (((-85) (-1 (-85) (-117) (-117)) $) 108 T ELT) (((-85) $) 102 (|has| (-117) (-756)) ELT)) (-1729 (($ (-1 (-85) (-117) (-117)) $) 99 (|has| $ (-6 -3995)) ELT) (($ $) 98 (-12 (|has| (-117) (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) (-117) (-117)) $) 109 T ELT) (($ $) 103 (|has| (-117) (-756)) ELT)) (-3787 (((-117) $ (-484) (-117)) 56 (|has| $ (-6 -3995)) ELT) (((-117) $ (-1145 (-484)) (-117)) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-3414 (($ $ (-117)) 114 T ELT) (($ $ (-114)) 113 T ELT)) (-2297 (($ $) 100 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 110 T ELT)) (-3419 (($ $ (-1145 (-484)) $) 124 T ELT)) (-1352 (($ $) 84 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ (-117) $) 83 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3994))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3994)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 (((-117) $ (-484) (-117)) 57 (|has| $ (-6 -3995)) ELT)) (-3112 (((-117) $ (-484)) 55 T ELT)) (-3424 (((-85) $ $) 129 T ELT)) (-3418 (((-484) (-1 (-85) (-117)) $) 107 T ELT) (((-484) (-117) $) 106 (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 105 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 123 T ELT) (((-484) (-114) $ (-484)) 122 T ELT)) (-2889 (((-583 (-117)) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) (-117)) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| (-117) (-756)) ELT)) (-3517 (($ (-1 (-85) (-117) (-117)) $ $) 111 T ELT) (($ $ $) 104 (|has| (-117) (-756)) ELT)) (-2608 (((-583 (-117)) $) 29 T ELT)) (-3245 (((-85) (-117) $) 27 (|has| (-117) (-1013)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| (-117) (-756)) ELT)) (-3420 (((-85) $ $ (-117)) 125 T ELT)) (-3421 (((-694) $ $ (-117)) 126 T ELT)) (-1948 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3427 (($ $) 132 T ELT)) (-3428 (($ $) 133 T ELT)) (-3415 (($ $ (-117)) 116 T ELT) (($ $ (-114)) 115 T ELT)) (-3242 (((-1072) $) 22 (|has| (-117) (-1013)) ELT)) (-2304 (($ (-117) $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| (-117) (-1013)) ELT)) (-3800 (((-117) $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2199 (($ $ (-117)) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 (-117)))) 26 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) 25 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-117)) (-583 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-2205 (((-583 (-117)) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 (((-117) $ (-484) (-117)) 54 T ELT) (((-117) $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT) (($ $ $) 112 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) (-117) $) 28 (|has| (-117) (-1013)) ELT) (((-694) (-1 (-85) (-117)) $) 31 T ELT)) (-1730 (($ $ $ (-484)) 101 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| (-117) (-553 (-473))) ELT)) (-3529 (($ (-583 (-117))) 76 T ELT)) (-3801 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (($ (-117)) 121 T ELT) (((-772) $) 17 (|has| (-117) (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| (-117) (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| (-117) (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| (-117) (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| (-117) (-756)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-1057) (-113)) (T -1057))
-((-3428 (*1 *1 *1) (-4 *1 (-1057))) (-3427 (*1 *1 *1) (-4 *1 (-1057))) (-3426 (*1 *1 *1) (-4 *1 (-1057))) (-3425 (*1 *1 *1) (-4 *1 (-1057))) (-3424 (*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))) (-3423 (*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))) (-3422 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-484)) (-5 *2 (-85)))) (-3421 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-694)))) (-3420 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3419 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-1145 (-484))))) (-3418 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)))) (-3418 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)) (-5 *3 (-114)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1057)))) (-3417 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1057)))) (-3417 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1057)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3799 (*1 *1 *1 *1) (-4 *1 (-1057))))
-(-13 (-19 (-117)) (-10 -8 (-15 -3428 ($ $)) (-15 -3427 ($ $)) (-15 -3426 ($ $)) (-15 -3425 ($ $)) (-15 -3424 ((-85) $ $)) (-15 -3423 ((-85) $ $)) (-15 -3422 ((-85) $ $ (-484))) (-15 -3421 ((-694) $ $ (-117))) (-15 -3420 ((-85) $ $ (-117))) (-15 -3419 ($ $ (-1145 (-484)) $)) (-15 -3418 ((-484) $ $ (-484))) (-15 -3418 ((-484) (-114) $ (-484))) (-15 -3945 ($ (-117))) (-15 -3417 ((-583 $) $ (-117))) (-15 -3417 ((-583 $) $ (-114))) (-15 -3416 ($ $ (-117))) (-15 -3416 ($ $ (-114))) (-15 -3415 ($ $ (-117))) (-15 -3415 ($ $ (-114))) (-15 -3414 ($ $ (-117))) (-15 -3414 ($ $ (-114))) (-15 -3799 ($ $ $))))
-(((-34) . T) ((-72) OR (|has| (-117) (-1013)) (|has| (-117) (-756)) (|has| (-117) (-72))) ((-552 (-772)) OR (|has| (-117) (-1013)) (|has| (-117) (-756)) (|has| (-117) (-552 (-772)))) ((-124 (-117)) . T) ((-553 (-473)) |has| (-117) (-553 (-473))) ((-241 (-484) (-117)) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ((-317 (-117)) . T) ((-323 (-117)) . T) ((-428 (-117)) . T) ((-538 (-484) (-117)) . T) ((-455 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ((-13) . T) ((-593 (-117)) . T) ((-19 (-117)) . T) ((-756) |has| (-117) (-756)) ((-759) |has| (-117) (-756)) ((-1013) OR (|has| (-117) (-1013)) (|has| (-117) (-756))) ((-1128) . T))
-((-3435 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-694)) 112 T ELT)) (-3432 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694)) 61 T ELT)) (-3436 (((-1184) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-694)) 97 T ELT)) (-3430 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3433 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694)) 63 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694) (-85)) 65 T ELT)) (-3434 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 85 T ELT)) (-3971 (((-1072) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) 90 T ELT)) (-3431 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 60 T ELT)) (-3429 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT)))
-(((-1058 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3429 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3430 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3431 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694))) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3434 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3434 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3435 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-694))) (-15 -3971 ((-1072) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) (-15 -3436 ((-1184) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-694)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -1058))
-((-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *4 (-694)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1184)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1072)) (-5 *1 (-1058 *4 *5 *6 *7 *8)))) (-3435 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1599 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1599 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-1058 *7 *8 *9 *10 *11)))) (-3434 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3434 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3681 (((-583 $) (-583 |#4|)) 118 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 117 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 91 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3798 (((-3 $ #1#) $) 45 T ELT)) (-3684 ((|#4| |#4| $) 73 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3437 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 133 T ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 19 T ELT)) (-3245 (((-85) |#4| $) 27 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 111 T ELT)) (-3797 (((-3 |#4| #1#) $) 42 T ELT)) (-3192 (((-583 $) |#4| $) 96 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3238 (((-583 $) |#4| $) 115 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 116 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3438 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3439 (($ |#4| $) 82 T ELT) (($ (-583 |#4|) $) 83 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3696 (((-583 |#4|) $) NIL T ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 40 T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3768 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 98 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 93 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 14 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) |#4| $) NIL (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3399 (($ $) 13 T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 22 T ELT)) (-2910 (($ $ |#3|) 49 T ELT)) (-2912 (($ $ |#3|) 51 T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3677 (((-694) $) NIL (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3189 (((-583 $) |#4| $) 63 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-583 |#3|) $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3932 (((-85) |#3| $) 69 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-1059 |#1| |#2| |#3| |#4|) (-13 (-1020 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3439 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3681 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3681 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3438 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3437 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -1059))
-((-3439 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3681 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3681 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1059 *5 *6 *7 *8))))) (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 32 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 30 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 29 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-694)) 31 T ELT) (($ $ (-830)) 28 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ $ $) 27 T ELT)))
-(((-1060) (-113)) (T -1060))
-NIL
-(-13 (-23) (-663))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3323 ((|#1| $) 38 T ELT)) (-3440 (($ (-583 |#1|)) 46 T ELT)) (-3723 (($) NIL T CONST)) (-3325 ((|#1| |#1| $) 41 T ELT)) (-3324 ((|#1| $) 36 T ELT)) (-2889 (((-583 |#1|) $) 19 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 39 T ELT)) (-3608 (($ |#1| $) 42 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 37 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 33 T ELT)) (-3564 (($) 44 T ELT)) (-3322 (((-694) $) 31 T ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3399 (($ $) 28 T ELT)) (-3945 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 32 T ELT)))
-(((-1061 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -3440 ($ (-583 |#1|))))) (-1128)) (T -1061))
-((-3440 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1061 *3)))))
-((-3787 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1145 (-484)) |#2|) 53 T ELT) ((|#2| $ (-484) |#2|) 50 T ELT)) (-3442 (((-85) $) 12 T ELT)) (-1948 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3800 ((|#2| $) NIL T ELT) (($ $ (-694)) 17 T ELT)) (-2199 (($ $ |#2|) 49 T ELT)) (-3443 (((-85) $) 11 T ELT)) (-3799 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) 36 T ELT) ((|#2| $ (-484)) 25 T ELT) ((|#2| $ (-484) |#2|) NIL T ELT)) (-3790 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3801 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-583 $)) 45 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1062 |#1| |#2|) (-10 -7 (-15 -3442 ((-85) |#1|)) (-15 -3443 ((-85) |#1|)) (-15 -3787 (|#2| |#1| (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484))) (-15 -2199 (|#1| |#1| |#2|)) (-15 -3799 (|#1| |#1| (-1145 (-484)))) (-15 -3801 (|#1| |#1| |#2|)) (-15 -3801 (|#1| (-583 |#1|))) (-15 -3787 (|#2| |#1| (-1145 (-484)) |#2|)) (-15 -3787 (|#2| |#1| #1="last" |#2|)) (-15 -3787 (|#1| |#1| #2="rest" |#1|)) (-15 -3787 (|#2| |#1| #3="first" |#2|)) (-15 -3790 (|#1| |#1| |#2|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3799 (|#2| |#1| #1#)) (-15 -3799 (|#1| |#1| #2#)) (-15 -3800 (|#1| |#1| (-694))) (-15 -3799 (|#2| |#1| #3#)) (-15 -3800 (|#2| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3787 (|#2| |#1| #4="value" |#2|)) (-15 -3799 (|#2| |#1| #4#)) (-15 -1948 (|#1| (-1 |#2| |#2|) |#1|))) (-1063 |#2|) (-1128)) (T -1062))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3794 ((|#1| $) 71 T ELT)) (-3796 (($ $) 73 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 58 (|has| $ (-6 -3995)) ELT)) (-3441 (((-85) $ (-694)) 90 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 62 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) 60 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3994)) ELT)) (-3795 ((|#1| $) 72 T ELT)) (-3723 (($) 7 T CONST)) (-3798 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1352 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3994)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1575 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 97 T ELT)) (-3442 (((-85) $) 93 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) 119 T ELT)) (-3718 (((-85) $ (-694)) 91 T ELT)) (-2200 (((-484) $) 105 (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 104 (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3715 (((-85) $ (-694)) 92 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2304 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2203 (((-583 (-484)) $) 102 T ELT)) (-2204 (((-85) (-484) $) 101 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2199 (($ $ |#1|) 106 (|has| $ (-6 -3995)) ELT)) (-3443 (((-85) $) 94 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 100 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-2305 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-3791 (($ $) 68 T ELT)) (-3789 (($ $) 65 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 69 T ELT)) (-3793 (($ $) 70 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 108 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 117 T ELT)) (-3790 (($ $ $) 67 (|has| $ (-6 -3995)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3995)) ELT)) (-3801 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-1063 |#1|) (-113) (-1128)) (T -1063))
-((-3443 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))))
-(-13 (-1167 |t#1|) (-593 |t#1|) (-10 -8 (-15 -3443 ((-85) $)) (-15 -3442 ((-85) $)) (-15 -3715 ((-85) $ (-694))) (-15 -3718 ((-85) $ (-694))) (-15 -3441 ((-85) $ (-694)))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T) ((-1167 |#1|) . T))
-((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-1064 |#1| |#2| |#3|) (-1106 |#1| |#2|) (-1013) (-1013) |#2|) (T -1064))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3444 (((-632 $) $) 17 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3445 (($) 18 T CONST)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)))
-(((-1065) (-113)) (T -1065))
-((-3445 (*1 *1) (-4 *1 (-1065))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1065)))))
-(-13 (-1013) (-10 -8 (-15 -3445 ($) -3951) (-15 -3444 ((-632 $) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3447 (((-632 (-1048)) $) 28 T ELT)) (-3446 (((-1048) $) 16 T ELT)) (-3448 (((-1048) $) 18 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3449 (((-446) $) 14 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 38 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1066) (-13 (-995) (-10 -8 (-15 -3449 ((-446) $)) (-15 -3448 ((-1048) $)) (-15 -3447 ((-632 (-1048)) $)) (-15 -3446 ((-1048) $))))) (T -1066))
-((-3449 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1066)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-632 (-1048))) (-5 *1 (-1066)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))))
-((-3452 (((-1068 |#1|) (-1068 |#1|)) 17 T ELT)) (-3450 (((-1068 |#1|) (-1068 |#1|)) 13 T ELT)) (-3453 (((-1068 |#1|) (-1068 |#1|) (-484) (-484)) 20 T ELT)) (-3451 (((-1068 |#1|) (-1068 |#1|)) 15 T ELT)))
-(((-1067 |#1|) (-10 -7 (-15 -3450 ((-1068 |#1|) (-1068 |#1|))) (-15 -3451 ((-1068 |#1|) (-1068 |#1|))) (-15 -3452 ((-1068 |#1|) (-1068 |#1|))) (-15 -3453 ((-1068 |#1|) (-1068 |#1|) (-484) (-484)))) (-13 (-495) (-120))) (T -1067))
-((-3453 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1067 *4)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) NIL T ELT)) (-3794 ((|#1| $) NIL T ELT)) (-3796 (($ $) 60 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 93 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 122 (|has| $ (-6 -3995)) ELT)) (-3441 (((-85) $ (-694)) NIL T ELT)) (-3458 (((-772) $) 46 (|has| |#1| (-1013)) ELT)) (-3457 (((-85)) 49 (|has| |#1| (-1013)) ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 109 (|has| $ (-6 -3995)) ELT) (($ $ (-484) $) 135 T ELT)) (-3785 ((|#1| $ |#1|) 119 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 114 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 106 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) 72 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2323 (($ $) 11 T ELT)) (-3798 (($ $) 35 T ELT) (($ $ (-694)) 105 T ELT)) (-3463 (((-85) (-583 |#1|) $) 128 (|has| |#1| (-1013)) ELT)) (-3464 (($ (-583 |#1|)) 124 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3442 (((-85) $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3459 (((-1184) (-484) $) 133 (|has| |#1| (-1013)) ELT)) (-2322 (((-694) $) 131 T ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-3718 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3715 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-2325 (($ $) 107 T ELT)) (-2326 (((-85) $) 10 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) 90 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3456 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2324 ((|#1| $) 7 T ELT)) (-3800 ((|#1| $) 34 T ELT) (($ $ (-694)) 58 T ELT)) (-3462 (((-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694))) (-694) $) 29 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3455 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3454 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2199 (($ $ |#1|) 85 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-484)) 40 T ELT)) (-3443 (((-85) $) 88 T ELT)) (-2327 (((-85) $) 9 T ELT)) (-2328 (((-85) $) 130 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 25 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) 14 T ELT)) (-3564 (($) 53 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) 70 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3029 (((-484) $ $) 57 T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3461 (($ (-1 $)) 56 T ELT)) (-3632 (((-85) $) 86 T ELT)) (-3791 (($ $) 87 T ELT)) (-3789 (($ $) 110 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 52 T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 68 T ELT)) (-3460 (($ |#1| $) 108 T ELT)) (-3790 (($ $ $) 112 (|has| $ (-6 -3995)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3995)) ELT)) (-3801 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-583 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2891 (($ $) 59 T ELT)) (-3945 (($ (-583 |#1|)) 123 T ELT) (((-772) $) 50 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT)))
-(((-1068 |#1|) (-13 (-616 |#1|) (-555 (-583 |#1|)) (-10 -8 (-6 -3995) (-15 -3464 ($ (-583 |#1|))) (IF (|has| |#1| (-1013)) (-15 -3463 ((-85) (-583 |#1|) $)) |%noBranch|) (-15 -3462 ((-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694))) (-694) $)) (-15 -3461 ($ (-1 $))) (-15 -3460 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -3459 ((-1184) (-484) $)) (-15 -3458 ((-772) $)) (-15 -3457 ((-85)))) |%noBranch|) (-15 -3786 ($ $ (-484) $)) (-15 -3456 ($ (-1 |#1|))) (-15 -3456 ($ (-1 |#1| |#1|) |#1|)) (-15 -3455 ($ (-1 (-85) |#1|) $)) (-15 -3454 ($ (-1 (-85) |#1|) $)))) (-1128)) (T -1068))
-((-3464 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3463 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)) (-5 *1 (-1068 *4)))) (-3462 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694)))) (-5 *1 (-1068 *4)) (-4 *4 (-1128)) (-5 *3 (-694)))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) (-3460 (*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1128)))) (-3459 (*1 *2 *3 *1) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1068 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))) (-3457 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))) (-3786 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3456 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
-((-3801 (((-1068 |#1|) (-1068 (-1068 |#1|))) 15 T ELT)))
-(((-1069 |#1|) (-10 -7 (-15 -3801 ((-1068 |#1|) (-1068 (-1068 |#1|))))) (-1128)) (T -1069))
-((-3801 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1069 *4)) (-4 *4 (-1128)))))
-((-3840 (((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 25 T ELT)) (-3841 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 26 T ELT)) (-3957 (((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)) 16 T ELT)))
-(((-1070 |#1| |#2|) (-10 -7 (-15 -3957 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -3840 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -3841 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) (-1128) (-1128)) (T -1070))
-((-3841 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1070 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1128)) (-4 *3 (-1128)) (-5 *2 (-1068 *3)) (-5 *1 (-1070 *6 *3)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1070 *5 *6)))))
-((-3957 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)) 21 T ELT)))
-(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) (-1128) (-1128) (-1128)) (T -1071))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-1071 *6 *7 *8)))))
-((-2568 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3425 (($ $) 42 T ELT)) (-3426 (($ $) NIL T ELT)) (-3416 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3423 (((-85) $ $) 67 T ELT)) (-3422 (((-85) $ $ (-484)) 62 T ELT)) (-3534 (($ (-484)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-446)) 11 T ELT)) (-3417 (((-583 $) $ (-117)) 76 T ELT) (((-583 $) $ (-114)) 77 T ELT)) (-1731 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-756)) ELT)) (-1729 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-756))) ELT)) (-2909 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-756)) ELT)) (-3787 (((-117) $ (-484) (-117)) 59 (|has| $ (-6 -3995)) ELT) (((-117) $ (-1145 (-484)) (-117)) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-3414 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-3419 (($ $ (-1145 (-484)) $) 57 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-3405 (($ (-117) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3994)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 (((-117) $ (-484) (-117)) NIL (|has| $ (-6 -3995)) ELT)) (-3112 (((-117) $ (-484)) NIL T ELT)) (-3424 (((-85) $ $) 91 T ELT)) (-3418 (((-484) (-1 (-85) (-117)) $) NIL T ELT) (((-484) (-117) $) NIL (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 64 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 63 T ELT) (((-484) (-114) $ (-484)) 66 T ELT)) (-2889 (((-583 (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) (-117)) 14 T ELT)) (-2200 (((-484) $) 36 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3517 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-2608 (((-583 (-117)) $) NIL T ELT)) (-3245 (((-85) (-117) $) NIL (|has| (-117) (-1013)) ELT)) (-2201 (((-484) $) 50 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3420 (((-85) $ $ (-117)) 92 T ELT)) (-3421 (((-694) $ $ (-117)) 88 T ELT)) (-1948 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3427 (($ $) 45 T ELT)) (-3428 (($ $) NIL T ELT)) (-3415 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3242 (((-1072) $) 46 (|has| (-117) (-1013)) ELT)) (-2304 (($ (-117) $ (-484)) NIL T ELT) (($ $ $ (-484)) 31 T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) 87 (|has| (-117) (-1013)) ELT)) (-3800 (((-117) $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2199 (($ $ (-117)) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-2205 (((-583 (-117)) $) NIL T ELT)) (-3402 (((-85) $) 19 T ELT)) (-3564 (($) 16 T ELT)) (-3799 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) 69 T ELT) (($ $ (-1145 (-484))) 29 T ELT) (($ $ $) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-117) $) NIL (|has| (-117) (-1013)) ELT) (((-694) (-1 (-85) (-117)) $) NIL T ELT)) (-1730 (($ $ $ (-484)) 83 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 24 T ELT)) (-3971 (((-473) $) NIL (|has| (-117) (-553 (-473))) ELT)) (-3529 (($ (-583 (-117))) NIL T ELT)) (-3801 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-583 $)) 84 T ELT)) (-3945 (($ (-117)) NIL T ELT) (((-772) $) 35 (|has| (-117) (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-3056 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2685 (((-85) $ $) 22 (|has| (-117) (-756)) ELT)) (-3956 (((-694) $) 20 T ELT)))
-(((-1072) (-13 (-1057) (-10 -8 (-15 -3534 ($ (-484))) (-15 -3534 ($ (-179))) (-15 -3534 ($ (-446)))))) (T -1072))
-((-3534 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1072)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1072)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-1072)))))
-((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-2198 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#1| #1="failed") (-1072) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#1| #1#) (-1072) $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-1072)) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (((-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013)) ELT)) (-2201 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-2232 (((-583 (-1072)) $) NIL T ELT)) (-2233 (((-85) (-1072) $) NIL T ELT)) (-1273 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2203 (((-583 (-1072)) $) NIL T ELT)) (-2204 (((-85) (-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-3800 ((|#1| $) NIL (|has| (-1072) (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-1072)) NIL T ELT) ((|#1| $ (-1072) |#1|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-552 (-772))) (|has| |#1| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-1073 |#1|) (-13 (-1106 (-1072) |#1|) (-10 -7 (-6 -3994))) (-1013)) (T -1073))
-NIL
-((-3804 (((-1068 |#1|) (-1068 |#1|)) 83 T ELT)) (-3466 (((-3 (-1068 |#1|) #1="failed") (-1068 |#1|)) 39 T ELT)) (-3477 (((-1068 |#1|) (-349 (-484)) (-1068 |#1|)) 131 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3480 (((-1068 |#1|) |#1| (-1068 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3807 (((-1068 |#1|) (-1068 |#1|)) 97 T ELT)) (-3468 (((-1068 (-484)) (-484)) 63 T ELT)) (-3476 (((-1068 |#1|) (-1068 (-1068 |#1|))) 116 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3803 (((-1068 |#1|) (-484) (-484) (-1068 |#1|)) 103 T ELT)) (-3937 (((-1068 |#1|) |#1| (-484)) 51 T ELT)) (-3470 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3478 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3475 (((-1068 |#1|) |#1| (-1 (-1068 |#1|))) 115 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3479 (((-1068 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1068 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3808 (((-1068 |#1|) (-1068 |#1|)) 96 T ELT)) (-3809 (((-1068 |#1|) (-1068 |#1|)) 82 T ELT)) (-3802 (((-1068 |#1|) (-484) (-484) (-1068 |#1|)) 104 T ELT)) (-3811 (((-1068 |#1|) |#1| (-1068 |#1|)) 113 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3467 (((-1068 (-484)) (-484)) 62 T ELT)) (-3469 (((-1068 |#1|) |#1|) 65 T ELT)) (-3805 (((-1068 |#1|) (-1068 |#1|) (-484) (-484)) 100 T ELT)) (-3472 (((-1068 |#1|) (-1 |#1| (-484)) (-1068 |#1|)) 72 T ELT)) (-3465 (((-3 (-1068 |#1|) #1#) (-1068 |#1|) (-1068 |#1|)) 37 T ELT)) (-3806 (((-1068 |#1|) (-1068 |#1|)) 98 T ELT)) (-3767 (((-1068 |#1|) (-1068 |#1|) |#1|) 77 T ELT)) (-3471 (((-1068 |#1|) (-1068 |#1|)) 68 T ELT)) (-3473 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 78 T ELT)) (-3945 (((-1068 |#1|) |#1|) 73 T ELT)) (-3474 (((-1068 |#1|) (-1068 (-1068 |#1|))) 88 T ELT)) (-3948 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-3836 (((-1068 |#1|) (-1068 |#1|)) 21 T ELT) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 23 T ELT)) (-3838 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 17 T ELT)) (* (((-1068 |#1|) (-1068 |#1|) |#1|) 29 T ELT) (((-1068 |#1|) |#1| (-1068 |#1|)) 26 T ELT) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 27 T ELT)))
-(((-1074 |#1|) (-10 -7 (-15 -3838 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3836 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3836 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3465 ((-3 (-1068 |#1|) #1="failed") (-1068 |#1|) (-1068 |#1|))) (-15 -3948 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3466 ((-3 (-1068 |#1|) #1#) (-1068 |#1|))) (-15 -3937 ((-1068 |#1|) |#1| (-484))) (-15 -3467 ((-1068 (-484)) (-484))) (-15 -3468 ((-1068 (-484)) (-484))) (-15 -3469 ((-1068 |#1|) |#1|)) (-15 -3470 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3471 ((-1068 |#1|) (-1068 |#1|))) (-15 -3472 ((-1068 |#1|) (-1 |#1| (-484)) (-1068 |#1|))) (-15 -3945 ((-1068 |#1|) |#1|)) (-15 -3767 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3473 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3809 ((-1068 |#1|) (-1068 |#1|))) (-15 -3804 ((-1068 |#1|) (-1068 |#1|))) (-15 -3474 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -3808 ((-1068 |#1|) (-1068 |#1|))) (-15 -3807 ((-1068 |#1|) (-1068 |#1|))) (-15 -3806 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|) (-484) (-484))) (-15 -3803 ((-1068 |#1|) (-484) (-484) (-1068 |#1|))) (-15 -3802 ((-1068 |#1|) (-484) (-484) (-1068 |#1|))) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -3475 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -3476 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -3477 ((-1068 |#1|) (-349 (-484)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3478 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3479 ((-1068 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1068 |#1|)))) (-15 -3480 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) (-961)) (T -1074))
-((-3480 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3479 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)))) (-3478 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3477 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-349 (-484))) (-5 *1 (-1074 *4)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)))) (-3811 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3802 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) (-3803 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) (-3805 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-961)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3473 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) (-3472 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3470 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) (-3468 (*1 *2 *3) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-961)) (-5 *3 (-484)))) (-3467 (*1 *2 *3) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-961)) (-5 *3 (-484)))) (-3937 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) (-3466 (*1 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3948 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3465 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3836 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))))
-((-3491 (((-1068 |#1|) (-1068 |#1|)) 102 T ELT)) (-3638 (((-1068 |#1|) (-1068 |#1|)) 59 T ELT)) (-3482 (((-2 (|:| -3489 (-1068 |#1|)) (|:| -3490 (-1068 |#1|))) (-1068 |#1|)) 98 T ELT)) (-3489 (((-1068 |#1|) (-1068 |#1|)) 99 T ELT)) (-3481 (((-2 (|:| -3637 (-1068 |#1|)) (|:| -3633 (-1068 |#1|))) (-1068 |#1|)) 54 T ELT)) (-3637 (((-1068 |#1|) (-1068 |#1|)) 55 T ELT)) (-3493 (((-1068 |#1|) (-1068 |#1|)) 104 T ELT)) (-3636 (((-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3941 (((-1068 |#1|) (-1068 |#1|)) 40 T ELT)) (-3942 (((-1068 |#1|) (-1068 |#1|)) 37 T ELT)) (-3494 (((-1068 |#1|) (-1068 |#1|)) 105 T ELT)) (-3635 (((-1068 |#1|) (-1068 |#1|)) 67 T ELT)) (-3492 (((-1068 |#1|) (-1068 |#1|)) 103 T ELT)) (-3634 (((-1068 |#1|) (-1068 |#1|)) 62 T ELT)) (-3490 (((-1068 |#1|) (-1068 |#1|)) 100 T ELT)) (-3633 (((-1068 |#1|) (-1068 |#1|)) 56 T ELT)) (-3497 (((-1068 |#1|) (-1068 |#1|)) 113 T ELT)) (-3485 (((-1068 |#1|) (-1068 |#1|)) 88 T ELT)) (-3495 (((-1068 |#1|) (-1068 |#1|)) 107 T ELT)) (-3483 (((-1068 |#1|) (-1068 |#1|)) 84 T ELT)) (-3499 (((-1068 |#1|) (-1068 |#1|)) 117 T ELT)) (-3487 (((-1068 |#1|) (-1068 |#1|)) 92 T ELT)) (-3500 (((-1068 |#1|) (-1068 |#1|)) 119 T ELT)) (-3488 (((-1068 |#1|) (-1068 |#1|)) 94 T ELT)) (-3498 (((-1068 |#1|) (-1068 |#1|)) 115 T ELT)) (-3486 (((-1068 |#1|) (-1068 |#1|)) 90 T ELT)) (-3496 (((-1068 |#1|) (-1068 |#1|)) 109 T ELT)) (-3484 (((-1068 |#1|) (-1068 |#1|)) 86 T ELT)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 41 T ELT)))
-(((-1075 |#1|) (-10 -7 (-15 -3942 ((-1068 |#1|) (-1068 |#1|))) (-15 -3941 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3481 ((-2 (|:| -3637 (-1068 |#1|)) (|:| -3633 (-1068 |#1|))) (-1068 |#1|))) (-15 -3637 ((-1068 |#1|) (-1068 |#1|))) (-15 -3633 ((-1068 |#1|) (-1068 |#1|))) (-15 -3638 ((-1068 |#1|) (-1068 |#1|))) (-15 -3634 ((-1068 |#1|) (-1068 |#1|))) (-15 -3636 ((-1068 |#1|) (-1068 |#1|))) (-15 -3635 ((-1068 |#1|) (-1068 |#1|))) (-15 -3483 ((-1068 |#1|) (-1068 |#1|))) (-15 -3484 ((-1068 |#1|) (-1068 |#1|))) (-15 -3485 ((-1068 |#1|) (-1068 |#1|))) (-15 -3486 ((-1068 |#1|) (-1068 |#1|))) (-15 -3487 ((-1068 |#1|) (-1068 |#1|))) (-15 -3488 ((-1068 |#1|) (-1068 |#1|))) (-15 -3482 ((-2 (|:| -3489 (-1068 |#1|)) (|:| -3490 (-1068 |#1|))) (-1068 |#1|))) (-15 -3489 ((-1068 |#1|) (-1068 |#1|))) (-15 -3490 ((-1068 |#1|) (-1068 |#1|))) (-15 -3491 ((-1068 |#1|) (-1068 |#1|))) (-15 -3492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3493 ((-1068 |#1|) (-1068 |#1|))) (-15 -3494 ((-1068 |#1|) (-1068 |#1|))) (-15 -3495 ((-1068 |#1|) (-1068 |#1|))) (-15 -3496 ((-1068 |#1|) (-1068 |#1|))) (-15 -3497 ((-1068 |#1|) (-1068 |#1|))) (-15 -3498 ((-1068 |#1|) (-1068 |#1|))) (-15 -3499 ((-1068 |#1|) (-1068 |#1|))) (-15 -3500 ((-1068 |#1|) (-1068 |#1|)))) (-38 (-349 (-484)))) (T -1075))
-((-3500 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3482 (*1 *2 *3) (-12 (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-2 (|:| -3489 (-1068 *4)) (|:| -3490 (-1068 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3481 (*1 *2 *3) (-12 (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-2 (|:| -3637 (-1068 *4)) (|:| -3633 (-1068 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))))
-((-3491 (((-1068 |#1|) (-1068 |#1|)) 60 T ELT)) (-3638 (((-1068 |#1|) (-1068 |#1|)) 42 T ELT)) (-3489 (((-1068 |#1|) (-1068 |#1|)) 56 T ELT)) (-3637 (((-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-3493 (((-1068 |#1|) (-1068 |#1|)) 63 T ELT)) (-3636 (((-1068 |#1|) (-1068 |#1|)) 45 T ELT)) (-3941 (((-1068 |#1|) (-1068 |#1|)) 34 T ELT)) (-3942 (((-1068 |#1|) (-1068 |#1|)) 29 T ELT)) (-3494 (((-1068 |#1|) (-1068 |#1|)) 64 T ELT)) (-3635 (((-1068 |#1|) (-1068 |#1|)) 46 T ELT)) (-3492 (((-1068 |#1|) (-1068 |#1|)) 61 T ELT)) (-3634 (((-1068 |#1|) (-1068 |#1|)) 43 T ELT)) (-3490 (((-1068 |#1|) (-1068 |#1|)) 58 T ELT)) (-3633 (((-1068 |#1|) (-1068 |#1|)) 40 T ELT)) (-3497 (((-1068 |#1|) (-1068 |#1|)) 68 T ELT)) (-3485 (((-1068 |#1|) (-1068 |#1|)) 50 T ELT)) (-3495 (((-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3483 (((-1068 |#1|) (-1068 |#1|)) 48 T ELT)) (-3499 (((-1068 |#1|) (-1068 |#1|)) 71 T ELT)) (-3487 (((-1068 |#1|) (-1068 |#1|)) 53 T ELT)) (-3500 (((-1068 |#1|) (-1068 |#1|)) 72 T ELT)) (-3488 (((-1068 |#1|) (-1068 |#1|)) 54 T ELT)) (-3498 (((-1068 |#1|) (-1068 |#1|)) 70 T ELT)) (-3486 (((-1068 |#1|) (-1068 |#1|)) 52 T ELT)) (-3496 (((-1068 |#1|) (-1068 |#1|)) 69 T ELT)) (-3484 (((-1068 |#1|) (-1068 |#1|)) 51 T ELT)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 36 T ELT)))
-(((-1076 |#1|) (-10 -7 (-15 -3942 ((-1068 |#1|) (-1068 |#1|))) (-15 -3941 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3637 ((-1068 |#1|) (-1068 |#1|))) (-15 -3633 ((-1068 |#1|) (-1068 |#1|))) (-15 -3638 ((-1068 |#1|) (-1068 |#1|))) (-15 -3634 ((-1068 |#1|) (-1068 |#1|))) (-15 -3636 ((-1068 |#1|) (-1068 |#1|))) (-15 -3635 ((-1068 |#1|) (-1068 |#1|))) (-15 -3483 ((-1068 |#1|) (-1068 |#1|))) (-15 -3484 ((-1068 |#1|) (-1068 |#1|))) (-15 -3485 ((-1068 |#1|) (-1068 |#1|))) (-15 -3486 ((-1068 |#1|) (-1068 |#1|))) (-15 -3487 ((-1068 |#1|) (-1068 |#1|))) (-15 -3488 ((-1068 |#1|) (-1068 |#1|))) (-15 -3489 ((-1068 |#1|) (-1068 |#1|))) (-15 -3490 ((-1068 |#1|) (-1068 |#1|))) (-15 -3491 ((-1068 |#1|) (-1068 |#1|))) (-15 -3492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3493 ((-1068 |#1|) (-1068 |#1|))) (-15 -3494 ((-1068 |#1|) (-1068 |#1|))) (-15 -3495 ((-1068 |#1|) (-1068 |#1|))) (-15 -3496 ((-1068 |#1|) (-1068 |#1|))) (-15 -3497 ((-1068 |#1|) (-1068 |#1|))) (-15 -3498 ((-1068 |#1|) (-1068 |#1|))) (-15 -3499 ((-1068 |#1|) (-1068 |#1|))) (-15 -3500 ((-1068 |#1|) (-1068 |#1|)))) (-38 (-349 (-484)))) (T -1076))
-((-3500 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
-((-3501 (((-869 |#2|) |#2| |#2|) 51 T ELT)) (-3502 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT)))
-(((-1077 |#1| |#2|) (-10 -7 (-15 -3501 ((-869 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3502 (|#2| |#2| |#1|)) |%noBranch|)) (-495) (-1154 |#1|)) (T -1077))
-((-3502 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-1077 *3 *2)) (-4 *2 (-1154 *3)))) (-3501 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-869 *3)) (-5 *1 (-1077 *4 *3)) (-4 *3 (-1154 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3510 (($ $ (-583 (-694))) 79 T ELT)) (-3887 (($) 33 T ELT)) (-3519 (($ $) 51 T ELT)) (-3750 (((-583 $) $) 60 T ELT)) (-3525 (((-85) $) 19 T ELT)) (-3503 (((-583 (-854 |#2|)) $) 86 T ELT)) (-3504 (($ $) 80 T ELT)) (-3520 (((-694) $) 47 T ELT)) (-3613 (($) 32 T ELT)) (-3513 (($ $ (-583 (-694)) (-854 |#2|)) 72 T ELT) (($ $ (-583 (-694)) (-694)) 73 T ELT) (($ $ (-694) (-854 |#2|)) 75 T ELT)) (-3517 (($ $ $) 57 T ELT) (($ (-583 $)) 59 T ELT)) (-3505 (((-694) $) 87 T ELT)) (-3526 (((-85) $) 15 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3524 (((-85) $) 22 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3506 (((-145) $) 85 T ELT)) (-3509 (((-854 |#2|) $) 81 T ELT)) (-3508 (((-694) $) 82 T ELT)) (-3507 (((-85) $) 84 T ELT)) (-3511 (($ $ (-583 (-694)) (-145)) 78 T ELT)) (-3518 (($ $) 52 T ELT)) (-3945 (((-772) $) 99 T ELT)) (-3512 (($ $ (-583 (-694)) (-85)) 77 T ELT)) (-3521 (((-583 $) $) 11 T ELT)) (-3522 (($ $ (-694)) 46 T ELT)) (-3523 (($ $) 43 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3514 (($ $ $ (-854 |#2|) (-694)) 68 T ELT)) (-3515 (($ $ (-854 |#2|)) 67 T ELT)) (-3516 (($ $ (-583 (-694)) (-854 |#2|)) 66 T ELT) (($ $ (-583 (-694)) (-694)) 70 T ELT) (((-694) $ (-854 |#2|)) 71 T ELT)) (-3056 (((-85) $ $) 92 T ELT)))
-(((-1078 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3526 ((-85) $)) (-15 -3525 ((-85) $)) (-15 -3524 ((-85) $)) (-15 -3613 ($)) (-15 -3887 ($)) (-15 -3523 ($ $)) (-15 -3522 ($ $ (-694))) (-15 -3521 ((-583 $) $)) (-15 -3520 ((-694) $)) (-15 -3519 ($ $)) (-15 -3518 ($ $)) (-15 -3517 ($ $ $)) (-15 -3517 ($ (-583 $))) (-15 -3750 ((-583 $) $)) (-15 -3516 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3515 ($ $ (-854 |#2|))) (-15 -3514 ($ $ $ (-854 |#2|) (-694))) (-15 -3513 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3516 ($ $ (-583 (-694)) (-694))) (-15 -3513 ($ $ (-583 (-694)) (-694))) (-15 -3516 ((-694) $ (-854 |#2|))) (-15 -3513 ($ $ (-694) (-854 |#2|))) (-15 -3512 ($ $ (-583 (-694)) (-85))) (-15 -3511 ($ $ (-583 (-694)) (-145))) (-15 -3510 ($ $ (-583 (-694)))) (-15 -3509 ((-854 |#2|) $)) (-15 -3508 ((-694) $)) (-15 -3507 ((-85) $)) (-15 -3506 ((-145) $)) (-15 -3505 ((-694) $)) (-15 -3504 ($ $)) (-15 -3503 ((-583 (-854 |#2|)) $)))) (-830) (-961)) (T -1078))
-((-3526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3613 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3887 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3519 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3518 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3517 (*1 *1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3515 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)))) (-3514 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3516 (*1 *2 *1 *3) (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3512 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-854 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3504 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3527 ((|#2| $) 11 T ELT)) (-3528 ((|#1| $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3529 (($ |#1| |#2|) 9 T ELT)) (-3945 (((-772) $) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1079 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3529 ($ |#1| |#2|)) (-15 -3528 (|#1| $)) (-15 -3527 (|#2| $)))) (-1013) (-1013)) (T -1079))
-((-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3528 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1013)))) (-3527 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1013)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3530 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1080) (-13 (-995) (-10 -8 (-15 -3530 ((-1048) $))))) (T -1080))
-((-3530 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1080)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 11 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3770 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) 75 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3730 (((-1088 |#1| |#2| |#3|) $) 42 T ELT)) (-3727 (((-3 (-1088 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3728 (((-1088 |#1| |#2| |#3|) $) 33 T ELT)) (-3491 (($ $) 116 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 92 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) 112 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 88 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3622 (((-484) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) 120 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 96 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1088 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3156 (((-1088 |#1| |#2| |#3|) $) 140 T ELT) (((-1089) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (((-349 (-484)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-484) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3729 (($ $) 37 T ELT) (($ (-484) $) 38 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-1088 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1088 |#1| |#2| |#3|)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3466 (((-3 $ #1#) $) 54 T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) 74 (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) 76 (|has| |#1| (-495)) ELT)) (-2994 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2892 (((-85) $) 28 T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-796 (-329))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3771 (((-484) $) NIL T ELT) (((-484) $ (-484)) 26 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1088 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3444 (((-632 $) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-312))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3776 (($ $ (-830)) NIL T ELT)) (-3814 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-484)) 19 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2531 (($ $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2857 (($ $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) 81 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2280 (((-630 (-1088 |#1| |#2| |#3|)) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1088 |#1| |#2| |#3|)))) (-1178 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3778 (($ (-484) (-1088 |#1| |#2| |#3|)) 36 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 79 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 80 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-312))) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3130 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) 158 T ELT)) (-3465 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 82 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-455 (-1089) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089)) (-583 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-455 (-1089) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 (-1088 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1088 |#1| |#2| |#3|)) (-583 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) NIL T ELT) (($ $ $) 61 (|has| (-484) (-1025)) ELT) (($ $ (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-241 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1175 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 (((-1088 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3947 (((-484) $) 43 T ELT)) (-3494 (($ $) 122 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 98 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 118 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 94 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 114 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 90 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3971 (((-473) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-553 (-473))) (|has| |#1| (-312))) ELT) (((-329) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-800 (-329)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-553 (-800 (-329)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) 162 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1088 |#1| |#2| |#3|)) 30 T ELT) (($ (-1175 |#2|)) 25 T ELT) (($ (-1089)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT) (($ (-349 (-484))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) (|has| |#1| (-38 (-349 (-484))))) ELT)) (-3676 ((|#1| $ (-484)) 77 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 12 T ELT)) (-3131 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 128 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 104 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3495 (($ $) 124 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 100 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 132 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 108 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 134 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 110 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 130 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 106 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 126 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 102 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3382 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 16 T CONST)) (-2669 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1175 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 137 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1088 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1088 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1081 |#1| |#2| |#3|) (-13 (-1142 |#1| (-1088 |#1| |#2| |#3|)) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1081))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-3531 ((|#2| |#2| (-1004 |#2|)) 26 T ELT) ((|#2| |#2| (-1089)) 28 T ELT)))
-(((-1082 |#1| |#2|) (-10 -7 (-15 -3531 (|#2| |#2| (-1089))) (-15 -3531 (|#2| |#2| (-1004 |#2|)))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-363 |#1|) (-133) (-27) (-1114))) (T -1082))
-((-3531 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-363 *4) (-133) (-27) (-1114))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1082 *4 *2)))) (-3531 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-363 *4) (-133) (-27) (-1114))))))
-((-3531 (((-3 (-349 (-857 |#1|)) (-265 |#1|)) (-349 (-857 |#1|)) (-1004 (-349 (-857 |#1|)))) 31 T ELT) (((-349 (-857 |#1|)) (-857 |#1|) (-1004 (-857 |#1|))) 44 T ELT) (((-3 (-349 (-857 |#1|)) (-265 |#1|)) (-349 (-857 |#1|)) (-1089)) 33 T ELT) (((-349 (-857 |#1|)) (-857 |#1|) (-1089)) 36 T ELT)))
-(((-1083 |#1|) (-10 -7 (-15 -3531 ((-349 (-857 |#1|)) (-857 |#1|) (-1089))) (-15 -3531 ((-3 (-349 (-857 |#1|)) (-265 |#1|)) (-349 (-857 |#1|)) (-1089))) (-15 -3531 ((-349 (-857 |#1|)) (-857 |#1|) (-1004 (-857 |#1|)))) (-15 -3531 ((-3 (-349 (-857 |#1|)) (-265 |#1|)) (-349 (-857 |#1|)) (-1004 (-349 (-857 |#1|)))))) (-13 (-495) (-950 (-484)))) (T -1083))
-((-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1083 *5)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-857 *5))) (-5 *3 (-857 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 *3)) (-5 *1 (-1083 *5)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 (-349 (-857 *5)) (-265 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-349 (-857 *5))))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 (-857 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-857 *5)))))
-((-2568 (((-85) $ $) 172 T ELT)) (-3188 (((-85) $) 44 T ELT)) (-3766 (((-1178 |#1|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3764 (($ (-1084 |#1|)) NIL T ELT)) (-3083 (((-1084 $) $ (-994)) 83 T ELT) (((-1084 |#1|) $) 72 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) 166 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3754 (($ $ $) 160 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 97 (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) 117 (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-694)) 62 T ELT)) (-3759 (($ $ (-694)) 64 T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-391)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3755 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) 81 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ $) 133 T ELT)) (-3752 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3502 (($ $) 167 (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-694) $) 70 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-994) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3532 (((-772) $ (-772)) 150 T ELT)) (-3771 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 49 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3084 (($ (-1084 |#1|) (-994)) 74 T ELT) (($ (-1084 $) (-994)) 91 T ELT)) (-3776 (($ $ (-694)) 52 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 89 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 155 T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1624 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3765 (((-1084 |#1|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) 77 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) 61 T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 51 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 105 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) 169 (|has| |#1| (-391)) ELT)) (-3737 (($ $ (-694) |#1| $) 125 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 103 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 102 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 110 (|has| |#1| (-821)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-349 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#1| (-495)) ELT)) (-3763 (((-3 $ #1#) $ (-694)) 55 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3947 (((-694) $) 79 T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 164 (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3753 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) 151 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-994)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) 42 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-2666 (($) 20 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 122 T ELT)) (-3948 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 92 T ELT)) (** (($ $ (-830)) 14 T ELT) (($ $ (-694)) 12 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1084 |#1|) (-13 (-1154 |#1|) (-10 -8 (-15 -3532 ((-772) $ (-772))) (-15 -3737 ($ $ (-694) |#1| $)))) (-961)) (T -1084))
-((-3532 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1084 *3)) (-4 *3 (-961)))) (-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1084 *3)) (-4 *3 (-961)))))
-((-3957 (((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 13 T ELT)))
-(((-1085 |#1| |#2|) (-10 -7 (-15 -3957 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)))) (-961) (-961)) (T -1085))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1084 *6)) (-5 *1 (-1085 *5 *6)))))
-((-3970 (((-347 (-1084 (-349 |#4|))) (-1084 (-349 |#4|))) 51 T ELT)) (-3731 (((-347 (-1084 (-349 |#4|))) (-1084 (-349 |#4|))) 52 T ELT)))
-(((-1086 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 (-1084 (-349 |#4|))) (-1084 (-349 |#4|)))) (-15 -3970 ((-347 (-1084 (-349 |#4|))) (-1084 (-349 |#4|))))) (-717) (-756) (-391) (-861 |#3| |#1| |#2|)) (T -1086))
-((-3970 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-391)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-347 (-1084 (-349 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1084 (-349 *7))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-391)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-347 (-1084 (-349 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1084 (-349 *7))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 11 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) NIL T ELT) (($ $ (-349 (-484)) (-349 (-484))) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1081 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1088 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3156 (((-1081 |#1| |#2| |#3|) $) NIL T ELT) (((-1088 |#1| |#2| |#3|) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3780 (((-349 (-484)) $) 59 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-349 (-484)) (-1081 |#1| |#2| |#3|)) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) NIL T ELT) (((-349 (-484)) $ (-349 (-484))) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) 20 T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (((-1081 |#1| |#2| |#3|) $) 41 T ELT)) (-3777 (((-3 (-1081 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3778 (((-1081 |#1| |#2| |#3|) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 39 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 40 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 38 T ELT)) (-3947 (((-349 (-484)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) 62 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1081 |#1| |#2| |#3|)) 30 T ELT) (($ (-1088 |#1| |#2| |#3|)) 31 T ELT) (($ (-1175 |#2|)) 26 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 22 T CONST)) (-2666 (($) 16 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 24 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1087 |#1| |#2| |#3|) (-13 (-1163 |#1| (-1081 |#1| |#2| |#3|)) (-806 $ (-1175 |#2|)) (-950 (-1088 |#1| |#2| |#3|)) (-555 (-1175 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1087))
-((-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 129 T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 119 T ELT)) (-3810 (((-1147 |#2| |#1|) $ (-694)) 69 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-694)) 85 T ELT) (($ $ (-694) (-694)) 82 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 105 T ELT)) (-3491 (($ $) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1068 |#1|)) 113 T ELT)) (-3493 (($ $) 177 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 25 T ELT)) (-3815 (($ $) 28 T ELT)) (-3813 (((-857 |#1|) $ (-694)) 81 T ELT) (((-857 |#1|) $ (-694) (-694)) 83 T ELT)) (-2892 (((-85) $) 124 T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $) 126 T ELT) (((-694) $ (-694)) 128 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT)) (-3814 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 13 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) 135 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3811 (($ $) 133 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 134 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3768 (($ $ (-694)) 15 T ELT)) (-3465 (((-3 $ #1#) $ $) 26 (|has| |#1| (-495)) ELT)) (-3942 (($ $) 137 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3799 ((|#1| $ (-694)) 122 T ELT) (($ $ $) 132 (|has| (-694) (-1025)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1175 |#2|)) 31 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-3494 (($ $) 179 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 175 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) 206 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1147 |#2| |#1|)) 55 T ELT) (($ (-1175 |#2|)) 36 T ELT)) (-3816 (((-1068 |#1|) $) 101 T ELT)) (-3676 ((|#1| $ (-694)) 121 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 58 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 185 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 181 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 189 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-694)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 191 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 187 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 183 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 17 T CONST)) (-2666 (($) 20 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3838 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 141 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1088 |#1| |#2| |#3|) (-13 (-1171 |#1|) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1147 |#2| |#1|))) (-15 -3810 ((-1147 |#2| |#1|) $ (-694))) (-15 -3945 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1088))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1088 *3 *4 *5)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1088 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1089)) (-14 *6 *4))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3536 (($ $ (-583 (-772))) 48 T ELT)) (-3537 (($ $ (-583 (-772))) 46 T ELT)) (-3534 (((-1072) $) 88 T ELT)) (-3539 (((-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772)))) $) 95 T ELT)) (-3540 (((-85) $) 86 T ELT)) (-3538 (($ $ (-583 (-583 (-772)))) 45 T ELT) (($ $ (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772))))) 85 T ELT)) (-3723 (($) 151 T CONST)) (-3157 (((-3 (-446) "failed") $) 155 T ELT)) (-3156 (((-446) $) NIL T ELT)) (-3542 (((-1184)) 123 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 55 T ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 62 T ELT)) (-3613 (($) 109 T ELT) (($ $) 118 T ELT)) (-3541 (($ $) 87 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3533 (((-583 $) $) 124 T ELT)) (-3242 (((-1072) $) 101 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 (($ $ (-583 (-772))) 47 T ELT)) (-3971 (((-473) $) 33 T ELT) (((-1089) $) 34 T ELT) (((-800 (-484)) $) 66 T ELT) (((-800 (-329)) $) 64 T ELT)) (-3945 (((-772) $) 41 T ELT) (($ (-1072)) 35 T ELT) (($ (-446)) 153 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3535 (($ $ (-583 (-772))) 49 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 37 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 38 T ELT)))
-(((-1089) (-13 (-756) (-553 (-473)) (-553 (-1089)) (-555 (-1072)) (-950 (-446)) (-553 (-800 (-484))) (-553 (-800 (-329))) (-796 (-484)) (-796 (-329)) (-10 -8 (-15 -3613 ($)) (-15 -3613 ($ $)) (-15 -3542 ((-1184))) (-15 -3541 ($ $)) (-15 -3540 ((-85) $)) (-15 -3539 ((-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772)))) $)) (-15 -3538 ($ $ (-583 (-583 (-772))))) (-15 -3538 ($ $ (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772)))))) (-15 -3537 ($ $ (-583 (-772)))) (-15 -3536 ($ $ (-583 (-772)))) (-15 -3535 ($ $ (-583 (-772)))) (-15 -3799 ($ $ (-583 (-772)))) (-15 -3534 ((-1072) $)) (-15 -3533 ((-583 $) $)) (-15 -3723 ($) -3951)))) (T -1089))
-((-3613 (*1 *1) (-5 *1 (-1089))) (-3613 (*1 *1 *1) (-5 *1 (-1089))) (-3542 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1089)))) (-3541 (*1 *1 *1) (-5 *1 (-1089))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1089)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1089)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1089)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1089)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1089)))) (-3723 (*1 *1) (-5 *1 (-1089))))
-((-3543 (((-1178 |#1|) |#1| (-830)) 18 T ELT) (((-1178 |#1|) (-583 |#1|)) 25 T ELT)))
-(((-1090 |#1|) (-10 -7 (-15 -3543 ((-1178 |#1|) (-583 |#1|))) (-15 -3543 ((-1178 |#1|) |#1| (-830)))) (-961)) (T -1090))
-((-3543 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1178 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-961)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1178 *4)) (-5 *1 (-1090 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1623 (($ $ |#1| (-884) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 18 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-884)) NIL T ELT)) (-2820 (((-884) $) NIL T ELT)) (-1624 (($ (-1 (-884) (-884)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-3737 (($ $ (-884) |#1| $) NIL (-12 (|has| (-884) (-104)) (|has| |#1| (-495))) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3947 (((-884) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-884)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 13 T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1091 |#1|) (-13 (-277 |#1| (-884)) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| (-884) (-104)) (-15 -3737 ($ $ (-884) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3992)) (-6 -3992) |%noBranch|))) (-961)) (T -1091))
-((-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1091 *3)) (-4 *3 (-495)) (-4 *3 (-961)))))
-((-3544 (((-1093) (-1089) $) 26 T ELT)) (-3554 (($) 30 T ELT)) (-3546 (((-3 (|:| |fst| (-376)) (|:| -3909 #1="void")) (-1089) $) 23 T ELT)) (-3548 (((-1184) (-1089) (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) $) 42 T ELT) (((-1184) (-1089) (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) 43 T ELT) (((-1184) (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) 44 T ELT)) (-3556 (((-1184) (-1089)) 59 T ELT)) (-3547 (((-1184) (-1089) $) 56 T ELT) (((-1184) (-1089)) 57 T ELT) (((-1184)) 58 T ELT)) (-3552 (((-1184) (-1089)) 38 T ELT)) (-3550 (((-1089)) 37 T ELT)) (-3564 (($) 35 T ELT)) (-3563 (((-378) (-1089) (-378) (-1089) $) 46 T ELT) (((-378) (-583 (-1089)) (-378) (-1089) $) 50 T ELT) (((-378) (-1089) (-378)) 47 T ELT) (((-378) (-1089) (-378) (-1089)) 51 T ELT)) (-3551 (((-1089)) 36 T ELT)) (-3945 (((-772) $) 29 T ELT)) (-3553 (((-1184)) 31 T ELT) (((-1184) (-1089)) 34 T ELT)) (-3545 (((-583 (-1089)) (-1089) $) 25 T ELT)) (-3549 (((-1184) (-1089) (-583 (-1089)) $) 39 T ELT) (((-1184) (-1089) (-583 (-1089))) 40 T ELT) (((-1184) (-583 (-1089))) 41 T ELT)))
-(((-1092) (-13 (-552 (-772)) (-10 -8 (-15 -3554 ($)) (-15 -3553 ((-1184))) (-15 -3553 ((-1184) (-1089))) (-15 -3563 ((-378) (-1089) (-378) (-1089) $)) (-15 -3563 ((-378) (-583 (-1089)) (-378) (-1089) $)) (-15 -3563 ((-378) (-1089) (-378))) (-15 -3563 ((-378) (-1089) (-378) (-1089))) (-15 -3552 ((-1184) (-1089))) (-15 -3551 ((-1089))) (-15 -3550 ((-1089))) (-15 -3549 ((-1184) (-1089) (-583 (-1089)) $)) (-15 -3549 ((-1184) (-1089) (-583 (-1089)))) (-15 -3549 ((-1184) (-583 (-1089)))) (-15 -3548 ((-1184) (-1089) (-3 (|:| |fst| (-376)) (|:| -3909 #1="void")) $)) (-15 -3548 ((-1184) (-1089) (-3 (|:| |fst| (-376)) (|:| -3909 #1#)))) (-15 -3548 ((-1184) (-3 (|:| |fst| (-376)) (|:| -3909 #1#)))) (-15 -3547 ((-1184) (-1089) $)) (-15 -3547 ((-1184) (-1089))) (-15 -3547 ((-1184))) (-15 -3556 ((-1184) (-1089))) (-15 -3564 ($)) (-15 -3546 ((-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-1089) $)) (-15 -3545 ((-583 (-1089)) (-1089) $)) (-15 -3544 ((-1093) (-1089) $))))) (T -1092))
-((-3554 (*1 *1) (-5 *1 (-1092))) (-3553 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3563 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3563 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-378)) (-5 *3 (-583 (-1089))) (-5 *4 (-1089)) (-5 *1 (-1092)))) (-3563 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3563 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3551 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-3550 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-3549 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3548 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3909 #1="void"))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3547 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3564 (*1 *1) (-5 *1 (-1092))) (-3546 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *1 (-1092)))) (-3545 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089)))) (-3544 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092)))))
-((-3558 (((-583 (-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484))))))))) $) 66 T ELT)) (-3560 (((-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484)))))))) (-376) $) 47 T ELT)) (-3555 (($ (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| (-378))))) 17 T ELT)) (-3556 (((-1184) $) 73 T ELT)) (-3561 (((-583 (-1089)) $) 22 T ELT)) (-3557 (((-1015) $) 60 T ELT)) (-3562 (((-378) (-1089) $) 27 T ELT)) (-3559 (((-583 (-1089)) $) 30 T ELT)) (-3564 (($) 19 T ELT)) (-3563 (((-378) (-583 (-1089)) (-378) $) 25 T ELT) (((-378) (-1089) (-378) $) 24 T ELT)) (-3945 (((-772) $) 12 T ELT) (((-1101 (-1089) (-378)) $) 13 T ELT)))
-(((-1093) (-13 (-552 (-772)) (-10 -8 (-15 -3945 ((-1101 (-1089) (-378)) $)) (-15 -3564 ($)) (-15 -3563 ((-378) (-583 (-1089)) (-378) $)) (-15 -3563 ((-378) (-1089) (-378) $)) (-15 -3562 ((-378) (-1089) $)) (-15 -3561 ((-583 (-1089)) $)) (-15 -3560 ((-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484)))))))) (-376) $)) (-15 -3559 ((-583 (-1089)) $)) (-15 -3558 ((-583 (-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484))))))))) $)) (-15 -3557 ((-1015) $)) (-15 -3556 ((-1184) $)) (-15 -3555 ($ (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| (-378))))))))) (T -1093))
-((-3945 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1089) (-378))) (-5 *1 (-1093)))) (-3564 (*1 *1) (-5 *1 (-1093))) (-3563 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-378)) (-5 *3 (-583 (-1089))) (-5 *1 (-1093)))) (-3563 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1093)))) (-3562 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-378)) (-5 *1 (-1093)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1093)))) (-3560 (*1 *2 *3 *1) (-12 (-5 *3 (-376)) (-5 *2 (-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484))))))))) (-5 *1 (-1093)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1093)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484)))))))))) (-5 *1 (-1093)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1093)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1093)))) (-3555 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| (-378))))) (-5 *1 (-1093)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3157 (((-3 (-484) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-446) #1#) $) 43 T ELT) (((-3 (-1072) #1#) $) 47 T ELT)) (-3156 (((-484) $) 30 T ELT) (((-179) $) 36 T ELT) (((-446) $) 40 T ELT) (((-1072) $) 48 T ELT)) (-3569 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3568 (((-3 (-484) (-179) (-446) (-1072) $) $) 56 T ELT)) (-3567 (((-583 $) $) 58 T ELT)) (-3971 (((-1015) $) 24 T ELT) (($ (-1015)) 25 T ELT)) (-3566 (((-85) $) 57 T ELT)) (-3945 (((-772) $) 23 T ELT) (($ (-484)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-446)) 38 T ELT) (($ (-1072)) 44 T ELT) (((-473) $) 60 T ELT) (((-484) $) 31 T ELT) (((-179) $) 37 T ELT) (((-446) $) 41 T ELT) (((-1072) $) 49 T ELT)) (-3565 (((-85) $ (|[\|\|]| (-484))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-446))) 19 T ELT) (((-85) $ (|[\|\|]| (-1072))) 16 T ELT)) (-3570 (($ (-446) (-583 $)) 51 T ELT) (($ $ (-583 $)) 52 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3571 (((-484) $) 27 T ELT) (((-179) $) 33 T ELT) (((-446) $) 39 T ELT) (((-1072) $) 45 T ELT)) (-3056 (((-85) $ $) 7 T ELT)))
-(((-1094) (-13 (-1174) (-1013) (-950 (-484)) (-950 (-179)) (-950 (-446)) (-950 (-1072)) (-552 (-473)) (-10 -8 (-15 -3971 ((-1015) $)) (-15 -3971 ($ (-1015))) (-15 -3945 ((-484) $)) (-15 -3571 ((-484) $)) (-15 -3945 ((-179) $)) (-15 -3571 ((-179) $)) (-15 -3945 ((-446) $)) (-15 -3571 ((-446) $)) (-15 -3945 ((-1072) $)) (-15 -3571 ((-1072) $)) (-15 -3570 ($ (-446) (-583 $))) (-15 -3570 ($ $ (-583 $))) (-15 -3569 ((-85) $)) (-15 -3568 ((-3 (-484) (-179) (-446) (-1072) $) $)) (-15 -3567 ((-583 $) $)) (-15 -3566 ((-85) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-484)))) (-15 -3565 ((-85) $ (|[\|\|]| (-179)))) (-15 -3565 ((-85) $ (|[\|\|]| (-446)))) (-15 -3565 ((-85) $ (|[\|\|]| (-1072))))))) (T -1094))
-((-3971 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1094)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1094)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-3570 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-1094))) (-5 *1 (-1094)))) (-3570 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1094)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-3 (-484) (-179) (-446) (-1072) (-1094))) (-5 *1 (-1094)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1094)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-1094)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 21 T ELT)) (-3723 (($) 10 T CONST)) (-2994 (($) 25 T ELT)) (-2531 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2857 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2010 (((-830) $) 23 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 22 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)))
-(((-1095 |#1|) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951))) (-830)) (T -1095))
-((-3723 (*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))))
-((-484) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 24 T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) 18 T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2857 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) 20 T ELT)) (-3725 (($ $ $) 19 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 22 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 21 T ELT)))
-(((-1096 |#1|) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951))) (-830)) (T -1096))
-((-3725 (*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))) (-3724 (*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))) (-3723 (*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))))
-((-694) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 9 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 7 T ELT)))
-(((-1097) (-1013)) (T -1097))
-NIL
-((-3573 (((-583 (-583 (-857 |#1|))) (-583 (-349 (-857 |#1|))) (-583 (-1089))) 69 T ELT)) (-3572 (((-583 (-249 (-349 (-857 |#1|)))) (-249 (-349 (-857 |#1|)))) 81 T ELT) (((-583 (-249 (-349 (-857 |#1|)))) (-349 (-857 |#1|))) 77 T ELT) (((-583 (-249 (-349 (-857 |#1|)))) (-249 (-349 (-857 |#1|))) (-1089)) 82 T ELT) (((-583 (-249 (-349 (-857 |#1|)))) (-349 (-857 |#1|)) (-1089)) 76 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-249 (-349 (-857 |#1|))))) 108 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-349 (-857 |#1|)))) 107 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-249 (-349 (-857 |#1|)))) (-583 (-1089))) 109 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-349 (-857 |#1|))) (-583 (-1089))) 106 T ELT)))
-(((-1098 |#1|) (-10 -7 (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-349 (-857 |#1|))) (-583 (-1089)))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-249 (-349 (-857 |#1|)))) (-583 (-1089)))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-349 (-857 |#1|))))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-249 (-349 (-857 |#1|)))))) (-15 -3572 ((-583 (-249 (-349 (-857 |#1|)))) (-349 (-857 |#1|)) (-1089))) (-15 -3572 ((-583 (-249 (-349 (-857 |#1|)))) (-249 (-349 (-857 |#1|))) (-1089))) (-15 -3572 ((-583 (-249 (-349 (-857 |#1|)))) (-349 (-857 |#1|)))) (-15 -3572 ((-583 (-249 (-349 (-857 |#1|)))) (-249 (-349 (-857 |#1|))))) (-15 -3573 ((-583 (-583 (-857 |#1|))) (-583 (-349 (-857 |#1|))) (-583 (-1089))))) (-495)) (T -1098))
-((-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1098 *5)))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-249 (-349 (-857 *4)))))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-349 (-857 *4))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-249 (-349 (-857 *5)))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-349 (-857 *5))))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-1098 *4)) (-5 *3 (-583 (-249 (-349 (-857 *4))))))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-583 (-349 (-857 *4)))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-1098 *4)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-1098 *5)) (-5 *3 (-583 (-249 (-349 (-857 *5))))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-1098 *5)))))
-((-3578 (((-1072)) 7 T ELT)) (-3575 (((-1072)) 11 T CONST)) (-3574 (((-1184) (-1072)) 13 T ELT)) (-3577 (((-1072)) 8 T CONST)) (-3576 (((-103)) 10 T CONST)))
-(((-1099) (-13 (-1128) (-10 -7 (-15 -3578 ((-1072))) (-15 -3577 ((-1072)) -3951) (-15 -3576 ((-103)) -3951) (-15 -3575 ((-1072)) -3951) (-15 -3574 ((-1184) (-1072)))))) (T -1099))
-((-3578 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3577 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3576 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1099)))) (-3575 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1099)))))
-((-3582 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 56 T ELT)) (-3585 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 38 T ELT)) (-3586 (((-1102 (-583 |#1|)) (-583 |#1|)) 49 T ELT)) (-3588 (((-583 (-583 |#1|)) (-583 |#1|)) 45 T ELT)) (-3591 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 53 T ELT)) (-3590 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 52 T ELT)) (-3587 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 43 T ELT)) (-3589 (((-583 |#1|) (-583 |#1|)) 46 T ELT)) (-3581 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 32 T ELT)) (-3580 (((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 29 T ELT)) (-3579 (((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 24 T ELT)) (-3583 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 58 T ELT)) (-3584 (((-583 (-583 |#1|)) (-1102 (-583 |#1|))) 60 T ELT)))
-(((-1100 |#1|) (-10 -7 (-15 -3579 ((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -3580 ((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3581 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3582 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3583 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3584 ((-583 (-583 |#1|)) (-1102 (-583 |#1|)))) (-15 -3585 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -3586 ((-1102 (-583 |#1|)) (-583 |#1|))) (-15 -3587 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3588 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -3589 ((-583 |#1|) (-583 |#1|))) (-15 -3590 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -3591 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-756)) (T -1100))
-((-3591 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-3590 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1100 *6)) (-5 *4 (-583 *5)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1100 *3)))) (-3588 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-583 *4)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1100 *3)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-1102 (-583 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-583 *4)))) (-3585 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1100 *4)) (-5 *3 (-583 (-583 *4))))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-1102 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1100 *4)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1100 *4)) (-4 *4 (-756)))) (-3582 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756)) (-5 *1 (-1100 *4)))) (-3581 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *1 (-1100 *4)))) (-3580 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1100 *5)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1100 *6)) (-5 *5 (-583 *4)))))
-((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-1101 |#1| |#2|) (-1106 |#1| |#2|) (-1013) (-1013)) (T -1101))
-NIL
-((-3592 (($ (-583 (-583 |#1|))) 10 T ELT)) (-3593 (((-583 (-583 |#1|)) $) 11 T ELT)) (-3945 (((-772) $) 33 T ELT)))
-(((-1102 |#1|) (-10 -8 (-15 -3592 ($ (-583 (-583 |#1|)))) (-15 -3593 ((-583 (-583 |#1|)) $)) (-15 -3945 ((-772) $))) (-1013)) (T -1102))
-((-3945 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) (-3592 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-1102 *3)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3594 (($ |#1| (-55)) 11 T ELT)) (-3541 ((|#1| $) 13 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2633 (((-85) $ |#1|) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) 15 T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1103 |#1|) (-13 (-747 |#1|) (-10 -8 (-15 -3594 ($ |#1| (-55))))) (-1013)) (T -1103))
-((-3594 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1103 *2)) (-4 *2 (-1013)))))
-((-3595 ((|#1| (-583 |#1|)) 46 T ELT)) (-3597 ((|#1| |#1| (-484)) 24 T ELT)) (-3596 (((-1084 |#1|) |#1| (-830)) 20 T ELT)))
-(((-1104 |#1|) (-10 -7 (-15 -3595 (|#1| (-583 |#1|))) (-15 -3596 ((-1084 |#1|) |#1| (-830))) (-15 -3597 (|#1| |#1| (-484)))) (-312)) (T -1104))
-((-3597 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1104 *2)) (-4 *2 (-312)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1084 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-312)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1104 *2)) (-4 *2 (-312)))))
-((-3598 (($) 10 T ELT) (($ (-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3404 (($ (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 65 T ELT) (($ (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 35 T ELT) (((-583 |#3|) $) 37 T ELT) (((-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 55 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT) (($ (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 55 T ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1273 (((-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 58 T ELT)) (-3608 (($ (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2203 (((-583 |#2|) $) 19 T ELT)) (-2204 (((-85) |#2| $) 63 T ELT)) (-1353 (((-3 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 62 T ELT)) (-1274 (((-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 67 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-2205 (((-583 |#3|) $) 39 T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-694) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-694) |#3| $) NIL T ELT) (((-694) (-1 (-85) |#3|) $) 77 T ELT) (((-694) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3945 (((-772) $) 27 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 69 T ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3056 (((-85) $ $) 49 T ELT)))
-(((-1105 |#1| |#2| |#3|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3957 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3598 (|#1| (-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))))) (-15 -3598 (|#1|)) (-15 -3957 (|#1| (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 (|#1| (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2889 ((-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1945 ((-694) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1945 ((-694) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3404 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3957 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1948 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1945 ((-694) (-1 (-85) |#3|) |#1|)) (-15 -2889 ((-583 |#3|) |#1|)) (-15 -1945 ((-694) |#3| |#1|)) (-15 -2205 ((-583 |#3|) |#1|)) (-15 -2204 ((-85) |#2| |#1|)) (-15 -2203 ((-583 |#2|) |#1|)) (-15 -3404 (|#1| (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3404 (|#1| (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1353 ((-3 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1273 ((-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3608 (|#1| (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1274 ((-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1945 ((-694) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2889 ((-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1945 ((-694) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 (|#1| (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3957 (|#1| (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|))) (-1106 |#2| |#3|) (-1013) (-1013)) (T -1105))
-NIL
-((-2568 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3598 (($) 110 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 109 T ELT)) (-2198 (((-1184) $ |#1| |#1|) 98 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 68 T ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) 69 T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) 87 T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 77 (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 113 (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) 95 (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 78 (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 121 T ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 123 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2201 ((|#1| $) 94 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 112 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 111 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 108 T ELT)) (-3242 (((-1072) $) 22 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2232 (((-583 |#1|) $) 70 T ELT)) (-2233 (((-85) |#1| $) 71 T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2203 (((-583 |#1|) $) 92 T ELT)) (-2204 (((-85) |#1| $) 91 T ELT)) (-3243 (((-1033) $) 21 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3800 ((|#2| $) 96 (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2199 (($ $ |#2|) 97 (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 119 T ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 117 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 116 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 115 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 114 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 90 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) |#2| $) 79 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 122 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 120 T ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3945 (((-772) $) 17 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-1264 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 118 T ELT)) (-3056 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-1106 |#1| |#2|) (-113) (-1013) (-1013)) (T -1106))
-((-3598 (*1 *1) (-12 (-4 *1 (-1106 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3598 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3859 *3) (|:| |entry| *4)))) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1106 *3 *4)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1106 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
-(-13 (-549 |t#1| |t#2|) (-317 (-2 (|:| -3859 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3598 ($)) (-15 -3598 ($ (-583 (-2 (|:| -3859 |t#1|) (|:| |entry| |t#2|))))) (-15 -3957 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-76 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-317 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-428 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-428 |#2|) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-1013) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ((-1128) . T))
-((-3604 (((-85)) 29 T ELT)) (-3601 (((-1184) (-1072)) 31 T ELT)) (-3605 (((-85)) 41 T ELT)) (-3602 (((-1184)) 39 T ELT)) (-3600 (((-1184) (-1072) (-1072)) 30 T ELT)) (-3606 (((-85)) 42 T ELT)) (-3608 (((-1184) |#1| |#2|) 53 T ELT)) (-3599 (((-1184)) 26 T ELT)) (-3607 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3603 (((-1184)) 40 T ELT)))
-(((-1107 |#1| |#2|) (-10 -7 (-15 -3599 ((-1184))) (-15 -3600 ((-1184) (-1072) (-1072))) (-15 -3601 ((-1184) (-1072))) (-15 -3602 ((-1184))) (-15 -3603 ((-1184))) (-15 -3604 ((-85))) (-15 -3605 ((-85))) (-15 -3606 ((-85))) (-15 -3607 ((-3 |#2| "failed") |#1|)) (-15 -3608 ((-1184) |#1| |#2|))) (-1013) (-1013)) (T -1107))
-((-3608 (*1 *2 *3 *4) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3607 (*1 *2 *3) (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1013)))) (-3606 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3605 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3604 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3603 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3602 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3600 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3599 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3614 (((-583 (-1072)) $) 37 T ELT)) (-3610 (((-583 (-1072)) $ (-583 (-1072))) 40 T ELT)) (-3609 (((-583 (-1072)) $ (-583 (-1072))) 39 T ELT)) (-3611 (((-583 (-1072)) $ (-583 (-1072))) 41 T ELT)) (-3612 (((-583 (-1072)) $) 36 T ELT)) (-3613 (($) 26 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3615 (((-583 (-1072)) $) 38 T ELT)) (-3616 (((-1184) $ (-484)) 33 T ELT) (((-1184) $) 34 T ELT)) (-3971 (($ (-772) (-484)) 31 T ELT) (($ (-772) (-484) (-772)) NIL T ELT)) (-3945 (((-772) $) 47 T ELT) (($ (-772)) 30 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1108) (-13 (-1013) (-555 (-772)) (-10 -8 (-15 -3971 ($ (-772) (-484))) (-15 -3971 ($ (-772) (-484) (-772))) (-15 -3616 ((-1184) $ (-484))) (-15 -3616 ((-1184) $)) (-15 -3615 ((-583 (-1072)) $)) (-15 -3614 ((-583 (-1072)) $)) (-15 -3613 ($)) (-15 -3612 ((-583 (-1072)) $)) (-15 -3611 ((-583 (-1072)) $ (-583 (-1072)))) (-15 -3610 ((-583 (-1072)) $ (-583 (-1072)))) (-15 -3609 ((-583 (-1072)) $ (-583 (-1072))))))) (T -1108))
-((-3971 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1108)))) (-3971 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1108)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1108)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1108)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3613 (*1 *1) (-5 *1 (-1108))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3611 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3610 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3609 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))))
-((-3945 (((-1108) |#1|) 11 T ELT)))
-(((-1109 |#1|) (-10 -7 (-15 -3945 ((-1108) |#1|))) (-1013)) (T -1109))
-((-3945 (*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1109 *3)) (-4 *3 (-1013)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3621 (((-1072) $ (-1072)) 21 T ELT) (((-1072) $) 20 T ELT)) (-1696 (((-1072) $ (-1072)) 19 T ELT)) (-1700 (($ $ (-1072)) NIL T ELT)) (-3619 (((-3 (-1072) #1="failed") $) 11 T ELT)) (-3620 (((-1072) $) 8 T ELT)) (-3618 (((-3 (-1072) #1#) $) 12 T ELT)) (-1697 (((-1072) $) 9 T ELT)) (-1701 (($ (-337)) NIL T ELT) (($ (-337) (-1072)) NIL T ELT)) (-3541 (((-337) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1698 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3617 (((-85) $) 25 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1699 (($ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1110) (-13 (-314 (-337) (-1072)) (-10 -8 (-15 -3621 ((-1072) $ (-1072))) (-15 -3621 ((-1072) $)) (-15 -3620 ((-1072) $)) (-15 -3619 ((-3 (-1072) #1="failed") $)) (-15 -3618 ((-3 (-1072) #1#) $)) (-15 -3617 ((-85) $))))) (T -1110))
-((-3621 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3619 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1110)))))
-((-3622 (((-3 (-484) #1="failed") |#1|) 19 T ELT)) (-3623 (((-3 (-484) #1#) |#1|) 14 T ELT)) (-3624 (((-484) (-1072)) 33 T ELT)))
-(((-1111 |#1|) (-10 -7 (-15 -3622 ((-3 (-484) #1="failed") |#1|)) (-15 -3623 ((-3 (-484) #1#) |#1|)) (-15 -3624 ((-484) (-1072)))) (-961)) (T -1111))
-((-3624 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-1111 *4)) (-4 *4 (-961)))) (-3623 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-961)))) (-3622 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-961)))))
-((-3625 (((-1046 (-179))) 9 T ELT)))
-(((-1112) (-10 -7 (-15 -3625 ((-1046 (-179)))))) (T -1112))
-((-3625 (*1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1112)))))
-((-3626 (($) 12 T ELT)) (-3497 (($ $) 36 T ELT)) (-3495 (($ $) 34 T ELT)) (-3483 (($ $) 26 T ELT)) (-3499 (($ $) 18 T ELT)) (-3500 (($ $) 16 T ELT)) (-3498 (($ $) 20 T ELT)) (-3486 (($ $) 31 T ELT)) (-3496 (($ $) 35 T ELT)) (-3484 (($ $) 30 T ELT)))
-(((-1113 |#1|) (-10 -7 (-15 -3626 (|#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3484 (|#1| |#1|))) (-1114)) (T -1113))
-NIL
-((-3491 (($ $) 26 T ELT)) (-3638 (($ $) 11 T ELT)) (-3489 (($ $) 27 T ELT)) (-3637 (($ $) 10 T ELT)) (-3493 (($ $) 28 T ELT)) (-3636 (($ $) 9 T ELT)) (-3626 (($) 16 T ELT)) (-3941 (($ $) 19 T ELT)) (-3942 (($ $) 18 T ELT)) (-3494 (($ $) 29 T ELT)) (-3635 (($ $) 8 T ELT)) (-3492 (($ $) 30 T ELT)) (-3634 (($ $) 7 T ELT)) (-3490 (($ $) 31 T ELT)) (-3633 (($ $) 6 T ELT)) (-3497 (($ $) 20 T ELT)) (-3485 (($ $) 32 T ELT)) (-3495 (($ $) 21 T ELT)) (-3483 (($ $) 33 T ELT)) (-3499 (($ $) 22 T ELT)) (-3487 (($ $) 34 T ELT)) (-3500 (($ $) 23 T ELT)) (-3488 (($ $) 35 T ELT)) (-3498 (($ $) 24 T ELT)) (-3486 (($ $) 36 T ELT)) (-3496 (($ $) 25 T ELT)) (-3484 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT)))
-(((-1114) (-113)) (T -1114))
-((-3626 (*1 *1) (-4 *1 (-1114))))
-(-13 (-1117) (-66) (-432) (-35) (-239) (-10 -8 (-15 -3626 ($))))
-(((-35) . T) ((-66) . T) ((-239) . T) ((-432) . T) ((-1117) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 19 T ELT)) (-3631 (($ |#1| (-583 $)) 28 T ELT) (($ (-583 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3025 ((|#1| $ |#1|) 14 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 13 (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-2889 (((-583 |#1|) $) 70 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 59 T ELT)) (-3027 (((-85) $ $) 50 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 71 T ELT)) (-3245 (((-85) |#1| $) 69 (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3030 (((-583 |#1|) $) 55 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 102 T ELT)) (-3402 (((-85) $) 9 T ELT)) (-3564 (($) 10 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3627 (((-583 $) $) 84 T ELT)) (-3628 (((-85) $ $) 105 T ELT)) (-3629 (((-583 $) $) 100 T ELT)) (-3630 (($ $) 101 T ELT)) (-3632 (((-85) $) 77 T ELT)) (-1945 (((-694) |#1| $) 17 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 25 T ELT)) (-3399 (($ $) 83 T ELT)) (-3945 (((-772) $) 86 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 12 T ELT)) (-3028 (((-85) $ $) 39 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3056 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 81 T ELT)))
-(((-1115 |#1|) (-13 (-923 |#1|) (-317 |#1|) (-10 -8 (-6 -3995) (-15 -3631 ($ |#1| (-583 $))) (-15 -3631 ($ (-583 |#1|))) (-15 -3631 ($ |#1|)) (-15 -3632 ((-85) $)) (-15 -3630 ($ $)) (-15 -3629 ((-583 $) $)) (-15 -3628 ((-85) $ $)) (-15 -3627 ((-583 $) $)))) (-1013)) (T -1115))
-((-3632 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3631 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3631 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-1115 *3)))) (-3631 (*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3630 (*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-583 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3628 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-583 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
-((-3638 (($ $) 15 T ELT)) (-3636 (($ $) 12 T ELT)) (-3635 (($ $) 10 T ELT)) (-3634 (($ $) 17 T ELT)))
-(((-1116 |#1|) (-10 -7 (-15 -3634 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3638 (|#1| |#1|))) (-1117)) (T -1116))
-NIL
-((-3638 (($ $) 11 T ELT)) (-3637 (($ $) 10 T ELT)) (-3636 (($ $) 9 T ELT)) (-3635 (($ $) 8 T ELT)) (-3634 (($ $) 7 T ELT)) (-3633 (($ $) 6 T ELT)))
-(((-1117) (-113)) (T -1117))
-((-3638 (*1 *1 *1) (-4 *1 (-1117))) (-3637 (*1 *1 *1) (-4 *1 (-1117))) (-3636 (*1 *1 *1) (-4 *1 (-1117))) (-3635 (*1 *1 *1) (-4 *1 (-1117))) (-3634 (*1 *1 *1) (-4 *1 (-1117))) (-3633 (*1 *1 *1) (-4 *1 (-1117))))
-(-13 (-10 -8 (-15 -3633 ($ $)) (-15 -3634 ($ $)) (-15 -3635 ($ $)) (-15 -3636 ($ $)) (-15 -3637 ($ $)) (-15 -3638 ($ $))))
-((-3641 ((|#2| |#2|) 95 T ELT)) (-3644 (((-85) |#2|) 29 T ELT)) (-3642 ((|#2| |#2|) 33 T ELT)) (-3643 ((|#2| |#2|) 35 T ELT)) (-3639 ((|#2| |#2| (-1089)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3645 (((-142 |#2|) |#2|) 31 T ELT)) (-3640 ((|#2| |#2| (-1089)) 91 T ELT) ((|#2| |#2|) 92 T ELT)))
-(((-1118 |#1| |#2|) (-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1089))) (-15 -3640 (|#2| |#2|)) (-15 -3640 (|#2| |#2| (-1089))) (-15 -3641 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 ((-85) |#2|)) (-15 -3645 ((-142 |#2|) |#2|))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -1118))
-((-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-142 *3)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))))
-((-3646 ((|#4| |#4| |#1|) 31 T ELT)) (-3647 ((|#4| |#4| |#1|) 32 T ELT)))
-(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3646 (|#4| |#4| |#1|)) (-15 -3647 (|#4| |#4| |#1|))) (-495) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|)) (T -1119))
-((-3647 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3646 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-((-3665 ((|#2| |#2|) 148 T ELT)) (-3667 ((|#2| |#2|) 145 T ELT)) (-3664 ((|#2| |#2|) 136 T ELT)) (-3666 ((|#2| |#2|) 133 T ELT)) (-3663 ((|#2| |#2|) 141 T ELT)) (-3662 ((|#2| |#2|) 129 T ELT)) (-3651 ((|#2| |#2|) 44 T ELT)) (-3650 ((|#2| |#2|) 105 T ELT)) (-3648 ((|#2| |#2|) 88 T ELT)) (-3661 ((|#2| |#2|) 143 T ELT)) (-3660 ((|#2| |#2|) 131 T ELT)) (-3673 ((|#2| |#2|) 153 T ELT)) (-3671 ((|#2| |#2|) 151 T ELT)) (-3672 ((|#2| |#2|) 152 T ELT)) (-3670 ((|#2| |#2|) 150 T ELT)) (-3649 ((|#2| |#2|) 163 T ELT)) (-3674 ((|#2| |#2|) 30 (-12 (|has| |#2| (-553 (-800 |#1|))) (|has| |#2| (-796 |#1|)) (|has| |#1| (-553 (-800 |#1|))) (|has| |#1| (-796 |#1|))) ELT)) (-3652 ((|#2| |#2|) 89 T ELT)) (-3653 ((|#2| |#2|) 154 T ELT)) (-3962 ((|#2| |#2|) 155 T ELT)) (-3659 ((|#2| |#2|) 142 T ELT)) (-3658 ((|#2| |#2|) 130 T ELT)) (-3657 ((|#2| |#2|) 149 T ELT)) (-3669 ((|#2| |#2|) 147 T ELT)) (-3656 ((|#2| |#2|) 137 T ELT)) (-3668 ((|#2| |#2|) 135 T ELT)) (-3655 ((|#2| |#2|) 139 T ELT)) (-3654 ((|#2| |#2|) 127 T ELT)))
-(((-1120 |#1| |#2|) (-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (IF (|has| |#1| (-796 |#1|)) (IF (|has| |#1| (-553 (-800 |#1|))) (IF (|has| |#2| (-553 (-800 |#1|))) (IF (|has| |#2| (-796 |#1|)) (-15 -3674 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-391) (-13 (-363 |#1|) (-1114))) (T -1120))
-((-3674 (*1 *2 *2) (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3962 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-1089)) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3813 (((-857 |#1|) $ (-694)) 18 T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $ (-1089)) NIL T ELT) (((-694) $ (-1089) (-694)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ $ (-583 (-1089)) (-583 (-469 (-1089)))) NIL T ELT) (($ $ (-1089) (-469 (-1089))) NIL T ELT) (($ |#1| (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3811 (($ $ (-1089)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3675 (($ (-1 $) (-1089) |#1|) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3768 (($ $ (-694)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (($ $ (-1089) $) NIL T ELT) (($ $ (-583 (-1089)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3757 (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3947 (((-469 (-1089)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-1089)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT)) (-3676 ((|#1| $ (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (((-857 |#1|) $ (-694)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1121 |#1|) (-13 (-679 |#1| (-1089)) (-10 -8 (-15 -3676 ((-857 |#1|) $ (-694))) (-15 -3945 ($ (-1089))) (-15 -3945 ($ (-857 |#1|))) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $ (-1089) |#1|)) (-15 -3675 ($ (-1 $) (-1089) |#1|))) |%noBranch|))) (-961)) (T -1121))
-((-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-961)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-961)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1121 *3)))) (-3811 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)))) (-3675 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1089)) (-5 *1 (-1121 *4)) (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961)))))
-((-3692 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3687 ((|#5| |#5| $) 83 T ELT)) (-3709 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3688 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3157 (((-3 $ #1#) (-583 |#5|)) 134 T ELT)) (-3798 (((-3 $ #1#) $) 119 T ELT)) (-3684 ((|#5| |#5| $) 101 T ELT)) (-3693 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3682 ((|#5| |#5| $) 105 T ELT)) (-3841 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#5|)) (|:| -1701 (-583 |#5|))) $) 63 T ELT)) (-3694 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3180 ((|#4| $) 115 T ELT)) (-3797 (((-3 |#5| #1#) $) 117 T ELT)) (-3696 (((-583 |#5|) $) 55 T ELT)) (-3690 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3685 ((|#5| |#5| $) 89 T ELT)) (-3698 (((-85) $ $) 29 T ELT)) (-3691 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3686 ((|#5| |#5| $) 86 T ELT)) (-3800 (((-3 |#5| #1#) $) 116 T ELT)) (-3768 (($ $ |#5|) 135 T ELT)) (-3947 (((-694) $) 60 T ELT)) (-3529 (($ (-583 |#5|)) 132 T ELT)) (-2910 (($ $ |#4|) 130 T ELT)) (-2912 (($ $ |#4|) 128 T ELT)) (-3683 (($ $) 127 T ELT)) (-3945 (((-772) $) NIL T ELT) (((-583 |#5|) $) 120 T ELT)) (-3677 (((-694) $) 139 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3689 (((-85) $ (-1 (-85) |#5| (-583 |#5|))) 107 T ELT)) (-3679 (((-583 |#4|) $) 122 T ELT)) (-3932 (((-85) |#4| $) 125 T ELT)) (-3056 (((-85) $ $) 20 T ELT)))
-(((-1122 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3677 ((-694) |#1|)) (-15 -3768 (|#1| |#1| |#5|)) (-15 -3709 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3932 ((-85) |#4| |#1|)) (-15 -3679 ((-583 |#4|) |#1|)) (-15 -3798 ((-3 |#1| #1#) |#1|)) (-15 -3797 ((-3 |#5| #1#) |#1|)) (-15 -3800 ((-3 |#5| #1#) |#1|)) (-15 -3682 (|#5| |#5| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3684 (|#5| |#5| |#1|)) (-15 -3685 (|#5| |#5| |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 (|#5| |#5| |#1|)) (-15 -3688 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3841 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3690 ((-85) |#1|)) (-15 -3691 ((-85) |#1|)) (-15 -3692 ((-85) |#1|)) (-15 -3689 ((-85) |#1| (-1 (-85) |#5| (-583 |#5|)))) (-15 -3690 ((-85) |#5| |#1|)) (-15 -3691 ((-85) |#5| |#1|)) (-15 -3692 ((-85) |#5| |#1|)) (-15 -3693 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3694 ((-85) |#1|)) (-15 -3694 ((-85) |#5| |#1|)) (-15 -3695 ((-2 (|:| -3860 (-583 |#5|)) (|:| -1701 (-583 |#5|))) |#1|)) (-15 -3947 ((-694) |#1|)) (-15 -3696 ((-583 |#5|) |#1|)) (-15 -3697 ((-3 (-2 (|:| |bas| |#1|) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3697 ((-3 (-2 (|:| |bas| |#1|) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3698 ((-85) |#1| |#1|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -3180 (|#4| |#1|)) (-15 -3157 ((-3 |#1| #1#) (-583 |#5|))) (-15 -3945 ((-583 |#5|) |#1|)) (-15 -3529 (|#1| (-583 |#5|))) (-15 -3841 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3841 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3709 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3841 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3945 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-1123 |#2| |#3| |#4| |#5|) (-495) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -1122))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 92 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3687 ((|#4| |#4| $) 98 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3994)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3723 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3798 (((-3 $ "failed") $) 88 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-1352 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3682 ((|#4| |#4| $) 93 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 111 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-1013)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3797 (((-3 |#4| "failed") $) 89 T ELT)) (-3696 (((-583 |#4|) $) 113 T ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3698 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| "failed") $) 90 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3678 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3768 (($ $ |#4|) 83 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 50 T ELT)) (-3402 (((-85) $) 53 T ELT)) (-3564 (($) 52 T ELT)) (-3947 (((-694) $) 112 T ELT)) (-1945 (((-694) |#4| $) 48 (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3399 (($ $) 51 T ELT)) (-3971 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3683 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3677 (((-694) $) 82 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3679 (((-583 |#3|) $) 87 T ELT)) (-3932 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 43 T ELT)))
-(((-1123 |#1| |#2| |#3| |#4|) (-113) (-495) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1123))
-((-3698 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3697 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1123 *5 *6 *7 *8)))) (-3697 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1123 *6 *7 *8 *9)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-694)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-2 (|:| -3860 (-583 *6)) (|:| -1701 (-583 *6)))))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3693 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1123 *5 *6 *7 *3)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3690 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1123 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3841 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1123 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *2 (-977 *5 *6 *7)))) (-3688 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1123 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)))) (-3687 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3683 (*1 *1 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) (-3682 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1123 *4 *5 *6 *7)))) (-3680 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -3860 *1) (|:| -1701 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1123 *4 *5 *6 *7)))) (-3800 (*1 *2 *1) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3797 (*1 *2 *1) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3798 (*1 *1 *1) (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3932 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-3709 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1123 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *2 (-977 *4 *5 *3)))) (-3678 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-319)) (-5 *2 (-694)))))
-(-13 (-889 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3995) (-15 -3698 ((-85) $ $)) (-15 -3697 ((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3697 ((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3696 ((-583 |t#4|) $)) (-15 -3947 ((-694) $)) (-15 -3695 ((-2 (|:| -3860 (-583 |t#4|)) (|:| -1701 (-583 |t#4|))) $)) (-15 -3694 ((-85) |t#4| $)) (-15 -3694 ((-85) $)) (-15 -3693 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3692 ((-85) |t#4| $)) (-15 -3691 ((-85) |t#4| $)) (-15 -3690 ((-85) |t#4| $)) (-15 -3689 ((-85) $ (-1 (-85) |t#4| (-583 |t#4|)))) (-15 -3692 ((-85) $)) (-15 -3691 ((-85) $)) (-15 -3690 ((-85) $)) (-15 -3841 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3688 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3687 (|t#4| |t#4| $)) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 (|t#4| |t#4| $)) (-15 -3684 (|t#4| |t#4| $)) (-15 -3683 ($ $)) (-15 -3682 (|t#4| |t#4| $)) (-15 -3681 ((-583 $) (-583 |t#4|))) (-15 -3680 ((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |t#4|)))) (-583 |t#4|))) (-15 -3800 ((-3 |t#4| "failed") $)) (-15 -3797 ((-3 |t#4| "failed") $)) (-15 -3798 ((-3 $ "failed") $)) (-15 -3679 ((-583 |t#3|) $)) (-15 -3932 ((-85) |t#3| $)) (-15 -3709 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3678 ((-3 $ "failed") $ |t#4|)) (-15 -3768 ($ $ |t#4|)) (IF (|has| |t#3| (-319)) (-15 -3677 ((-694) $)) |%noBranch|)))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-317 |#4|) . T) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1128) . T))
-((-3704 (($ |#1| (-583 (-583 (-854 (-179)))) (-85)) 19 T ELT)) (-3703 (((-85) $ (-85)) 18 T ELT)) (-3702 (((-85) $) 17 T ELT)) (-3700 (((-583 (-583 (-854 (-179)))) $) 13 T ELT)) (-3699 ((|#1| $) 8 T ELT)) (-3701 (((-85) $) 15 T ELT)))
-(((-1124 |#1|) (-10 -8 (-15 -3699 (|#1| $)) (-15 -3700 ((-583 (-583 (-854 (-179)))) $)) (-15 -3701 ((-85) $)) (-15 -3702 ((-85) $)) (-15 -3703 ((-85) $ (-85))) (-15 -3704 ($ |#1| (-583 (-583 (-854 (-179)))) (-85)))) (-887)) (T -1124))
-((-3704 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1124 *2)) (-4 *2 (-887)))) (-3703 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1124 *3)) (-4 *3 (-887)))) (-3699 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-887)))))
-((-3706 (((-854 (-179)) (-854 (-179))) 31 T ELT)) (-3705 (((-854 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3708 (((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179)))) 57 T ELT)) (-3835 (((-179) (-854 (-179)) (-854 (-179))) 27 T ELT)) (-3833 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 28 T ELT)) (-3707 (((-583 (-583 (-179))) (-484)) 45 T ELT)) (-3836 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 26 T ELT)) (-3838 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 24 T ELT)) (* (((-854 (-179)) (-179) (-854 (-179))) 22 T ELT)))
-(((-1125) (-10 -7 (-15 -3705 ((-854 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-854 (-179)) (-179) (-854 (-179)))) (-15 -3838 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3836 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3835 ((-179) (-854 (-179)) (-854 (-179)))) (-15 -3833 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3706 ((-854 (-179)) (-854 (-179)))) (-15 -3707 ((-583 (-583 (-179))) (-484))) (-15 -3708 ((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179))))))) (T -1125))
-((-3708 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4))) (-5 *1 (-1125)) (-5 *3 (-854 *4)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1125)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) (-3835 (*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1125)))) (-3836 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1125)))) (-3705 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)) (-5 *3 (-179)))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3709 ((|#1| $ (-694)) 18 T ELT)) (-3832 (((-694) $) 13 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3945 (((-869 |#1|) $) 12 T ELT) (($ (-869 |#1|)) 11 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3056 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT)))
-(((-1126 |#1|) (-13 (-429 (-869 |#1|)) (-10 -8 (-15 -3709 (|#1| $ (-694))) (-15 -3832 ((-694) $)) (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1128)) (T -1126))
-((-3709 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1126 *2)) (-4 *2 (-1128)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1126 *3)) (-4 *3 (-1128)))))
-((-3712 (((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)) (-484)) 92 T ELT)) (-3710 (((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|))) 84 T ELT)) (-3711 (((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|))) 68 T ELT)))
-(((-1127 |#1|) (-10 -7 (-15 -3710 ((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)))) (-15 -3711 ((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)))) (-15 -3712 ((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)) (-484)))) (-299)) (T -1127))
-((-3712 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-299)) (-5 *2 (-347 (-1084 (-1084 *5)))) (-5 *1 (-1127 *5)) (-5 *3 (-1084 (-1084 *5))))) (-3711 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-347 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1084 (-1084 *4))))) (-3710 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-347 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1084 (-1084 *4))))))
-NIL
-(((-1128) (-113)) (T -1128))
+(((-64) . T) ((-72) . T) ((-556 (-1095)) . T) ((-553 (-773)) . T) ((-553 (-1095)) . T) ((-430 (-1095)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-3218 ((|#1| |#1| (-1 (-485) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3216 (((-1185)) 21 T ELT)) (-3217 (((-584 |#1|)) 13 T ELT)))
+(((-997 |#1|) (-10 -7 (-15 -3216 ((-1185))) (-15 -3217 ((-584 |#1|))) (-15 -3218 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3218 (|#1| |#1| (-1 (-485) |#1| |#1|)))) (-105)) (T -997))
+((-3218 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) (-3218 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) (-3217 (*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-105)))) (-3216 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-997 *3)) (-4 *3 (-105)))))
+((-3221 (($ (-78) $) 20 T ELT)) (-3222 (((-633 (-78)) (-447) $) 19 T ELT)) (-3565 (($) 7 T ELT)) (-3220 (($) 21 T ELT)) (-3219 (($) 22 T ELT)) (-3223 (((-584 (-149)) $) 10 T ELT)) (-3946 (((-773) $) 25 T ELT)))
+(((-998) (-13 (-553 (-773)) (-10 -8 (-15 -3565 ($)) (-15 -3223 ((-584 (-149)) $)) (-15 -3222 ((-633 (-78)) (-447) $)) (-15 -3221 ($ (-78) $)) (-15 -3220 ($)) (-15 -3219 ($))))) (T -998))
+((-3565 (*1 *1) (-5 *1 (-998))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-998)))) (-3222 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-998)))) (-3221 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-998)))) (-3220 (*1 *1) (-5 *1 (-998))) (-3219 (*1 *1) (-5 *1 (-998))))
+((-3224 (((-1179 (-631 |#1|)) (-584 (-631 |#1|))) 45 T ELT) (((-1179 (-631 (-858 |#1|))) (-584 (-1090)) (-631 (-858 |#1|))) 75 T ELT) (((-1179 (-631 (-350 (-858 |#1|)))) (-584 (-1090)) (-631 (-350 (-858 |#1|)))) 92 T ELT)) (-3225 (((-1179 |#1|) (-631 |#1|) (-584 (-631 |#1|))) 39 T ELT)))
+(((-999 |#1|) (-10 -7 (-15 -3224 ((-1179 (-631 (-350 (-858 |#1|)))) (-584 (-1090)) (-631 (-350 (-858 |#1|))))) (-15 -3224 ((-1179 (-631 (-858 |#1|))) (-584 (-1090)) (-631 (-858 |#1|)))) (-15 -3224 ((-1179 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3225 ((-1179 |#1|) (-631 |#1|) (-584 (-631 |#1|))))) (-312)) (T -999))
+((-3225 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-1179 *5)) (-5 *1 (-999 *5)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-5 *2 (-1179 (-631 *4))) (-5 *1 (-999 *4)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1090))) (-4 *5 (-312)) (-5 *2 (-1179 (-631 (-858 *5)))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5))))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1090))) (-4 *5 (-312)) (-5 *2 (-1179 (-631 (-350 (-858 *5))))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-350 (-858 *5)))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1488 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1090)) NIL T ELT)) (-1522 (((-695) $) NIL T ELT) (((-695) $ (-1090)) NIL T ELT)) (-3082 (((-584 (-1001 (-1090))) $) NIL T ELT)) (-3084 (((-1085 $) $ (-1001 (-1090))) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1001 (-1090)))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-1484 (($ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1001 (-1090)) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 (-1039 |#1| (-1090)) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1001 (-1090)) $) NIL T ELT) (((-1090) $) NIL T ELT) (((-1039 |#1| (-1090)) $) NIL T ELT)) (-3756 (($ $ $ (-1001 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| (-470 (-1001 (-1090))) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1001 (-1090)) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1001 (-1090)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3772 (((-695) $ (-1090)) NIL T ELT) (((-695) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1085 |#1|) (-1001 (-1090))) NIL T ELT) (($ (-1085 $) (-1001 (-1090))) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 (-1001 (-1090)))) NIL T ELT) (($ $ (-1001 (-1090)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1090))) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-1001 (-1090))) NIL T ELT)) (-2821 (((-470 (-1001 (-1090))) $) NIL T ELT) (((-695) $ (-1001 (-1090))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1090)))) NIL T ELT)) (-1625 (($ (-1 (-470 (-1001 (-1090))) (-470 (-1001 (-1090)))) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1523 (((-1 $ (-695)) (-1090)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3083 (((-3 (-1001 (-1090)) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1486 (((-1001 (-1090)) $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-1001 (-1090))) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1001 (-1090)) |#1|) NIL T ELT) (($ $ (-584 (-1001 (-1090))) (-584 |#1|)) NIL T ELT) (($ $ (-1001 (-1090)) $) NIL T ELT) (($ $ (-584 (-1001 (-1090))) (-584 $)) NIL T ELT) (($ $ (-1090) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1090)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1090)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3757 (($ $ (-1001 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 (-1001 (-1090))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1090)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1090)))) NIL T ELT) (($ $ (-1001 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1489 (((-584 (-1090)) $) NIL T ELT)) (-3948 (((-470 (-1001 (-1090))) $) NIL T ELT) (((-695) $ (-1001 (-1090))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1090)))) NIL T ELT) (((-695) $ (-1090)) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-1001 (-1090)) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1001 (-1090)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1001 (-1090)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1001 (-1090))) NIL T ELT) (($ (-1090)) NIL T ELT) (($ (-1039 |#1| (-1090))) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-470 (-1001 (-1090)))) NIL T ELT) (($ $ (-1001 (-1090)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1090))) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-1001 (-1090))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1090)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1090)))) NIL T ELT) (($ $ (-1001 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1000 |#1|) (-13 (-213 |#1| (-1090) (-1001 (-1090)) (-470 (-1001 (-1090)))) (-951 (-1039 |#1| (-1090)))) (-962)) (T -1000))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1522 (((-695) $) NIL T ELT)) (-3831 ((|#1| $) 10 T ELT)) (-3158 (((-3 |#1| "failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3772 (((-695) $) 11 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-1523 (($ |#1| (-695)) 9 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3758 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2670 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 16 T ELT)))
+(((-1001 |#1|) (-228 |#1|) (-757)) (T -1001))
+NIL
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3736 (($ |#1| |#1|) 16 T ELT)) (-3958 (((-584 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3232 ((|#1| $) 11 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3228 (((-485) $) 15 T ELT)) (-3229 ((|#1| $) 14 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3963 (((-584 |#1|) $) 42 (|has| |#1| (-756)) ELT) (((-584 |#1|) (-584 $)) 41 (|has| |#1| (-756)) ELT)) (-3972 (($ |#1|) 29 T ELT)) (-3946 (((-773) $) 28 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3737 (($ |#1| |#1|) 10 T ELT)) (-3233 (($ $ (-485)) 17 T ELT)) (-3057 (((-85) $ $) 22 (|has| |#1| (-1014)) ELT)))
+(((-1002 |#1|) (-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-584 |#1|))) |%noBranch|))) (-1129)) (T -1002))
+NIL
+((-3958 (((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 27 (|has| |#1| (-756)) ELT) (((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 14 T ELT)))
+(((-1003 |#1| |#2|) (-10 -7 (-15 -3958 ((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) (IF (|has| |#1| (-756)) (-15 -3958 ((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) |%noBranch|)) (-1129) (-1129)) (T -1003))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3226 (((-584 (-1049)) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1004) (-13 (-996) (-10 -8 (-15 -3226 ((-584 (-1049)) $))))) (T -1004))
+((-3226 (*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-1004)))))
+((-2569 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3831 (((-1090) $) NIL T ELT)) (-3736 (((-1002 |#1|) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3227 (($ (-1090) (-1002 |#1|)) NIL T ELT)) (-3946 (((-773) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3057 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)))
+(((-1005 |#1|) (-13 (-1129) (-10 -8 (-15 -3227 ($ (-1090) (-1002 |#1|))) (-15 -3831 ((-1090) $)) (-15 -3736 ((-1002 |#1|) $)) (IF (|has| (-1002 |#1|) (-1014)) (-6 (-1014)) |%noBranch|))) (-1129)) (T -1005))
+((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1002 *4)) (-4 *4 (-1129)) (-5 *1 (-1005 *4)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1005 *3)) (-4 *3 (-1129)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1129)))))
+((-3958 (((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)) 19 T ELT)))
+(((-1006 |#1| |#2|) (-10 -7 (-15 -3958 ((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)))) (-1129) (-1129)) (T -1006))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6)))))
+((-3736 (($ |#1| |#1|) 8 T ELT)) (-3230 ((|#1| $) 11 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3228 (((-485) $) 9 T ELT)) (-3229 ((|#1| $) 10 T ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3972 (($ |#1|) 6 T ELT)) (-3737 (($ |#1| |#1|) 15 T ELT)) (-3233 (($ $ (-485)) 14 T ELT)))
+(((-1007 |#1|) (-113) (-1129)) (T -1007))
+((-3737 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))) (-3233 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1129)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1129)) (-5 *2 (-485)))) (-3736 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))))
+(-13 (-558 |t#1|) (-10 -8 (-15 -3737 ($ |t#1| |t#1|)) (-15 -3233 ($ $ (-485))) (-15 -3232 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -3229 (|t#1| $)) (-15 -3228 ((-485) $)) (-15 -3736 ($ |t#1| |t#1|))))
+(((-558 |#1|) . T))
+((-3736 (($ |#1| |#1|) 8 T ELT)) (-3958 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3230 ((|#1| $) 11 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3228 (((-485) $) 9 T ELT)) (-3229 ((|#1| $) 10 T ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3963 ((|#2| (-584 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3972 (($ |#1|) 6 T ELT)) (-3737 (($ |#1| |#1|) 15 T ELT)) (-3233 (($ $ (-485)) 14 T ELT)))
+(((-1008 |#1| |#2|) (-113) (-756) (-1064 |t#1|)) (T -1008))
+((-3963 (*1 *2 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1064 *4)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1064 *3)))) (-3958 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1064 *4)))))
+(-13 (-1007 |t#1|) (-10 -8 (-15 -3963 (|t#2| (-584 $))) (-15 -3963 (|t#2| $)) (-15 -3958 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-558 |#1|) . T) ((-1007 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3798 (((-1049) $) 14 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-584 (-1049)) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1009) (-13 (-996) (-10 -8 (-15 -3234 ((-584 (-1049)) $)) (-15 -3798 ((-1049) $))))) (T -1009))
+((-3234 (*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-1009)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1009)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1802 (($) NIL (|has| |#1| (-320)) ELT)) (-3235 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3237 (($ $ $) 81 T ELT)) (-3236 (((-85) $ $) 83 T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3240 (($ (-584 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3405 (($ |#1| $) 75 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3995)) ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2890 (((-584 |#1|) $) 20 (|has| $ (-6 -3995)) ELT)) (-3242 (((-85) $ $) NIL T ELT)) (-2532 ((|#1| $) 56 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) 74 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 54 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3239 (($ $ $) 79 T ELT)) (-1274 ((|#1| $) 26 T ELT)) (-3609 (($ |#1| $) 70 T ELT)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1275 ((|#1| $) 28 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 22 T ELT)) (-3565 (($) 12 T ELT)) (-3238 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1466 (($) NIL T ELT) (($ (-584 |#1|)) NIL T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 17 T ELT)) (-3972 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 63 T ELT)) (-1803 (($ $) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-773) $) NIL T ELT)) (-1804 (((-695) $) NIL T ELT)) (-3241 (($ (-584 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-584 |#1|)) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 53 T ELT)) (-3957 (((-695) $) 11 T ELT)))
+(((-1010 |#1|) (-369 |#1|) (-1014)) (T -1010))
+NIL
+((-3235 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3237 (($ $ $) 10 T ELT)) (-3238 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT)))
+(((-1011 |#1| |#2|) (-10 -7 (-15 -3235 (|#1| |#2| |#1|)) (-15 -3235 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#2|)) (-15 -3238 (|#1| |#1| |#1|))) (-1012 |#2|) (-1014)) (T -1011))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3235 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3237 (($ $ $) 24 T ELT)) (-3236 (((-85) $ $) 23 T ELT)) (-3240 (($) 29 T ELT) (($ (-584 |#1|)) 28 T ELT)) (-3710 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 37 T CONST)) (-1353 (($ $) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 59 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3995)) ELT)) (-2890 (((-584 |#1|) $) 44 (|has| $ (-6 -3995)) ELT)) (-3242 (((-85) $ $) 32 T ELT)) (-2609 (((-584 |#1|) $) 45 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 47 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3239 (($ $ $) 27 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 |#1|) (-584 |#1|)) 51 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 49 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-249 |#1|))) 48 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 33 T ELT)) (-3403 (((-85) $) 36 T ELT)) (-3565 (($) 35 T ELT)) (-3238 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1946 (((-695) |#1| $) 46 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT) (((-695) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3995)) ELT)) (-3400 (($ $) 34 T ELT)) (-3972 (((-474) $) 61 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 52 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-3241 (($) 31 T ELT) (($ (-584 |#1|)) 30 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3957 (((-695) $) 38 (|has| $ (-6 -3995)) ELT)))
+(((-1012 |#1|) (-113) (-1014)) (T -1012))
+((-3242 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3241 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3240 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3238 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3236 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3235 (*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(-13 (-1014) (-124 |t#1|) (-10 -8 (-6 -3985) (-15 -3242 ((-85) $ $)) (-15 -3241 ($)) (-15 -3241 ($ (-584 |t#1|))) (-15 -3240 ($)) (-15 -3240 ($ (-584 |t#1|))) (-15 -3239 ($ $ $)) (-15 -3238 ($ $ $)) (-15 -3238 ($ $ |t#1|)) (-15 -3237 ($ $ $)) (-15 -3236 ((-85) $ $)) (-15 -3235 ($ $ $)) (-15 -3235 ($ $ |t#1|)) (-15 -3235 ($ |t#1| $))))
+(((-34) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-3243 (((-1073) $) 10 T ELT)) (-3244 (((-1034) $) 8 T ELT)))
+(((-1013 |#1|) (-10 -7 (-15 -3243 ((-1073) |#1|)) (-15 -3244 ((-1034) |#1|))) (-1014)) (T -1013))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-1014) (-113)) (T -1014))
+((-3244 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1034)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1073)))))
+(-13 (-72) (-553 (-773)) (-10 -8 (-15 -3244 ((-1034) $)) (-15 -3243 ((-1073) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 36 T ELT)) (-3248 (($ (-584 (-831))) 70 T ELT)) (-3250 (((-3 $ #1="failed") $ (-831) (-831)) 81 T ELT)) (-2995 (($) 40 T ELT)) (-3246 (((-85) (-831) $) 42 T ELT)) (-2011 (((-831) $) 64 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) 39 T ELT)) (-3251 (((-3 $ #1#) $ (-831)) 77 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3247 (((-1179 $)) 47 T ELT)) (-3249 (((-584 (-831)) $) 27 T ELT)) (-3245 (((-695) $ (-831) (-831)) 78 T ELT)) (-3946 (((-773) $) 32 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 24 T ELT)))
+(((-1015 |#1| |#2|) (-13 (-320) (-10 -8 (-15 -3251 ((-3 $ #1="failed") $ (-831))) (-15 -3250 ((-3 $ #1#) $ (-831) (-831))) (-15 -3249 ((-584 (-831)) $)) (-15 -3248 ($ (-584 (-831)))) (-15 -3247 ((-1179 $))) (-15 -3246 ((-85) (-831) $)) (-15 -3245 ((-695) $ (-831) (-831))))) (-831) (-831)) (T -1015))
+((-3251 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3250 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3248 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3247 (*1 *2) (-12 (-5 *2 (-1179 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3246 (*1 *2 *3 *1) (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3245 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-1090) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3535 (((-1073) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-179) $) NIL T ELT)) (-3254 (((-773) $) NIL T ELT)) (-3267 (((-85) $ $) NIL T ELT)) (-3800 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3258 (((-584 $) $) NIL T ELT)) (-3972 (($ (-1073)) NIL T ELT) (($ (-1090)) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-3253 (($ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3957 (((-485) $) NIL T ELT)))
+(((-1016) (-1017 (-1073) (-1090) (-485) (-179) (-773))) (T -1016))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3261 (((-85) $) 36 T ELT)) (-3257 ((|#2| $) 31 T ELT)) (-3262 (((-85) $) 37 T ELT)) (-3535 ((|#1| $) 32 T ELT)) (-3264 (((-85) $) 39 T ELT)) (-3266 (((-85) $) 41 T ELT)) (-3263 (((-85) $) 38 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3260 (((-85) $) 35 T ELT)) (-3256 ((|#3| $) 30 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3259 (((-85) $) 34 T ELT)) (-3255 ((|#4| $) 29 T ELT)) (-3254 ((|#5| $) 28 T ELT)) (-3267 (((-85) $ $) 42 T ELT)) (-3800 (($ $ (-485)) 44 T ELT) (($ $ (-584 (-485))) 43 T ELT)) (-3258 (((-584 $) $) 33 T ELT)) (-3972 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-584 $)) 45 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-3252 (($ $) 26 T ELT)) (-3253 (($ $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3265 (((-85) $) 40 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3957 (((-485) $) 25 T ELT)))
+(((-1017 |#1| |#2| |#3| |#4| |#5|) (-113) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1017))
+((-3267 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485)))))
+(-13 (-1014) (-558 |t#1|) (-558 |t#2|) (-558 |t#3|) (-558 |t#4|) (-558 |t#4|) (-558 |t#5|) (-558 (-584 $)) (-241 (-485) $) (-241 (-584 (-485)) $) (-10 -8 (-15 -3267 ((-85) $ $)) (-15 -3266 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-584 $) $)) (-15 -3535 (|t#1| $)) (-15 -3257 (|t#2| $)) (-15 -3256 (|t#3| $)) (-15 -3255 (|t#4| $)) (-15 -3254 (|t#5| $)) (-15 -3253 ($ $)) (-15 -3252 ($ $)) (-15 -3957 ((-485) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-558 (-584 $)) . T) ((-558 |#1|) . T) ((-558 |#2|) . T) ((-558 |#3|) . T) ((-558 |#4|) . T) ((-558 |#5|) . T) ((-241 (-485) $) . T) ((-241 (-584 (-485)) $) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3261 (((-85) $) 45 T ELT)) (-3257 ((|#2| $) 48 T ELT)) (-3262 (((-85) $) 20 T ELT)) (-3535 ((|#1| $) 21 T ELT)) (-3264 (((-85) $) 42 T ELT)) (-3266 (((-85) $) 14 T ELT)) (-3263 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3260 (((-85) $) 46 T ELT)) (-3256 ((|#3| $) 50 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3259 (((-85) $) 47 T ELT)) (-3255 ((|#4| $) 49 T ELT)) (-3254 ((|#5| $) 51 T ELT)) (-3267 (((-85) $ $) 41 T ELT)) (-3800 (($ $ (-485)) 62 T ELT) (($ $ (-584 (-485))) 64 T ELT)) (-3258 (((-584 $) $) 27 T ELT)) (-3972 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-584 $)) 52 T ELT)) (-3946 (((-773) $) 28 T ELT)) (-3252 (($ $) 26 T ELT)) (-3253 (($ $) 58 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3265 (((-85) $) 23 T ELT)) (-3057 (((-85) $ $) 40 T ELT)) (-3957 (((-485) $) 60 T ELT)))
+(((-1018 |#1| |#2| |#3| |#4| |#5|) (-1017 |#1| |#2| |#3| |#4| |#5|) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1018))
+NIL
+((-3270 (((-85) |#5| |#5|) 44 T ELT)) (-3273 (((-85) |#5| |#5|) 59 T ELT)) (-3278 (((-85) |#5| (-584 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3274 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3280 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) 70 T ELT)) (-3269 (((-1185)) 32 T ELT)) (-3268 (((-1185) (-1073) (-1073) (-1073)) 28 T ELT)) (-3279 (((-584 |#5|) (-584 |#5|)) 101 T ELT)) (-3281 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)))) 93 T ELT)) (-3282 (((-584 (-2 (|:| -3267 (-584 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 123 T ELT)) (-3272 (((-85) |#5| |#5|) 53 T ELT)) (-3277 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3275 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3276 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3699 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3283 (((-3 (-2 (|:| -3267 (-584 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3271 (((-584 |#5|) (-584 |#5|)) 49 T ELT)))
+(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3268 ((-1185) (-1073) (-1073) (-1073))) (-15 -3269 ((-1185))) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-584 |#5|) (-584 |#5|))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3275 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3276 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3699 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3277 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3278 ((-85) |#5| |#5|)) (-15 -3278 ((-85) |#5| (-584 |#5|))) (-15 -3279 ((-584 |#5|) (-584 |#5|))) (-15 -3280 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)))) (-15 -3281 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) (-15 -3282 ((-584 (-2 (|:| -3267 (-584 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3283 ((-3 (-2 (|:| -3267 (-584 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1019))
+((-3283 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3267 (-584 *9)) (|:| -1600 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3282 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3267 (-584 *9)) (|:| -1600 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1600 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1600 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3271 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3269 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
+((-3298 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|) 106 T ELT)) (-3288 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3291 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3293 (((-584 |#5|) |#4| |#5|) 122 T ELT)) (-3295 (((-584 |#5|) |#4| |#5|) 129 T ELT)) (-3297 (((-584 |#5|) |#4| |#5|) 130 T ELT)) (-3292 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 107 T ELT)) (-3294 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 128 T ELT)) (-3296 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3289 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) |#3| (-85)) 91 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3290 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3287 (((-1185)) 36 T ELT)) (-3285 (((-1185)) 25 T ELT)) (-3286 (((-1185) (-1073) (-1073) (-1073)) 32 T ELT)) (-3284 (((-1185) (-1073) (-1073) (-1073)) 21 T ELT)))
+(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3284 ((-1185) (-1073) (-1073) (-1073))) (-15 -3285 ((-1185))) (-15 -3286 ((-1185) (-1073) (-1073) (-1073))) (-15 -3287 ((-1185))) (-15 -3288 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3289 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3289 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) |#3| (-85))) (-15 -3290 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3291 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3296 ((-85) |#4| |#5|)) (-15 -3292 ((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3293 ((-584 |#5|) |#4| |#5|)) (-15 -3294 ((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3295 ((-584 |#5|) |#4| |#5|)) (-15 -3296 ((-584 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3297 ((-584 |#5|) |#4| |#5|)) (-15 -3298 ((-584 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1020))
+((-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1600 *9)))) (-5 *5 (-85)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1600 *9)))) (-5 *1 (-1020 *6 *7 *4 *8 *9)))) (-3289 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3288 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3287 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3285 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3284 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3682 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-3775 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3689 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3799 (((-3 $ #1#) $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#4|)) (|:| -1702 (-584 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-584 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3440 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3697 (((-584 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3801 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-695) $) 112 T ELT)) (-1946 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3946 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3678 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3190 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-584 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3957 (((-695) $) 43 T ELT)))
+(((-1021 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1021))
+NIL
+(-13 (-984 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T))
+((-3309 (((-584 (-485)) (-485) (-485) (-485)) 40 T ELT)) (-3308 (((-584 (-485)) (-485) (-485) (-485)) 30 T ELT)) (-3307 (((-584 (-485)) (-485) (-485) (-485)) 35 T ELT)) (-3306 (((-485) (-485) (-485)) 22 T ELT)) (-3305 (((-1179 (-485)) (-584 (-485)) (-1179 (-485)) (-485)) 78 T ELT) (((-1179 (-485)) (-1179 (-485)) (-1179 (-485)) (-485)) 73 T ELT)) (-3304 (((-584 (-485)) (-584 (-831)) (-584 (-485)) (-85)) 56 T ELT)) (-3303 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 77 T ELT)) (-3302 (((-631 (-485)) (-584 (-831)) (-584 (-485))) 61 T ELT)) (-3301 (((-584 (-631 (-485))) (-584 (-831))) 66 T ELT)) (-3300 (((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 81 T ELT)) (-3299 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485))) 91 T ELT)))
+(((-1022) (-10 -7 (-15 -3299 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485)))) (-15 -3300 ((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-15 -3301 ((-584 (-631 (-485))) (-584 (-831)))) (-15 -3302 ((-631 (-485)) (-584 (-831)) (-584 (-485)))) (-15 -3303 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-15 -3304 ((-584 (-485)) (-584 (-831)) (-584 (-485)) (-85))) (-15 -3305 ((-1179 (-485)) (-1179 (-485)) (-1179 (-485)) (-485))) (-15 -3305 ((-1179 (-485)) (-584 (-485)) (-1179 (-485)) (-485))) (-15 -3306 ((-485) (-485) (-485))) (-15 -3307 ((-584 (-485)) (-485) (-485) (-485))) (-15 -3308 ((-584 (-485)) (-485) (-485) (-485))) (-15 -3309 ((-584 (-485)) (-485) (-485) (-485))))) (T -1022))
+((-3309 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3308 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3307 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3306 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1022)))) (-3305 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1179 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485)) (-5 *1 (-1022)))) (-3305 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1179 (-485))) (-5 *3 (-485)) (-5 *1 (-1022)))) (-3304 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-85)) (-5 *1 (-1022)))) (-3303 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022)))) (-3300 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022)))) (-3299 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3310 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1023 |#1|) (-13 (-1024 |#1|) (-1014) (-10 -8 (-15 -3310 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1023))
+((-3310 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1023 *3)))))
+((-3800 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-1024 |#1|) (-113) (-72)) (T -1024))
+NIL
+(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))))))
+(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1129) . T))
+((** (($ $ (-831)) 10 T ELT)))
+(((-1025 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831)))) (-1026)) (T -1025))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-1026) (-113)) (T -1026))
+((* (*1 *1 *1 *1) (-4 *1 (-1026))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-831)))))
+(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-831)))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3707 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-2484 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3137 (((-695)) NIL (|has| |#3| (-320)) ELT)) (-3788 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT)) (-3157 (((-485) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) ((|#3| $) NIL (|has| |#3| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1179 |#3|))) (-631 $) (-1179 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2995 (($) NIL (|has| |#3| (-320)) ELT)) (-1576 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#3| $ (-485)) 12 T ELT)) (-3187 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-2890 (((-584 |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2609 (((-584 |#3|) $) NIL T ELT)) (-3246 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-1949 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#3| (-320)) ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1179 |#3|))) (-1179 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1179 $)) NIL (|has| |#3| (-962)) ELT)) (-3243 (((-1073) $) NIL (|has| |#3| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#3| (-320)) ELT)) (-3244 (((-1034) $) NIL (|has| |#3| (-1014)) ELT)) (-3801 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#3| (-1014))) ELT)) (-2206 (((-584 |#3|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) NIL T ELT)) (-3836 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1468 (($ (-1179 |#3|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3758 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-1946 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#3|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL (|has| |#3| (-553 (-773))) ELT)) (-3127 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#3| (-962)) ELT)) (-2661 (($) NIL (|has| |#3| (-23)) CONST)) (-2667 (($) NIL (|has| |#3| (-962)) CONST)) (-2670 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#3| (-812 (-1090))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2686 (((-85) $ $) 24 (|has| |#3| (-757)) ELT)) (-3949 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3837 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ $ $) NIL (|has| |#3| (-962)) ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ (-485) $) NIL (|has| |#3| (-21)) ELT) (($ (-695) $) NIL (|has| |#3| (-23)) ELT) (($ (-831) $) NIL (|has| |#3| (-25)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-1027 |#1| |#2| |#3|) (-196 |#1| |#3|) (-695) (-695) (-718)) (T -1027))
+NIL
+((-3311 (((-584 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 50 T ELT)) (-3317 (((-485) (-1148 |#2| |#1|)) 95 (|has| |#1| (-392)) ELT)) (-3315 (((-485) (-1148 |#2| |#1|)) 79 T ELT)) (-3312 (((-584 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 58 T ELT)) (-3316 (((-485) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 81 (|has| |#1| (-392)) ELT)) (-3313 (((-584 |#1|) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 61 T ELT)) (-3314 (((-485) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 78 T ELT)))
+(((-1028 |#1| |#2|) (-10 -7 (-15 -3311 ((-584 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3312 ((-584 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3313 ((-584 |#1|) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3314 ((-485) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3315 ((-485) (-1148 |#2| |#1|))) (IF (|has| |#1| (-392)) (PROGN (-15 -3316 ((-485) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3317 ((-485) (-1148 |#2| |#1|)))) |%noBranch|)) (-741) (-1090)) (T -1028))
+((-3317 (*1 *2 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3316 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-584 *4)) (-5 *1 (-1028 *4 *5)))) (-3312 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-584 (-1148 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1148 *5 *4)))) (-3311 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-584 (-1148 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1148 *5 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1095) $) 12 T ELT)) (-3318 (((-584 (-1095)) $) 14 T ELT)) (-3320 (($ (-584 (-1095)) (-1095)) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 29 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT)))
+(((-1029) (-13 (-1014) (-10 -8 (-15 -3320 ($ (-584 (-1095)) (-1095))) (-15 -3319 ((-1095) $)) (-15 -3318 ((-584 (-1095)) $))))) (T -1029))
+((-3320 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1095))) (-5 *3 (-1095)) (-5 *1 (-1029)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1029)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-584 (-1095))) (-5 *1 (-1029)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3321 (($ (-447) (-1029)) 14 T ELT)) (-3320 (((-1029) $) 20 T ELT)) (-3542 (((-447) $) 17 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 27 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1030) (-13 (-996) (-10 -8 (-15 -3321 ($ (-447) (-1029))) (-15 -3542 ((-447) $)) (-15 -3320 ((-1029) $))))) (T -1030))
+((-3321 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1030)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1030)))))
+((-3623 (((-3 (-485) #1="failed") |#2| (-1090) |#2| (-1073)) 19 T ELT) (((-3 (-485) #1#) |#2| (-1090) (-751 |#2|)) 17 T ELT) (((-3 (-485) #1#) |#2|) 60 T ELT)))
+(((-1031 |#1| |#2|) (-10 -7 (-15 -3623 ((-3 (-485) #1="failed") |#2|)) (-15 -3623 ((-3 (-485) #1#) |#2| (-1090) (-751 |#2|))) (-15 -3623 ((-3 (-485) #1#) |#2| (-1090) |#2| (-1073)))) (-13 (-496) (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1115) (-364 |#1|))) (T -1031))
+((-3623 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))))) (-3623 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-751 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)))) (-3623 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))))
+((-3623 (((-3 (-485) #1="failed") (-350 (-858 |#1|)) (-1090) (-350 (-858 |#1|)) (-1073)) 38 T ELT) (((-3 (-485) #1#) (-350 (-858 |#1|)) (-1090) (-751 (-350 (-858 |#1|)))) 33 T ELT) (((-3 (-485) #1#) (-350 (-858 |#1|))) 14 T ELT)))
+(((-1032 |#1|) (-10 -7 (-15 -3623 ((-3 (-485) #1="failed") (-350 (-858 |#1|)))) (-15 -3623 ((-3 (-485) #1#) (-350 (-858 |#1|)) (-1090) (-751 (-350 (-858 |#1|))))) (-15 -3623 ((-3 (-485) #1#) (-350 (-858 |#1|)) (-1090) (-350 (-858 |#1|)) (-1073)))) (-392)) (T -1032))
+((-3623 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3623 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-751 (-350 (-858 *6)))) (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3623 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *4)))))
+((-3649 (((-265 (-485)) (-48)) 12 T ELT)))
+(((-1033) (-10 -7 (-15 -3649 ((-265 (-485)) (-48))))) (T -1033))
+((-3649 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1033)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 22 T ELT)) (-3189 (((-85) $) 49 T ELT)) (-3322 (($ $ $) 28 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 75 T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) 59 T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 61 T ELT)) (-3623 (((-485) $) NIL T ELT)) (-2442 (($ $ $) 56 T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL T ELT)) (-2565 (($ $ $) 42 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 70 T ELT) (((-631 (-485)) (-631 $)) 8 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3024 (((-85) $) NIL T ELT)) (-3023 (((-350 (-485)) $) NIL T ELT)) (-2995 (($) 73 T ELT) (($ $) 72 T ELT)) (-2564 (($ $ $) 41 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) 71 T ELT)) (-3187 (((-85) $) 76 T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-2562 (($ $ $) 27 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 50 T ELT)) (-2674 (((-85) $) 47 T ELT)) (-2561 (($ $) 23 T ELT)) (-3445 (((-633 $) $) NIL T ELT)) (-3188 (((-85) $) 60 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) 57 T ELT)) (-2532 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2858 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2045 (($ $) NIL T ELT)) (-2011 (((-831) $) 66 T ELT)) (-3833 (($ $) 55 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL T ELT) (((-631 (-485)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2401 (($ (-831)) 65 T ELT)) (-2047 (($ $) 33 T ELT)) (-3244 (((-1034) $) 54 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) 48 T ELT)) (-1607 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 44 T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) 34 T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-485) $) 12 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3946 (((-773) $) 11 T ELT) (($ (-485)) 13 T ELT) (($ $) NIL T ELT) (($ (-485)) 13 T ELT)) (-3127 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3102 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (($) 17 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) 26 T ELT)) (-2044 (($ $ $ $) 58 T ELT)) (-3383 (($ $) 46 T ELT)) (-2312 (($ $ $) 25 T ELT)) (-2661 (($) 15 T CONST)) (-2667 (($) 16 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2567 (((-85) $ $) 32 T ELT)) (-2568 (((-85) $ $) 30 T ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-2685 (((-85) $ $) 31 T ELT)) (-2686 (((-85) $ $) 29 T ELT)) (-2313 (($ $ $) 24 T ELT)) (-3837 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3839 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 40 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-485) $) 14 T ELT)))
+(((-1034) (-13 (-484) (-753) (-84) (-10 -8 (-6 -3982) (-6 -3987) (-6 -3983) (-15 -3322 ($ $ $))))) (T -1034))
+((-3322 (*1 *1 *1 *1) (-5 *1 (-1034))))
+((-485) (|%ismall?| |#1|))
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3324 ((|#1| $) 49 T ELT)) (-3724 (($) 7 T CONST)) (-3326 ((|#1| |#1| $) 51 T ELT)) (-3325 ((|#1| $) 50 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3323 (((-695) $) 48 T ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-1035 |#1|) (-113) (-1129)) (T -1035))
+((-3326 (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1129)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1129)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1129)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1129)) (-5 *2 (-695)))))
+(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3326 (|t#1| |t#1| $)) (-15 -3325 (|t#1| $)) (-15 -3324 (|t#1| $)) (-15 -3323 ((-695) $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-3330 ((|#3| $) 87 T ELT)) (-3158 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1179 |#3|))) (-631 $) (-1179 $)) 84 T ELT) (((-631 |#3|) (-631 $)) 76 T ELT)) (-3758 (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT)) (-3329 ((|#3| $) 89 T ELT)) (-3331 ((|#4| $) 43 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 24 T ELT) (($ $ (-485)) 95 T ELT)))
+(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3329 (|#3| |#1|)) (-15 -3330 (|#3| |#1|)) (-15 -3331 (|#4| |#1|)) (-15 -2280 ((-631 |#3|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1179 |#3|))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 |#1|) (-1179 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3946 (|#1| |#3|)) (-15 -3158 ((-3 |#3| #1="failed") |#1|)) (-15 -3157 (|#3| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3946 (|#1| (-485))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3946 ((-773) |#1|))) (-1037 |#2| |#3| |#4| |#5|) (-695) (-962) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1036))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3330 ((|#2| $) 90 T ELT)) (-3121 (((-85) $) 131 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3123 (((-85) $) 129 T ELT)) (-3333 (($ |#2|) 93 T ELT)) (-3724 (($) 23 T CONST)) (-3110 (($ $) 148 (|has| |#2| (-258)) ELT)) (-3112 ((|#3| $ (-485)) 143 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 109 (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3157 (((-485) $) 108 (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) 104 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 99 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 98 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) 97 T ELT) (((-631 |#2|) (-631 $)) 96 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-695) $) 149 (|has| |#2| (-496)) ELT)) (-3113 ((|#2| $ (-485) (-485)) 141 T ELT)) (-2890 (((-584 |#2|) $) 121 (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3108 (((-695) $) 150 (|has| |#2| (-496)) ELT)) (-3107 (((-584 |#4|) $) 151 (|has| |#2| (-496)) ELT)) (-3115 (((-695) $) 137 T ELT)) (-3114 (((-695) $) 138 T ELT)) (-3327 ((|#2| $) 85 (|has| |#2| (-6 (-3997 #2="*"))) ELT)) (-3119 (((-485) $) 133 T ELT)) (-3117 (((-485) $) 135 T ELT)) (-2609 (((-584 |#2|) $) 112 T ELT)) (-3246 (((-85) |#2| $) 110 (|has| |#2| (-72)) ELT)) (-3118 (((-485) $) 134 T ELT)) (-3116 (((-485) $) 136 T ELT)) (-3124 (($ (-584 (-584 |#2|))) 128 T ELT)) (-1949 (($ (-1 |#2| |#2|) $) 122 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2| |#2|) $ $) 145 T ELT) (($ (-1 |#2| |#2|) $) 123 T ELT)) (-3594 (((-584 (-584 |#2|)) $) 139 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 101 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 100 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) 95 T ELT) (((-631 |#2|) (-1179 $)) 94 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3590 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ |#2|) 146 (|has| |#2| (-496)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 114 T ELT)) (-3768 (($ $ (-584 (-249 |#2|))) 120 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 119 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 118 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 117 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1222 (((-85) $ $) 127 T ELT)) (-3403 (((-85) $) 124 T ELT)) (-3565 (($) 125 T ELT)) (-3800 ((|#2| $ (-485) (-485) |#2|) 142 T ELT) ((|#2| $ (-485) (-485)) 140 T ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-695)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-695)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1090)) 63 (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 61 (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 60 (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 59 (|has| |#2| (-812 (-1090))) ELT)) (-3329 ((|#2| $) 89 T ELT)) (-3332 (($ (-584 |#2|)) 92 T ELT)) (-3122 (((-85) $) 130 T ELT)) (-3331 ((|#3| $) 91 T ELT)) (-3328 ((|#2| $) 86 (|has| |#2| (-6 (-3997 #2#))) ELT)) (-1946 (((-695) (-1 (-85) |#2|) $) 113 T ELT) (((-695) |#2| $) 111 (|has| |#2| (-72)) ELT)) (-3400 (($ $) 126 T ELT)) (-3111 ((|#4| $ (-485)) 144 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 107 (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) 102 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 115 T ELT)) (-3120 (((-85) $) 132 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-695)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1090)) 62 (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 58 (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 57 (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 56 (|has| |#2| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#2|) 147 (|has| |#2| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 153 T ELT) (($ |#2| $) 152 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3957 (((-695) $) 116 T ELT)))
+(((-1037 |#1| |#2| |#3| |#4|) (-113) (-695) (-962) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1037))
+((-3333 (*1 *1 *2) (-12 (-4 *2 (-962)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3997 #1="*"))) (-4 *2 (-962)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3997 #1#))) (-4 *2 (-962)))) (-3590 (*1 *1 *1) (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312)))))
+(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-966 |t#1| |t#1| |t#2| |t#3| |t#4|) (-355 |t#2|) (-329 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (-15 -3333 ($ |t#2|)) (-15 -3332 ($ (-584 |t#2|))) (-15 -3331 (|t#3| $)) (-15 -3330 (|t#2| $)) (-15 -3329 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3997 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3328 (|t#2| $)) (-15 -3327 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3590 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3997 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#2| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-318 |#2|) . T) ((-329 |#2|) . T) ((-355 |#2|) . T) ((-429 |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 (-485)) |has| |#2| (-581 (-485))) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3997 #1#)))) ((-581 (-485)) |has| |#2| (-581 (-485))) ((-581 |#2|) . T) ((-655 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3997 #1#)))) ((-664) . T) ((-807 $ (-1090)) OR (|has| |#2| (-812 (-1090))) (|has| |#2| (-810 (-1090)))) ((-810 (-1090)) |has| |#2| (-810 (-1090))) ((-812 (-1090)) OR (|has| |#2| (-812 (-1090))) (|has| |#2| (-810 (-1090)))) ((-966 |#1| |#1| |#2| |#3| |#4|) . T) ((-951 (-350 (-485))) |has| |#2| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#2| (-951 (-485))) ((-951 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3336 ((|#4| |#4|) 81 T ELT)) (-3334 ((|#4| |#4|) 76 T ELT)) (-3338 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|) 91 T ELT)) (-3337 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3335 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
+(((-1038 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3334 (|#4| |#4|)) (-15 -3335 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3336 (|#4| |#4|)) (-15 -3337 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3338 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|))) (-258) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -1038))
+((-3338 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3335 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3334 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 18 T ELT)) (-3082 (((-584 |#2|) $) 174 T ELT)) (-3084 (((-1085 $) $ |#2|) 60 T ELT) (((-1085 |#1|) $) 49 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 116 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 118 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 120 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) 214 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 ((|#1| $) 165 T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT)) (-3756 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) 218 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 90 T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 20 T ELT)) (-2421 (((-695) $) 30 T ELT)) (-3085 (($ (-1085 |#1|) |#2|) 54 T ELT) (($ (-1085 $) |#2|) 71 T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) 38 T ELT)) (-2894 (($ |#1| (-470 |#2|)) 78 T ELT) (($ $ |#2| (-695)) 58 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-2821 (((-470 |#2|) $) 205 T ELT) (((-695) $ |#2|) 206 T ELT) (((-584 (-695)) $ (-584 |#2|)) 207 T ELT)) (-1625 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3083 (((-3 |#2| #1#) $) 177 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) 217 T ELT)) (-3175 ((|#1| $) 43 T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) 39 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 148 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) 153 (|has| |#1| (-392)) ELT) (($ $ $) 138 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-584 |#2|) (-584 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-584 |#2|) (-584 $)) 194 T ELT)) (-3757 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3948 (((-470 |#2|) $) 201 T ELT) (((-695) $ |#2|) 196 T ELT) (((-584 (-695)) $ (-584 |#2|)) 199 T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 134 (|has| |#1| (-392)) ELT) (($ $ |#2|) 137 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3946 (((-773) $) 159 T ELT) (($ (-485)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3817 (((-584 |#1|) $) 162 T ELT)) (-3677 ((|#1| $ (-470 |#2|)) 80 T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 87 T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) 123 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-2667 (($) 14 T CONST)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3057 (((-85) $ $) 106 T ELT)) (-3949 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3839 (($ $ $) 55 T ELT)) (** (($ $ (-831)) 110 T ELT) (($ $ (-695)) 109 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1039 |#1| |#2|) (-862 |#1| (-470 |#2|) |#2|) (-962) (-757)) (T -1039))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3492 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 125 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 121 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 129 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3814 (((-858 |#1|) $ (-695)) NIL T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-695) $ |#2|) NIL T ELT) (((-695) $ |#2| (-695)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ $ (-584 |#2|) (-584 (-470 |#2|))) NIL T ELT) (($ $ |#2| (-470 |#2|)) NIL T ELT) (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 63 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) 119 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3812 (($ $ |#2|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3676 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (($ $ (-695)) 17 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3943 (($ $) 117 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (($ $ |#2| $) 104 T ELT) (($ $ (-584 |#2|) (-584 $)) 99 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3758 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3948 (((-470 |#2|) $) NIL T ELT)) (-3339 (((-1 (-1069 |#3|) |#3|) (-584 |#2|) (-584 (-1069 |#3|))) 87 T ELT)) (-3495 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 131 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 127 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 123 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 19 T ELT)) (-3946 (((-773) $) 194 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3677 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) ((|#3| $ (-695)) 43 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 133 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 141 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 139 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 135 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 52 T CONST)) (-2667 (($) 62 T CONST)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 109 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-350 (-485))) 114 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT)))
+(((-1040 |#1| |#2| |#3|) (-13 (-680 |#1| |#2|) (-10 -8 (-15 -3677 (|#3| $ (-695))) (-15 -3946 ($ |#2|)) (-15 -3946 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3339 ((-1 (-1069 |#3|) |#3|) (-584 |#2|) (-584 (-1069 |#3|)))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3812 ($ $ |#2| |#1|)) (-15 -3676 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-962) (-757) (-862 |#1| (-470 |#2|) |#2|)) (T -1040))
+((-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1040 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3946 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3946 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1069 *7))) (-4 *6 (-757)) (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1069 *7) *7)) (-5 *1 (-1040 *5 *6 *7)))) (-3812 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3676 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *1 (-1040 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3682 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-3775 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3689 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3799 (((-3 $ #1#) $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#4|)) (|:| -1702 (-584 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-584 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3440 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3697 (((-584 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3801 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-695) $) 112 T ELT)) (-1946 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3946 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3678 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3190 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-584 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3957 (((-695) $) 43 T ELT)))
+(((-1041 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1041))
+NIL
+(-13 (-1021 |t#1| |t#2| |t#3| |t#4|) (-708 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-708 |#1| |#2| |#3| |#4|) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1021 |#1| |#2| |#3| |#4|) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T))
+((-3573 (((-584 |#2|) |#1|) 15 T ELT)) (-3345 (((-584 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-584 |#2|) |#1|) 61 T ELT)) (-3343 (((-584 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-584 |#2|) |#1|) 59 T ELT)) (-3340 ((|#2| |#1|) 54 T ELT)) (-3341 (((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3342 (((-584 |#2|) |#2| |#2|) 42 T ELT) (((-584 |#2|) |#1|) 58 T ELT)) (-3344 (((-584 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-584 |#2|) |#1|) 60 T ELT)) (-3349 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3347 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3346 ((|#2| |#2| |#2|) 50 T ELT)) (-3348 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
+(((-1042 |#1| |#2|) (-10 -7 (-15 -3573 ((-584 |#2|) |#1|)) (-15 -3340 (|#2| |#1|)) (-15 -3341 ((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3342 ((-584 |#2|) |#1|)) (-15 -3343 ((-584 |#2|) |#1|)) (-15 -3344 ((-584 |#2|) |#1|)) (-15 -3345 ((-584 |#2|) |#1|)) (-15 -3342 ((-584 |#2|) |#2| |#2|)) (-15 -3343 ((-584 |#2|) |#2| |#2| |#2|)) (-15 -3344 ((-584 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3345 ((-584 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3346 (|#2| |#2| |#2|)) (-15 -3347 (|#2| |#2| |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3349 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1155 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (T -1042))
+((-3349 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3348 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3347 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3346 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3345 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3344 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3343 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3342 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-2 (|:| |solns| (-584 *5)) (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1042 *3 *5)) (-4 *3 (-1155 *5)))) (-3340 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))))
+((-3350 (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|))))) 119 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1090))) 118 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|)))) 116 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))) (-584 (-1090))) 113 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|)))) 97 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))) (-1090)) 98 T ELT) (((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|))) 92 T ELT) (((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)) (-1090)) 82 T ELT)) (-3351 (((-584 (-584 (-265 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1090))) 111 T ELT) (((-584 (-265 |#1|)) (-350 (-858 |#1|)) (-1090)) 54 T ELT)) (-3352 (((-1080 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-350 (-858 |#1|)) (-1090)) 123 T ELT) (((-1080 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-249 (-350 (-858 |#1|))) (-1090)) 122 T ELT)))
+(((-1043 |#1|) (-10 -7 (-15 -3350 ((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)) (-1090))) (-15 -3350 ((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)))) (-15 -3350 ((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))) (-1090))) (-15 -3350 ((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))))) (-15 -3350 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))) (-584 (-1090)))) (-15 -3350 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))))) (-15 -3350 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1090)))) (-15 -3350 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3351 ((-584 (-265 |#1|)) (-350 (-858 |#1|)) (-1090))) (-15 -3351 ((-584 (-584 (-265 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1090)))) (-15 -3352 ((-1080 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-249 (-350 (-858 |#1|))) (-1090))) (-15 -3352 ((-1080 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-350 (-858 |#1|)) (-1090)))) (-13 (-258) (-120))) (T -1043))
+((-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1080 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1080 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1090))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-265 *5)))) (-5 *1 (-1043 *5)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-265 *5))) (-5 *1 (-1043 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1043 *4)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 *5))))) (-5 *4 (-584 (-1090))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1043 *4)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1090))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1043 *4)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1043 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1043 *4)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1043 *5)))))
+((-3354 (((-350 (-1085 (-265 |#1|))) (-1179 (-265 |#1|)) (-350 (-1085 (-265 |#1|))) (-485)) 36 T ELT)) (-3353 (((-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|)))) 48 T ELT)))
+(((-1044 |#1|) (-10 -7 (-15 -3353 ((-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))))) (-15 -3354 ((-350 (-1085 (-265 |#1|))) (-1179 (-265 |#1|)) (-350 (-1085 (-265 |#1|))) (-485)))) (-496)) (T -1044))
+((-3354 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-350 (-1085 (-265 *5)))) (-5 *3 (-1179 (-265 *5))) (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-350 (-1085 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1044 *3)))))
+((-3573 (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-265 |#1|))) (-584 (-1090))) 244 T ELT) (((-584 (-249 (-265 |#1|))) (-265 |#1|) (-1090)) 23 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1090)) 29 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-584 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT)))
+(((-1045 |#1|) (-10 -7 (-15 -3573 ((-584 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3573 ((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3573 ((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1090))) (-15 -3573 ((-584 (-249 (-265 |#1|))) (-265 |#1|) (-1090))) (-15 -3573 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-265 |#1|))) (-584 (-1090))))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (T -1045))
+((-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1090))) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-584 (-249 (-265 *5)))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-265 *5)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-249 (-265 *5))))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-249 (-265 *4))))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-265 *4)))))
+((-3356 ((|#2| |#2|) 28 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3355 ((|#2| |#2|) 27 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT)))
+(((-1046 |#1| |#2|) (-10 -7 (-15 -3355 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3356 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-757)) (PROGN (-15 -3355 (|#2| |#2|)) (-15 -3356 (|#2| |#2|))) |%noBranch|)) (-1129) (-13 (-539 (-485) |#1|) (-318 |#1|) (-10 -7 (-6 -3996)))) (T -1046))
+((-3356 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-10 -7 (-6 -3996)))))) (-3355 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-10 -7 (-6 -3996)))))) (-3356 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-10 -7 (-6 -3996)))))) (-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-10 -7 (-6 -3996)))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3888 (((-1079 3 |#1|) $) 141 T ELT)) (-3366 (((-85) $) 101 T ELT)) (-3367 (($ $ (-584 (-855 |#1|))) 44 T ELT) (($ $ (-584 (-584 |#1|))) 104 T ELT) (($ (-584 (-855 |#1|))) 103 T ELT) (((-584 (-855 |#1|)) $) 102 T ELT)) (-3372 (((-85) $) 72 T ELT)) (-3706 (($ $ (-855 |#1|)) 76 T ELT) (($ $ (-584 |#1|)) 81 T ELT) (($ $ (-695)) 83 T ELT) (($ (-855 |#1|)) 77 T ELT) (((-855 |#1|) $) 75 T ELT)) (-3358 (((-2 (|:| -3850 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 139 T ELT)) (-3376 (((-695) $) 53 T ELT)) (-3377 (((-695) $) 52 T ELT)) (-3887 (($ $ (-695) (-855 |#1|)) 67 T ELT)) (-3364 (((-85) $) 111 T ELT)) (-3365 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 118 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 120 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 127 T ELT) (($ (-584 (-584 (-855 |#1|)))) 116 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 117 T ELT) (((-584 (-584 (-855 |#1|))) $) 114 T ELT)) (-3518 (($ (-584 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3359 (((-584 (-145)) $) 133 T ELT)) (-3363 (((-584 (-855 |#1|)) $) 130 T ELT)) (-3360 (((-584 (-584 (-145))) $) 132 T ELT)) (-3361 (((-584 (-584 (-584 (-855 |#1|)))) $) NIL T ELT)) (-3362 (((-584 (-584 (-584 (-695)))) $) 131 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3373 (((-695) $ (-584 (-855 |#1|))) 65 T ELT)) (-3370 (((-85) $) 84 T ELT)) (-3371 (($ $ (-584 (-855 |#1|))) 86 T ELT) (($ $ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 (-855 |#1|))) 87 T ELT) (((-584 (-855 |#1|)) $) 85 T ELT)) (-3378 (($) 48 T ELT) (($ (-1079 3 |#1|)) 49 T ELT)) (-3400 (($ $) 63 T ELT)) (-3374 (((-584 $) $) 62 T ELT)) (-3754 (($ (-584 $)) 59 T ELT)) (-3375 (((-584 $) $) 61 T ELT)) (-3946 (((-773) $) 146 T ELT)) (-3368 (((-85) $) 94 T ELT)) (-3369 (($ $ (-584 (-855 |#1|))) 96 T ELT) (($ $ (-584 (-584 |#1|))) 99 T ELT) (($ (-584 (-855 |#1|))) 97 T ELT) (((-584 (-855 |#1|)) $) 95 T ELT)) (-3357 (($ $) 140 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1047 |#1|) (-1048 |#1|) (-962)) (T -1047))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3888 (((-1079 3 |#1|) $) 17 T ELT)) (-3366 (((-85) $) 33 T ELT)) (-3367 (($ $ (-584 (-855 |#1|))) 37 T ELT) (($ $ (-584 (-584 |#1|))) 36 T ELT) (($ (-584 (-855 |#1|))) 35 T ELT) (((-584 (-855 |#1|)) $) 34 T ELT)) (-3372 (((-85) $) 48 T ELT)) (-3706 (($ $ (-855 |#1|)) 53 T ELT) (($ $ (-584 |#1|)) 52 T ELT) (($ $ (-695)) 51 T ELT) (($ (-855 |#1|)) 50 T ELT) (((-855 |#1|) $) 49 T ELT)) (-3358 (((-2 (|:| -3850 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 19 T ELT)) (-3376 (((-695) $) 62 T ELT)) (-3377 (((-695) $) 63 T ELT)) (-3887 (($ $ (-695) (-855 |#1|)) 54 T ELT)) (-3364 (((-85) $) 25 T ELT)) (-3365 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 32 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 31 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 29 T ELT) (($ (-584 (-584 (-855 |#1|)))) 28 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 27 T ELT) (((-584 (-584 (-855 |#1|))) $) 26 T ELT)) (-3518 (($ (-584 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3359 (((-584 (-145)) $) 20 T ELT)) (-3363 (((-584 (-855 |#1|)) $) 24 T ELT)) (-3360 (((-584 (-584 (-145))) $) 21 T ELT)) (-3361 (((-584 (-584 (-584 (-855 |#1|)))) $) 22 T ELT)) (-3362 (((-584 (-584 (-584 (-695)))) $) 23 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3373 (((-695) $ (-584 (-855 |#1|))) 55 T ELT)) (-3370 (((-85) $) 43 T ELT)) (-3371 (($ $ (-584 (-855 |#1|))) 47 T ELT) (($ $ (-584 (-584 |#1|))) 46 T ELT) (($ (-584 (-855 |#1|))) 45 T ELT) (((-584 (-855 |#1|)) $) 44 T ELT)) (-3378 (($) 65 T ELT) (($ (-1079 3 |#1|)) 64 T ELT)) (-3400 (($ $) 56 T ELT)) (-3374 (((-584 $) $) 57 T ELT)) (-3754 (($ (-584 $)) 59 T ELT)) (-3375 (((-584 $) $) 58 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-3368 (((-85) $) 38 T ELT)) (-3369 (($ $ (-584 (-855 |#1|))) 42 T ELT) (($ $ (-584 (-584 |#1|))) 41 T ELT) (($ (-584 (-855 |#1|))) 40 T ELT) (((-584 (-855 |#1|)) $) 39 T ELT)) (-3357 (($ $) 18 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-1048 |#1|) (-113) (-962)) (T -1048))
+((-3946 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) (-3378 (*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-962)))) (-3378 (*1 *1 *2) (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-962)) (-4 *1 (-1048 *3)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3518 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-962)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3375 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1048 *3)))) (-3374 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1048 *3)))) (-3400 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-962)))) (-3373 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3887 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1048 *4)) (-4 *4 (-962)))) (-3706 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3706 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3706 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1048 *3)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1048 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3369 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1048 *3)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1048 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3365 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1048 *5)) (-4 *5 (-962)))) (-3365 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1048 *5)) (-4 *5 (-962)))) (-3365 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4)) (-4 *4 (-962)))) (-3365 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4)) (-4 *4 (-962)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1048 *3)))) (-3365 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962)) (-4 *1 (-1048 *4)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-855 *3))))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145)))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3850 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695)))))) (-3357 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-962)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-1079 3 *3)))))
+(-13 (-1014) (-10 -8 (-15 -3378 ($)) (-15 -3378 ($ (-1079 3 |t#1|))) (-15 -3377 ((-695) $)) (-15 -3376 ((-695) $)) (-15 -3518 ($ (-584 $))) (-15 -3518 ($ $ $)) (-15 -3754 ($ (-584 $))) (-15 -3375 ((-584 $) $)) (-15 -3374 ((-584 $) $)) (-15 -3400 ($ $)) (-15 -3373 ((-695) $ (-584 (-855 |t#1|)))) (-15 -3887 ($ $ (-695) (-855 |t#1|))) (-15 -3706 ($ $ (-855 |t#1|))) (-15 -3706 ($ $ (-584 |t#1|))) (-15 -3706 ($ $ (-695))) (-15 -3706 ($ (-855 |t#1|))) (-15 -3706 ((-855 |t#1|) $)) (-15 -3372 ((-85) $)) (-15 -3371 ($ $ (-584 (-855 |t#1|)))) (-15 -3371 ($ $ (-584 (-584 |t#1|)))) (-15 -3371 ($ (-584 (-855 |t#1|)))) (-15 -3371 ((-584 (-855 |t#1|)) $)) (-15 -3370 ((-85) $)) (-15 -3369 ($ $ (-584 (-855 |t#1|)))) (-15 -3369 ($ $ (-584 (-584 |t#1|)))) (-15 -3369 ($ (-584 (-855 |t#1|)))) (-15 -3369 ((-584 (-855 |t#1|)) $)) (-15 -3368 ((-85) $)) (-15 -3367 ($ $ (-584 (-855 |t#1|)))) (-15 -3367 ($ $ (-584 (-584 |t#1|)))) (-15 -3367 ($ (-584 (-855 |t#1|)))) (-15 -3367 ((-584 (-855 |t#1|)) $)) (-15 -3366 ((-85) $)) (-15 -3365 ($ $ (-584 (-584 (-855 |t#1|))) (-584 (-145)) (-145))) (-15 -3365 ($ $ (-584 (-584 (-584 |t#1|))) (-584 (-145)) (-145))) (-15 -3365 ($ $ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3365 ($ $ (-584 (-584 (-584 |t#1|))) (-85) (-85))) (-15 -3365 ($ (-584 (-584 (-855 |t#1|))))) (-15 -3365 ($ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3365 ((-584 (-584 (-855 |t#1|))) $)) (-15 -3364 ((-85) $)) (-15 -3363 ((-584 (-855 |t#1|)) $)) (-15 -3362 ((-584 (-584 (-584 (-695)))) $)) (-15 -3361 ((-584 (-584 (-584 (-855 |t#1|)))) $)) (-15 -3360 ((-584 (-584 (-145))) $)) (-15 -3359 ((-584 (-145)) $)) (-15 -3358 ((-2 (|:| -3850 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $)) (-15 -3357 ($ $)) (-15 -3888 ((-1079 3 |t#1|) $)) (-15 -3946 ((-773) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 185 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) 7 T ELT)) (-3566 (((-85) $ (|[\|\|]| (-463))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-618))) 27 T ELT) (((-85) $ (|[\|\|]| (-1190))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-540))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1030))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-623))) 55 T ELT) (((-85) $ (|[\|\|]| (-459))) 59 T ELT) (((-85) $ (|[\|\|]| (-979))) 63 T ELT) (((-85) $ (|[\|\|]| (-1191))) 67 T ELT) (((-85) $ (|[\|\|]| (-464))) 71 T ELT) (((-85) $ (|[\|\|]| (-1067))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-614))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-949))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-884))) 99 T ELT) (((-85) $ (|[\|\|]| (-986))) 103 T ELT) (((-85) $ (|[\|\|]| (-1004))) 107 T ELT) (((-85) $ (|[\|\|]| (-1009))) 111 T ELT) (((-85) $ (|[\|\|]| (-566))) 116 T ELT) (((-85) $ (|[\|\|]| (-1081))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-418))) 132 T ELT) (((-85) $ (|[\|\|]| (-529))) 136 T ELT) (((-85) $ (|[\|\|]| (-447))) 140 T ELT) (((-85) $ (|[\|\|]| (-1073))) 144 T ELT) (((-85) $ (|[\|\|]| (-485))) 148 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3572 (((-463) $) 20 T ELT) (((-172) $) 24 T ELT) (((-618) $) 28 T ELT) (((-1190) $) 32 T ELT) (((-111) $) 36 T ELT) (((-540) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1030) $) 48 T ELT) (((-67) $) 52 T ELT) (((-623) $) 56 T ELT) (((-459) $) 60 T ELT) (((-979) $) 64 T ELT) (((-1191) $) 68 T ELT) (((-464) $) 72 T ELT) (((-1067) $) 76 T ELT) (((-127) $) 80 T ELT) (((-614) $) 84 T ELT) (((-263) $) 88 T ELT) (((-949) $) 92 T ELT) (((-154) $) 96 T ELT) (((-884) $) 100 T ELT) (((-986) $) 104 T ELT) (((-1004) $) 108 T ELT) (((-1009) $) 112 T ELT) (((-566) $) 117 T ELT) (((-1081) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-418) $) 133 T ELT) (((-529) $) 137 T ELT) (((-447) $) 141 T ELT) (((-1073) $) 145 T ELT) (((-485) $) 149 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1049) (-1051)) (T -1049))
+NIL
+((-3379 (((-584 (-1095)) (-1073)) 9 T ELT)))
+(((-1050) (-10 -7 (-15 -3379 ((-584 (-1095)) (-1073))))) (T -1050))
+((-3379 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-584 (-1095))) (-5 *1 (-1050)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-1095)) 20 T ELT) (((-1095) $) 19 T ELT)) (-3566 (((-85) $ (|[\|\|]| (-463))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-618))) 84 T ELT) (((-85) $ (|[\|\|]| (-1190))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-540))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1030))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-623))) 70 T ELT) (((-85) $ (|[\|\|]| (-459))) 68 T ELT) (((-85) $ (|[\|\|]| (-979))) 66 T ELT) (((-85) $ (|[\|\|]| (-1191))) 64 T ELT) (((-85) $ (|[\|\|]| (-464))) 62 T ELT) (((-85) $ (|[\|\|]| (-1067))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-614))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-949))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-884))) 48 T ELT) (((-85) $ (|[\|\|]| (-986))) 46 T ELT) (((-85) $ (|[\|\|]| (-1004))) 44 T ELT) (((-85) $ (|[\|\|]| (-1009))) 42 T ELT) (((-85) $ (|[\|\|]| (-566))) 40 T ELT) (((-85) $ (|[\|\|]| (-1081))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-418))) 32 T ELT) (((-85) $ (|[\|\|]| (-529))) 30 T ELT) (((-85) $ (|[\|\|]| (-447))) 28 T ELT) (((-85) $ (|[\|\|]| (-1073))) 26 T ELT) (((-85) $ (|[\|\|]| (-485))) 24 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3572 (((-463) $) 87 T ELT) (((-172) $) 85 T ELT) (((-618) $) 83 T ELT) (((-1190) $) 81 T ELT) (((-111) $) 79 T ELT) (((-540) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1030) $) 73 T ELT) (((-67) $) 71 T ELT) (((-623) $) 69 T ELT) (((-459) $) 67 T ELT) (((-979) $) 65 T ELT) (((-1191) $) 63 T ELT) (((-464) $) 61 T ELT) (((-1067) $) 59 T ELT) (((-127) $) 57 T ELT) (((-614) $) 55 T ELT) (((-263) $) 53 T ELT) (((-949) $) 51 T ELT) (((-154) $) 49 T ELT) (((-884) $) 47 T ELT) (((-986) $) 45 T ELT) (((-1004) $) 43 T ELT) (((-1009) $) 41 T ELT) (((-566) $) 39 T ELT) (((-1081) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-418) $) 31 T ELT) (((-529) $) 29 T ELT) (((-447) $) 27 T ELT) (((-1073) $) 25 T ELT) (((-485) $) 23 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-1051) (-113)) (T -1051))
+((-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-463)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-172)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-618)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1190)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-111)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-540)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-106)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1030)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-67)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-623)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-459)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-979)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1191)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-464)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1067)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-127)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-614)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-263)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-949)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-154)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-884)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-986)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1004)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1009)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-566)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1081)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-110)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-418)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-529)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-447)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1073)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-485)))))
+(-13 (-996) (-1175) (-10 -8 (-15 -3566 ((-85) $ (|[\|\|]| (-463)))) (-15 -3572 ((-463) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-172)))) (-15 -3572 ((-172) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-618)))) (-15 -3572 ((-618) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1190)))) (-15 -3572 ((-1190) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-111)))) (-15 -3572 ((-111) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-540)))) (-15 -3572 ((-540) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-106)))) (-15 -3572 ((-106) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1030)))) (-15 -3572 ((-1030) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-67)))) (-15 -3572 ((-67) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-623)))) (-15 -3572 ((-623) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-459)))) (-15 -3572 ((-459) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-979)))) (-15 -3572 ((-979) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1191)))) (-15 -3572 ((-1191) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-464)))) (-15 -3572 ((-464) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1067)))) (-15 -3572 ((-1067) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-127)))) (-15 -3572 ((-127) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-614)))) (-15 -3572 ((-614) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-263)))) (-15 -3572 ((-263) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-949)))) (-15 -3572 ((-949) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-154)))) (-15 -3572 ((-154) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-884)))) (-15 -3572 ((-884) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-986)))) (-15 -3572 ((-986) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1004)))) (-15 -3572 ((-1004) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1009)))) (-15 -3572 ((-1009) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-566)))) (-15 -3572 ((-566) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1081)))) (-15 -3572 ((-1081) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-129)))) (-15 -3572 ((-129) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-110)))) (-15 -3572 ((-110) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-418)))) (-15 -3572 ((-418) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-529)))) (-15 -3572 ((-529) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-447)))) (-15 -3572 ((-447) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1073)))) (-15 -3572 ((-1073) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-485)))) (-15 -3572 ((-485) $))))
+(((-64) . T) ((-72) . T) ((-556 (-1095)) . T) ((-553 (-773)) . T) ((-553 (-1095)) . T) ((-430 (-1095)) . T) ((-13) . T) ((-1014) . T) ((-996) . T) ((-1129) . T) ((-1175) . T))
+((-3382 (((-1185) (-584 (-773))) 22 T ELT) (((-1185) (-773)) 21 T ELT)) (-3381 (((-1185) (-584 (-773))) 20 T ELT) (((-1185) (-773)) 19 T ELT)) (-3380 (((-1185) (-584 (-773))) 18 T ELT) (((-1185) (-773)) 10 T ELT) (((-1185) (-1073) (-773)) 16 T ELT)))
+(((-1052) (-10 -7 (-15 -3380 ((-1185) (-1073) (-773))) (-15 -3380 ((-1185) (-773))) (-15 -3381 ((-1185) (-773))) (-15 -3382 ((-1185) (-773))) (-15 -3380 ((-1185) (-584 (-773)))) (-15 -3381 ((-1185) (-584 (-773)))) (-15 -3382 ((-1185) (-584 (-773)))))) (T -1052))
+((-3382 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-773)) (-5 *2 (-1185)) (-5 *1 (-1052)))))
+((-3386 (($ $ $) 10 T ELT)) (-3385 (($ $) 9 T ELT)) (-3389 (($ $ $) 13 T ELT)) (-3391 (($ $ $) 15 T ELT)) (-3388 (($ $ $) 12 T ELT)) (-3390 (($ $ $) 14 T ELT)) (-3393 (($ $) 17 T ELT)) (-3392 (($ $) 16 T ELT)) (-3383 (($ $) 6 T ELT)) (-3387 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3384 (($ $ $) 8 T ELT)))
+(((-1053) (-113)) (T -1053))
+((-3393 (*1 *1 *1) (-4 *1 (-1053))) (-3392 (*1 *1 *1) (-4 *1 (-1053))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3386 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3385 (*1 *1 *1) (-4 *1 (-1053))) (-3384 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3387 (*1 *1 *1) (-4 *1 (-1053))) (-3383 (*1 *1 *1) (-4 *1 (-1053))))
+(-13 (-10 -8 (-15 -3383 ($ $)) (-15 -3387 ($ $)) (-15 -3384 ($ $ $)) (-15 -3385 ($ $)) (-15 -3386 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -3392 ($ $)) (-15 -3393 ($ $))))
+((-2569 (((-85) $ $) 44 T ELT)) (-3402 ((|#1| $) 17 T ELT)) (-3394 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3401 (((-85) $) 19 T ELT)) (-3399 (($ $ |#1|) 30 T ELT)) (-3397 (($ $ (-85)) 32 T ELT)) (-3396 (($ $) 33 T ELT)) (-3398 (($ $ |#2|) 31 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3395 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3403 (((-85) $) 16 T ELT)) (-3565 (($) 13 T ELT)) (-3400 (($ $) 29 T ELT)) (-3530 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1600 |#2|))) 23 T ELT) (((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1600 |#2|)))) 26 T ELT) (((-584 $) |#1| (-584 |#2|)) 28 T ELT)) (-3922 ((|#2| $) 18 T ELT)) (-3946 (((-773) $) 53 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 42 T ELT)))
+(((-1054 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3565 ($)) (-15 -3403 ((-85) $)) (-15 -3402 (|#1| $)) (-15 -3922 (|#2| $)) (-15 -3401 ((-85) $)) (-15 -3530 ($ |#1| |#2| (-85))) (-15 -3530 ($ |#1| |#2|)) (-15 -3530 ($ (-2 (|:| |val| |#1|) (|:| -1600 |#2|)))) (-15 -3530 ((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1600 |#2|))))) (-15 -3530 ((-584 $) |#1| (-584 |#2|))) (-15 -3400 ($ $)) (-15 -3399 ($ $ |#1|)) (-15 -3398 ($ $ |#2|)) (-15 -3397 ($ $ (-85))) (-15 -3396 ($ $)) (-15 -3395 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3394 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1014) (-34)) (-13 (-1014) (-34))) (T -1054))
+((-3565 (*1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3402 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-13 (-1014) (-34))))) (-3922 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1014) (-34))))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3530 (*1 *1 *2 *3) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1600 *4))) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1054 *3 *4)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1600 *5)))) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-584 (-1054 *4 *5))) (-5 *1 (-1054 *4 *5)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-584 (-1054 *3 *5))) (-5 *1 (-1054 *3 *5)) (-4 *3 (-13 (-1014) (-34))))) (-3400 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3399 (*1 *1 *1 *2) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3398 (*1 *1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1014) (-34))) (-4 *2 (-13 (-1014) (-34))))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3395 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *5 *6)))) (-3394 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5)) (-4 *4 (-13 (-1014) (-34))))))
+((-2569 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-3402 (((-1054 |#1| |#2|) $) 27 T ELT)) (-3411 (($ $) 91 T ELT)) (-3407 (((-85) (-1054 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3404 (($ $ $ (-584 (-1054 |#1| |#2|))) 108 T ELT) (($ $ $ (-584 (-1054 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3026 (((-1054 |#1| |#2|) $ (-1054 |#1| |#2|)) 46 (|has| $ (-6 -3996)) ELT)) (-3788 (((-1054 |#1| |#2|) $ #1="value" (-1054 |#1| |#2|)) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 44 (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3409 (((-584 (-2 (|:| |val| |#1|) (|:| -1600 |#2|))) $) 95 T ELT)) (-3405 (($ (-1054 |#1| |#2|) $) 42 T ELT)) (-3406 (($ (-1054 |#1| |#2|) $) 34 T ELT)) (-2890 (((-584 (-1054 |#1| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3408 (((-85) (-1054 |#1| |#2|) $) 97 T ELT)) (-3028 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-1014)) ELT)) (-2609 (((-584 (-1054 |#1| |#2|)) $) 58 T ELT)) (-3246 (((-85) (-1054 |#1| |#2|) $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-1949 (($ (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $) 50 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $) 49 T ELT)) (-3031 (((-584 (-1054 |#1| |#2|)) $) 56 T ELT)) (-3527 (((-85) $) 45 T ELT)) (-3243 (((-1073) $) NIL (|has| (-1054 |#1| |#2|) (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| (-1054 |#1| |#2|) (-1014)) ELT)) (-3412 (((-3 $ "failed") $) 89 T ELT)) (-1947 (((-85) (-1 (-85) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-1054 |#1| |#2|)))) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1014))) ELT) (($ $ (-249 (-1054 |#1| |#2|))) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1014))) ELT) (($ $ (-1054 |#1| |#2|) (-1054 |#1| |#2|)) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1014))) ELT) (($ $ (-584 (-1054 |#1| |#2|)) (-584 (-1054 |#1| |#2|))) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1014))) ELT)) (-1222 (((-85) $ $) 53 T ELT)) (-3403 (((-85) $) 24 T ELT)) (-3565 (($) 26 T ELT)) (-3800 (((-1054 |#1| |#2|) $ #1#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3633 (((-85) $) 47 T ELT)) (-1946 (((-695) (-1054 |#1| |#2|) $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT) (((-695) (-1 (-85) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3400 (($ $) 52 T ELT)) (-3530 (($ (-1054 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-584 $)) 13 T ELT) (($ |#1| |#2| (-584 (-1054 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-584 |#2|)) 18 T ELT)) (-3410 (((-584 |#2|) $) 96 T ELT)) (-3946 (((-773) $) 87 (|has| (-1054 |#1| |#2|) (-553 (-773))) ELT)) (-3522 (((-584 $) $) 31 T ELT)) (-3029 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-1948 (((-85) (-1 (-85) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3057 (((-85) $ $) 70 (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-3957 (((-695) $) 64 T ELT)))
+(((-1055 |#1| |#2|) (-13 (-924 (-1054 |#1| |#2|)) (-318 (-1054 |#1| |#2|)) (-10 -8 (-6 -3996) (-15 -3412 ((-3 $ "failed") $)) (-15 -3411 ($ $)) (-15 -3530 ($ (-1054 |#1| |#2|))) (-15 -3530 ($ |#1| |#2| (-584 $))) (-15 -3530 ($ |#1| |#2| (-584 (-1054 |#1| |#2|)))) (-15 -3530 ($ |#1| |#2| |#1| (-584 |#2|))) (-15 -3410 ((-584 |#2|) $)) (-15 -3409 ((-584 (-2 (|:| |val| |#1|) (|:| -1600 |#2|))) $)) (-15 -3408 ((-85) (-1054 |#1| |#2|) $)) (-15 -3407 ((-85) (-1054 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3406 ($ (-1054 |#1| |#2|) $)) (-15 -3405 ($ (-1054 |#1| |#2|) $)) (-15 -3404 ($ $ $ (-584 (-1054 |#1| |#2|)))) (-15 -3404 ($ $ $ (-584 (-1054 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1014) (-34)) (-13 (-1014) (-34))) (T -1055))
+((-3412 (*1 *1 *1) (|partial| -12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3411 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1055 *2 *3))) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1054 *2 *3))) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3)))) (-3530 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-584 *4)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3408 (*1 *2 *3 *1) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5)))) (-3407 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1054 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *5 *6)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))) (-3404 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-584 (-1054 *3 *4))) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))) (-3404 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1054 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *1 (-1055 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3414 (($ $) NIL T ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3413 (($ (-631 |#2|)) 53 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3333 (($ |#2|) 14 T ELT)) (-3724 (($) NIL T CONST)) (-3110 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) 40 T ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 80 T ELT)) (-3109 (((-695) $) 68 (|has| |#2| (-496)) ELT)) (-3113 ((|#2| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3108 (((-695) $) 70 (|has| |#2| (-496)) ELT)) (-3107 (((-584 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-496)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-3614 (($ |#2|) 23 T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3327 ((|#2| $) 64 (|has| |#2| (-6 (-3997 #2="*"))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-3124 (($ (-584 (-584 |#2|))) 35 T ELT)) (-1949 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3594 (((-584 (-584 |#2|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3590 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) NIL T ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT)) (-3329 ((|#2| $) NIL T ELT)) (-3332 (($ (-584 |#2|)) 48 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3331 (((-197 |#1| |#2|) $) NIL T ELT)) (-3328 ((|#2| $) 62 (|has| |#2| (-6 (-3997 #2#))) ELT)) (-1946 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) 87 (|has| |#2| (-554 (-474))) ELT)) (-3111 (((-197 |#1| |#2|) $ (-485)) 42 T ELT)) (-3946 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) 50 T ELT)) (-3127 (((-695)) 21 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-2667 (($) 19 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-1056 |#1| |#2|) (-13 (-1037 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-10 -8 (-15 -3614 ($ |#2|)) (-15 -3414 ($ $)) (-15 -3413 ($ (-631 |#2|))) (IF (|has| |#2| (-6 (-3997 #1="*"))) (-6 -3984) |%noBranch|) (IF (|has| |#2| (-6 (-3997 #1#))) (IF (|has| |#2| (-6 -3992)) (-6 -3992) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-695) (-962)) (T -1056))
+((-3614 (*1 *1 *2) (-12 (-5 *1 (-1056 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962)))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962)))) (-3413 (*1 *1 *2) (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1056 *3 *4)) (-14 *3 (-695)))))
+((-3427 (($ $) 19 T ELT)) (-3417 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3425 (((-85) $ $) 24 T ELT)) (-3429 (($ $) 17 T ELT)) (-3800 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT) (($ $ $) 31 T ELT)) (-3946 (($ (-117)) 29 T ELT) (((-773) $) NIL T ELT)))
+(((-1057 |#1|) (-10 -7 (-15 -3946 ((-773) |#1|)) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| (-114))) (-15 -3417 (|#1| |#1| (-117))) (-15 -3946 (|#1| (-117))) (-15 -3425 ((-85) |#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3800 (|#1| |#1| (-1146 (-485)))) (-15 -3800 ((-117) |#1| (-485))) (-15 -3800 ((-117) |#1| (-485) (-117)))) (-1058)) (T -1057))
+NIL
+((-2569 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3426 (($ $) 130 T ELT)) (-3427 (($ $) 131 T ELT)) (-3417 (($ $ (-117)) 118 T ELT) (($ $ (-114)) 117 T ELT)) (-2199 (((-1185) $ (-485) (-485)) 44 (|has| $ (-6 -3996)) ELT)) (-3424 (((-85) $ $) 128 T ELT)) (-3423 (((-85) $ $ (-485)) 127 T ELT)) (-3418 (((-584 $) $ (-117)) 120 T ELT) (((-584 $) $ (-114)) 119 T ELT)) (-1732 (((-85) (-1 (-85) (-117) (-117)) $) 108 T ELT) (((-85) $) 102 (|has| (-117) (-757)) ELT)) (-1730 (($ (-1 (-85) (-117) (-117)) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| (-117) (-757)) (|has| $ (-6 -3996))) ELT)) (-2910 (($ (-1 (-85) (-117) (-117)) $) 109 T ELT) (($ $) 103 (|has| (-117) (-757)) ELT)) (-3788 (((-117) $ (-485) (-117)) 56 (|has| $ (-6 -3996)) ELT) (((-117) $ (-1146 (-485)) (-117)) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-3415 (($ $ (-117)) 114 T ELT) (($ $ (-114)) 113 T ELT)) (-2298 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) 110 T ELT)) (-3420 (($ $ (-1146 (-485)) $) 124 T ELT)) (-1353 (($ $) 84 (-12 (|has| (-117) (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ (-117) $) 83 (-12 (|has| (-117) (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1014)) (|has| $ (-6 -3995))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3995)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 (((-117) $ (-485) (-117)) 57 (|has| $ (-6 -3996)) ELT)) (-3113 (((-117) $ (-485)) 55 T ELT)) (-3425 (((-85) $ $) 129 T ELT)) (-3419 (((-485) (-1 (-85) (-117)) $) 107 T ELT) (((-485) (-117) $) 106 (|has| (-117) (-1014)) ELT) (((-485) (-117) $ (-485)) 105 (|has| (-117) (-1014)) ELT) (((-485) $ $ (-485)) 123 T ELT) (((-485) (-114) $ (-485)) 122 T ELT)) (-2890 (((-584 (-117)) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) (-117)) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| (-117) (-757)) ELT)) (-3518 (($ (-1 (-85) (-117) (-117)) $ $) 111 T ELT) (($ $ $) 104 (|has| (-117) (-757)) ELT)) (-2609 (((-584 (-117)) $) 29 T ELT)) (-3246 (((-85) (-117) $) 27 (|has| (-117) (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| (-117) (-757)) ELT)) (-3421 (((-85) $ $ (-117)) 125 T ELT)) (-3422 (((-695) $ $ (-117)) 126 T ELT)) (-1949 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3428 (($ $) 132 T ELT)) (-3429 (($ $) 133 T ELT)) (-3416 (($ $ (-117)) 116 T ELT) (($ $ (-114)) 115 T ELT)) (-3243 (((-1073) $) 22 (|has| (-117) (-1014)) ELT)) (-2305 (($ (-117) $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| (-117) (-1014)) ELT)) (-3801 (((-117) $) 46 (|has| (-485) (-757)) ELT)) (-1354 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2200 (($ $ (-117)) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 (-117)))) 26 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) 25 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-117)) (-584 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1014))) ELT)) (-2206 (((-584 (-117)) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 (((-117) $ (-485) (-117)) 54 T ELT) (((-117) $ (-485)) 53 T ELT) (($ $ (-1146 (-485))) 75 T ELT) (($ $ $) 112 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1146 (-485))) 67 T ELT)) (-1946 (((-695) (-117) $) 28 (|has| (-117) (-72)) ELT) (((-695) (-1 (-85) (-117)) $) 31 T ELT)) (-1731 (($ $ $ (-485)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 85 (|has| (-117) (-554 (-474))) ELT)) (-3530 (($ (-584 (-117))) 76 T ELT)) (-3802 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3946 (($ (-117)) 121 T ELT) (((-773) $) 17 (|has| (-117) (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| (-117) (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| (-117) (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| (-117) (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| (-117) (-757)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-1058) (-113)) (T -1058))
+((-3429 (*1 *1 *1) (-4 *1 (-1058))) (-3428 (*1 *1 *1) (-4 *1 (-1058))) (-3427 (*1 *1 *1) (-4 *1 (-1058))) (-3426 (*1 *1 *1) (-4 *1 (-1058))) (-3425 (*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))) (-3424 (*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))) (-3423 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-485)) (-5 *2 (-85)))) (-3422 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-695)))) (-3421 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3420 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-1146 (-485))))) (-3419 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-485)))) (-3419 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-485)) (-5 *3 (-114)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1058)))) (-3418 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1058)))) (-3418 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1058)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) (-3800 (*1 *1 *1 *1) (-4 *1 (-1058))))
+(-13 (-19 (-117)) (-10 -8 (-15 -3429 ($ $)) (-15 -3428 ($ $)) (-15 -3427 ($ $)) (-15 -3426 ($ $)) (-15 -3425 ((-85) $ $)) (-15 -3424 ((-85) $ $)) (-15 -3423 ((-85) $ $ (-485))) (-15 -3422 ((-695) $ $ (-117))) (-15 -3421 ((-85) $ $ (-117))) (-15 -3420 ($ $ (-1146 (-485)) $)) (-15 -3419 ((-485) $ $ (-485))) (-15 -3419 ((-485) (-114) $ (-485))) (-15 -3946 ($ (-117))) (-15 -3418 ((-584 $) $ (-117))) (-15 -3418 ((-584 $) $ (-114))) (-15 -3417 ($ $ (-117))) (-15 -3417 ($ $ (-114))) (-15 -3416 ($ $ (-117))) (-15 -3416 ($ $ (-114))) (-15 -3415 ($ $ (-117))) (-15 -3415 ($ $ (-114))) (-15 -3800 ($ $ $))))
+(((-34) . T) ((-72) OR (|has| (-117) (-1014)) (|has| (-117) (-757)) (|has| (-117) (-72))) ((-553 (-773)) OR (|has| (-117) (-1014)) (|has| (-117) (-757)) (|has| (-117) (-553 (-773)))) ((-124 (-117)) . T) ((-554 (-474)) |has| (-117) (-554 (-474))) ((-241 (-485) (-117)) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ((-318 (-117)) . T) ((-324 (-117)) . T) ((-429 (-117)) . T) ((-539 (-485) (-117)) . T) ((-456 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ((-13) . T) ((-594 (-117)) . T) ((-19 (-117)) . T) ((-757) |has| (-117) (-757)) ((-760) |has| (-117) (-757)) ((-1014) OR (|has| (-117) (-1014)) (|has| (-117) (-757))) ((-1129) . T))
+((-3436 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) (-695)) 112 T ELT)) (-3433 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695)) 61 T ELT)) (-3437 (((-1185) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-695)) 97 T ELT)) (-3431 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3434 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695)) 63 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695) (-85)) 65 T ELT)) (-3435 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 85 T ELT)) (-3972 (((-1073) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) 90 T ELT)) (-3432 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 60 T ELT)) (-3430 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT)))
+(((-1059 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3430 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3431 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3432 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695))) (-15 -3433 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-695))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3435 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3435 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3436 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))))) (-695))) (-15 -3972 ((-1073) (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|)))) (-15 -3437 ((-1185) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1600 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -1059))
+((-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1600 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1185)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1600 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1073)) (-5 *1 (-1059 *4 *5 *6 *7 *8)))) (-3436 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1600 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1600 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-1059 *7 *8 *9 *10 *11)))) (-3435 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3682 (((-584 $) (-584 |#4|)) 118 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 117 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3775 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 91 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3724 (($) NIL T CONST)) (-2905 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3689 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-3799 (((-3 $ #1#) $) 45 T ELT)) (-3685 ((|#4| |#4| $) 73 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#4|)) (|:| -1702 (-584 |#4|))) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3438 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 133 T ELT)) (-2890 (((-584 |#4|) $) 18 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 38 T ELT)) (-2609 (((-584 |#4|) $) 19 T ELT)) (-3246 (((-85) |#4| $) 27 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 111 T ELT)) (-3798 (((-3 |#4| #1#) $) 42 T ELT)) (-3193 (((-584 $) |#4| $) 96 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3239 (((-584 $) |#4| $) 115 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 116 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3439 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3440 (($ |#4| $) 82 T ELT) (($ (-584 |#4|) $) 83 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3697 (((-584 |#4|) $) NIL T ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 40 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3769 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 98 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 93 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 14 T ELT)) (-3948 (((-695) $) NIL T ELT)) (-1946 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) 13 T ELT)) (-3972 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) 22 T ELT)) (-2911 (($ $ |#3|) 49 T ELT)) (-2913 (($ $ |#3|) 51 T ELT)) (-3684 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3946 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3678 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3190 (((-584 $) |#4| $) 63 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-584 |#3|) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3933 (((-85) |#3| $) 69 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-1060 |#1| |#2| |#3| |#4|) (-13 (-1021 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3440 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3682 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3682 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3439 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3438 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1060))
+((-3440 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1060 *5 *6 *7 *3))) (-5 *1 (-1060 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3682 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3682 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1060 *5 *6 *7 *8))))) (-5 *1 (-1060 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 32 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 30 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 29 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-695)) 31 T ELT) (($ $ (-831)) 28 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ $ $) 27 T ELT)))
+(((-1061) (-113)) (T -1061))
+NIL
+(-13 (-23) (-664))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3324 ((|#1| $) 38 T ELT)) (-3441 (($ (-584 |#1|)) 46 T ELT)) (-3724 (($) NIL T CONST)) (-3326 ((|#1| |#1| $) 41 T ELT)) (-3325 ((|#1| $) 36 T ELT)) (-2890 (((-584 |#1|) $) 19 (|has| $ (-6 -3995)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-1274 ((|#1| $) 39 T ELT)) (-3609 (($ |#1| $) 42 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 37 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 33 T ELT)) (-3565 (($) 44 T ELT)) (-3323 (((-695) $) 31 T ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 28 T ELT)) (-3946 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-584 |#1|)) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 32 T ELT)))
+(((-1062 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -3441 ($ (-584 |#1|))))) (-1129)) (T -1062))
+((-3441 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-1062 *3)))))
+((-3788 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1146 (-485)) |#2|) 53 T ELT) ((|#2| $ (-485) |#2|) 50 T ELT)) (-3443 (((-85) $) 12 T ELT)) (-1949 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3801 ((|#2| $) NIL T ELT) (($ $ (-695)) 17 T ELT)) (-2200 (($ $ |#2|) 49 T ELT)) (-3444 (((-85) $) 11 T ELT)) (-3800 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1146 (-485))) 36 T ELT) ((|#2| $ (-485)) 25 T ELT) ((|#2| $ (-485) |#2|) NIL T ELT)) (-3791 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3802 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-584 $)) 45 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-1063 |#1| |#2|) (-10 -7 (-15 -3443 ((-85) |#1|)) (-15 -3444 ((-85) |#1|)) (-15 -3788 (|#2| |#1| (-485) |#2|)) (-15 -3800 (|#2| |#1| (-485) |#2|)) (-15 -3800 (|#2| |#1| (-485))) (-15 -2200 (|#1| |#1| |#2|)) (-15 -3800 (|#1| |#1| (-1146 (-485)))) (-15 -3802 (|#1| |#1| |#2|)) (-15 -3802 (|#1| (-584 |#1|))) (-15 -3788 (|#2| |#1| (-1146 (-485)) |#2|)) (-15 -3788 (|#2| |#1| #1="last" |#2|)) (-15 -3788 (|#1| |#1| #2="rest" |#1|)) (-15 -3788 (|#2| |#1| #3="first" |#2|)) (-15 -3791 (|#1| |#1| |#2|)) (-15 -3791 (|#1| |#1| |#1|)) (-15 -3800 (|#2| |#1| #1#)) (-15 -3800 (|#1| |#1| #2#)) (-15 -3801 (|#1| |#1| (-695))) (-15 -3800 (|#2| |#1| #3#)) (-15 -3801 (|#2| |#1|)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3788 (|#2| |#1| #4="value" |#2|)) (-15 -3800 (|#2| |#1| #4#)) (-15 -1949 (|#1| (-1 |#2| |#2|) |#1|))) (-1064 |#2|) (-1129)) (T -1063))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3795 ((|#1| $) 71 T ELT)) (-3797 (($ $) 73 T ELT)) (-2199 (((-1185) $ (-485) (-485)) 107 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-485)) 58 (|has| $ (-6 -3996)) ELT)) (-3442 (((-85) $ (-695)) 90 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 62 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) 60 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 127 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-485) |#1|) 96 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3995)) ELT)) (-3796 ((|#1| $) 72 T ELT)) (-3724 (($) 7 T CONST)) (-3799 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-1353 (($ $) 109 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3995)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-1576 ((|#1| $ (-485) |#1|) 95 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 97 T ELT)) (-3443 (((-85) $) 93 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-3614 (($ (-695) |#1|) 119 T ELT)) (-3719 (((-85) $ (-695)) 91 T ELT)) (-2201 (((-485) $) 105 (|has| (-485) (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-2202 (((-485) $) 104 (|has| (-485) (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3716 (((-85) $ (-695)) 92 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3798 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-2305 (($ $ $ (-485)) 126 T ELT) (($ |#1| $ (-485)) 125 T ELT)) (-2204 (((-584 (-485)) $) 102 T ELT)) (-2205 (((-85) (-485) $) 101 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2200 (($ $ |#1|) 106 (|has| $ (-6 -3996)) ELT)) (-3444 (((-85) $) 94 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 100 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1146 (-485))) 118 T ELT) ((|#1| $ (-485)) 99 T ELT) ((|#1| $ (-485) |#1|) 98 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-2306 (($ $ (-1146 (-485))) 124 T ELT) (($ $ (-485)) 123 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-3792 (($ $) 68 T ELT)) (-3790 (($ $) 65 (|has| $ (-6 -3996)) ELT)) (-3793 (((-695) $) 69 T ELT)) (-3794 (($ $) 70 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 108 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 117 T ELT)) (-3791 (($ $ $) 67 (|has| $ (-6 -3996)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3996)) ELT)) (-3802 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-1064 |#1|) (-113) (-1129)) (T -1064))
+((-3444 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3716 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-3719 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))))
+(-13 (-1168 |t#1|) (-594 |t#1|) (-10 -8 (-15 -3444 ((-85) $)) (-15 -3443 ((-85) $)) (-15 -3716 ((-85) $ (-695))) (-15 -3719 ((-85) $ (-695))) (-15 -3442 ((-85) $ (-695)))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T) ((-1168 |#1|) . T))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-773) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-1065 |#1| |#2| |#3|) (-1107 |#1| |#2|) (-1014) (-1014) |#2|) (T -1065))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3445 (((-633 $) $) 17 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3446 (($) 18 T CONST)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-1066) (-113)) (T -1066))
+((-3446 (*1 *1) (-4 *1 (-1066))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1066)))))
+(-13 (-1014) (-10 -8 (-15 -3446 ($) -3952) (-15 -3445 ((-633 $) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3448 (((-633 (-1049)) $) 28 T ELT)) (-3447 (((-1049) $) 16 T ELT)) (-3449 (((-1049) $) 18 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3450 (((-447) $) 14 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 38 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1067) (-13 (-996) (-10 -8 (-15 -3450 ((-447) $)) (-15 -3449 ((-1049) $)) (-15 -3448 ((-633 (-1049)) $)) (-15 -3447 ((-1049) $))))) (T -1067))
+((-3450 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1067)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-633 (-1049))) (-5 *1 (-1067)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067)))))
+((-3453 (((-1069 |#1|) (-1069 |#1|)) 17 T ELT)) (-3451 (((-1069 |#1|) (-1069 |#1|)) 13 T ELT)) (-3454 (((-1069 |#1|) (-1069 |#1|) (-485) (-485)) 20 T ELT)) (-3452 (((-1069 |#1|) (-1069 |#1|)) 15 T ELT)))
+(((-1068 |#1|) (-10 -7 (-15 -3451 ((-1069 |#1|) (-1069 |#1|))) (-15 -3452 ((-1069 |#1|) (-1069 |#1|))) (-15 -3453 ((-1069 |#1|) (-1069 |#1|))) (-15 -3454 ((-1069 |#1|) (-1069 |#1|) (-485) (-485)))) (-13 (-496) (-120))) (T -1068))
+((-3454 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1068 *4)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1068 *3)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1068 *3)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1068 *3)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) NIL T ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3797 (($ $) 60 T ELT)) (-2199 (((-1185) $ (-485) (-485)) 93 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-485)) 122 (|has| $ (-6 -3996)) ELT)) (-3442 (((-85) $ (-695)) NIL T ELT)) (-3459 (((-773) $) 46 (|has| |#1| (-1014)) ELT)) (-3458 (((-85)) 49 (|has| |#1| (-1014)) ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 109 (|has| $ (-6 -3996)) ELT) (($ $ (-485) $) 135 T ELT)) (-3786 ((|#1| $ |#1|) 119 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 114 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 106 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-485) |#1|) 72 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2324 (($ $) 11 T ELT)) (-3799 (($ $) 35 T ELT) (($ $ (-695)) 105 T ELT)) (-3464 (((-85) (-584 |#1|) $) 128 (|has| |#1| (-1014)) ELT)) (-3465 (($ (-584 |#1|)) 124 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-1576 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3460 (((-1185) (-485) $) 133 (|has| |#1| (-1014)) ELT)) (-2323 (((-695) $) 131 T ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3614 (($ (-695) |#1|) NIL T ELT)) (-3719 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3716 (((-85) $ (-695)) NIL T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-2326 (($ $) 107 T ELT)) (-2327 (((-85) $) 10 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3798 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) 90 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3457 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2325 ((|#1| $) 7 T ELT)) (-3801 ((|#1| $) 34 T ELT) (($ $ (-695)) 58 T ELT)) (-3463 (((-2 (|:| |cycle?| (-85)) (|:| -2596 (-695)) (|:| |period| (-695))) (-695) $) 29 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3455 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2200 (($ $ |#1|) 85 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-485)) 40 T ELT)) (-3444 (((-85) $) 88 T ELT)) (-2328 (((-85) $) 9 T ELT)) (-2329 (((-85) $) 130 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 25 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) 14 T ELT)) (-3565 (($) 53 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT) ((|#1| $ (-485)) 70 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3030 (((-485) $ $) 57 T ELT)) (-2306 (($ $ (-1146 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3462 (($ (-1 $)) 56 T ELT)) (-3633 (((-85) $) 86 T ELT)) (-3792 (($ $) 87 T ELT)) (-3790 (($ $) 110 (|has| $ (-6 -3996)) ELT)) (-3793 (((-695) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT)) (-3400 (($ $) 52 T ELT)) (-3972 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 68 T ELT)) (-3461 (($ |#1| $) 108 T ELT)) (-3791 (($ $ $) 112 (|has| $ (-6 -3996)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3996)) ELT)) (-3802 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-584 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2892 (($ $) 59 T ELT)) (-3946 (($ (-584 |#1|)) 123 T ELT) (((-773) $) 50 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) NIL (|has| $ (-6 -3995)) ELT)))
+(((-1069 |#1|) (-13 (-617 |#1|) (-556 (-584 |#1|)) (-10 -8 (-6 -3996) (-15 -3465 ($ (-584 |#1|))) (IF (|has| |#1| (-1014)) (-15 -3464 ((-85) (-584 |#1|) $)) |%noBranch|) (-15 -3463 ((-2 (|:| |cycle?| (-85)) (|:| -2596 (-695)) (|:| |period| (-695))) (-695) $)) (-15 -3462 ($ (-1 $))) (-15 -3461 ($ |#1| $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -3460 ((-1185) (-485) $)) (-15 -3459 ((-773) $)) (-15 -3458 ((-85)))) |%noBranch|) (-15 -3787 ($ $ (-485) $)) (-15 -3457 ($ (-1 |#1|))) (-15 -3457 ($ (-1 |#1| |#1|) |#1|)) (-15 -3456 ($ (-1 (-85) |#1|) $)) (-15 -3455 ($ (-1 (-85) |#1|) $)))) (-1129)) (T -1069))
+((-3465 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3464 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1129)) (-5 *2 (-85)) (-5 *1 (-1069 *4)))) (-3463 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2596 (-695)) (|:| |period| (-695)))) (-5 *1 (-1069 *4)) (-4 *4 (-1129)) (-5 *3 (-695)))) (-3462 (*1 *1 *2) (-12 (-5 *2 (-1 (-1069 *3))) (-5 *1 (-1069 *3)) (-4 *3 (-1129)))) (-3461 (*1 *1 *2 *1) (-12 (-5 *1 (-1069 *2)) (-4 *2 (-1129)))) (-3460 (*1 *2 *3 *1) (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-1069 *4)) (-4 *4 (-1014)) (-4 *4 (-1129)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1069 *3)) (-4 *3 (-1014)) (-4 *3 (-1129)))) (-3458 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1069 *3)) (-4 *3 (-1014)) (-4 *3 (-1129)))) (-3787 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1069 *3)) (-4 *3 (-1129)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3457 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
+((-3802 (((-1069 |#1|) (-1069 (-1069 |#1|))) 15 T ELT)))
+(((-1070 |#1|) (-10 -7 (-15 -3802 ((-1069 |#1|) (-1069 (-1069 |#1|))))) (-1129)) (T -1070))
+((-3802 (*1 *2 *3) (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1070 *4)) (-4 *4 (-1129)))))
+((-3841 (((-1069 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|)) 25 T ELT)) (-3842 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|)) 26 T ELT)) (-3958 (((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)) 16 T ELT)))
+(((-1071 |#1| |#2|) (-10 -7 (-15 -3958 ((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|))) (-15 -3841 ((-1069 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|))) (-15 -3842 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|)))) (-1129) (-1129)) (T -1071))
+((-3842 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-1071 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1069 *6)) (-4 *6 (-1129)) (-4 *3 (-1129)) (-5 *2 (-1069 *3)) (-5 *1 (-1071 *6 *3)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1069 *6)) (-5 *1 (-1071 *5 *6)))))
+((-3958 (((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-1069 |#2|)) 21 T ELT)))
+(((-1072 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-1069 |#2|)))) (-1129) (-1129) (-1129)) (T -1072))
+((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-1069 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) (-5 *1 (-1072 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3426 (($ $) 42 T ELT)) (-3427 (($ $) NIL T ELT)) (-3417 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3424 (((-85) $ $) 67 T ELT)) (-3423 (((-85) $ $ (-485)) 62 T ELT)) (-3535 (($ (-485)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-447)) 11 T ELT)) (-3418 (((-584 $) $ (-117)) 76 T ELT) (((-584 $) $ (-114)) 77 T ELT)) (-1732 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-757)) ELT)) (-1730 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-757))) ELT)) (-2910 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-757)) ELT)) (-3788 (((-117) $ (-485) (-117)) 59 (|has| $ (-6 -3996)) ELT) (((-117) $ (-1146 (-485)) (-117)) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-3415 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-3420 (($ $ (-1146 (-485)) $) 57 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1014))) ELT)) (-3406 (($ (-117) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1014))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1014))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3995)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 (((-117) $ (-485) (-117)) NIL (|has| $ (-6 -3996)) ELT)) (-3113 (((-117) $ (-485)) NIL T ELT)) (-3425 (((-85) $ $) 91 T ELT)) (-3419 (((-485) (-1 (-85) (-117)) $) NIL T ELT) (((-485) (-117) $) NIL (|has| (-117) (-1014)) ELT) (((-485) (-117) $ (-485)) 64 (|has| (-117) (-1014)) ELT) (((-485) $ $ (-485)) 63 T ELT) (((-485) (-114) $ (-485)) 66 T ELT)) (-2890 (((-584 (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-695) (-117)) 14 T ELT)) (-2201 (((-485) $) 36 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3518 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-2609 (((-584 (-117)) $) NIL T ELT)) (-3246 (((-85) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-2202 (((-485) $) 50 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3421 (((-85) $ $ (-117)) 92 T ELT)) (-3422 (((-695) $ $ (-117)) 88 T ELT)) (-1949 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3428 (($ $) 45 T ELT)) (-3429 (($ $) NIL T ELT)) (-3416 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3243 (((-1073) $) 46 (|has| (-117) (-1014)) ELT)) (-2305 (($ (-117) $ (-485)) NIL T ELT) (($ $ $ (-485)) 31 T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) 87 (|has| (-117) (-1014)) ELT)) (-3801 (((-117) $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2200 (($ $ (-117)) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1014))) ELT)) (-2206 (((-584 (-117)) $) NIL T ELT)) (-3403 (((-85) $) 19 T ELT)) (-3565 (($) 16 T ELT)) (-3800 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) 69 T ELT) (($ $ (-1146 (-485))) 29 T ELT) (($ $ $) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-1946 (((-695) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-695) (-1 (-85) (-117)) $) NIL T ELT)) (-1731 (($ $ $ (-485)) 83 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 24 T ELT)) (-3972 (((-474) $) NIL (|has| (-117) (-554 (-474))) ELT)) (-3530 (($ (-584 (-117))) NIL T ELT)) (-3802 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-584 $)) 84 T ELT)) (-3946 (($ (-117)) NIL T ELT) (((-773) $) 35 (|has| (-117) (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-3057 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2686 (((-85) $ $) 22 (|has| (-117) (-757)) ELT)) (-3957 (((-695) $) 20 T ELT)))
+(((-1073) (-13 (-1058) (-10 -8 (-15 -3535 ($ (-485))) (-15 -3535 ($ (-179))) (-15 -3535 ($ (-447)))))) (T -1073))
+((-3535 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1073)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1073)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-1073)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-2199 (((-1185) $ (-1073) (-1073)) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#1| #1="failed") (-1073) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT)) (-3405 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#1| #1#) (-1073) $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-1073)) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2201 (((-1073) $) NIL (|has| (-1073) (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT) (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) ELT)) (-2202 (((-1073) $) NIL (|has| (-1073) (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-2233 (((-584 (-1073)) $) NIL T ELT)) (-2234 (((-85) (-1073) $) NIL T ELT)) (-1274 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2204 (((-584 (-1073)) $) NIL T ELT)) (-2205 (((-85) (-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-3801 ((|#1| $) NIL (|has| (-1073) (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-1073)) NIL T ELT) ((|#1| $ (-1073) |#1|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72))) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT) (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-3946 (((-773) $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-553 (-773))) (|has| |#1| (-553 (-773)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-1074 |#1|) (-1107 (-1073) |#1|) (-1014)) (T -1074))
+NIL
+((-3805 (((-1069 |#1|) (-1069 |#1|)) 83 T ELT)) (-3467 (((-3 (-1069 |#1|) #1="failed") (-1069 |#1|)) 39 T ELT)) (-3478 (((-1069 |#1|) (-350 (-485)) (-1069 |#1|)) 131 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3481 (((-1069 |#1|) |#1| (-1069 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3808 (((-1069 |#1|) (-1069 |#1|)) 97 T ELT)) (-3469 (((-1069 (-485)) (-485)) 63 T ELT)) (-3477 (((-1069 |#1|) (-1069 (-1069 |#1|))) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3804 (((-1069 |#1|) (-485) (-485) (-1069 |#1|)) 103 T ELT)) (-3938 (((-1069 |#1|) |#1| (-485)) 51 T ELT)) (-3471 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 66 T ELT)) (-3479 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3476 (((-1069 |#1|) |#1| (-1 (-1069 |#1|))) 115 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3480 (((-1069 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1069 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3809 (((-1069 |#1|) (-1069 |#1|)) 96 T ELT)) (-3810 (((-1069 |#1|) (-1069 |#1|)) 82 T ELT)) (-3803 (((-1069 |#1|) (-485) (-485) (-1069 |#1|)) 104 T ELT)) (-3812 (((-1069 |#1|) |#1| (-1069 |#1|)) 113 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3468 (((-1069 (-485)) (-485)) 62 T ELT)) (-3470 (((-1069 |#1|) |#1|) 65 T ELT)) (-3806 (((-1069 |#1|) (-1069 |#1|) (-485) (-485)) 100 T ELT)) (-3473 (((-1069 |#1|) (-1 |#1| (-485)) (-1069 |#1|)) 72 T ELT)) (-3466 (((-3 (-1069 |#1|) #1#) (-1069 |#1|) (-1069 |#1|)) 37 T ELT)) (-3807 (((-1069 |#1|) (-1069 |#1|)) 98 T ELT)) (-3768 (((-1069 |#1|) (-1069 |#1|) |#1|) 77 T ELT)) (-3472 (((-1069 |#1|) (-1069 |#1|)) 68 T ELT)) (-3474 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 78 T ELT)) (-3946 (((-1069 |#1|) |#1|) 73 T ELT)) (-3475 (((-1069 |#1|) (-1069 (-1069 |#1|))) 88 T ELT)) (-3949 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 38 T ELT)) (-3837 (((-1069 |#1|) (-1069 |#1|)) 21 T ELT) (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 23 T ELT)) (-3839 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 17 T ELT)) (* (((-1069 |#1|) (-1069 |#1|) |#1|) 29 T ELT) (((-1069 |#1|) |#1| (-1069 |#1|)) 26 T ELT) (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 27 T ELT)))
+(((-1075 |#1|) (-10 -7 (-15 -3839 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3837 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3837 ((-1069 |#1|) (-1069 |#1|))) (-15 * ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 * ((-1069 |#1|) |#1| (-1069 |#1|))) (-15 * ((-1069 |#1|) (-1069 |#1|) |#1|)) (-15 -3466 ((-3 (-1069 |#1|) #1="failed") (-1069 |#1|) (-1069 |#1|))) (-15 -3949 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3467 ((-3 (-1069 |#1|) #1#) (-1069 |#1|))) (-15 -3938 ((-1069 |#1|) |#1| (-485))) (-15 -3468 ((-1069 (-485)) (-485))) (-15 -3469 ((-1069 (-485)) (-485))) (-15 -3470 ((-1069 |#1|) |#1|)) (-15 -3471 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3472 ((-1069 |#1|) (-1069 |#1|))) (-15 -3473 ((-1069 |#1|) (-1 |#1| (-485)) (-1069 |#1|))) (-15 -3946 ((-1069 |#1|) |#1|)) (-15 -3768 ((-1069 |#1|) (-1069 |#1|) |#1|)) (-15 -3474 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3810 ((-1069 |#1|) (-1069 |#1|))) (-15 -3805 ((-1069 |#1|) (-1069 |#1|))) (-15 -3475 ((-1069 |#1|) (-1069 (-1069 |#1|)))) (-15 -3809 ((-1069 |#1|) (-1069 |#1|))) (-15 -3808 ((-1069 |#1|) (-1069 |#1|))) (-15 -3807 ((-1069 |#1|) (-1069 |#1|))) (-15 -3806 ((-1069 |#1|) (-1069 |#1|) (-485) (-485))) (-15 -3804 ((-1069 |#1|) (-485) (-485) (-1069 |#1|))) (-15 -3803 ((-1069 |#1|) (-485) (-485) (-1069 |#1|))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3812 ((-1069 |#1|) |#1| (-1069 |#1|))) (-15 -3476 ((-1069 |#1|) |#1| (-1 (-1069 |#1|)))) (-15 -3477 ((-1069 |#1|) (-1069 (-1069 |#1|)))) (-15 -3478 ((-1069 |#1|) (-350 (-485)) (-1069 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3479 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3480 ((-1069 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1069 |#1|)))) (-15 -3481 ((-1069 |#1|) |#1| (-1069 |#1|)))) |%noBranch|)) (-962)) (T -1075))
+((-3481 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3480 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1069 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)))) (-3479 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3478 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-350 (-485))) (-5 *1 (-1075 *4)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1069 *3))) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))) (-3812 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3803 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1075 *4)))) (-3804 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1075 *4)))) (-3806 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1075 *4)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3475 (*1 *2 *3) (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)) (-4 *4 (-962)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3474 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3768 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-962)))) (-3473 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962)) (-5 *1 (-1075 *4)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3471 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3470 (*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-962)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-1069 (-485))) (-5 *1 (-1075 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3468 (*1 *2 *3) (-12 (-5 *2 (-1069 (-485))) (-5 *1 (-1075 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-962)))) (-3467 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3949 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3466 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))) (-3839 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))))
+((-3492 (((-1069 |#1|) (-1069 |#1|)) 102 T ELT)) (-3639 (((-1069 |#1|) (-1069 |#1|)) 59 T ELT)) (-3483 (((-2 (|:| -3490 (-1069 |#1|)) (|:| -3491 (-1069 |#1|))) (-1069 |#1|)) 98 T ELT)) (-3490 (((-1069 |#1|) (-1069 |#1|)) 99 T ELT)) (-3482 (((-2 (|:| -3638 (-1069 |#1|)) (|:| -3634 (-1069 |#1|))) (-1069 |#1|)) 54 T ELT)) (-3638 (((-1069 |#1|) (-1069 |#1|)) 55 T ELT)) (-3494 (((-1069 |#1|) (-1069 |#1|)) 104 T ELT)) (-3637 (((-1069 |#1|) (-1069 |#1|)) 66 T ELT)) (-3942 (((-1069 |#1|) (-1069 |#1|)) 40 T ELT)) (-3943 (((-1069 |#1|) (-1069 |#1|)) 37 T ELT)) (-3495 (((-1069 |#1|) (-1069 |#1|)) 105 T ELT)) (-3636 (((-1069 |#1|) (-1069 |#1|)) 67 T ELT)) (-3493 (((-1069 |#1|) (-1069 |#1|)) 103 T ELT)) (-3635 (((-1069 |#1|) (-1069 |#1|)) 62 T ELT)) (-3491 (((-1069 |#1|) (-1069 |#1|)) 100 T ELT)) (-3634 (((-1069 |#1|) (-1069 |#1|)) 56 T ELT)) (-3498 (((-1069 |#1|) (-1069 |#1|)) 113 T ELT)) (-3486 (((-1069 |#1|) (-1069 |#1|)) 88 T ELT)) (-3496 (((-1069 |#1|) (-1069 |#1|)) 107 T ELT)) (-3484 (((-1069 |#1|) (-1069 |#1|)) 84 T ELT)) (-3500 (((-1069 |#1|) (-1069 |#1|)) 117 T ELT)) (-3488 (((-1069 |#1|) (-1069 |#1|)) 92 T ELT)) (-3501 (((-1069 |#1|) (-1069 |#1|)) 119 T ELT)) (-3489 (((-1069 |#1|) (-1069 |#1|)) 94 T ELT)) (-3499 (((-1069 |#1|) (-1069 |#1|)) 115 T ELT)) (-3487 (((-1069 |#1|) (-1069 |#1|)) 90 T ELT)) (-3497 (((-1069 |#1|) (-1069 |#1|)) 109 T ELT)) (-3485 (((-1069 |#1|) (-1069 |#1|)) 86 T ELT)) (** (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 41 T ELT)))
+(((-1076 |#1|) (-10 -7 (-15 -3943 ((-1069 |#1|) (-1069 |#1|))) (-15 -3942 ((-1069 |#1|) (-1069 |#1|))) (-15 ** ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3482 ((-2 (|:| -3638 (-1069 |#1|)) (|:| -3634 (-1069 |#1|))) (-1069 |#1|))) (-15 -3638 ((-1069 |#1|) (-1069 |#1|))) (-15 -3634 ((-1069 |#1|) (-1069 |#1|))) (-15 -3639 ((-1069 |#1|) (-1069 |#1|))) (-15 -3635 ((-1069 |#1|) (-1069 |#1|))) (-15 -3637 ((-1069 |#1|) (-1069 |#1|))) (-15 -3636 ((-1069 |#1|) (-1069 |#1|))) (-15 -3484 ((-1069 |#1|) (-1069 |#1|))) (-15 -3485 ((-1069 |#1|) (-1069 |#1|))) (-15 -3486 ((-1069 |#1|) (-1069 |#1|))) (-15 -3487 ((-1069 |#1|) (-1069 |#1|))) (-15 -3488 ((-1069 |#1|) (-1069 |#1|))) (-15 -3489 ((-1069 |#1|) (-1069 |#1|))) (-15 -3483 ((-2 (|:| -3490 (-1069 |#1|)) (|:| -3491 (-1069 |#1|))) (-1069 |#1|))) (-15 -3490 ((-1069 |#1|) (-1069 |#1|))) (-15 -3491 ((-1069 |#1|) (-1069 |#1|))) (-15 -3492 ((-1069 |#1|) (-1069 |#1|))) (-15 -3493 ((-1069 |#1|) (-1069 |#1|))) (-15 -3494 ((-1069 |#1|) (-1069 |#1|))) (-15 -3495 ((-1069 |#1|) (-1069 |#1|))) (-15 -3496 ((-1069 |#1|) (-1069 |#1|))) (-15 -3497 ((-1069 |#1|) (-1069 |#1|))) (-15 -3498 ((-1069 |#1|) (-1069 |#1|))) (-15 -3499 ((-1069 |#1|) (-1069 |#1|))) (-15 -3500 ((-1069 |#1|) (-1069 |#1|))) (-15 -3501 ((-1069 |#1|) (-1069 |#1|)))) (-38 (-350 (-485)))) (T -1076))
+((-3501 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-2 (|:| -3490 (-1069 *4)) (|:| -3491 (-1069 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3482 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-2 (|:| -3638 (-1069 *4)) (|:| -3634 (-1069 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3)))))
+((-3492 (((-1069 |#1|) (-1069 |#1|)) 60 T ELT)) (-3639 (((-1069 |#1|) (-1069 |#1|)) 42 T ELT)) (-3490 (((-1069 |#1|) (-1069 |#1|)) 56 T ELT)) (-3638 (((-1069 |#1|) (-1069 |#1|)) 38 T ELT)) (-3494 (((-1069 |#1|) (-1069 |#1|)) 63 T ELT)) (-3637 (((-1069 |#1|) (-1069 |#1|)) 45 T ELT)) (-3942 (((-1069 |#1|) (-1069 |#1|)) 34 T ELT)) (-3943 (((-1069 |#1|) (-1069 |#1|)) 29 T ELT)) (-3495 (((-1069 |#1|) (-1069 |#1|)) 64 T ELT)) (-3636 (((-1069 |#1|) (-1069 |#1|)) 46 T ELT)) (-3493 (((-1069 |#1|) (-1069 |#1|)) 61 T ELT)) (-3635 (((-1069 |#1|) (-1069 |#1|)) 43 T ELT)) (-3491 (((-1069 |#1|) (-1069 |#1|)) 58 T ELT)) (-3634 (((-1069 |#1|) (-1069 |#1|)) 40 T ELT)) (-3498 (((-1069 |#1|) (-1069 |#1|)) 68 T ELT)) (-3486 (((-1069 |#1|) (-1069 |#1|)) 50 T ELT)) (-3496 (((-1069 |#1|) (-1069 |#1|)) 66 T ELT)) (-3484 (((-1069 |#1|) (-1069 |#1|)) 48 T ELT)) (-3500 (((-1069 |#1|) (-1069 |#1|)) 71 T ELT)) (-3488 (((-1069 |#1|) (-1069 |#1|)) 53 T ELT)) (-3501 (((-1069 |#1|) (-1069 |#1|)) 72 T ELT)) (-3489 (((-1069 |#1|) (-1069 |#1|)) 54 T ELT)) (-3499 (((-1069 |#1|) (-1069 |#1|)) 70 T ELT)) (-3487 (((-1069 |#1|) (-1069 |#1|)) 52 T ELT)) (-3497 (((-1069 |#1|) (-1069 |#1|)) 69 T ELT)) (-3485 (((-1069 |#1|) (-1069 |#1|)) 51 T ELT)) (** (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 36 T ELT)))
+(((-1077 |#1|) (-10 -7 (-15 -3943 ((-1069 |#1|) (-1069 |#1|))) (-15 -3942 ((-1069 |#1|) (-1069 |#1|))) (-15 ** ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3638 ((-1069 |#1|) (-1069 |#1|))) (-15 -3634 ((-1069 |#1|) (-1069 |#1|))) (-15 -3639 ((-1069 |#1|) (-1069 |#1|))) (-15 -3635 ((-1069 |#1|) (-1069 |#1|))) (-15 -3637 ((-1069 |#1|) (-1069 |#1|))) (-15 -3636 ((-1069 |#1|) (-1069 |#1|))) (-15 -3484 ((-1069 |#1|) (-1069 |#1|))) (-15 -3485 ((-1069 |#1|) (-1069 |#1|))) (-15 -3486 ((-1069 |#1|) (-1069 |#1|))) (-15 -3487 ((-1069 |#1|) (-1069 |#1|))) (-15 -3488 ((-1069 |#1|) (-1069 |#1|))) (-15 -3489 ((-1069 |#1|) (-1069 |#1|))) (-15 -3490 ((-1069 |#1|) (-1069 |#1|))) (-15 -3491 ((-1069 |#1|) (-1069 |#1|))) (-15 -3492 ((-1069 |#1|) (-1069 |#1|))) (-15 -3493 ((-1069 |#1|) (-1069 |#1|))) (-15 -3494 ((-1069 |#1|) (-1069 |#1|))) (-15 -3495 ((-1069 |#1|) (-1069 |#1|))) (-15 -3496 ((-1069 |#1|) (-1069 |#1|))) (-15 -3497 ((-1069 |#1|) (-1069 |#1|))) (-15 -3498 ((-1069 |#1|) (-1069 |#1|))) (-15 -3499 ((-1069 |#1|) (-1069 |#1|))) (-15 -3500 ((-1069 |#1|) (-1069 |#1|))) (-15 -3501 ((-1069 |#1|) (-1069 |#1|)))) (-38 (-350 (-485)))) (T -1077))
+((-3501 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
+((-3502 (((-870 |#2|) |#2| |#2|) 51 T ELT)) (-3503 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT)))
+(((-1078 |#1| |#2|) (-10 -7 (-15 -3502 ((-870 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3503 (|#2| |#2| |#1|)) |%noBranch|)) (-496) (-1155 |#1|)) (T -1078))
+((-3503 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1078 *3 *2)) (-4 *2 (-1155 *3)))) (-3502 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3511 (($ $ (-584 (-695))) 79 T ELT)) (-3888 (($) 33 T ELT)) (-3520 (($ $) 51 T ELT)) (-3751 (((-584 $) $) 60 T ELT)) (-3526 (((-85) $) 19 T ELT)) (-3504 (((-584 (-855 |#2|)) $) 86 T ELT)) (-3505 (($ $) 80 T ELT)) (-3521 (((-695) $) 47 T ELT)) (-3614 (($) 32 T ELT)) (-3514 (($ $ (-584 (-695)) (-855 |#2|)) 72 T ELT) (($ $ (-584 (-695)) (-695)) 73 T ELT) (($ $ (-695) (-855 |#2|)) 75 T ELT)) (-3518 (($ $ $) 57 T ELT) (($ (-584 $)) 59 T ELT)) (-3506 (((-695) $) 87 T ELT)) (-3527 (((-85) $) 15 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3525 (((-85) $) 22 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3507 (((-145) $) 85 T ELT)) (-3510 (((-855 |#2|) $) 81 T ELT)) (-3509 (((-695) $) 82 T ELT)) (-3508 (((-85) $) 84 T ELT)) (-3512 (($ $ (-584 (-695)) (-145)) 78 T ELT)) (-3519 (($ $) 52 T ELT)) (-3946 (((-773) $) 99 T ELT)) (-3513 (($ $ (-584 (-695)) (-85)) 77 T ELT)) (-3522 (((-584 $) $) 11 T ELT)) (-3523 (($ $ (-695)) 46 T ELT)) (-3524 (($ $) 43 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3515 (($ $ $ (-855 |#2|) (-695)) 68 T ELT)) (-3516 (($ $ (-855 |#2|)) 67 T ELT)) (-3517 (($ $ (-584 (-695)) (-855 |#2|)) 66 T ELT) (($ $ (-584 (-695)) (-695)) 70 T ELT) (((-695) $ (-855 |#2|)) 71 T ELT)) (-3057 (((-85) $ $) 92 T ELT)))
+(((-1079 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3527 ((-85) $)) (-15 -3526 ((-85) $)) (-15 -3525 ((-85) $)) (-15 -3614 ($)) (-15 -3888 ($)) (-15 -3524 ($ $)) (-15 -3523 ($ $ (-695))) (-15 -3522 ((-584 $) $)) (-15 -3521 ((-695) $)) (-15 -3520 ($ $)) (-15 -3519 ($ $)) (-15 -3518 ($ $ $)) (-15 -3518 ($ (-584 $))) (-15 -3751 ((-584 $) $)) (-15 -3517 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3516 ($ $ (-855 |#2|))) (-15 -3515 ($ $ $ (-855 |#2|) (-695))) (-15 -3514 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3517 ($ $ (-584 (-695)) (-695))) (-15 -3514 ($ $ (-584 (-695)) (-695))) (-15 -3517 ((-695) $ (-855 |#2|))) (-15 -3514 ($ $ (-695) (-855 |#2|))) (-15 -3513 ($ $ (-584 (-695)) (-85))) (-15 -3512 ($ $ (-584 (-695)) (-145))) (-15 -3511 ($ $ (-584 (-695)))) (-15 -3510 ((-855 |#2|) $)) (-15 -3509 ((-695) $)) (-15 -3508 ((-85) $)) (-15 -3507 ((-145) $)) (-15 -3506 ((-695) $)) (-15 -3505 ($ $)) (-15 -3504 ((-584 (-855 |#2|)) $)))) (-831) (-962)) (T -1079))
+((-3527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3614 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3888 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3524 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-584 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3520 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3519 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3518 (*1 *1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-584 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-584 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)))) (-3516 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)))) (-3515 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3512 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3511 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-855 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3505 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3528 ((|#2| $) 11 T ELT)) (-3529 ((|#1| $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3530 (($ |#1| |#2|) 9 T ELT)) (-3946 (((-773) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1080 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3530 ($ |#1| |#2|)) (-15 -3529 (|#1| $)) (-15 -3528 (|#2| $)))) (-1014) (-1014)) (T -1080))
+((-3530 (*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3529 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1014)))) (-3528 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1014)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3531 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1081) (-13 (-996) (-10 -8 (-15 -3531 ((-1049) $))))) (T -1081))
+((-3531 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1081)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) 11 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3771 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) 75 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3731 (((-1089 |#1| |#2| |#3|) $) 42 T ELT)) (-3728 (((-3 (-1089 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3729 (((-1089 |#1| |#2| |#3|) $) 33 T ELT)) (-3492 (($ $) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 92 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 88 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3623 (((-485) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) 120 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 96 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-1089 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1090) #1#) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-951 (-1090))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3157 (((-1089 |#1| |#2| |#3|) $) 140 T ELT) (((-1090) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-951 (-1090))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3730 (($ $) 37 T ELT) (($ (-485) $) 38 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-1089 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1089 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1089 |#1| |#2| |#3|)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3467 (((-3 $ #1#) $) 54 T ELT)) (-3727 (((-350 (-858 |#1|)) $ (-485)) 74 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 76 (|has| |#1| (-496)) ELT)) (-2995 (($) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2893 (((-85) $) 28 T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3772 (((-485) $) NIL T ELT) (((-485) $ (-485)) 26 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1089 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3445 (((-633 $) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3777 (($ $ (-831)) NIL T ELT)) (-3815 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-485)) 19 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2532 (($ $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2858 (($ $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 81 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 (-1089 |#1| |#2| |#3|)) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1089 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1089 |#1| |#2| |#3|)))) (-1179 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1179 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (($ (-485) (-1089 |#1| |#2| |#3|)) 36 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 79 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 80 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (($) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3129 (($ $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3131 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-485)) 158 T ELT)) (-3466 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 82 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1090) (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-456 (-1090) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1090)) (-584 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-456 (-1090) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 (-1089 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1089 |#1| |#2| |#3|)) (-584 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-485)) NIL T ELT) (($ $ $) 61 (|has| (-485) (-1026)) ELT) (($ $ (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-241 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1089 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3948 (((-485) $) 43 T ELT)) (-3495 (($ $) 122 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 98 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 118 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 94 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 114 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 90 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3972 (((-474) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2892 (($ $) NIL T ELT)) (-3946 (((-773) $) 162 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1089 |#1| |#2| |#3|)) 30 T ELT) (($ (-1176 |#2|)) 25 T ELT) (($ (-1090)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-951 (-1090))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-350 (-485))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3677 ((|#1| $ (-485)) 77 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3773 ((|#1| $) 12 T ELT)) (-3132 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 128 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 104 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3496 (($ $) 124 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 100 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 132 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 108 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 134 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 110 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 130 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 106 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 126 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 102 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3383 (($ $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 16 T CONST)) (-2670 (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1089 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1089 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1082 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1089 |#1| |#2| |#3|)) (-807 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1176 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-962) (-1090) |#1|) (T -1082))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-3532 ((|#2| |#2| (-1005 |#2|)) 26 T ELT) ((|#2| |#2| (-1090)) 28 T ELT)))
+(((-1083 |#1| |#2|) (-10 -7 (-15 -3532 (|#2| |#2| (-1090))) (-15 -3532 (|#2| |#2| (-1005 |#2|)))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-364 |#1|) (-133) (-27) (-1115))) (T -1083))
+((-3532 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1083 *4 *2)))) (-3532 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1083 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115))))))
+((-3532 (((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1005 (-350 (-858 |#1|)))) 31 T ELT) (((-350 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|))) 44 T ELT) (((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1090)) 33 T ELT) (((-350 (-858 |#1|)) (-858 |#1|) (-1090)) 36 T ELT)))
+(((-1084 |#1|) (-10 -7 (-15 -3532 ((-350 (-858 |#1|)) (-858 |#1|) (-1090))) (-15 -3532 ((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1090))) (-15 -3532 ((-350 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|)))) (-15 -3532 ((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1005 (-350 (-858 |#1|)))))) (-13 (-496) (-951 (-485)))) (T -1084))
+((-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1084 *5)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 *3)) (-5 *1 (-1084 *5)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 (-350 (-858 *5)) (-265 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-350 (-858 *5))))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-858 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-858 *5)))))
+((-2569 (((-85) $ $) 172 T ELT)) (-3189 (((-85) $) 44 T ELT)) (-3767 (((-1179 |#1|) $ (-695)) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3765 (($ (-1085 |#1|)) NIL T ELT)) (-3084 (((-1085 $) $ (-995)) 83 T ELT) (((-1085 |#1|) $) 72 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) 166 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3755 (($ $ $) 160 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 97 (|has| |#1| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) 117 (|has| |#1| (-822)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-695)) 62 T ELT)) (-3760 (($ $ (-695)) 64 T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3756 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) 81 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ $) 133 T ELT)) (-3753 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3503 (($ $) 167 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| (-695) $) 70 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3533 (((-773) $ (-773)) 150 T ELT)) (-3772 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 49 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3085 (($ (-1085 |#1|) (-995)) 74 T ELT) (($ (-1085 $) (-995)) 91 T ELT)) (-3777 (($ $ (-695)) 52 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) 89 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 155 T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1625 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3766 (((-1085 |#1|) $) NIL T ELT)) (-3083 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-631 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) 77 T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3762 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) 61 T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3812 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (($) NIL (|has| |#1| (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) 51 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 105 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 169 (|has| |#1| (-392)) ELT)) (-3738 (($ $ (-695) |#1| $) 125 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 103 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 102 (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) 110 (|has| |#1| (-822)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3764 (((-3 $ #1#) $ (-695)) 55 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-3948 (((-695) $) 79 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 164 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3754 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3946 (((-773) $) 151 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-995)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) 42 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-2667 (($) 20 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#1| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) 122 T ELT)) (-3949 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 92 T ELT)) (** (($ $ (-831)) 14 T ELT) (($ $ (-695)) 12 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1085 |#1|) (-13 (-1155 |#1|) (-10 -8 (-15 -3533 ((-773) $ (-773))) (-15 -3738 ($ $ (-695) |#1| $)))) (-962)) (T -1085))
+((-3533 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1085 *3)) (-4 *3 (-962)))) (-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1085 *3)) (-4 *3 (-962)))))
+((-3958 (((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)) 13 T ELT)))
+(((-1086 |#1| |#2|) (-10 -7 (-15 -3958 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) (-962) (-962)) (T -1086))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-1085 *6)) (-5 *1 (-1086 *5 *6)))))
+((-3971 (((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|))) 51 T ELT)) (-3732 (((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|))) 52 T ELT)))
+(((-1087 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|)))) (-15 -3971 ((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|))))) (-718) (-757) (-392) (-862 |#3| |#1| |#2|)) (T -1087))
+((-3971 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1085 (-350 *7))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1085 (-350 *7))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) 11 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-695) (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-1082 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1089 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3157 (((-1082 |#1| |#2| |#3|) $) NIL T ELT) (((-1089 |#1| |#2| |#3|) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3781 (((-350 (-485)) $) 59 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-350 (-485)) (-1082 |#1| |#2| |#3|)) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) 20 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (((-1082 |#1| |#2| |#3|) $) 41 T ELT)) (-3778 (((-3 (-1082 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3779 (((-1082 |#1| |#2| |#3|) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 39 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 40 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-485))) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1176 |#2|)) 38 T ELT)) (-3948 (((-350 (-485)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3946 (((-773) $) 62 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1082 |#1| |#2| |#3|)) 30 T ELT) (($ (-1089 |#1| |#2| |#3|)) 31 T ELT) (($ (-1176 |#2|)) 26 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3773 ((|#1| $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 22 T CONST)) (-2667 (($) 16 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 24 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1088 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1082 |#1| |#2| |#3|)) (-807 $ (-1176 |#2|)) (-951 (-1089 |#1| |#2| |#3|)) (-556 (-1176 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-962) (-1090) |#1|) (T -1088))
+((-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 129 T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) 119 T ELT)) (-3811 (((-1148 |#2| |#1|) $ (-695)) 69 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-695)) 85 T ELT) (($ $ (-695) (-695)) 82 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 105 T ELT)) (-3492 (($ $) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1069 |#1|)) 113 T ELT)) (-3494 (($ $) 177 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 25 T ELT)) (-3816 (($ $) 28 T ELT)) (-3814 (((-858 |#1|) $ (-695)) 81 T ELT) (((-858 |#1|) $ (-695) (-695)) 83 T ELT)) (-2893 (((-85) $) 124 T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-695) $) 126 T ELT) (((-695) $ (-695)) 128 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) NIL T ELT)) (-3815 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) 13 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) 135 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3812 (($ $) 133 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 134 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3769 (($ $ (-695)) 15 T ELT)) (-3466 (((-3 $ #1#) $ $) 26 (|has| |#1| (-496)) ELT)) (-3943 (($ $) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3800 ((|#1| $ (-695)) 122 T ELT) (($ $ $) 132 (|has| (-695) (-1026)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1176 |#2|)) 31 T ELT)) (-3948 (((-695) $) NIL T ELT)) (-3495 (($ $) 179 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 175 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3946 (((-773) $) 206 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1148 |#2| |#1|)) 55 T ELT) (($ (-1176 |#2|)) 36 T ELT)) (-3817 (((-1069 |#1|) $) 101 T ELT)) (-3677 ((|#1| $ (-695)) 121 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3773 ((|#1| $) 58 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 185 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) 181 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 189 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-695)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 191 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 187 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 183 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 17 T CONST)) (-2667 (($) 20 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3839 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 141 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1089 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-807 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1148 |#2| |#1|))) (-15 -3811 ((-1148 |#2| |#1|) $ (-695))) (-15 -3946 ($ (-1176 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-962) (-1090) |#1|) (T -1089))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1089 *3 *4 *5)))) (-3811 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1089 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1090)) (-14 *6 *4))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3537 (($ $ (-584 (-773))) 48 T ELT)) (-3538 (($ $ (-584 (-773))) 46 T ELT)) (-3535 (((-1073) $) 88 T ELT)) (-3540 (((-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773)))) $) 95 T ELT)) (-3541 (((-85) $) 86 T ELT)) (-3539 (($ $ (-584 (-584 (-773)))) 45 T ELT) (($ $ (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773))))) 85 T ELT)) (-3724 (($) 151 T CONST)) (-3158 (((-3 (-447) "failed") $) 155 T ELT)) (-3157 (((-447) $) NIL T ELT)) (-3543 (((-1185)) 123 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 55 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 62 T ELT)) (-3614 (($) 109 T ELT) (($ $) 118 T ELT)) (-3542 (($ $) 87 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3534 (((-584 $) $) 124 T ELT)) (-3243 (((-1073) $) 101 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3800 (($ $ (-584 (-773))) 47 T ELT)) (-3972 (((-474) $) 33 T ELT) (((-1090) $) 34 T ELT) (((-801 (-485)) $) 66 T ELT) (((-801 (-330)) $) 64 T ELT)) (-3946 (((-773) $) 41 T ELT) (($ (-1073)) 35 T ELT) (($ (-447)) 153 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3536 (($ $ (-584 (-773))) 49 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 37 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 38 T ELT)))
+(((-1090) (-13 (-757) (-554 (-474)) (-554 (-1090)) (-556 (-1073)) (-951 (-447)) (-554 (-801 (-485))) (-554 (-801 (-330))) (-797 (-485)) (-797 (-330)) (-10 -8 (-15 -3614 ($)) (-15 -3614 ($ $)) (-15 -3543 ((-1185))) (-15 -3542 ($ $)) (-15 -3541 ((-85) $)) (-15 -3540 ((-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773)))) $)) (-15 -3539 ($ $ (-584 (-584 (-773))))) (-15 -3539 ($ $ (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773)))))) (-15 -3538 ($ $ (-584 (-773)))) (-15 -3537 ($ $ (-584 (-773)))) (-15 -3536 ($ $ (-584 (-773)))) (-15 -3800 ($ $ (-584 (-773)))) (-15 -3535 ((-1073) $)) (-15 -3534 ((-584 $) $)) (-15 -3724 ($) -3952)))) (T -1090))
+((-3614 (*1 *1) (-5 *1 (-1090))) (-3614 (*1 *1 *1) (-5 *1 (-1090))) (-3543 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1090)))) (-3542 (*1 *1 *1) (-5 *1 (-1090))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1090)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1090)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1090)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1090)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1090)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1090)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1090)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1090)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-1090)))) (-3724 (*1 *1) (-5 *1 (-1090))))
+((-3544 (((-1179 |#1|) |#1| (-831)) 18 T ELT) (((-1179 |#1|) (-584 |#1|)) 25 T ELT)))
+(((-1091 |#1|) (-10 -7 (-15 -3544 ((-1179 |#1|) (-584 |#1|))) (-15 -3544 ((-1179 |#1|) |#1| (-831)))) (-962)) (T -1091))
+((-3544 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1179 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-962)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1179 *4)) (-5 *1 (-1091 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1624 (($ $ |#1| (-885) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 18 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-885)) NIL T ELT)) (-2821 (((-885) $) NIL T ELT)) (-1625 (($ (-1 (-885) (-885)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-3738 (($ $ (-885) |#1| $) NIL (-12 (|has| (-885) (-104)) (|has| |#1| (-496))) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3948 (((-885) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-885)) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 13 T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1092 |#1|) (-13 (-277 |#1| (-885)) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| (-885) (-104)) (-15 -3738 ($ $ (-885) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3993)) (-6 -3993) |%noBranch|))) (-962)) (T -1092))
+((-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1092 *3)) (-4 *3 (-496)) (-4 *3 (-962)))))
+((-3545 (((-1094) (-1090) $) 26 T ELT)) (-3555 (($) 30 T ELT)) (-3547 (((-3 (|:| |fst| (-377)) (|:| -3910 #1="void")) (-1090) $) 23 T ELT)) (-3549 (((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) $) 42 T ELT) (((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) 43 T ELT) (((-1185) (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) 44 T ELT)) (-3557 (((-1185) (-1090)) 59 T ELT)) (-3548 (((-1185) (-1090) $) 56 T ELT) (((-1185) (-1090)) 57 T ELT) (((-1185)) 58 T ELT)) (-3553 (((-1185) (-1090)) 38 T ELT)) (-3551 (((-1090)) 37 T ELT)) (-3565 (($) 35 T ELT)) (-3564 (((-379) (-1090) (-379) (-1090) $) 46 T ELT) (((-379) (-584 (-1090)) (-379) (-1090) $) 50 T ELT) (((-379) (-1090) (-379)) 47 T ELT) (((-379) (-1090) (-379) (-1090)) 51 T ELT)) (-3552 (((-1090)) 36 T ELT)) (-3946 (((-773) $) 29 T ELT)) (-3554 (((-1185)) 31 T ELT) (((-1185) (-1090)) 34 T ELT)) (-3546 (((-584 (-1090)) (-1090) $) 25 T ELT)) (-3550 (((-1185) (-1090) (-584 (-1090)) $) 39 T ELT) (((-1185) (-1090) (-584 (-1090))) 40 T ELT) (((-1185) (-584 (-1090))) 41 T ELT)))
+(((-1093) (-13 (-553 (-773)) (-10 -8 (-15 -3555 ($)) (-15 -3554 ((-1185))) (-15 -3554 ((-1185) (-1090))) (-15 -3564 ((-379) (-1090) (-379) (-1090) $)) (-15 -3564 ((-379) (-584 (-1090)) (-379) (-1090) $)) (-15 -3564 ((-379) (-1090) (-379))) (-15 -3564 ((-379) (-1090) (-379) (-1090))) (-15 -3553 ((-1185) (-1090))) (-15 -3552 ((-1090))) (-15 -3551 ((-1090))) (-15 -3550 ((-1185) (-1090) (-584 (-1090)) $)) (-15 -3550 ((-1185) (-1090) (-584 (-1090)))) (-15 -3550 ((-1185) (-584 (-1090)))) (-15 -3549 ((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3910 #1="void")) $)) (-15 -3549 ((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3910 #1#)))) (-15 -3549 ((-1185) (-3 (|:| |fst| (-377)) (|:| -3910 #1#)))) (-15 -3548 ((-1185) (-1090) $)) (-15 -3548 ((-1185) (-1090))) (-15 -3548 ((-1185))) (-15 -3557 ((-1185) (-1090))) (-15 -3565 ($)) (-15 -3547 ((-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-1090) $)) (-15 -3546 ((-584 (-1090)) (-1090) $)) (-15 -3545 ((-1094) (-1090) $))))) (T -1093))
+((-3555 (*1 *1) (-5 *1 (-1093))) (-3554 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3564 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3564 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1090))) (-5 *4 (-1090)) (-5 *1 (-1093)))) (-3564 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3564 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3552 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-3551 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-3550 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-584 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-584 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3549 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3910 #1="void"))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3548 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3565 (*1 *1) (-5 *1 (-1093))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *1 (-1093)))) (-3546 (*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090)))) (-3545 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093)))))
+((-3559 (((-584 (-584 (-3 (|:| -3542 (-1090)) (|:| -3226 (-584 (-3 (|:| S (-1090)) (|:| P (-858 (-485))))))))) $) 66 T ELT)) (-3561 (((-584 (-3 (|:| -3542 (-1090)) (|:| -3226 (-584 (-3 (|:| S (-1090)) (|:| P (-858 (-485)))))))) (-377) $) 47 T ELT)) (-3556 (($ (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| (-379))))) 17 T ELT)) (-3557 (((-1185) $) 73 T ELT)) (-3562 (((-584 (-1090)) $) 22 T ELT)) (-3558 (((-1016) $) 60 T ELT)) (-3563 (((-379) (-1090) $) 27 T ELT)) (-3560 (((-584 (-1090)) $) 30 T ELT)) (-3565 (($) 19 T ELT)) (-3564 (((-379) (-584 (-1090)) (-379) $) 25 T ELT) (((-379) (-1090) (-379) $) 24 T ELT)) (-3946 (((-773) $) 12 T ELT) (((-1102 (-1090) (-379)) $) 13 T ELT)))
+(((-1094) (-13 (-553 (-773)) (-10 -8 (-15 -3946 ((-1102 (-1090) (-379)) $)) (-15 -3565 ($)) (-15 -3564 ((-379) (-584 (-1090)) (-379) $)) (-15 -3564 ((-379) (-1090) (-379) $)) (-15 -3563 ((-379) (-1090) $)) (-15 -3562 ((-584 (-1090)) $)) (-15 -3561 ((-584 (-3 (|:| -3542 (-1090)) (|:| -3226 (-584 (-3 (|:| S (-1090)) (|:| P (-858 (-485)))))))) (-377) $)) (-15 -3560 ((-584 (-1090)) $)) (-15 -3559 ((-584 (-584 (-3 (|:| -3542 (-1090)) (|:| -3226 (-584 (-3 (|:| S (-1090)) (|:| P (-858 (-485))))))))) $)) (-15 -3558 ((-1016) $)) (-15 -3557 ((-1185) $)) (-15 -3556 ($ (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| (-379))))))))) (T -1094))
+((-3946 (*1 *2 *1) (-12 (-5 *2 (-1102 (-1090) (-379))) (-5 *1 (-1094)))) (-3565 (*1 *1) (-5 *1 (-1094))) (-3564 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1090))) (-5 *1 (-1094)))) (-3564 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1094)))) (-3563 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-379)) (-5 *1 (-1094)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-1094)))) (-3561 (*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 (-584 (-3 (|:| -3542 (-1090)) (|:| -3226 (-584 (-3 (|:| S (-1090)) (|:| P (-858 (-485))))))))) (-5 *1 (-1094)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-1094)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-3 (|:| -3542 (-1090)) (|:| -3226 (-584 (-3 (|:| S (-1090)) (|:| P (-858 (-485)))))))))) (-5 *1 (-1094)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1094)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1094)))) (-3556 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| (-379))))) (-5 *1 (-1094)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3158 (((-3 (-485) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-447) #1#) $) 43 T ELT) (((-3 (-1073) #1#) $) 47 T ELT)) (-3157 (((-485) $) 30 T ELT) (((-179) $) 36 T ELT) (((-447) $) 40 T ELT) (((-1073) $) 48 T ELT)) (-3570 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3569 (((-3 (-485) (-179) (-447) (-1073) $) $) 56 T ELT)) (-3568 (((-584 $) $) 58 T ELT)) (-3972 (((-1016) $) 24 T ELT) (($ (-1016)) 25 T ELT)) (-3567 (((-85) $) 57 T ELT)) (-3946 (((-773) $) 23 T ELT) (($ (-485)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-447)) 38 T ELT) (($ (-1073)) 44 T ELT) (((-474) $) 60 T ELT) (((-485) $) 31 T ELT) (((-179) $) 37 T ELT) (((-447) $) 41 T ELT) (((-1073) $) 49 T ELT)) (-3566 (((-85) $ (|[\|\|]| (-485))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-447))) 19 T ELT) (((-85) $ (|[\|\|]| (-1073))) 16 T ELT)) (-3571 (($ (-447) (-584 $)) 51 T ELT) (($ $ (-584 $)) 52 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3572 (((-485) $) 27 T ELT) (((-179) $) 33 T ELT) (((-447) $) 39 T ELT) (((-1073) $) 45 T ELT)) (-3057 (((-85) $ $) 7 T ELT)))
+(((-1095) (-13 (-1175) (-1014) (-951 (-485)) (-951 (-179)) (-951 (-447)) (-951 (-1073)) (-553 (-474)) (-10 -8 (-15 -3972 ((-1016) $)) (-15 -3972 ($ (-1016))) (-15 -3946 ((-485) $)) (-15 -3572 ((-485) $)) (-15 -3946 ((-179) $)) (-15 -3572 ((-179) $)) (-15 -3946 ((-447) $)) (-15 -3572 ((-447) $)) (-15 -3946 ((-1073) $)) (-15 -3572 ((-1073) $)) (-15 -3571 ($ (-447) (-584 $))) (-15 -3571 ($ $ (-584 $))) (-15 -3570 ((-85) $)) (-15 -3569 ((-3 (-485) (-179) (-447) (-1073) $) $)) (-15 -3568 ((-584 $) $)) (-15 -3567 ((-85) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-485)))) (-15 -3566 ((-85) $ (|[\|\|]| (-179)))) (-15 -3566 ((-85) $ (|[\|\|]| (-447)))) (-15 -3566 ((-85) $ (|[\|\|]| (-1073))))))) (T -1095))
+((-3972 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1095)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1095)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1095)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1095)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1095)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1095)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-3571 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-1095))) (-5 *1 (-1095)))) (-3571 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1095))) (-5 *1 (-1095)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-3 (-485) (-179) (-447) (-1073) (-1095))) (-5 *1 (-1095)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-584 (-1095))) (-5 *1 (-1095)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1095)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1095)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-1095)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-1095)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 21 T ELT)) (-3724 (($) 10 T CONST)) (-2995 (($) 25 T ELT)) (-2532 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2858 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2011 (((-831) $) 23 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) 22 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-1096 |#1|) (-13 (-753) (-10 -8 (-15 -3724 ($) -3952))) (-831)) (T -1096))
+((-3724 (*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))))
+((-485) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 24 T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) 18 T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2858 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-3725 (($ $ $) 20 T ELT)) (-3726 (($ $ $) 19 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 22 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 21 T ELT)))
+(((-1097 |#1|) (-13 (-753) (-605) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952))) (-831)) (T -1097))
+((-3726 (*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831)))) (-3725 (*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831)))) (-3724 (*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831)))))
+((-695) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 7 T ELT)))
+(((-1098) (-1014)) (T -1098))
+NIL
+((-3574 (((-584 (-584 (-858 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1090))) 69 T ELT)) (-3573 (((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|)))) 81 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|))) 77 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))) (-1090)) 82 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1090)) 76 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|))))) 108 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|)))) 107 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1090))) 109 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))) (-584 (-1090))) 106 T ELT)))
+(((-1099 |#1|) (-10 -7 (-15 -3573 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))) (-584 (-1090)))) (-15 -3573 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1090)))) (-15 -3573 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))))) (-15 -3573 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3573 ((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1090))) (-15 -3573 ((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))) (-1090))) (-15 -3573 ((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)))) (-15 -3573 ((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))))) (-15 -3574 ((-584 (-584 (-858 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1090))))) (-496)) (T -1099))
+((-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1090))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1099 *5)))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1099 *4)) (-5 *3 (-249 (-350 (-858 *4)))))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1099 *4)) (-5 *3 (-350 (-858 *4))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) (-5 *1 (-1099 *5)) (-5 *3 (-249 (-350 (-858 *5)))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) (-5 *1 (-1099 *5)) (-5 *3 (-350 (-858 *5))))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1099 *4)) (-5 *3 (-584 (-249 (-350 (-858 *4))))))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1099 *4)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1090))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1099 *5)) (-5 *3 (-584 (-249 (-350 (-858 *5))))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1090))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1099 *5)))))
+((-3579 (((-1073)) 7 T ELT)) (-3576 (((-1073)) 11 T CONST)) (-3575 (((-1185) (-1073)) 13 T ELT)) (-3578 (((-1073)) 8 T CONST)) (-3577 (((-103)) 10 T CONST)))
+(((-1100) (-13 (-1129) (-10 -7 (-15 -3579 ((-1073))) (-15 -3578 ((-1073)) -3952) (-15 -3577 ((-103)) -3952) (-15 -3576 ((-1073)) -3952) (-15 -3575 ((-1185) (-1073)))))) (T -1100))
+((-3579 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))) (-3578 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))) (-3577 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1100)))) (-3576 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1100)))))
+((-3583 (((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 56 T ELT)) (-3586 (((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|))) 38 T ELT)) (-3587 (((-1103 (-584 |#1|)) (-584 |#1|)) 49 T ELT)) (-3589 (((-584 (-584 |#1|)) (-584 |#1|)) 45 T ELT)) (-3592 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))) 53 T ELT)) (-3591 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|)))) 52 T ELT)) (-3588 (((-584 (-584 |#1|)) (-584 (-584 |#1|))) 43 T ELT)) (-3590 (((-584 |#1|) (-584 |#1|)) 46 T ELT)) (-3582 (((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 32 T ELT)) (-3581 (((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 29 T ELT)) (-3580 (((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|))) 24 T ELT)) (-3584 (((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 58 T ELT)) (-3585 (((-584 (-584 |#1|)) (-1103 (-584 |#1|))) 60 T ELT)))
+(((-1101 |#1|) (-10 -7 (-15 -3580 ((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|)))) (-15 -3581 ((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3582 ((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3583 ((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3584 ((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3585 ((-584 (-584 |#1|)) (-1103 (-584 |#1|)))) (-15 -3586 ((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)))) (-15 -3587 ((-1103 (-584 |#1|)) (-584 |#1|))) (-15 -3588 ((-584 (-584 |#1|)) (-584 (-584 |#1|)))) (-15 -3589 ((-584 (-584 |#1|)) (-584 |#1|))) (-15 -3590 ((-584 |#1|) (-584 |#1|))) (-15 -3591 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))))) (-15 -3592 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))))) (-757)) (T -1101))
+((-3592 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) (-5 *1 (-1101 *4)) (-5 *3 (-584 (-584 (-584 *4)))))) (-3591 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) (-5 *1 (-1101 *6)) (-5 *4 (-584 *5)))) (-3590 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1101 *3)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1101 *4)) (-5 *3 (-584 *4)))) (-3588 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1101 *3)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-1103 (-584 *4))) (-5 *1 (-1101 *4)) (-5 *3 (-584 *4)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1101 *4)) (-5 *3 (-584 (-584 *4))))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1103 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1101 *4)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1101 *4)) (-4 *4 (-757)))) (-3583 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) (-5 *1 (-1101 *4)))) (-3582 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *1 (-1101 *4)))) (-3581 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1101 *5)))) (-3580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4)))) (-5 *1 (-1101 *6)) (-5 *5 (-584 *4)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-773) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-1102 |#1| |#2|) (-1107 |#1| |#2|) (-1014) (-1014)) (T -1102))
+NIL
+((-3593 (($ (-584 (-584 |#1|))) 10 T ELT)) (-3594 (((-584 (-584 |#1|)) $) 11 T ELT)) (-3946 (((-773) $) 33 T ELT)))
+(((-1103 |#1|) (-10 -8 (-15 -3593 ($ (-584 (-584 |#1|)))) (-15 -3594 ((-584 (-584 |#1|)) $)) (-15 -3946 ((-773) $))) (-1014)) (T -1103))
+((-3946 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1103 *3)) (-4 *3 (-1014)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1103 *3)) (-4 *3 (-1014)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1103 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3595 (($ |#1| (-55)) 11 T ELT)) (-3542 ((|#1| $) 13 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2634 (((-85) $ |#1|) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) 15 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1104 |#1|) (-13 (-748 |#1|) (-10 -8 (-15 -3595 ($ |#1| (-55))))) (-1014)) (T -1104))
+((-3595 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1104 *2)) (-4 *2 (-1014)))))
+((-3596 ((|#1| (-584 |#1|)) 46 T ELT)) (-3598 ((|#1| |#1| (-485)) 24 T ELT)) (-3597 (((-1085 |#1|) |#1| (-831)) 20 T ELT)))
+(((-1105 |#1|) (-10 -7 (-15 -3596 (|#1| (-584 |#1|))) (-15 -3597 ((-1085 |#1|) |#1| (-831))) (-15 -3598 (|#1| |#1| (-485)))) (-312)) (T -1105))
+((-3598 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1105 *2)) (-4 *2 (-312)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1085 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-312)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-312)))))
+((-3599 (($) 10 T ELT) (($ (-584 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3405 (($ (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 65 T ELT) (($ (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 35 T ELT) (((-584 |#3|) $) 37 T ELT) (((-584 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 55 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT) (($ (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 55 T ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1274 (((-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 58 T ELT)) (-3609 (($ (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2204 (((-584 |#2|) $) 19 T ELT)) (-2205 (((-85) |#2| $) 63 T ELT)) (-1354 (((-3 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 62 T ELT)) (-1275 (((-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 67 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-2206 (((-584 |#3|) $) 39 T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-695) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) |#3| $) NIL T ELT) (((-695) (-1 (-85) |#3|) $) 77 T ELT) (((-695) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3946 (((-773) $) 27 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 69 T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3057 (((-85) $ $) 49 T ELT)))
+(((-1106 |#1| |#2| |#3|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3946 ((-773) |#1|)) (-15 -3958 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3599 (|#1| (-584 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))))) (-15 -3599 (|#1|)) (-15 -3958 (|#1| (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1949 (|#1| (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2890 ((-584 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 ((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-695) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-695) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3405 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3958 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1949 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1946 ((-695) (-1 (-85) |#3|) |#1|)) (-15 -2890 ((-584 |#3|) |#1|)) (-15 -1946 ((-695) |#3| |#1|)) (-15 -2206 ((-584 |#3|) |#1|)) (-15 -2205 ((-85) |#2| |#1|)) (-15 -2204 ((-584 |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3405 (|#1| (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1354 ((-3 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1274 ((-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3609 (|#1| (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1275 ((-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1946 ((-695) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2890 ((-584 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-695) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 ((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1949 (|#1| (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3958 (|#1| (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|))) (-1107 |#2| |#3|) (-1014) (-1014)) (T -1106))
+NIL
+((-2569 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3599 (($) 110 T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 109 T ELT)) (-2199 (((-1185) $ |#1| |#1|) 98 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3995)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 68 T ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) 69 T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3995))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#2| $ |#1|) 87 T ELT)) (-2890 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) 77 (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 113 (|has| $ (-6 -3995)) ELT)) (-2201 ((|#1| $) 95 (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3995)) ELT) (((-584 |#2|) $) 78 (|has| $ (-6 -3995)) ELT) (((-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 121 T ELT)) (-3246 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 123 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) 94 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3996)) ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 112 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 111 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 108 T ELT)) (-3243 (((-1073) $) 22 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2233 (((-584 |#1|) $) 70 T ELT)) (-2234 (((-85) |#1| $) 71 T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2204 (((-584 |#1|) $) 92 T ELT)) (-2205 (((-85) |#1| $) 91 T ELT)) (-3244 (((-1034) $) 21 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3801 ((|#2| $) 96 (|has| |#1| (-757)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2200 (($ $ |#2|) 97 (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 119 T ELT)) (-3768 (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 117 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 116 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 115 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 114 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) 90 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT)) (-1466 (($) 53 T ELT) (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1946 (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-695) |#2| $) 79 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-695) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3995)) ELT) (((-695) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 122 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 120 T ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 63 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3530 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3946 (((-773) $) 17 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1265 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1276 (($ (-584 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 118 T ELT)) (-3057 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-1107 |#1| |#2|) (-113) (-1014) (-1014)) (T -1107))
+((-3599 (*1 *1) (-12 (-4 *1 (-1107 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3599 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3860 *3) (|:| |entry| *4)))) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *1 (-1107 *3 *4)))) (-3958 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1107 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+(-13 (-550 |t#1| |t#2|) (-318 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3599 ($)) (-15 -3599 ($ (-584 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))))) (-15 -3958 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-76 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-318 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-1014) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1129) . T))
+((-3605 (((-85)) 29 T ELT)) (-3602 (((-1185) (-1073)) 31 T ELT)) (-3606 (((-85)) 41 T ELT)) (-3603 (((-1185)) 39 T ELT)) (-3601 (((-1185) (-1073) (-1073)) 30 T ELT)) (-3607 (((-85)) 42 T ELT)) (-3609 (((-1185) |#1| |#2|) 53 T ELT)) (-3600 (((-1185)) 26 T ELT)) (-3608 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3604 (((-1185)) 40 T ELT)))
+(((-1108 |#1| |#2|) (-10 -7 (-15 -3600 ((-1185))) (-15 -3601 ((-1185) (-1073) (-1073))) (-15 -3602 ((-1185) (-1073))) (-15 -3603 ((-1185))) (-15 -3604 ((-1185))) (-15 -3605 ((-85))) (-15 -3606 ((-85))) (-15 -3607 ((-85))) (-15 -3608 ((-3 |#2| "failed") |#1|)) (-15 -3609 ((-1185) |#1| |#2|))) (-1014) (-1014)) (T -1108))
+((-3609 (*1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3608 (*1 *2 *3) (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1014)))) (-3607 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3606 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3605 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3604 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3603 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3601 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3600 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3615 (((-584 (-1073)) $) 37 T ELT)) (-3611 (((-584 (-1073)) $ (-584 (-1073))) 40 T ELT)) (-3610 (((-584 (-1073)) $ (-584 (-1073))) 39 T ELT)) (-3612 (((-584 (-1073)) $ (-584 (-1073))) 41 T ELT)) (-3613 (((-584 (-1073)) $) 36 T ELT)) (-3614 (($) 26 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3616 (((-584 (-1073)) $) 38 T ELT)) (-3617 (((-1185) $ (-485)) 33 T ELT) (((-1185) $) 34 T ELT)) (-3972 (($ (-773) (-485)) 31 T ELT) (($ (-773) (-485) (-773)) NIL T ELT)) (-3946 (((-773) $) 47 T ELT) (($ (-773)) 30 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1109) (-13 (-1014) (-556 (-773)) (-10 -8 (-15 -3972 ($ (-773) (-485))) (-15 -3972 ($ (-773) (-485) (-773))) (-15 -3617 ((-1185) $ (-485))) (-15 -3617 ((-1185) $)) (-15 -3616 ((-584 (-1073)) $)) (-15 -3615 ((-584 (-1073)) $)) (-15 -3614 ($)) (-15 -3613 ((-584 (-1073)) $)) (-15 -3612 ((-584 (-1073)) $ (-584 (-1073)))) (-15 -3611 ((-584 (-1073)) $ (-584 (-1073)))) (-15 -3610 ((-584 (-1073)) $ (-584 (-1073))))))) (T -1109))
+((-3972 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1109)))) (-3972 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1109)))) (-3617 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-1109)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1109)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))) (-3614 (*1 *1) (-5 *1 (-1109))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))) (-3612 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))) (-3611 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))) (-3610 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))))
+((-3946 (((-1109) |#1|) 11 T ELT)))
+(((-1110 |#1|) (-10 -7 (-15 -3946 ((-1109) |#1|))) (-1014)) (T -1110))
+((-3946 (*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1110 *3)) (-4 *3 (-1014)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3622 (((-1073) $ (-1073)) 21 T ELT) (((-1073) $) 20 T ELT)) (-1697 (((-1073) $ (-1073)) 19 T ELT)) (-1701 (($ $ (-1073)) NIL T ELT)) (-3620 (((-3 (-1073) #1="failed") $) 11 T ELT)) (-3621 (((-1073) $) 8 T ELT)) (-3619 (((-3 (-1073) #1#) $) 12 T ELT)) (-1698 (((-1073) $) 9 T ELT)) (-1702 (($ (-338)) NIL T ELT) (($ (-338) (-1073)) NIL T ELT)) (-3542 (((-338) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1699 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3618 (((-85) $) 25 T ELT)) (-3946 (((-773) $) NIL T ELT)) (-1700 (($ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1111) (-13 (-314 (-338) (-1073)) (-10 -8 (-15 -3622 ((-1073) $ (-1073))) (-15 -3622 ((-1073) $)) (-15 -3621 ((-1073) $)) (-15 -3620 ((-3 (-1073) #1="failed") $)) (-15 -3619 ((-3 (-1073) #1#) $)) (-15 -3618 ((-85) $))))) (T -1111))
+((-3622 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3620 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3619 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1111)))))
+((-3623 (((-3 (-485) #1="failed") |#1|) 19 T ELT)) (-3624 (((-3 (-485) #1#) |#1|) 14 T ELT)) (-3625 (((-485) (-1073)) 33 T ELT)))
+(((-1112 |#1|) (-10 -7 (-15 -3623 ((-3 (-485) #1="failed") |#1|)) (-15 -3624 ((-3 (-485) #1#) |#1|)) (-15 -3625 ((-485) (-1073)))) (-962)) (T -1112))
+((-3625 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-485)) (-5 *1 (-1112 *4)) (-4 *4 (-962)))) (-3624 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1112 *3)) (-4 *3 (-962)))) (-3623 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1112 *3)) (-4 *3 (-962)))))
+((-3626 (((-1047 (-179))) 9 T ELT)))
+(((-1113) (-10 -7 (-15 -3626 ((-1047 (-179)))))) (T -1113))
+((-3626 (*1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1113)))))
+((-3627 (($) 12 T ELT)) (-3498 (($ $) 36 T ELT)) (-3496 (($ $) 34 T ELT)) (-3484 (($ $) 26 T ELT)) (-3500 (($ $) 18 T ELT)) (-3501 (($ $) 16 T ELT)) (-3499 (($ $) 20 T ELT)) (-3487 (($ $) 31 T ELT)) (-3497 (($ $) 35 T ELT)) (-3485 (($ $) 30 T ELT)))
+(((-1114 |#1|) (-10 -7 (-15 -3627 (|#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3485 (|#1| |#1|))) (-1115)) (T -1114))
+NIL
+((-3492 (($ $) 26 T ELT)) (-3639 (($ $) 11 T ELT)) (-3490 (($ $) 27 T ELT)) (-3638 (($ $) 10 T ELT)) (-3494 (($ $) 28 T ELT)) (-3637 (($ $) 9 T ELT)) (-3627 (($) 16 T ELT)) (-3942 (($ $) 19 T ELT)) (-3943 (($ $) 18 T ELT)) (-3495 (($ $) 29 T ELT)) (-3636 (($ $) 8 T ELT)) (-3493 (($ $) 30 T ELT)) (-3635 (($ $) 7 T ELT)) (-3491 (($ $) 31 T ELT)) (-3634 (($ $) 6 T ELT)) (-3498 (($ $) 20 T ELT)) (-3486 (($ $) 32 T ELT)) (-3496 (($ $) 21 T ELT)) (-3484 (($ $) 33 T ELT)) (-3500 (($ $) 22 T ELT)) (-3488 (($ $) 34 T ELT)) (-3501 (($ $) 23 T ELT)) (-3489 (($ $) 35 T ELT)) (-3499 (($ $) 24 T ELT)) (-3487 (($ $) 36 T ELT)) (-3497 (($ $) 25 T ELT)) (-3485 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT)))
+(((-1115) (-113)) (T -1115))
+((-3627 (*1 *1) (-4 *1 (-1115))))
+(-13 (-1118) (-66) (-433) (-35) (-239) (-10 -8 (-15 -3627 ($))))
+(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-1118) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 19 T ELT)) (-3632 (($ |#1| (-584 $)) 28 T ELT) (($ (-584 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3026 ((|#1| $ |#1|) 14 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 13 (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-2890 (((-584 |#1|) $) 70 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 59 T ELT)) (-3028 (((-85) $ $) 50 (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) 71 T ELT)) (-3246 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3031 (((-584 |#1|) $) 55 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 102 T ELT)) (-3403 (((-85) $) 9 T ELT)) (-3565 (($) 10 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3628 (((-584 $) $) 84 T ELT)) (-3629 (((-85) $ $) 105 T ELT)) (-3630 (((-584 $) $) 100 T ELT)) (-3631 (($ $) 101 T ELT)) (-3633 (((-85) $) 77 T ELT)) (-1946 (((-695) |#1| $) 17 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 25 T ELT)) (-3400 (($ $) 83 T ELT)) (-3946 (((-773) $) 86 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) 12 T ELT)) (-3029 (((-85) $ $) 39 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3057 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 81 T ELT)))
+(((-1116 |#1|) (-13 (-924 |#1|) (-318 |#1|) (-10 -8 (-6 -3996) (-15 -3632 ($ |#1| (-584 $))) (-15 -3632 ($ (-584 |#1|))) (-15 -3632 ($ |#1|)) (-15 -3633 ((-85) $)) (-15 -3631 ($ $)) (-15 -3630 ((-584 $) $)) (-15 -3629 ((-85) $ $)) (-15 -3628 ((-584 $) $)))) (-1014)) (T -1116))
+((-3633 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1014)))) (-3632 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-1116 *2))) (-5 *1 (-1116 *2)) (-4 *2 (-1014)))) (-3632 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1116 *3)))) (-3632 (*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1014)))) (-3631 (*1 *1 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1014)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-584 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1014)))) (-3629 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1014)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-584 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1014)))))
+((-3639 (($ $) 15 T ELT)) (-3637 (($ $) 12 T ELT)) (-3636 (($ $) 10 T ELT)) (-3635 (($ $) 17 T ELT)))
+(((-1117 |#1|) (-10 -7 (-15 -3635 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3639 (|#1| |#1|))) (-1118)) (T -1117))
+NIL
+((-3639 (($ $) 11 T ELT)) (-3638 (($ $) 10 T ELT)) (-3637 (($ $) 9 T ELT)) (-3636 (($ $) 8 T ELT)) (-3635 (($ $) 7 T ELT)) (-3634 (($ $) 6 T ELT)))
+(((-1118) (-113)) (T -1118))
+((-3639 (*1 *1 *1) (-4 *1 (-1118))) (-3638 (*1 *1 *1) (-4 *1 (-1118))) (-3637 (*1 *1 *1) (-4 *1 (-1118))) (-3636 (*1 *1 *1) (-4 *1 (-1118))) (-3635 (*1 *1 *1) (-4 *1 (-1118))) (-3634 (*1 *1 *1) (-4 *1 (-1118))))
+(-13 (-10 -8 (-15 -3634 ($ $)) (-15 -3635 ($ $)) (-15 -3636 ($ $)) (-15 -3637 ($ $)) (-15 -3638 ($ $)) (-15 -3639 ($ $))))
+((-3642 ((|#2| |#2|) 95 T ELT)) (-3645 (((-85) |#2|) 29 T ELT)) (-3643 ((|#2| |#2|) 33 T ELT)) (-3644 ((|#2| |#2|) 35 T ELT)) (-3640 ((|#2| |#2| (-1090)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3646 (((-142 |#2|) |#2|) 31 T ELT)) (-3641 ((|#2| |#2| (-1090)) 91 T ELT) ((|#2| |#2|) 92 T ELT)))
+(((-1119 |#1| |#2|) (-10 -7 (-15 -3640 (|#2| |#2|)) (-15 -3640 (|#2| |#2| (-1090))) (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1090))) (-15 -3642 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 ((-85) |#2|)) (-15 -3646 ((-142 |#2|) |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1115) (-364 |#1|))) (T -1119))
+((-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-142 *3)) (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
+((-3647 ((|#4| |#4| |#1|) 31 T ELT)) (-3648 ((|#4| |#4| |#1|) 32 T ELT)))
+(((-1120 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3647 (|#4| |#4| |#1|)) (-15 -3648 (|#4| |#4| |#1|))) (-496) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -1120))
+((-3648 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3647 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+((-3666 ((|#2| |#2|) 148 T ELT)) (-3668 ((|#2| |#2|) 145 T ELT)) (-3665 ((|#2| |#2|) 136 T ELT)) (-3667 ((|#2| |#2|) 133 T ELT)) (-3664 ((|#2| |#2|) 141 T ELT)) (-3663 ((|#2| |#2|) 129 T ELT)) (-3652 ((|#2| |#2|) 44 T ELT)) (-3651 ((|#2| |#2|) 105 T ELT)) (-3649 ((|#2| |#2|) 88 T ELT)) (-3662 ((|#2| |#2|) 143 T ELT)) (-3661 ((|#2| |#2|) 131 T ELT)) (-3674 ((|#2| |#2|) 153 T ELT)) (-3672 ((|#2| |#2|) 151 T ELT)) (-3673 ((|#2| |#2|) 152 T ELT)) (-3671 ((|#2| |#2|) 150 T ELT)) (-3650 ((|#2| |#2|) 163 T ELT)) (-3675 ((|#2| |#2|) 30 (-12 (|has| |#2| (-554 (-801 |#1|))) (|has| |#2| (-797 |#1|)) (|has| |#1| (-554 (-801 |#1|))) (|has| |#1| (-797 |#1|))) ELT)) (-3653 ((|#2| |#2|) 89 T ELT)) (-3654 ((|#2| |#2|) 154 T ELT)) (-3963 ((|#2| |#2|) 155 T ELT)) (-3660 ((|#2| |#2|) 142 T ELT)) (-3659 ((|#2| |#2|) 130 T ELT)) (-3658 ((|#2| |#2|) 149 T ELT)) (-3670 ((|#2| |#2|) 147 T ELT)) (-3657 ((|#2| |#2|) 137 T ELT)) (-3669 ((|#2| |#2|) 135 T ELT)) (-3656 ((|#2| |#2|) 139 T ELT)) (-3655 ((|#2| |#2|) 127 T ELT)))
+(((-1121 |#1| |#2|) (-10 -7 (-15 -3963 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (IF (|has| |#1| (-797 |#1|)) (IF (|has| |#1| (-554 (-801 |#1|))) (IF (|has| |#2| (-554 (-801 |#1|))) (IF (|has| |#2| (-797 |#1|)) (-15 -3675 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-392) (-13 (-364 |#1|) (-1115))) (T -1121))
+((-3675 (*1 *2 *2) (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-1090)) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3814 (((-858 |#1|) $ (-695)) 18 T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-695) $ (-1090)) NIL T ELT) (((-695) $ (-1090) (-695)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ $ (-584 (-1090)) (-584 (-470 (-1090)))) NIL T ELT) (($ $ (-1090) (-470 (-1090))) NIL T ELT) (($ |#1| (-470 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3812 (($ $ (-1090)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3676 (($ (-1 $) (-1090) |#1|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (($ $ (-695)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (($ $ (-1090) $) NIL T ELT) (($ $ (-584 (-1090)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3758 (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3948 (((-470 (-1090)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-1090)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT)) (-3677 ((|#1| $ (-470 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (((-858 |#1|) $ (-695)) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1122 |#1|) (-13 (-680 |#1| (-1090)) (-10 -8 (-15 -3677 ((-858 |#1|) $ (-695))) (-15 -3946 ($ (-1090))) (-15 -3946 ($ (-858 |#1|))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3812 ($ $ (-1090) |#1|)) (-15 -3676 ($ (-1 $) (-1090) |#1|))) |%noBranch|))) (-962)) (T -1122))
+((-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1122 *4)) (-4 *4 (-962)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-962)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1122 *3)))) (-3812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))) (-3676 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1122 *4))) (-5 *3 (-1090)) (-5 *1 (-1122 *4)) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))))
+((-3693 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3688 ((|#5| |#5| $) 83 T ELT)) (-3710 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3689 (((-584 |#5|) (-584 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3158 (((-3 $ #1#) (-584 |#5|)) 134 T ELT)) (-3799 (((-3 $ #1#) $) 119 T ELT)) (-3685 ((|#5| |#5| $) 101 T ELT)) (-3694 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3683 ((|#5| |#5| $) 105 T ELT)) (-3842 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#5|)) (|:| -1702 (-584 |#5|))) $) 63 T ELT)) (-3695 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3181 ((|#4| $) 115 T ELT)) (-3798 (((-3 |#5| #1#) $) 117 T ELT)) (-3697 (((-584 |#5|) $) 55 T ELT)) (-3691 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3686 ((|#5| |#5| $) 89 T ELT)) (-3699 (((-85) $ $) 29 T ELT)) (-3692 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3687 ((|#5| |#5| $) 86 T ELT)) (-3801 (((-3 |#5| #1#) $) 116 T ELT)) (-3769 (($ $ |#5|) 135 T ELT)) (-3948 (((-695) $) 60 T ELT)) (-3530 (($ (-584 |#5|)) 132 T ELT)) (-2911 (($ $ |#4|) 130 T ELT)) (-2913 (($ $ |#4|) 128 T ELT)) (-3684 (($ $) 127 T ELT)) (-3946 (((-773) $) NIL T ELT) (((-584 |#5|) $) 120 T ELT)) (-3678 (((-695) $) 139 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3690 (((-85) $ (-1 (-85) |#5| (-584 |#5|))) 107 T ELT)) (-3680 (((-584 |#4|) $) 122 T ELT)) (-3933 (((-85) |#4| $) 125 T ELT)) (-3057 (((-85) $ $) 20 T ELT)))
+(((-1123 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3678 ((-695) |#1|)) (-15 -3769 (|#1| |#1| |#5|)) (-15 -3710 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3933 ((-85) |#4| |#1|)) (-15 -3680 ((-584 |#4|) |#1|)) (-15 -3799 ((-3 |#1| #1#) |#1|)) (-15 -3798 ((-3 |#5| #1#) |#1|)) (-15 -3801 ((-3 |#5| #1#) |#1|)) (-15 -3683 (|#5| |#5| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3685 (|#5| |#5| |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 (|#5| |#5| |#1|)) (-15 -3688 (|#5| |#5| |#1|)) (-15 -3689 ((-584 |#5|) (-584 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3842 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3691 ((-85) |#1|)) (-15 -3692 ((-85) |#1|)) (-15 -3693 ((-85) |#1|)) (-15 -3690 ((-85) |#1| (-1 (-85) |#5| (-584 |#5|)))) (-15 -3691 ((-85) |#5| |#1|)) (-15 -3692 ((-85) |#5| |#1|)) (-15 -3693 ((-85) |#5| |#1|)) (-15 -3694 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3695 ((-85) |#1|)) (-15 -3695 ((-85) |#5| |#1|)) (-15 -3696 ((-2 (|:| -3861 (-584 |#5|)) (|:| -1702 (-584 |#5|))) |#1|)) (-15 -3948 ((-695) |#1|)) (-15 -3697 ((-584 |#5|) |#1|)) (-15 -3698 ((-3 (-2 (|:| |bas| |#1|) (|:| -3324 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3698 ((-3 (-2 (|:| |bas| |#1|) (|:| -3324 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3699 ((-85) |#1| |#1|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -3181 (|#4| |#1|)) (-15 -3158 ((-3 |#1| #1#) (-584 |#5|))) (-15 -3946 ((-584 |#5|) |#1|)) (-15 -3530 (|#1| (-584 |#5|))) (-15 -3842 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3842 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3710 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3842 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3946 ((-773) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-1124 |#2| |#3| |#4| |#5|) (-496) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -1123))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3682 (((-584 $) (-584 |#4|)) 92 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3689 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3799 (((-3 $ "failed") $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#4|)) (|:| -1702 (-584 |#4|))) $) 111 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-1949 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3798 (((-3 |#4| "failed") $) 89 T ELT)) (-3697 (((-584 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3801 (((-3 |#4| "failed") $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-695) $) 112 T ELT)) (-1946 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3946 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3678 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-584 |#3|) $) 87 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3957 (((-695) $) 43 T ELT)))
+(((-1124 |#1| |#2| |#3| |#4|) (-113) (-496) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1124))
+((-3699 (*1 *2 *1 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3698 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-584 *8)))) (-5 *3 (-584 *8)) (-4 *1 (-1124 *5 *6 *7 *8)))) (-3698 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-584 *9)))) (-5 *3 (-584 *9)) (-4 *1 (-1124 *6 *7 *8 *9)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-2 (|:| -3861 (-584 *6)) (|:| -1702 (-584 *6)))))) (-3695 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1124 *5 *6 *7 *3)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1124 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3842 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1124 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *2 (-978 *5 *6 *7)))) (-3689 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1124 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)))) (-3688 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3687 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3684 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3683 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1124 *4 *5 *6 *7)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| -3861 *1) (|:| -1702 (-584 *7))))) (-5 *3 (-584 *7)) (-4 *1 (-1124 *4 *5 *6 *7)))) (-3801 (*1 *2 *1) (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3798 (*1 *2 *1) (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3799 (*1 *1 *1) (|partial| -12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-3933 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) (-3710 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1124 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3)))) (-3679 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-695)))))
+(-13 (-890 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3996) (-15 -3699 ((-85) $ $)) (-15 -3698 ((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3698 ((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3697 ((-584 |t#4|) $)) (-15 -3948 ((-695) $)) (-15 -3696 ((-2 (|:| -3861 (-584 |t#4|)) (|:| -1702 (-584 |t#4|))) $)) (-15 -3695 ((-85) |t#4| $)) (-15 -3695 ((-85) $)) (-15 -3694 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3693 ((-85) |t#4| $)) (-15 -3692 ((-85) |t#4| $)) (-15 -3691 ((-85) |t#4| $)) (-15 -3690 ((-85) $ (-1 (-85) |t#4| (-584 |t#4|)))) (-15 -3693 ((-85) $)) (-15 -3692 ((-85) $)) (-15 -3691 ((-85) $)) (-15 -3842 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3689 ((-584 |t#4|) (-584 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3688 (|t#4| |t#4| $)) (-15 -3687 (|t#4| |t#4| $)) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 (|t#4| |t#4| $)) (-15 -3684 ($ $)) (-15 -3683 (|t#4| |t#4| $)) (-15 -3682 ((-584 $) (-584 |t#4|))) (-15 -3681 ((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |t#4|)))) (-584 |t#4|))) (-15 -3801 ((-3 |t#4| "failed") $)) (-15 -3798 ((-3 |t#4| "failed") $)) (-15 -3799 ((-3 $ "failed") $)) (-15 -3680 ((-584 |t#3|) $)) (-15 -3933 ((-85) |t#3| $)) (-15 -3710 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3679 ((-3 $ "failed") $ |t#4|)) (-15 -3769 ($ $ |t#4|)) (IF (|has| |t#3| (-320)) (-15 -3678 ((-695) $)) |%noBranch|)))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1129) . T))
+((-3705 (($ |#1| (-584 (-584 (-855 (-179)))) (-85)) 19 T ELT)) (-3704 (((-85) $ (-85)) 18 T ELT)) (-3703 (((-85) $) 17 T ELT)) (-3701 (((-584 (-584 (-855 (-179)))) $) 13 T ELT)) (-3700 ((|#1| $) 8 T ELT)) (-3702 (((-85) $) 15 T ELT)))
+(((-1125 |#1|) (-10 -8 (-15 -3700 (|#1| $)) (-15 -3701 ((-584 (-584 (-855 (-179)))) $)) (-15 -3702 ((-85) $)) (-15 -3703 ((-85) $)) (-15 -3704 ((-85) $ (-85))) (-15 -3705 ($ |#1| (-584 (-584 (-855 (-179)))) (-85)))) (-888)) (T -1125))
+((-3705 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1125 *2)) (-4 *2 (-888)))) (-3704 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-888)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-888)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-888)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1125 *3)) (-4 *3 (-888)))) (-3700 (*1 *2 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-888)))))
+((-3707 (((-855 (-179)) (-855 (-179))) 31 T ELT)) (-3706 (((-855 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3709 (((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179)))) 57 T ELT)) (-3836 (((-179) (-855 (-179)) (-855 (-179))) 27 T ELT)) (-3834 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 28 T ELT)) (-3708 (((-584 (-584 (-179))) (-485)) 45 T ELT)) (-3837 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 26 T ELT)) (-3839 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 24 T ELT)) (* (((-855 (-179)) (-179) (-855 (-179))) 22 T ELT)))
+(((-1126) (-10 -7 (-15 -3706 ((-855 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-855 (-179)) (-179) (-855 (-179)))) (-15 -3839 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3837 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3836 ((-179) (-855 (-179)) (-855 (-179)))) (-15 -3834 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3707 ((-855 (-179)) (-855 (-179)))) (-15 -3708 ((-584 (-584 (-179))) (-485))) (-15 -3709 ((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179))))))) (T -1126))
+((-3709 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4))) (-5 *1 (-1126)) (-5 *3 (-855 *4)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1126)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126)))) (-3834 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126)))) (-3836 (*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1126)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126)))) (-3839 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1126)))) (-3706 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126)) (-5 *3 (-179)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3710 ((|#1| $ (-695)) 18 T ELT)) (-3833 (((-695) $) 13 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3946 (((-870 |#1|) $) 12 T ELT) (($ (-870 |#1|)) 11 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3057 (((-85) $ $) 22 (|has| |#1| (-1014)) ELT)))
+(((-1127 |#1|) (-13 (-430 (-870 |#1|)) (-10 -8 (-15 -3710 (|#1| $ (-695))) (-15 -3833 ((-695) $)) (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1129)) (T -1127))
+((-3710 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1127 *2)) (-4 *2 (-1129)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1127 *3)) (-4 *3 (-1129)))))
+((-3713 (((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)) (-485)) 92 T ELT)) (-3711 (((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|))) 84 T ELT)) (-3712 (((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|))) 68 T ELT)))
+(((-1128 |#1|) (-10 -7 (-15 -3711 ((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -3712 ((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -3713 ((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)) (-485)))) (-299)) (T -1128))
+((-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-348 (-1085 (-1085 *5)))) (-5 *1 (-1128 *5)) (-5 *3 (-1085 (-1085 *5))))) (-3712 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-1085 (-1085 *4))))) (-3711 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-1085 (-1085 *4))))))
+NIL
+(((-1129) (-113)) (T -1129))
NIL
(-13)
(((-13) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 9 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1129) (-995)) (T -1129))
-NIL
-((-3716 (((-85)) 18 T ELT)) (-3713 (((-1184) (-583 |#1|) (-583 |#1|)) 22 T ELT) (((-1184) (-583 |#1|)) 23 T ELT)) (-3718 (((-85) |#1| |#1|) 37 (|has| |#1| (-756)) ELT)) (-3715 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3717 ((|#1| (-583 |#1|)) 38 (|has| |#1| (-756)) ELT) ((|#1| (-583 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3714 (((-2 (|:| -3229 (-583 |#1|)) (|:| -3228 (-583 |#1|)))) 20 T ELT)))
-(((-1130 |#1|) (-10 -7 (-15 -3713 ((-1184) (-583 |#1|))) (-15 -3713 ((-1184) (-583 |#1|) (-583 |#1|))) (-15 -3714 ((-2 (|:| -3229 (-583 |#1|)) (|:| -3228 (-583 |#1|))))) (-15 -3715 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3715 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3717 (|#1| (-583 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3716 ((-85))) (IF (|has| |#1| (-756)) (PROGN (-15 -3717 (|#1| (-583 |#1|))) (-15 -3718 ((-85) |#1| |#1|))) |%noBranch|)) (-1013)) (T -1130))
-((-3718 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-756)) (-4 *3 (-1013)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-756)) (-5 *1 (-1130 *2)))) (-3716 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1130 *2)) (-4 *2 (-1013)))) (-3715 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85)) (-5 *1 (-1130 *3)))) (-3715 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3714 (*1 *2) (-12 (-5 *2 (-2 (|:| -3229 (-583 *3)) (|:| -3228 (-583 *3)))) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3713 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))))
-((-3719 (((-1184) (-583 (-1089)) (-583 (-1089))) 14 T ELT) (((-1184) (-583 (-1089))) 12 T ELT)) (-3721 (((-1184)) 16 T ELT)) (-3720 (((-2 (|:| -3228 (-583 (-1089))) (|:| -3229 (-583 (-1089))))) 20 T ELT)))
-(((-1131) (-10 -7 (-15 -3719 ((-1184) (-583 (-1089)))) (-15 -3719 ((-1184) (-583 (-1089)) (-583 (-1089)))) (-15 -3720 ((-2 (|:| -3228 (-583 (-1089))) (|:| -3229 (-583 (-1089)))))) (-15 -3721 ((-1184))))) (T -1131))
-((-3721 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1131)))) (-3720 (*1 *2) (-12 (-5 *2 (-2 (|:| -3228 (-583 (-1089))) (|:| -3229 (-583 (-1089))))) (-5 *1 (-1131)))) (-3719 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))))
-((-3774 (($ $) 17 T ELT)) (-3722 (((-85) $) 27 T ELT)))
-(((-1132 |#1|) (-10 -7 (-15 -3774 (|#1| |#1|)) (-15 -3722 ((-85) |#1|))) (-1133)) (T -1132))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 66 T ELT)) (-3970 (((-347 $) $) 67 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3722 (((-85) $) 68 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 65 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-1133) (-113)) (T -1133))
-((-3722 (*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-85)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1133)))) (-3774 (*1 *1 *1) (-4 *1 (-1133))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1133)))))
-(-13 (-391) (-10 -8 (-15 -3722 ((-85) $)) (-15 -3970 ((-347 $) $)) (-15 -3774 ($ $)) (-15 -3731 ((-347 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
-(((-1134) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -1134))
-((-3725 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3724 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3723 (*1 *1) (-5 *1 (-1134))))
-((-694) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
-(((-1135) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -1135))
-((-3725 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3724 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3723 (*1 *1) (-5 *1 (-1135))))
-((-694) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
-(((-1136) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -1136))
-((-3725 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3724 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3723 (*1 *1) (-5 *1 (-1136))))
-((-694) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
-(((-1137) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -1137))
-((-3725 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3724 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3723 (*1 *1) (-5 *1 (-1137))))
-((-694) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 10 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3770 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3730 (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-3727 (((-3 (-1168 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3728 (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3622 (((-484) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1168 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3156 (((-1168 |#1| |#2| |#3|) $) NIL T ELT) (((-1089) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (((-349 (-484)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-484) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3729 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-1168 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1168 |#1| |#2| |#3|)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) NIL (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) NIL (|has| |#1| (-495)) ELT)) (-2994 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-796 (-329))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3771 (((-484) $) NIL T ELT) (((-484) $ (-484)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3444 (((-632 $) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-312))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3776 (($ $ (-830)) NIL T ELT)) (-3814 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-484)) 18 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2531 (($ $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2857 (($ $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2280 (((-630 (-1168 |#1| |#2| |#3|)) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1168 |#1| |#2| |#3|)))) (-1178 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3778 (($ (-484) (-1168 |#1| |#2| |#3|)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 27 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 28 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-312))) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3130 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-455 (-1089) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089)) (-583 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-455 (-1089) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1168 |#1| |#2| |#3|)) (-583 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) NIL T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-241 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1175 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 (((-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3947 (((-484) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3971 (((-473) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-553 (-473))) (|has| |#1| (-312))) ELT) (((-329) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-800 (-329)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-553 (-800 (-329)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1168 |#1| |#2| |#3|)) NIL T ELT) (($ (-1175 |#2|)) 24 T ELT) (($ (-1089)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT) (($ (-349 (-484))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) (|has| |#1| (-38 (-349 (-484))))) ELT)) (-3676 ((|#1| $ (-484)) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 11 T ELT)) (-3131 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3382 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2660 (($) 20 T CONST)) (-2666 (($) 15 T CONST)) (-2669 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1175 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1168 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1138 |#1| |#2| |#3|) (-13 (-1142 |#1| (-1168 |#1| |#2| |#3|)) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1138))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-3957 (((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)) 23 T ELT)))
-(((-1139 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3957 ((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)))) (-961) (-961) (-1089) (-1089) |#1| |#2|) (T -1139))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1139 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-484)) 124 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 130 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 201 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) 199 (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) 198 (|has| |#1| (-495)) ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-484) $) 126 T ELT) (((-484) $ (-484)) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 127 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 200 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-484)) 81 T ELT) (($ $ (-994) (-484)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-484))) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1890 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) 189 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-1606 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) 131 T ELT) (($ $ $) 107 (|has| (-484) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3947 (((-484) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-484)) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1140 |#1|) (-113) (-961)) (T -1140))
-((-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1140 *3)))) (-3814 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1140 *3)) (-4 *3 (-961)))) (-3726 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-961)) (-4 *4 (-495)) (-5 *2 (-349 (-857 *4))))) (-3726 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-961)) (-4 *4 (-495)) (-5 *2 (-349 (-857 *4))))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))) (-3811 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114)) (-4 *3 (-38 (-349 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484)))))))))
-(-13 (-1157 |t#1| (-484)) (-10 -8 (-15 -3817 ($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |t#1|))))) (-15 -3814 ($ (-1 |t#1| (-484)) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -3726 ((-349 (-857 |t#1|)) $ (-484))) (-15 -3726 ((-349 (-857 |t#1|)) $ (-484) (-484)))) |%noBranch|) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $)) (IF (|has| |t#1| (-15 -3811 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3081 ((-583 (-1089)) |t#1|))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-484) |#1|) . T) ((-241 $ $) |has| (-484) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-391) |has| |#1| (-312)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-886 |#1| (-484) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-963 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-312)) ((-1157 |#1| (-484)) . T))
-((-3188 (((-85) $) 12 T ELT)) (-3157 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT)) (-3156 ((|#3| $) 14 T ELT) (((-1089) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT)))
-(((-1141 |#1| |#2| |#3|) (-10 -7 (-15 -3157 ((-3 (-484) #1="failed") |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-1089) #1#) |#1|)) (-15 -3156 ((-1089) |#1|)) (-15 -3157 ((-3 |#3| #1#) |#1|)) (-15 -3156 (|#3| |#1|)) (-15 -3188 ((-85) |#1|))) (-1142 |#2| |#3|) (-961) (-1171 |#2|)) (T -1141))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 ((|#2| $) 266 (-2562 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-484)) 124 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 130 T ELT)) (-3730 ((|#2| $) 302 T ELT)) (-3727 (((-3 |#2| "failed") $) 298 T ELT)) (-3728 ((|#2| $) 299 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 275 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-3774 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 272 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-1607 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3622 (((-484) $) 284 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 201 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-484) #2#) $) 295 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-349 (-484)) #2#) $) 293 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-1089) #2#) $) 277 (-2562 (|has| |#2| (-950 (-1089))) (|has| |#1| (-312))) ELT)) (-3156 ((|#2| $) 306 T ELT) (((-484) $) 294 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-349 (-484)) $) 292 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-1089) $) 276 (-2562 (|has| |#2| (-950 (-1089))) (|has| |#1| (-312))) ELT)) (-3729 (($ $) 301 T ELT) (($ (-484) $) 300 T ELT)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 80 T ELT)) (-2279 (((-630 |#2|) (-630 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 252 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) 251 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) 199 (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) 198 (|has| |#1| (-495)) ELT)) (-2994 (($) 268 (-2562 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) 282 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 260 (-2562 (|has| |#2| (-796 (-329))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 259 (-2562 (|has| |#2| (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3771 (((-484) $) 126 T ELT) (((-484) $ (-484)) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2996 (($ $) 264 (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3444 (((-632 $) $) 296 (-2562 (|has| |#2| (-1065)) (|has| |#1| (-312))) ELT)) (-3187 (((-85) $) 283 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-3776 (($ $ (-830)) 127 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 200 T ELT)) (-1604 (((-3 (-583 $) #3="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-484)) 81 T ELT) (($ $ (-994) (-484)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-484))) 96 T ELT)) (-2531 (($ $ $) 291 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2857 (($ $ $) 290 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2280 (((-630 |#2|) (-1178 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 250 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1178 $)) 249 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1890 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3778 (($ (-484) |#2|) 303 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3445 (($) 297 (-2562 (|has| |#2| (-1065)) (|has| |#1| (-312))) CONST)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3128 (($ $) 267 (-2562 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3130 ((|#2| $) 270 (-2562 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 273 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 274 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-3731 (((-347 $) $) 189 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) |#2|) 243 (-2562 (|has| |#2| (-455 (-1089) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089)) (-583 |#2|)) 242 (-2562 (|has| |#2| (-455 (-1089) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 |#2|))) 241 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 238 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1606 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) 131 T ELT) (($ $ $) 107 (|has| (-484) (-1025)) ELT) (($ $ |#2|) 237 (-2562 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) 109 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 119 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) 117 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) 116 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2995 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2997 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3947 (((-484) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3971 (((-179) $) 281 (-2562 (|has| |#2| (-933)) (|has| |#1| (-312))) ELT) (((-329) $) 280 (-2562 (|has| |#2| (-933)) (|has| |#1| (-312))) ELT) (((-473) $) 279 (-2562 (|has| |#2| (-553 (-473))) (|has| |#1| (-312))) ELT) (((-800 (-329)) $) 258 (-2562 (|has| |#2| (-553 (-800 (-329)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) 257 (-2562 (|has| |#2| (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 271 (-2562 (-2562 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#1| (-312))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1089)) 278 (-2562 (|has| |#2| (-950 (-1089))) (|has| |#1| (-312))) ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-484)) 79 T ELT)) (-2702 (((-632 $) $) 68 (OR (-2562 (OR (|has| |#2| (-118)) (-2562 (|has| $ (-118)) (|has| |#2| (-821)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-3131 ((|#2| $) 269 (-2562 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3382 (($ $) 285 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) 108 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 118 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) 114 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) 113 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2566 (((-85) $ $) 289 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2567 (((-85) $ $) 287 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 288 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2685 (((-85) $ $) 286 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1142 |#1| |#2|) (-113) (-961) (-1171 |t#1|)) (T -1142))
-((-3947 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1171 *3)) (-5 *2 (-484)))) (-3778 (*1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *4 (-961)) (-4 *1 (-1142 *4 *3)) (-4 *3 (-1171 *4)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3)))) (-3729 (*1 *1 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1171 *2)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1171 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3)))) (-3727 (*1 *2 *1) (|partial| -12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3)))))
-(-13 (-1140 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3778 ($ (-484) |t#2|)) (-15 -3947 ((-484) $)) (-15 -3730 (|t#2| $)) (-15 -3729 ($ $)) (-15 -3729 ($ (-484) $)) (-15 -3728 (|t#2| $)) (-15 -3727 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-904 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-555 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 (-1089)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-553 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-553 (-329)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-553 (-473)) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-484) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-484) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-328 |#2|) |has| |#1| (-312)) ((-342 |#2|) |has| |#1| (-312)) ((-391) |has| |#1| (-312)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-455 (-1089) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1089) |#2|))) ((-455 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 |#2|) |has| |#1| (-312)) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-590 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-312)) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 |#2|) |has| |#1| (-312)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-580 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((-580 |#2|) |has| |#1| (-312)) ((-654 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 |#2|) |has| |#1| (-312)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-714) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-716) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-718) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-721) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-740) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-755) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-756) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) ((-759) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) ((-806 $ (-1089)) OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089))))) ((-809 (-1089)) OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089))))) ((-811 (-1089)) OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089))))) ((-796 (-329)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))) ((-794 |#2|) |has| |#1| (-312)) ((-821) -12 (|has| |#1| (-312)) (|has| |#2| (-821))) ((-886 |#1| (-484) (-994)) . T) ((-832) |has| |#1| (-312)) ((-904 |#2|) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-933) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-950 (-349 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ((-950 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ((-950 (-1089)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ((-950 |#2|) . T) ((-963 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-963 |#1|) . T) ((-963 |#2|) |has| |#1| (-312)) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-968 |#1|) . T) ((-968 |#2|) |has| |#1| (-312)) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) -12 (|has| |#1| (-312)) (|has| |#2| (-1065))) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-312)) ((-1140 |#1|) . T) ((-1157 |#1| (-484)) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 83 T ELT)) (-3129 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 102 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-484)) 111 T ELT) (($ $ (-484) (-484)) 114 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 51 T ELT)) (-3730 ((|#2| $) 11 T ELT)) (-3727 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3728 ((|#2| $) 36 T ELT)) (-3491 (($ $) 208 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 184 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) 204 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 180 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3622 (((-484) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 59 T ELT)) (-3493 (($ $) 212 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 188 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ELT)) (-3156 ((|#2| $) 158 T ELT) (((-484) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-1089) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ELT)) (-3729 (($ $) 65 T ELT) (($ (-484) $) 28 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 |#2|) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT)) (-3466 (((-3 $ #1#) $) 90 T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) 126 (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) 128 (|has| |#1| (-495)) ELT)) (-2994 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-2892 (((-85) $) 76 T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))) ELT)) (-3771 (((-484) $) 107 T ELT) (((-484) $ (-484)) 109 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3444 (((-632 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1065))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-3776 (($ $ (-830)) 150 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 146 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-484)) 20 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2531 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2857 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) 178 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2280 (((-630 |#2|) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3778 (($ (-484) |#2|) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 230 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 235 (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT)) (-3445 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1065))) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3130 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) 140 T ELT)) (-3465 (((-3 $ #1#) $ $) 130 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 176 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1089) |#2|))) ELT) (($ $ (-583 (-1089)) (-583 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1089) |#2|))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) 105 T ELT) (($ $ $) 92 (|has| (-484) (-1025)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 155 (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3947 (((-484) $) 12 T ELT)) (-3494 (($ $) 214 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 190 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 210 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 186 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 206 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 182 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3971 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-933))) ELT) (((-329) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-933))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))) ELT) (((-800 (-329)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-2891 (($ $) 138 T ELT)) (-3945 (((-772) $) 268 T ELT) (($ (-484)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1089)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ELT) (($ (-349 (-484))) 171 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-484)) 87 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-821))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3126 (((-694)) 157 T CONST)) (-3772 ((|#1| $) 104 T ELT)) (-3131 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 220 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 196 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 216 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 192 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 224 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 200 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 226 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 202 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 222 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 198 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 218 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 194 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3382 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-2660 (($) 13 T CONST)) (-2666 (($) 18 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT)) (-2566 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2567 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3056 (((-85) $ $) 74 T ELT)) (-2684 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2685 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3838 (($ $ $) 78 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 86 T ELT) (($ $ (-484)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 174 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1143 |#1| |#2|) (-1142 |#1| |#2|) (-961) (-1171 |#1|)) (T -1143))
-NIL
-((-3733 (((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)) 13 T ELT)) (-3732 (((-347 |#1|) |#1|) 26 T ELT)) (-3731 (((-347 |#1|) |#1|) 24 T ELT)))
-(((-1144 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3732 ((-347 |#1|) |#1|)) (-15 -3733 ((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)))) (-1154 (-484))) (T -1144))
-((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3735 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3957 (((-1068 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3229 ((|#1| $) 15 T ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3227 (((-484) $) 19 T ELT)) (-3228 ((|#1| $) 18 T ELT)) (-3230 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3734 (((-85) $) 17 T ELT)) (-3962 (((-1068 |#1|) $) 41 (|has| |#1| (-755)) ELT) (((-1068 |#1|) (-583 $)) 40 (|has| |#1| (-755)) ELT)) (-3971 (($ |#1|) 26 T ELT)) (-3945 (($ (-1001 |#1|)) 25 T ELT) (((-772) $) 37 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3736 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3232 (($ $ (-484)) 14 T ELT)) (-3056 (((-85) $ $) 30 (|has| |#1| (-1013)) ELT)))
-(((-1145 |#1|) (-13 (-1006 |#1|) (-10 -8 (-15 -3736 ($ |#1|)) (-15 -3735 ($ |#1|)) (-15 -3945 ($ (-1001 |#1|))) (-15 -3734 ((-85) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1007 |#1| (-1068 |#1|))) |%noBranch|))) (-1128)) (T -1145))
-((-3736 (*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))) (-3735 (*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1128)) (-5 *1 (-1145 *3)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1145 *3)) (-4 *3 (-1128)))))
-((-3957 (((-1068 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 23 (|has| |#1| (-755)) ELT) (((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 17 T ELT)))
-(((-1146 |#1| |#2|) (-10 -7 (-15 -3957 ((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|))) (IF (|has| |#1| (-755)) (-15 -3957 ((-1068 |#2|) (-1 |#2| |#1|) (-1145 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1146))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-755)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1146 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1145 *6)) (-5 *1 (-1146 *5 *6)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3766 (((-1178 |#2|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3764 (($ (-1084 |#2|)) NIL T ELT)) (-3083 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-694)) NIL T ELT)) (-3759 (($ $ (-694)) NIL T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-391)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3755 (($ $ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ $) NIL T ELT)) (-3752 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#2|) (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#2| (-312)) ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-994)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| (-694) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-994) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-3771 (((-694) $ $) NIL (|has| |#2| (-495)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#2| (-1065)) ELT)) (-3084 (($ (-1084 |#2|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3776 (($ $ (-694)) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-694)) 18 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1624 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3765 (((-1084 |#2|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (|has| |#2| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#2| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3737 (($ $ (-694) |#2| $) NIL T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#2|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#2|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1606 (((-694) $) NIL (|has| |#2| (-312)) ELT)) (-3799 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#2| (-495)) ELT) ((|#2| (-349 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#2| (-495)) ELT)) (-3763 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3756 (($ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3947 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT) (($ $ (-994)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3753 (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#2| (-495)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) NIL T ELT) (($ (-1175 |#1|)) 20 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 14 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1147 |#1| |#2|) (-13 (-1154 |#2|) (-555 (-1175 |#1|)) (-10 -8 (-15 -3737 ($ $ (-694) |#2| $)))) (-1089) (-961)) (T -1147))
-((-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1089)) (-4 *3 (-961)))))
-((-3957 (((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)) 15 T ELT)))
-(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 ((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)))) (-1089) (-961) (-1089) (-961)) (T -1148))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1089)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1148 *5 *6 *7 *8)) (-14 *7 (-1089)))))
-((-3740 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3738 ((|#1| |#3|) 13 T ELT)) (-3739 ((|#3| |#3|) 19 T ELT)))
-(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -3738 (|#1| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3740 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-904 |#1|) (-1154 |#2|)) (T -1149))
-((-3740 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1149 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-1149 *3 *4 *2)) (-4 *2 (-1154 *4)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-1149 *2 *4 *3)) (-4 *3 (-1154 *4)))))
-((-3742 (((-3 |#2| #1="failed") |#2| (-694) |#1|) 35 T ELT)) (-3741 (((-3 |#2| #1#) |#2| (-694)) 36 T ELT)) (-3744 (((-3 (-2 (|:| -3138 |#2|) (|:| -3137 |#2|)) #1#) |#2|) 50 T ELT)) (-3745 (((-583 |#2|) |#2|) 52 T ELT)) (-3743 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT)))
-(((-1150 |#1| |#2|) (-10 -7 (-15 -3741 ((-3 |#2| #1="failed") |#2| (-694))) (-15 -3742 ((-3 |#2| #1#) |#2| (-694) |#1|)) (-15 -3743 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3744 ((-3 (-2 (|:| -3138 |#2|) (|:| -3137 |#2|)) #1#) |#2|)) (-15 -3745 ((-583 |#2|) |#2|))) (-13 (-495) (-120)) (-1154 |#1|)) (T -1150))
-((-3745 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1154 *4)))) (-3744 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1154 *4)))) (-3743 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1150 *3 *2)) (-4 *2 (-1154 *3)))) (-3742 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))) (-3741 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))))
-((-3746 (((-3 (-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) "failed") |#2| |#2|) 30 T ELT)))
-(((-1151 |#1| |#2|) (-10 -7 (-15 -3746 ((-3 (-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) "failed") |#2| |#2|))) (-495) (-1154 |#1|)) (T -1151))
-((-3746 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1154 *4)))))
-((-3747 ((|#2| |#2| |#2|) 22 T ELT)) (-3748 ((|#2| |#2| |#2|) 36 T ELT)) (-3749 ((|#2| |#2| |#2| (-694) (-694)) 44 T ELT)))
-(((-1152 |#1| |#2|) (-10 -7 (-15 -3747 (|#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2| (-694) (-694)))) (-961) (-1154 |#1|)) (T -1152))
-((-3749 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1154 *4)))) (-3748 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))) (-3747 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))))
-((-3766 (((-1178 |#2|) $ (-694)) 129 T ELT)) (-3081 (((-583 (-994)) $) 16 T ELT)) (-3764 (($ (-1084 |#2|)) 80 T ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) 21 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 217 T ELT)) (-3774 (($ $) 207 T ELT)) (-3970 (((-347 $) $) 205 T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 95 T ELT)) (-3760 (($ $ (-694)) 84 T ELT)) (-3759 (($ $ (-694)) 86 T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3157 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#2| $) 130 T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) (((-994) $) NIL T ELT)) (-3752 (($ $ $) 182 T ELT)) (-3751 (((-2 (|:| -3953 |#2|) (|:| -1972 $) (|:| -2902 $)) $ $) 185 T ELT)) (-3771 (((-694) $ $) 202 T ELT)) (-3444 (((-632 $) $) 149 T ELT)) (-2893 (($ |#2| (-694)) NIL T ELT) (($ $ (-994) (-694)) 59 T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) 54 T ELT) (((-583 (-694)) $ (-583 (-994))) 55 T ELT)) (-3765 (((-1084 |#2|) $) 72 T ELT)) (-3082 (((-3 (-994) #1#) $) 52 T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) 83 T ELT)) (-3811 (($ $) 232 T ELT)) (-3445 (($) 134 T CONST)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 214 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 101 T ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 99 T ELT)) (-3731 (((-347 $) $) 120 T ELT)) (-3767 (($ $ (-583 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#2|) 39 T ELT) (($ $ (-583 (-994)) (-583 |#2|)) 36 T ELT) (($ $ (-994) $) 32 T ELT) (($ $ (-583 (-994)) (-583 $)) 30 T ELT)) (-1606 (((-694) $) 220 T ELT)) (-3799 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) 176 T ELT) ((|#2| (-349 $) |#2|) 219 T ELT) (((-349 $) $ (-349 $)) 201 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 225 T ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-3947 (((-694) $) NIL T ELT) (((-694) $ (-994)) 17 T ELT) (((-583 (-694)) $ (-583 (-994))) 23 T ELT)) (-2817 ((|#2| $) NIL T ELT) (($ $ (-994)) 151 T ELT)) (-3753 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-349 $) #1#) (-349 $) $) 189 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) 64 T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT)))
-(((-1153 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| |#1|)) (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3445 (|#1|) -3951) (-15 -3444 ((-632 |#1|) |#1|)) (-15 -3799 ((-349 |#1|) |#1| (-349 |#1|))) (-15 -1606 ((-694) |#1|)) (-15 -2879 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3799 (|#2| (-349 |#1|) |#2|)) (-15 -3750 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3751 ((-2 (|:| -3953 |#2|) (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3752 (|#1| |#1| |#1|)) (-15 -3753 ((-3 (-349 |#1|) #1="failed") (-349 |#1|) |#1|)) (-15 -3753 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3771 ((-694) |#1| |#1|)) (-15 -3799 ((-349 |#1|) (-349 |#1|) (-349 |#1|))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -3760 (|#1| |#1| (-694))) (-15 -3761 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| (-694))) (-15 -3764 (|#1| (-1084 |#2|))) (-15 -3765 ((-1084 |#2|) |#1|)) (-15 -3766 ((-1178 |#2|) |#1| (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3799 (|#1| |#1| |#1|)) (-15 -3799 (|#2| |#1| |#2|)) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -2707 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2706 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2705 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-3 (-583 (-1084 |#1|)) #1#) (-583 (-1084 |#1|)) (-1084 |#1|))) (-15 -2817 (|#1| |#1| (-994))) (-15 -3081 ((-583 (-994)) |#1|)) (-15 -2819 ((-694) |#1| (-583 (-994)))) (-15 -2819 ((-694) |#1|)) (-15 -2893 (|#1| |#1| (-583 (-994)) (-583 (-694)))) (-15 -2893 (|#1| |#1| (-994) (-694))) (-15 -2820 ((-583 (-694)) |#1| (-583 (-994)))) (-15 -2820 ((-694) |#1| (-994))) (-15 -3082 ((-3 (-994) #1#) |#1|)) (-15 -3947 ((-583 (-694)) |#1| (-583 (-994)))) (-15 -3947 ((-694) |#1| (-994))) (-15 -3945 (|#1| (-994))) (-15 -3157 ((-3 (-994) #1#) |#1|)) (-15 -3156 ((-994) |#1|)) (-15 -3767 (|#1| |#1| (-583 (-994)) (-583 |#1|))) (-15 -3767 (|#1| |#1| (-994) |#1|)) (-15 -3767 (|#1| |#1| (-583 (-994)) (-583 |#2|))) (-15 -3767 (|#1| |#1| (-994) |#2|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3947 ((-694) |#1|)) (-15 -2893 (|#1| |#2| (-694))) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -2820 ((-694) |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3757 (|#1| |#1| (-994))) (-15 -3757 (|#1| |#1| (-583 (-994)))) (-15 -3757 (|#1| |#1| (-994) (-694))) (-15 -3757 (|#1| |#1| (-583 (-994)) (-583 (-694)))) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-1154 |#2|) (-961)) (T -1153))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3766 (((-1178 |#1|) $ (-694)) 271 T ELT)) (-3081 (((-583 (-994)) $) 123 T ELT)) (-3764 (($ (-1084 |#1|)) 269 T ELT)) (-3083 (((-1084 $) $ (-994)) 138 T ELT) (((-1084 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 (-994))) 124 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3754 (($ $ $) 256 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 111 (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) 110 (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 116 (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-694)) 264 T ELT)) (-3759 (($ $ (-694)) 263 T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-391)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-349 (-484)) #2#) $) 178 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #2#) $) 153 T ELT)) (-3156 ((|#1| $) 180 T ELT) (((-349 (-484)) $) 179 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) (((-994) $) 154 T ELT)) (-3755 (($ $ $ (-994)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3758 (($ $ $) 262 T ELT)) (-3752 (($ $ $) 253 (|has| |#1| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) 252 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 239 (|has| |#1| (-312)) ELT)) (-3502 (($ $) 193 (|has| |#1| (-391)) ELT) (($ $ (-994)) 118 (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3722 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-694) $) 189 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 97 (-12 (|has| (-994) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ $) 257 (|has| |#1| (-495)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3444 (((-632 $) $) 237 (|has| |#1| (-1065)) ELT)) (-3084 (($ (-1084 |#1|) (-994)) 130 T ELT) (($ (-1084 $) (-994)) 129 T ELT)) (-3776 (($ $ (-694)) 268 T ELT)) (-1604 (((-3 (-583 $) #3="failed") (-583 $) $) 248 (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3936 (((-85) $) 169 T ELT)) (-2893 (($ |#1| (-694)) 170 T ELT) (($ $ (-994) (-694)) 132 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 131 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) 133 T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 266 T ELT)) (-2820 (((-694) $) 187 T ELT) (((-694) $ (-994)) 135 T ELT) (((-583 (-694)) $ (-583 (-994))) 134 T ELT)) (-1624 (($ (-1 (-694) (-694)) $) 188 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3765 (((-1084 |#1|) $) 270 T ELT)) (-3082 (((-3 (-994) #4="failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 145 T ELT) (((-630 |#1|) (-1178 $)) 144 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT)) (-1890 (($ (-583 $)) 107 (|has| |#1| (-391)) ELT) (($ $ $) 106 (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) 265 T ELT)) (-2823 (((-3 (-583 $) #4#) $) 127 T ELT)) (-2822 (((-3 (-583 $) #4#) $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #4#) $) 126 T ELT)) (-3811 (($ $) 249 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) 236 (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 183 T ELT)) (-1795 ((|#1| $) 184 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 108 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) 105 (|has| |#1| (-391)) ELT) (($ $ $) 104 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 112 (|has| |#1| (-821)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 240 (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ (-994) |#1|) 158 T ELT) (($ $ (-583 (-994)) (-583 |#1|)) 157 T ELT) (($ $ (-994) $) 156 T ELT) (($ $ (-583 (-994)) (-583 $)) 155 T ELT)) (-1606 (((-694) $) 242 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-349 $) (-349 $) (-349 $)) 258 (|has| |#1| (-495)) ELT) ((|#1| (-349 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-349 $) $ (-349 $)) 238 (|has| |#1| (-495)) ELT)) (-3763 (((-3 $ "failed") $ (-694)) 267 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-994)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) 52 T ELT) (($ $ (-994) (-694)) 51 T ELT) (($ $ (-583 (-994))) 50 T ELT) (($ $ (-994)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-694)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1089)) 235 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 233 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 232 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 231 (|has| |#1| (-811 (-1089))) ELT)) (-3947 (((-694) $) 167 T ELT) (((-694) $ (-994)) 143 T ELT) (((-583 (-694)) $ (-583 (-994))) 142 T ELT)) (-3971 (((-800 (-329)) $) 95 (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-391)) ELT) (($ $ (-994)) 119 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3753 (((-3 $ "failed") $ $) 255 (|has| |#1| (-495)) ELT) (((-3 (-349 $) "failed") (-349 $) $) 254 (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-994)) 152 T ELT) (($ (-349 (-484))) 91 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) 185 T ELT)) (-3676 ((|#1| $ (-694)) 172 T ELT) (($ $ (-994) (-694)) 141 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) 55 T ELT) (($ $ (-994) (-694)) 54 T ELT) (($ $ (-583 (-994))) 53 T ELT) (($ $ (-994)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-694)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 272 T ELT) (($ $ (-1089)) 234 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 230 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 229 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 228 (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
-(((-1154 |#1|) (-113) (-961)) (T -1154))
-((-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1154 *4)) (-4 *4 (-961)) (-5 *2 (-1178 *4)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-5 *2 (-1084 *3)))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-961)) (-4 *1 (-1154 *3)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3763 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-1154 *3)))) (-3761 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-1154 *4)))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)))) (-3757 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3755 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-349 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) (-3771 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3753 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3753 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-349 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) (-3752 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3751 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3953 *3) (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-1154 *3)))) (-3750 (*1 *2 *1 *1) (-12 (-4 *3 (-391)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1154 *3)))) (-3799 (*1 *2 *3 *2) (-12 (-5 *3 (-349 *1)) (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))))
-(-13 (-861 |t#1| (-694) (-994)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3766 ((-1178 |t#1|) $ (-694))) (-15 -3765 ((-1084 |t#1|) $)) (-15 -3764 ($ (-1084 |t#1|))) (-15 -3776 ($ $ (-694))) (-15 -3763 ((-3 $ "failed") $ (-694))) (-15 -3762 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3761 ((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694))) (-15 -3760 ($ $ (-694))) (-15 -3759 ($ $ (-694))) (-15 -3758 ($ $ $)) (-15 -3757 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3756 (|t#1| $)) (-15 -3755 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-241 (-349 $) (-349 $))) (-15 -3799 ((-349 $) (-349 $) (-349 $))) (-15 -3771 ((-694) $ $)) (-15 -3754 ($ $ $)) (-15 -3753 ((-3 $ "failed") $ $)) (-15 -3753 ((-3 (-349 $) "failed") (-349 $) $)) (-15 -3752 ($ $ $)) (-15 -3751 ((-2 (|:| -3953 |t#1|) (|:| -1972 $) (|:| -2902 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-391)) (-15 -3750 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3990) (-15 -3799 (|t#1| (-349 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-349 (-484)))) (-15 -3811 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 (-994)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| (-994) (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| (-994) (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| (-994) (-553 (-800 (-484))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-349 $) (-349 $)) |has| |#1| (-495)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-694)) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-821)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-455 (-994) |#1|) . T) ((-455 (-994) $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-994)) . T) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-994)) . T) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-994)) . T) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-796 (-329)) -12 (|has| |#1| (-796 (-329))) (|has| (-994) (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| (-994) (-796 (-484)))) ((-861 |#1| (-694) (-994)) . T) ((-821) |has| |#1| (-821)) ((-832) |has| |#1| (-312)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-994)) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-1065)) ((-1128) . T) ((-1133) |has| |#1| (-821)))
-((-3957 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT)))
-(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1154 |#1|) (-961) (-1154 |#3|)) (T -1155))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1154 *6)) (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1154 *5)))))
-((-3081 (((-583 (-994)) $) 34 T ELT)) (-3958 (($ $) 31 T ELT)) (-2893 (($ |#2| |#3|) NIL T ELT) (($ $ (-994) |#3|) 28 T ELT) (($ $ (-583 (-994)) (-583 |#3|)) 27 T ELT)) (-2894 (($ $) 14 T ELT)) (-3174 ((|#2| $) 12 T ELT)) (-3947 ((|#3| $) 10 T ELT)))
-(((-1156 |#1| |#2| |#3|) (-10 -7 (-15 -3081 ((-583 (-994)) |#1|)) (-15 -2893 (|#1| |#1| (-583 (-994)) (-583 |#3|))) (-15 -2893 (|#1| |#1| (-994) |#3|)) (-15 -3958 (|#1| |#1|)) (-15 -2893 (|#1| |#2| |#3|)) (-15 -3947 (|#3| |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -3174 (|#2| |#1|))) (-1157 |#2| |#3|) (-961) (-716)) (T -1156))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2892 (((-85) $) 94 T ELT)) (-3771 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3776 (($ $ (-830)) 127 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT) (($ $ (-994) |#2|) 97 T ELT) (($ $ (-583 (-994)) (-583 |#2|)) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3768 (($ $ |#2|) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3799 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1025)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3947 ((|#2| $) 84 T ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3769 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1157 |#1| |#2|) (-113) (-961) (-716)) (T -1157))
-((-3773 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1089)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3771 (*1 *2 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3770 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3769 (*1 *2 *1 *3) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3945 (*2 (-1089)))) (-4 *2 (-961)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3767 (*1 *2 *1 *3) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3)))))
-(-13 (-886 |t#1| |t#2| (-994)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3773 ((-1068 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3830 ((-1089) $)) (-15 -3772 (|t#1| $)) (-15 -3776 ($ $ (-830))) (-15 -3771 (|t#2| $)) (-15 -3771 (|t#2| $ |t#2|)) (-15 -3770 ($ $ |t#2|)) (-15 -3770 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3945 (|t#1| (-1089)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3769 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3768 ($ $ |t#2|)) (IF (|has| |t#2| (-1025)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-809 (-1089))) (-6 (-809 (-1089))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3767 ((-1068 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1025)) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-886 |#1| |#2| (-994)) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-3774 ((|#2| |#2|) 12 T ELT)) (-3970 (((-347 |#2|) |#2|) 14 T ELT)) (-3775 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))) 30 T ELT)))
-(((-1158 |#1| |#2|) (-10 -7 (-15 -3970 ((-347 |#2|) |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -3775 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))))) (-495) (-13 (-1154 |#1|) (-495) (-10 -8 (-15 -3144 ($ $ $))))) (T -1158))
-((-3775 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-484)))) (-4 *4 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))) (-4 *3 (-495)) (-5 *1 (-1158 *3 *4)))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-1158 *3 *2)) (-4 *2 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))))) (-3970 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-1158 *4 *3)) (-4 *3 (-13 (-1154 *4) (-495) (-10 -8 (-15 -3144 ($ $ $))))))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 11 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) NIL T ELT) (($ $ (-349 (-484)) (-349 (-484))) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1138 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1168 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3156 (((-1138 |#1| |#2| |#3|) $) NIL T ELT) (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3780 (((-349 (-484)) $) 68 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-349 (-484)) (-1138 |#1| |#2| |#3|)) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) NIL T ELT) (((-349 (-484)) $ (-349 (-484))) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) 30 T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (((-1138 |#1| |#2| |#3|) $) 71 T ELT)) (-3777 (((-3 (-1138 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3778 (((-1138 |#1| |#2| |#3|) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 39 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 40 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 38 T ELT)) (-3947 (((-349 (-484)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) 107 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1138 |#1| |#2| |#3|)) 16 T ELT) (($ (-1168 |#1| |#2| |#3|)) 17 T ELT) (($ (-1175 |#2|)) 36 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 32 T CONST)) (-2666 (($) 26 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 34 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1159 |#1| |#2| |#3|) (-13 (-1163 |#1| (-1138 |#1| |#2| |#3|)) (-806 $ (-1175 |#2|)) (-950 (-1168 |#1| |#2| |#3|)) (-555 (-1175 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1159))
-((-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-3957 (((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)) 24 T ELT)))
-(((-1160 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3957 ((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)))) (-961) (-961) (-1089) (-1089) |#1| |#2|) (T -1160))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1160 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) 124 T ELT) (($ $ (-349 (-484)) (-349 (-484))) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) 130 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) 199 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) 126 T ELT) (((-349 (-484)) $ (-349 (-484))) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 127 T ELT) (($ $ (-349 (-484))) 198 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-349 (-484))) 81 T ELT) (($ $ (-994) (-349 (-484))) 97 T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1890 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) 189 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) 131 T ELT) (($ $ $) 107 (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3947 (((-349 (-484)) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1161 |#1|) (-113) (-961)) (T -1161))
-((-3817 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1161 *4)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-1161 *3)) (-4 *3 (-961)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))) (-3811 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114)) (-4 *3 (-38 (-349 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484)))))))))
-(-13 (-1157 |t#1| (-349 (-484))) (-10 -8 (-15 -3817 ($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |t#1|))))) (-15 -3776 ($ $ (-349 (-484)))) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $)) (IF (|has| |t#1| (-15 -3811 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3081 ((-583 (-1089)) |t#1|))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-349 (-484))) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-349 (-484)) |#1|) . T) ((-241 $ $) |has| (-349 (-484)) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-391) |has| |#1| (-312)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-886 |#1| (-349 (-484)) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-963 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-312)) ((-1157 |#1| (-349 (-484))) . T))
-((-3188 (((-85) $) 12 T ELT)) (-3157 (((-3 |#3| "failed") $) 17 T ELT)) (-3156 ((|#3| $) 14 T ELT)))
-(((-1162 |#1| |#2| |#3|) (-10 -7 (-15 -3157 ((-3 |#3| "failed") |#1|)) (-15 -3156 (|#3| |#1|)) (-15 -3188 ((-85) |#1|))) (-1163 |#2| |#3|) (-961) (-1140 |#2|)) (T -1162))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) 124 T ELT) (($ $ (-349 (-484)) (-349 (-484))) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) 130 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) 199 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#2| "failed") $) 212 T ELT)) (-3156 ((|#2| $) 213 T ELT)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3780 (((-349 (-484)) $) 209 T ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3781 (($ (-349 (-484)) |#2|) 210 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) 126 T ELT) (((-349 (-484)) $ (-349 (-484))) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 127 T ELT) (($ $ (-349 (-484))) 198 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-349 (-484))) 81 T ELT) (($ $ (-994) (-349 (-484))) 97 T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1890 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3779 ((|#2| $) 208 T ELT)) (-3777 (((-3 |#2| "failed") $) 206 T ELT)) (-3778 ((|#2| $) 207 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) 189 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) 131 T ELT) (($ $ $) 107 (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3947 (((-349 (-484)) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1163 |#1| |#2|) (-113) (-961) (-1140 |t#1|)) (T -1163))
-((-3947 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1140 *3)) (-5 *2 (-349 (-484))))) (-3781 (*1 *1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-4 *4 (-961)) (-4 *1 (-1163 *4 *3)) (-4 *3 (-1140 *4)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1140 *3)) (-5 *2 (-349 (-484))))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3)))) (-3777 (*1 *2 *1) (|partial| -12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3)))))
-(-13 (-1161 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3781 ($ (-349 (-484)) |t#2|)) (-15 -3780 ((-349 (-484)) $)) (-15 -3779 (|t#2| $)) (-15 -3947 ((-349 (-484)) $)) (-15 -3778 (|t#2| $)) (-15 -3777 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-349 (-484))) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-349 (-484)) |#1|) . T) ((-241 $ $) |has| (-349 (-484)) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-391) |has| |#1| (-312)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-886 |#1| (-349 (-484)) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-950 |#2|) . T) ((-963 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-312)) ((-1157 |#1| (-349 (-484))) . T) ((-1161 |#1|) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 104 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) 116 T ELT) (($ $ (-349 (-484)) (-349 (-484))) 118 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) 54 T ELT)) (-3491 (($ $) 192 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) 188 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) 65 T ELT)) (-3493 (($ $) 196 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 85 T ELT)) (-3780 (((-349 (-484)) $) 13 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-349 (-484)) |#2|) 11 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 74 T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) 113 T ELT) (((-349 (-484)) $ (-349 (-484))) 114 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 130 T ELT) (($ $ (-349 (-484))) 128 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) 33 T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3941 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 ((|#2| $) 12 T ELT)) (-3777 (((-3 |#2| #1#) $) 44 T ELT)) (-3778 ((|#2| $) 45 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 151 (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) 122 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) 108 T ELT) (($ $ $) 94 (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 138 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3947 (((-349 (-484)) $) 16 T ELT)) (-3494 (($ $) 198 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 194 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 190 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 120 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-349 (-484))) 139 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) 107 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 127 T CONST)) (-3772 ((|#1| $) 106 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 204 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 180 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 200 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 176 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 208 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 184 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 210 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 186 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 206 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 182 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 202 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 178 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 17 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3056 (((-85) $ $) 72 T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3838 (($ $ $) 76 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 82 T ELT) (($ $ (-484)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1164 |#1| |#2|) (-1163 |#1| |#2|) (-961) (-1140 |#1|)) (T -1164))
-NIL
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 37 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-950 (-349 (-484)))) ELT) (((-3 (-1159 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3156 (((-484) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-950 (-349 (-484)))) ELT) (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-3958 (($ $) 41 T ELT)) (-3466 (((-3 $ #1#) $) 27 T ELT)) (-3502 (($ $) NIL (|has| (-1159 |#2| |#3| |#4|) (-391)) ELT)) (-1623 (($ $ (-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 11 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ (-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2820 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1624 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3957 (($ (-1 (-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) $) NIL T ELT)) (-3783 (((-3 (-750 |#2|) #1#) $) 91 T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 (((-1159 |#2| |#3| |#4|) $) 20 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-495)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3782 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) #1#) $) 74 T ELT)) (-3947 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2817 (((-1159 |#2| |#3| |#4|) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1159 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| (-1159 |#2| |#3| |#4|) (-950 (-349 (-484)))) (|has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484))))) ELT)) (-3816 (((-583 (-1159 |#2| |#3| |#4|)) $) NIL T ELT)) (-3676 (((-1159 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| (-1159 |#2| |#3| |#4|) (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1159 |#2| |#3| |#4|)) NIL T ELT) (($ (-1159 |#2| |#3| |#4|) $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) ELT)))
-(((-1165 |#1| |#2| |#3| |#4|) (-13 (-277 (-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-495) (-10 -8 (-15 -3783 ((-3 (-750 |#2|) #1="failed") $)) (-15 -3782 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) #1#) $)))) (-13 (-950 (-484)) (-580 (-484)) (-391)) (-13 (-27) (-1114) (-363 |#1|)) (-1089) |#2|) (T -1165))
-((-3783 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *2 (-750 *4)) (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4))) (-3782 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-349 (-484))) (|:| |c| *4)))))) (|:| |%type| (-1072)))) (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4))))
-((-3401 ((|#2| $) 34 T ELT)) (-3794 ((|#2| $) 18 T ELT)) (-3796 (($ $) 44 T ELT)) (-3784 (($ $ (-484)) 79 T ELT)) (-3025 ((|#2| $ |#2|) 76 T ELT)) (-3785 ((|#2| $ |#2|) 72 T ELT)) (-3787 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3026 (($ $ (-583 $)) 75 T ELT)) (-3795 ((|#2| $) 17 T ELT)) (-3798 (($ $) NIL T ELT) (($ $ (-694)) 52 T ELT)) (-3031 (((-583 $) $) 31 T ELT)) (-3027 (((-85) $ $) 63 T ELT)) (-3526 (((-85) $) 33 T ELT)) (-3797 ((|#2| $) 25 T ELT) (($ $ (-694)) 58 T ELT)) (-3799 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3632 (((-85) $) 23 T ELT)) (-3791 (($ $) 47 T ELT)) (-3789 (($ $) 80 T ELT)) (-3792 (((-694) $) 51 T ELT)) (-3793 (($ $) 50 T ELT)) (-3801 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3521 (((-583 $) $) 32 T ELT)) (-3056 (((-85) $ $) 61 T ELT)) (-3956 (((-694) $) 43 T ELT)))
-(((-1166 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3784 (|#1| |#1| (-484))) (-15 -3787 (|#2| |#1| #1="last" |#2|)) (-15 -3785 (|#2| |#1| |#2|)) (-15 -3787 (|#1| |#1| #2="rest" |#1|)) (-15 -3787 (|#2| |#1| #3="first" |#2|)) (-15 -3789 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3792 ((-694) |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3794 (|#2| |#1|)) (-15 -3795 (|#2| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3797 (|#1| |#1| (-694))) (-15 -3799 (|#2| |#1| #1#)) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#1| |#1| (-694))) (-15 -3799 (|#1| |#1| #2#)) (-15 -3798 (|#1| |#1|)) (-15 -3799 (|#2| |#1| #3#)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3025 (|#2| |#1| |#2|)) (-15 -3787 (|#2| |#1| #4="value" |#2|)) (-15 -3026 (|#1| |#1| (-583 |#1|))) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3632 ((-85) |#1|)) (-15 -3799 (|#2| |#1| #4#)) (-15 -3401 (|#2| |#1|)) (-15 -3526 ((-85) |#1|)) (-15 -3031 ((-583 |#1|) |#1|)) (-15 -3521 ((-583 |#1|) |#1|)) (-15 -3956 ((-694) |#1|))) (-1167 |#2|) (-1128)) (T -1166))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3794 ((|#1| $) 71 T ELT)) (-3796 (($ $) 73 T ELT)) (-3784 (($ $ (-484)) 58 (|has| $ (-6 -3995)) ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 62 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) 60 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3995)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3995)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3795 ((|#1| $) 72 T ELT)) (-3723 (($) 7 T CONST)) (-3798 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-3791 (($ $) 68 T ELT)) (-3789 (($ $) 65 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 69 T ELT)) (-3793 (($ $) 70 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3790 (($ $ $) 67 (|has| $ (-6 -3995)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3995)) ELT)) (-3801 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT)))
-(((-1167 |#1|) (-113) (-1128)) (T -1167))
-((-3801 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3801 (*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3790 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3790 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3789 (*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3788 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3786 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3787 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3785 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3995)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))))
-(-13 (-923 |t#1|) (-10 -8 (-15 -3801 ($ $ $)) (-15 -3801 ($ |t#1| $)) (-15 -3800 (|t#1| $)) (-15 -3799 (|t#1| $ "first")) (-15 -3800 ($ $ (-694))) (-15 -3798 ($ $)) (-15 -3799 ($ $ "rest")) (-15 -3798 ($ $ (-694))) (-15 -3797 (|t#1| $)) (-15 -3799 (|t#1| $ "last")) (-15 -3797 ($ $ (-694))) (-15 -3796 ($ $)) (-15 -3795 (|t#1| $)) (-15 -3794 (|t#1| $)) (-15 -3793 ($ $)) (-15 -3792 ((-694) $)) (-15 -3791 ($ $)) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3790 ($ $ $)) (-15 -3790 ($ $ |t#1|)) (-15 -3789 ($ $)) (-15 -3788 (|t#1| $ |t#1|)) (-15 -3787 (|t#1| $ "first" |t#1|)) (-15 -3786 ($ $ $)) (-15 -3787 ($ $ "rest" $)) (-15 -3785 (|t#1| $ |t#1|)) (-15 -3787 (|t#1| $ "last" |t#1|)) (-15 -3784 ($ $ (-484)))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 87 T ELT)) (-3810 (((-1147 |#2| |#1|) $ (-694)) 70 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 139 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-694)) 125 T ELT) (($ $ (-694) (-694)) 127 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 42 T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1068 |#1|)) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3804 (($ $) 131 T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3815 (($ $) 137 T ELT)) (-3813 (((-857 |#1|) $ (-694)) 60 T ELT) (((-857 |#1|) $ (-694) (-694)) 62 T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $) NIL T ELT) (((-694) $ (-694)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3807 (($ $) 115 T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3803 (($ (-484) (-484) $) 133 T ELT)) (-3776 (($ $ (-830)) 136 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 109 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 16 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3808 (($ $) 113 T ELT)) (-3809 (($ $) 111 T ELT)) (-3802 (($ (-484) (-484) $) 135 T ELT)) (-3811 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 153 (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3805 (($ $ (-484) (-484)) 119 T ELT)) (-3768 (($ $ (-694)) 121 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3806 (($ $) 117 T ELT)) (-3767 (((-1068 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3799 ((|#1| $ (-694)) 93 T ELT) (($ $ $) 129 (|has| (-694) (-1025)) ELT)) (-3757 (($ $ (-1089)) 106 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1175 |#2|)) 101 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 123 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 26 T ELT) (($ (-349 (-484))) 145 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1147 |#2| |#1|)) 78 T ELT) (($ (-1175 |#2|)) 22 T ELT)) (-3816 (((-1068 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) 92 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 88 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-694)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 18 T CONST)) (-2666 (($) 13 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3838 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1168 |#1| |#2| |#3|) (-13 (-1171 |#1|) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1147 |#2| |#1|))) (-15 -3810 ((-1147 |#2| |#1|) $ (-694))) (-15 -3945 ($ (-1175 |#2|))) (-15 -3809 ($ $)) (-15 -3808 ($ $)) (-15 -3807 ($ $)) (-15 -3806 ($ $)) (-15 -3805 ($ $ (-484) (-484))) (-15 -3804 ($ $)) (-15 -3803 ($ (-484) (-484) $)) (-15 -3802 ($ (-484) (-484) $)) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1168))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1089)) (-14 *6 *4))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3805 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3803 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3))) (-3802 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-3957 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT)))
-(((-1169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1171 |#1|) (-1171 |#2|)) (T -1169))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6 *4 *2)) (-4 *4 (-1171 *5)))))
-((-3188 (((-85) $) 17 T ELT)) (-3491 (($ $) 105 T ELT)) (-3638 (($ $) 81 T ELT)) (-3489 (($ $) 101 T ELT)) (-3637 (($ $) 77 T ELT)) (-3493 (($ $) 109 T ELT)) (-3636 (($ $) 85 T ELT)) (-3941 (($ $) 75 T ELT)) (-3942 (($ $) 73 T ELT)) (-3494 (($ $) 111 T ELT)) (-3635 (($ $) 87 T ELT)) (-3492 (($ $) 107 T ELT)) (-3634 (($ $) 83 T ELT)) (-3490 (($ $) 103 T ELT)) (-3633 (($ $) 79 T ELT)) (-3945 (((-772) $) 61 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3497 (($ $) 117 T ELT)) (-3485 (($ $) 93 T ELT)) (-3495 (($ $) 113 T ELT)) (-3483 (($ $) 89 T ELT)) (-3499 (($ $) 121 T ELT)) (-3487 (($ $) 97 T ELT)) (-3500 (($ $) 123 T ELT)) (-3488 (($ $) 99 T ELT)) (-3498 (($ $) 119 T ELT)) (-3486 (($ $) 95 T ELT)) (-3496 (($ $) 115 T ELT)) (-3484 (($ $) 91 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-349 (-484))) 71 T ELT)))
-(((-1170 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-349 (-484)))) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| (-484))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3188 ((-85) |#1|)) (-15 -3945 ((-772) |#1|))) (-1171 |#2|) (-961)) (T -1170))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-694)) 124 T ELT) (($ $ (-694) (-694)) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 130 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1068 |#1|)) 181 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3815 (($ $) 180 T ELT)) (-3813 (((-857 |#1|) $ (-694)) 178 T ELT) (((-857 |#1|) $ (-694) (-694)) 177 T ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $) 126 T ELT) (((-694) $ (-694)) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 127 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 179 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-694)) 81 T ELT) (($ $ (-994) (-694)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3811 (($ $) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 174 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3768 (($ $ (-694)) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3799 ((|#1| $ (-694)) 131 T ELT) (($ $ $) 107 (|has| (-694) (-1025)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3947 (((-694) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3816 (((-1068 |#1|) $) 182 T ELT)) (-3676 ((|#1| $ (-694)) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-694)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT)))
-(((-1171 |#1|) (-113) (-961)) (T -1171))
-((-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1171 *3)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-961)) (-5 *2 (-1068 *3)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-4 *1 (-1171 *3)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)))) (-3814 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1171 *3)) (-4 *3 (-961)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1171 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (-3813 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1171 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))) (-3811 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114)) (-4 *3 (-38 (-349 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484)))))))))
-(-13 (-1157 |t#1| (-694)) (-10 -8 (-15 -3817 ($ (-1068 (-2 (|:| |k| (-694)) (|:| |c| |t#1|))))) (-15 -3816 ((-1068 |t#1|) $)) (-15 -3817 ($ (-1068 |t#1|))) (-15 -3815 ($ $)) (-15 -3814 ($ (-1 |t#1| (-484)) $)) (-15 -3813 ((-857 |t#1|) $ (-694))) (-15 -3813 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $)) (IF (|has| |t#1| (-15 -3811 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3081 ((-583 (-1089)) |t#1|))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1114))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-694) |#1|) . T) ((-241 $ $) |has| (-694) (-1025)) ((-246) |has| |#1| (-495)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-886 |#1| (-694) (-994)) . T) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1157 |#1| (-694)) . T))
-((-3820 (((-1 (-1068 |#1|) (-583 (-1068 |#1|))) (-1 |#2| (-583 |#2|))) 24 T ELT)) (-3819 (((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3818 (((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3823 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3822 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3824 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 60 T ELT)) (-3825 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 66 T ELT)) (-3821 ((|#2| |#2| |#2|) 43 T ELT)))
-(((-1172 |#1| |#2|) (-10 -7 (-15 -3818 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3819 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3820 ((-1 (-1068 |#1|) (-583 (-1068 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -3821 (|#2| |#2| |#2|)) (-15 -3822 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3823 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3824 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3825 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-38 (-349 (-484))) (-1171 |#1|)) (T -1172))
-((-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-38 (-349 (-484)))) (-4 *6 (-1171 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1172 *5 *6)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-349 (-484)))) (-4 *2 (-1171 *5)) (-5 *1 (-1172 *5 *2)))) (-3823 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) (-4 *4 (-38 (-349 (-484)))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) (-4 *4 (-38 (-349 (-484)))))) (-3821 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1171 *3)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-1 (-1068 *4) (-583 (-1068 *4)))) (-5 *1 (-1172 *4 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))))
-((-3827 ((|#2| |#4| (-694)) 31 T ELT)) (-3826 ((|#4| |#2|) 26 T ELT)) (-3829 ((|#4| (-349 |#2|)) 49 (|has| |#1| (-495)) ELT)) (-3828 (((-1 |#4| (-583 |#4|)) |#3|) 43 T ELT)))
-(((-1173 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3826 (|#4| |#2|)) (-15 -3827 (|#2| |#4| (-694))) (-15 -3828 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-495)) (-15 -3829 (|#4| (-349 |#2|))) |%noBranch|)) (-961) (-1154 |#1|) (-600 |#2|) (-1171 |#1|)) (T -1173))
-((-3829 (*1 *2 *3) (-12 (-5 *3 (-349 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-495)) (-4 *4 (-961)) (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *5 *6 *2)) (-4 *6 (-600 *5)))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1154 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1173 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1171 *4)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1154 *5)) (-5 *1 (-1173 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1171 *5)))) (-3826 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1154 *4)) (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *3 *5 *2)) (-4 *5 (-600 *3)))))
-NIL
-(((-1174) (-113)) (T -1174))
-NIL
-(-13 (-10 -7 (-6 -2287)))
-((-2568 (((-85) $ $) NIL T ELT)) (-3830 (((-1089)) 12 T ELT)) (-3242 (((-1072) $) 18 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT) (((-1089) $) 8 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 15 T ELT)))
-(((-1175 |#1|) (-13 (-1013) (-552 (-1089)) (-10 -8 (-15 -3945 ((-1089) $)) (-15 -3830 ((-1089))))) (-1089)) (T -1175))
-((-3945 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))) (-3830 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))))
-((-3837 (($ (-694)) 19 T ELT)) (-3834 (((-630 |#2|) $ $) 41 T ELT)) (-3831 ((|#2| $) 51 T ELT)) (-3832 ((|#2| $) 50 T ELT)) (-3835 ((|#2| $ $) 36 T ELT)) (-3833 (($ $ $) 47 T ELT)) (-3836 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3838 (($ $ $) 15 T ELT)) (* (($ (-484) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
-(((-1176 |#1| |#2|) (-10 -7 (-15 -3831 (|#2| |#1|)) (-15 -3832 (|#2| |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3834 ((-630 |#2|) |#1| |#1|)) (-15 -3835 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3837 (|#1| (-694))) (-15 -3838 (|#1| |#1| |#1|))) (-1177 |#2|) (-1128)) (T -1176))
-NIL
-((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3837 (($ (-694)) 122 (|has| |#1| (-23)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3995)) ELT) (($ $) 98 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 100 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 110 T ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) 107 T ELT) (((-484) |#1| $) 106 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 105 (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3834 (((-630 |#1|) $ $) 115 (|has| |#1| (-961)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3831 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3832 ((|#1| $) 113 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-3835 ((|#1| $ $) 116 (|has| |#1| (-961)) ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-3833 (($ $ $) 114 (|has| |#1| (-961)) ELT)) (-1945 (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-1730 (($ $ $ (-484)) 101 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-663)) ELT) (($ $ |#1|) 117 (|has| |#1| (-663)) ELT)) (-3956 (((-694) $) 6 T ELT)))
-(((-1177 |#1|) (-113) (-1128)) (T -1177))
-((-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-25)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1177 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-663)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-663)))) (-3835 (*1 *2 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-961)))) (-3834 (*1 *2 *1 *1) (-12 (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-961)) (-5 *2 (-630 *3)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-961)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-915)) (-4 *2 (-961)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-915)) (-4 *2 (-961)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3838 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3837 ($ (-694))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3836 ($ $)) (-15 -3836 ($ $ $)) (-15 * ($ (-484) $))) |%noBranch|) (IF (|has| |t#1| (-663)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -3835 (|t#1| $ $)) (-15 -3834 ((-630 |t#1|) $ $)) (-15 -3833 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-961)) (PROGN (-15 -3832 (|t#1| $)) (-15 -3831 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-317 |#1|) . T) ((-323 |#1|) . T) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1128) . T))
-((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3837 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-3839 (($ (-583 |#1|)) 9 T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 15 (|has| $ (-6 -3994)) ELT)) (-3834 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-1013)) ELT)) (-2201 (((-484) $) 11 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3831 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3832 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3835 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-961)) ELT)) (-1945 (((-694) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) 19 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 8 T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3836 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-1178 |#1|) (-13 (-1177 |#1|) (-10 -8 (-15 -3839 ($ (-583 |#1|))))) (-1128)) (T -1178))
-((-3839 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1178 *3)))))
-((-3840 (((-1178 |#2|) (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|) 13 T ELT)) (-3841 ((|#2| (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|) 15 T ELT)) (-3957 (((-3 (-1178 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1178 |#1|)) 30 T ELT) (((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|)) 18 T ELT)))
-(((-1179 |#1| |#2|) (-10 -7 (-15 -3840 ((-1178 |#2|) (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|)) (-15 -3841 (|#2| (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|)) (-15 -3957 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -3957 ((-3 (-1178 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1178 |#1|)))) (-1128) (-1128)) (T -1179))
-((-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1179 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1178 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-1178 *5)) (-5 *1 (-1179 *6 *5)))))
-((-3842 (((-407) (-583 (-583 (-854 (-179)))) (-583 (-221))) 22 T ELT) (((-407) (-583 (-583 (-854 (-179))))) 21 T ELT) (((-407) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 20 T ELT)) (-3843 (((-1181) (-583 (-583 (-854 (-179)))) (-583 (-221))) 30 T ELT) (((-1181) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 29 T ELT)) (-3945 (((-1181) (-407)) 46 T ELT)))
-(((-1180) (-10 -7 (-15 -3842 ((-407) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3842 ((-407) (-583 (-583 (-854 (-179)))))) (-15 -3842 ((-407) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3843 ((-1181) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3843 ((-1181) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3945 ((-1181) (-407))))) (T -1180))
-((-3945 (*1 *2 *3) (-12 (-5 *3 (-407)) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3843 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3843 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-407)) (-5 *1 (-1180)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-407)) (-5 *1 (-1180)))) (-3842 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-407)) (-5 *1 (-1180)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3861 (((-1072) $ (-1072)) 107 T ELT) (((-1072) $ (-1072) (-1072)) 105 T ELT) (((-1072) $ (-1072) (-583 (-1072))) 104 T ELT)) (-3857 (($) 69 T ELT)) (-3844 (((-1184) $ (-407) (-830)) 54 T ELT)) (-3850 (((-1184) $ (-830) (-1072)) 89 T ELT) (((-1184) $ (-830) (-783)) 90 T ELT)) (-3872 (((-1184) $ (-830) (-329) (-329)) 57 T ELT)) (-3882 (((-1184) $ (-1072)) 84 T ELT)) (-3845 (((-1184) $ (-830) (-1072)) 94 T ELT)) (-3846 (((-1184) $ (-830) (-329) (-329)) 58 T ELT)) (-3883 (((-1184) $ (-830) (-830)) 55 T ELT)) (-3863 (((-1184) $) 85 T ELT)) (-3848 (((-1184) $ (-830) (-1072)) 93 T ELT)) (-3852 (((-1184) $ (-407) (-830)) 41 T ELT)) (-3849 (((-1184) $ (-830) (-1072)) 92 T ELT)) (-3885 (((-583 (-221)) $) 29 T ELT) (($ $ (-583 (-221))) 30 T ELT)) (-3884 (((-1184) $ (-694) (-694)) 52 T ELT)) (-3856 (($ $) 70 T ELT) (($ (-407) (-583 (-221))) 71 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3859 (((-484) $) 48 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3853 (((-1178 (-3 (-407) "undefined")) $) 47 T ELT)) (-3854 (((-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3849 (-484)) (|:| -3847 (-484)) (|:| |spline| (-484)) (|:| -3878 (-484)) (|:| |axesColor| (-783)) (|:| -3850 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))) $) 46 T ELT)) (-3855 (((-1184) $ (-830) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-783) (-484) (-783) (-484)) 83 T ELT)) (-3858 (((-583 (-854 (-179))) $) NIL T ELT)) (-3851 (((-407) $ (-830)) 43 T ELT)) (-3881 (((-1184) $ (-694) (-694) (-830) (-830)) 50 T ELT)) (-3879 (((-1184) $ (-1072)) 95 T ELT)) (-3847 (((-1184) $ (-830) (-1072)) 91 T ELT)) (-3945 (((-772) $) 102 T ELT)) (-3860 (((-1184) $) 96 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3878 (((-1184) $ (-830) (-1072)) 87 T ELT) (((-1184) $ (-830) (-783)) 88 T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1181) (-13 (-1013) (-10 -8 (-15 -3858 ((-583 (-854 (-179))) $)) (-15 -3857 ($)) (-15 -3856 ($ $)) (-15 -3885 ((-583 (-221)) $)) (-15 -3885 ($ $ (-583 (-221)))) (-15 -3856 ($ (-407) (-583 (-221)))) (-15 -3855 ((-1184) $ (-830) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-783) (-484) (-783) (-484))) (-15 -3854 ((-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3849 (-484)) (|:| -3847 (-484)) (|:| |spline| (-484)) (|:| -3878 (-484)) (|:| |axesColor| (-783)) (|:| -3850 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))) $)) (-15 -3853 ((-1178 (-3 (-407) "undefined")) $)) (-15 -3882 ((-1184) $ (-1072))) (-15 -3852 ((-1184) $ (-407) (-830))) (-15 -3851 ((-407) $ (-830))) (-15 -3878 ((-1184) $ (-830) (-1072))) (-15 -3878 ((-1184) $ (-830) (-783))) (-15 -3850 ((-1184) $ (-830) (-1072))) (-15 -3850 ((-1184) $ (-830) (-783))) (-15 -3849 ((-1184) $ (-830) (-1072))) (-15 -3848 ((-1184) $ (-830) (-1072))) (-15 -3847 ((-1184) $ (-830) (-1072))) (-15 -3879 ((-1184) $ (-1072))) (-15 -3860 ((-1184) $)) (-15 -3881 ((-1184) $ (-694) (-694) (-830) (-830))) (-15 -3846 ((-1184) $ (-830) (-329) (-329))) (-15 -3872 ((-1184) $ (-830) (-329) (-329))) (-15 -3845 ((-1184) $ (-830) (-1072))) (-15 -3884 ((-1184) $ (-694) (-694))) (-15 -3844 ((-1184) $ (-407) (-830))) (-15 -3883 ((-1184) $ (-830) (-830))) (-15 -3861 ((-1072) $ (-1072))) (-15 -3861 ((-1072) $ (-1072) (-1072))) (-15 -3861 ((-1072) $ (-1072) (-583 (-1072)))) (-15 -3863 ((-1184) $)) (-15 -3859 ((-484) $)) (-15 -3945 ((-772) $))))) (T -1181))
-((-3945 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1181)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1181)))) (-3857 (*1 *1) (-5 *1 (-1181))) (-3856 (*1 *1 *1) (-5 *1 (-1181))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) (-3885 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-221))) (-5 *1 (-1181)))) (-3855 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3849 (-484)) (|:| -3847 (-484)) (|:| |spline| (-484)) (|:| -3878 (-484)) (|:| |axesColor| (-783)) (|:| -3850 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484))))) (-5 *1 (-1181)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-1178 (-3 (-407) "undefined"))) (-5 *1 (-1181)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-407)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-407)) (-5 *1 (-1181)))) (-3878 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3878 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3881 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3846 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3872 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-407)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1181)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3873 (((-1184) $ (-329)) 168 T ELT) (((-1184) $ (-329) (-329) (-329)) 169 T ELT)) (-3861 (((-1072) $ (-1072)) 177 T ELT) (((-1072) $ (-1072) (-1072)) 175 T ELT) (((-1072) $ (-1072) (-583 (-1072))) 174 T ELT)) (-3889 (($) 67 T ELT)) (-3880 (((-1184) $ (-329) (-329) (-329) (-329) (-329)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1184) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1184) $ (-484) (-484) (-329) (-329) (-329)) 143 T ELT) (((-1184) $ (-329) (-329)) 144 T ELT) (((-1184) $ (-329) (-329) (-329)) 151 T ELT)) (-3892 (((-329)) 121 T ELT) (((-329) (-329)) 122 T ELT)) (-3894 (((-329)) 116 T ELT) (((-329) (-329)) 118 T ELT)) (-3893 (((-329)) 119 T ELT) (((-329) (-329)) 120 T ELT)) (-3890 (((-329)) 125 T ELT) (((-329) (-329)) 126 T ELT)) (-3891 (((-329)) 123 T ELT) (((-329) (-329)) 124 T ELT)) (-3872 (((-1184) $ (-329) (-329)) 170 T ELT)) (-3882 (((-1184) $ (-1072)) 152 T ELT)) (-3887 (((-1046 (-179)) $) 68 T ELT) (($ $ (-1046 (-179))) 69 T ELT)) (-3868 (((-1184) $ (-1072)) 186 T ELT)) (-3867 (((-1184) $ (-1072)) 187 T ELT)) (-3874 (((-1184) $ (-329) (-329)) 150 T ELT) (((-1184) $ (-484) (-484)) 167 T ELT)) (-3883 (((-1184) $ (-830) (-830)) 159 T ELT)) (-3863 (((-1184) $) 136 T ELT)) (-3871 (((-1184) $ (-1072)) 185 T ELT)) (-3876 (((-1184) $ (-1072)) 133 T ELT)) (-3885 (((-583 (-221)) $) 70 T ELT) (($ $ (-583 (-221))) 71 T ELT)) (-3884 (((-1184) $ (-694) (-694)) 158 T ELT)) (-3886 (((-1184) $ (-694) (-854 (-179))) 192 T ELT)) (-3888 (($ $) 73 T ELT) (($ (-1046 (-179)) (-1072)) 74 T ELT) (($ (-1046 (-179)) (-583 (-221))) 75 T ELT)) (-3865 (((-1184) $ (-329) (-329) (-329)) 130 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3859 (((-484) $) 127 T ELT)) (-3864 (((-1184) $ (-329)) 172 T ELT)) (-3869 (((-1184) $ (-329)) 190 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3870 (((-1184) $ (-329)) 189 T ELT)) (-3875 (((-1184) $ (-1072)) 135 T ELT)) (-3881 (((-1184) $ (-694) (-694) (-830) (-830)) 157 T ELT)) (-3877 (((-1184) $ (-1072)) 132 T ELT)) (-3879 (((-1184) $ (-1072)) 134 T ELT)) (-3862 (((-1184) $ (-130) (-130)) 156 T ELT)) (-3945 (((-772) $) 165 T ELT)) (-3860 (((-1184) $) 137 T ELT)) (-3866 (((-1184) $ (-1072)) 188 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3878 (((-1184) $ (-1072)) 131 T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1182) (-13 (-1013) (-10 -8 (-15 -3894 ((-329))) (-15 -3894 ((-329) (-329))) (-15 -3893 ((-329))) (-15 -3893 ((-329) (-329))) (-15 -3892 ((-329))) (-15 -3892 ((-329) (-329))) (-15 -3891 ((-329))) (-15 -3891 ((-329) (-329))) (-15 -3890 ((-329))) (-15 -3890 ((-329) (-329))) (-15 -3889 ($)) (-15 -3888 ($ $)) (-15 -3888 ($ (-1046 (-179)) (-1072))) (-15 -3888 ($ (-1046 (-179)) (-583 (-221)))) (-15 -3887 ((-1046 (-179)) $)) (-15 -3887 ($ $ (-1046 (-179)))) (-15 -3886 ((-1184) $ (-694) (-854 (-179)))) (-15 -3885 ((-583 (-221)) $)) (-15 -3885 ($ $ (-583 (-221)))) (-15 -3884 ((-1184) $ (-694) (-694))) (-15 -3883 ((-1184) $ (-830) (-830))) (-15 -3882 ((-1184) $ (-1072))) (-15 -3881 ((-1184) $ (-694) (-694) (-830) (-830))) (-15 -3880 ((-1184) $ (-329) (-329) (-329) (-329) (-329))) (-15 -3880 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3880 ((-1184) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3880 ((-1184) $ (-484) (-484) (-329) (-329) (-329))) (-15 -3880 ((-1184) $ (-329) (-329))) (-15 -3880 ((-1184) $ (-329) (-329) (-329))) (-15 -3879 ((-1184) $ (-1072))) (-15 -3878 ((-1184) $ (-1072))) (-15 -3877 ((-1184) $ (-1072))) (-15 -3876 ((-1184) $ (-1072))) (-15 -3875 ((-1184) $ (-1072))) (-15 -3874 ((-1184) $ (-329) (-329))) (-15 -3874 ((-1184) $ (-484) (-484))) (-15 -3873 ((-1184) $ (-329))) (-15 -3873 ((-1184) $ (-329) (-329) (-329))) (-15 -3872 ((-1184) $ (-329) (-329))) (-15 -3871 ((-1184) $ (-1072))) (-15 -3870 ((-1184) $ (-329))) (-15 -3869 ((-1184) $ (-329))) (-15 -3868 ((-1184) $ (-1072))) (-15 -3867 ((-1184) $ (-1072))) (-15 -3866 ((-1184) $ (-1072))) (-15 -3865 ((-1184) $ (-329) (-329) (-329))) (-15 -3864 ((-1184) $ (-329))) (-15 -3863 ((-1184) $)) (-15 -3862 ((-1184) $ (-130) (-130))) (-15 -3861 ((-1072) $ (-1072))) (-15 -3861 ((-1072) $ (-1072) (-1072))) (-15 -3861 ((-1072) $ (-1072) (-583 (-1072)))) (-15 -3860 ((-1184) $)) (-15 -3859 ((-484) $))))) (T -1182))
-((-3894 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3893 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3892 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3891 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3890 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3889 (*1 *1) (-5 *1 (-1182))) (-3888 (*1 *1 *1) (-5 *1 (-1182))) (-3888 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1072)) (-5 *1 (-1182)))) (-3888 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1182)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) (-3887 (*1 *1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) (-3886 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) (-3885 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) (-3884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3881 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-484)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3874 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3874 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3873 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3865 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182)))))
-((-3903 (((-583 (-1072)) (-583 (-1072))) 103 T ELT) (((-583 (-1072))) 96 T ELT)) (-3904 (((-583 (-1072))) 94 T ELT)) (-3901 (((-583 (-830)) (-583 (-830))) 69 T ELT) (((-583 (-830))) 64 T ELT)) (-3900 (((-583 (-694)) (-583 (-694))) 61 T ELT) (((-583 (-694))) 55 T ELT)) (-3902 (((-1184)) 71 T ELT)) (-3906 (((-830) (-830)) 87 T ELT) (((-830)) 86 T ELT)) (-3905 (((-830) (-830)) 85 T ELT) (((-830)) 84 T ELT)) (-3898 (((-783) (-783)) 81 T ELT) (((-783)) 80 T ELT)) (-3908 (((-179)) 91 T ELT) (((-179) (-329)) 93 T ELT)) (-3907 (((-830)) 88 T ELT) (((-830) (-830)) 89 T ELT)) (-3899 (((-830) (-830)) 83 T ELT) (((-830)) 82 T ELT)) (-3895 (((-783) (-783)) 75 T ELT) (((-783)) 73 T ELT)) (-3896 (((-783) (-783)) 77 T ELT) (((-783)) 76 T ELT)) (-3897 (((-783) (-783)) 79 T ELT) (((-783)) 78 T ELT)))
-(((-1183) (-10 -7 (-15 -3895 ((-783))) (-15 -3895 ((-783) (-783))) (-15 -3896 ((-783))) (-15 -3896 ((-783) (-783))) (-15 -3897 ((-783))) (-15 -3897 ((-783) (-783))) (-15 -3898 ((-783))) (-15 -3898 ((-783) (-783))) (-15 -3899 ((-830))) (-15 -3899 ((-830) (-830))) (-15 -3900 ((-583 (-694)))) (-15 -3900 ((-583 (-694)) (-583 (-694)))) (-15 -3901 ((-583 (-830)))) (-15 -3901 ((-583 (-830)) (-583 (-830)))) (-15 -3902 ((-1184))) (-15 -3903 ((-583 (-1072)))) (-15 -3903 ((-583 (-1072)) (-583 (-1072)))) (-15 -3904 ((-583 (-1072)))) (-15 -3905 ((-830))) (-15 -3906 ((-830))) (-15 -3905 ((-830) (-830))) (-15 -3906 ((-830) (-830))) (-15 -3907 ((-830) (-830))) (-15 -3907 ((-830))) (-15 -3908 ((-179) (-329))) (-15 -3908 ((-179))))) (T -1183))
-((-3908 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1183)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-329)) (-5 *2 (-179)) (-5 *1 (-1183)))) (-3907 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3906 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3905 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3904 (*1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183)))) (-3903 (*1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183)))) (-3902 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1183)))) (-3901 (*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1183)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1183)))) (-3900 (*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1183)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3899 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3898 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3897 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3896 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3895 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))))
-((-3909 (($) 6 T ELT)) (-3945 (((-772) $) 9 T ELT)))
-(((-1184) (-13 (-552 (-772)) (-10 -8 (-15 -3909 ($))))) (T -1184))
-((-3909 (*1 *1) (-5 *1 (-1184))))
-((-3948 (($ $ |#2|) 10 T ELT)))
-(((-1185 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#1| |#2|))) (-1186 |#2|) (-312)) (T -1185))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3910 (((-107)) 39 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 40 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-1186 |#1|) (-113) (-312)) (T -1186))
-((-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-312)))) (-3910 (*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-312)) (-5 *2 (-107)))))
-(-13 (-654 |t#1|) (-10 -8 (-15 -3948 ($ $ |t#1|)) (-15 -3910 ((-107)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T))
-((-3915 (((-583 (-1121 |#1|)) (-1089) (-1121 |#1|)) 83 T ELT)) (-3913 (((-1068 (-1068 (-857 |#1|))) (-1089) (-1068 (-857 |#1|))) 63 T ELT)) (-3916 (((-1 (-1068 (-1121 |#1|)) (-1068 (-1121 |#1|))) (-694) (-1121 |#1|) (-1068 (-1121 |#1|))) 74 T ELT)) (-3911 (((-1 (-1068 (-857 |#1|)) (-1068 (-857 |#1|))) (-694)) 65 T ELT)) (-3914 (((-1 (-1084 (-857 |#1|)) (-857 |#1|)) (-1089)) 32 T ELT)) (-3912 (((-1 (-1068 (-857 |#1|)) (-1068 (-857 |#1|))) (-694)) 64 T ELT)))
-(((-1187 |#1|) (-10 -7 (-15 -3911 ((-1 (-1068 (-857 |#1|)) (-1068 (-857 |#1|))) (-694))) (-15 -3912 ((-1 (-1068 (-857 |#1|)) (-1068 (-857 |#1|))) (-694))) (-15 -3913 ((-1068 (-1068 (-857 |#1|))) (-1089) (-1068 (-857 |#1|)))) (-15 -3914 ((-1 (-1084 (-857 |#1|)) (-857 |#1|)) (-1089))) (-15 -3915 ((-583 (-1121 |#1|)) (-1089) (-1121 |#1|))) (-15 -3916 ((-1 (-1068 (-1121 |#1|)) (-1068 (-1121 |#1|))) (-694) (-1121 |#1|) (-1068 (-1121 |#1|))))) (-312)) (T -1187))
-((-3916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694)) (-4 *6 (-312)) (-5 *4 (-1121 *6)) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1187 *6)) (-5 *5 (-1068 *4)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-312)) (-5 *2 (-583 (-1121 *5))) (-5 *1 (-1187 *5)) (-5 *4 (-1121 *5)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1084 (-857 *4)) (-857 *4))) (-5 *1 (-1187 *4)) (-4 *4 (-312)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-312)) (-5 *2 (-1068 (-1068 (-857 *5)))) (-5 *1 (-1187 *5)) (-5 *4 (-1068 (-857 *5))))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1068 (-857 *4)) (-1068 (-857 *4)))) (-5 *1 (-1187 *4)) (-4 *4 (-312)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1068 (-857 *4)) (-1068 (-857 *4)))) (-5 *1 (-1187 *4)) (-4 *4 (-312)))))
-((-3918 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 80 T ELT)) (-3917 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 79 T ELT)))
-(((-1188 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3917 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3918 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|))) (-299) (-1154 |#1|) (-1154 |#2|) (-352 |#2| |#3|)) (T -1188))
-((-3918 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-1188 *4 *3 *5 *6)) (-4 *6 (-352 *3 *5)))) (-3917 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-1188 *3 *4 *5 *6)) (-4 *6 (-352 *4 *5)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3919 (((-1048) $) 12 T ELT)) (-3920 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1189) (-13 (-995) (-10 -8 (-15 -3920 ((-1048) $)) (-15 -3919 ((-1048) $))))) (T -1189))
-((-3920 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3921 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)))
-(((-1190) (-13 (-995) (-10 -8 (-15 -3921 ((-1048) $))))) (T -1190))
-((-3921 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1190)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 59 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 82 T ELT) (($ (-484)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3922 (((-1184) (-694)) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 36 T CONST)) (-2666 (($) 85 T CONST)) (-3056 (((-85) $ $) 88 T ELT)) (-3948 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 64 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-1191 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-429 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3948 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3922 ((-1184) (-694))))) (-961) (-756) (-717) (-861 |#1| |#3| |#2|) (-583 |#2|) (-583 (-694)) (-694)) (T -1191))
-((-3948 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717)) (-14 *6 (-583 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-14 *8 (-583 *5)) (-5 *2 (-1184)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3681 (((-583 $) (-583 |#4|)) 95 T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 28 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3798 (((-3 $ #1#) $) 77 T ELT)) (-3684 ((|#4| |#4| $) 82 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) NIL T ELT)) (-2889 (((-583 |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 83 T ELT)) (-2608 (((-583 |#4|) $) 32 T ELT)) (-3245 (((-85) |#4| $) NIL (|has| |#4| (-1013)) ELT)) (-3925 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-583 |#4|)) 38 T ELT)) (-1948 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3797 (((-3 |#4| #1#) $) NIL T ELT)) (-3696 (((-583 |#4|) $) 53 T ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) 81 T ELT)) (-3698 (((-85) $ $) 92 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 76 T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3768 (($ $ |#4|) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 74 T ELT)) (-3564 (($) 45 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) |#4| $) NIL (|has| |#4| (-1013)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-583 |#4|) $) 62 T ELT)) (-3677 (((-694) $) NIL (|has| |#3| (-319)) ELT)) (-3924 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-583 |#4|)) 44 T ELT)) (-3923 (((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-583 $) (-583 |#4|)) 73 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-583 |#3|) $) NIL T ELT)) (-3932 (((-85) |#3| $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL T ELT)))
-(((-1192 |#1| |#2| |#3| |#4|) (-13 (-1123 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3925 ((-3 $ #1="failed") (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3925 ((-3 $ #1#) (-583 |#4|))) (-15 -3924 ((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3924 ((-3 $ #1#) (-583 |#4|))) (-15 -3923 ((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3923 ((-583 $) (-583 |#4|))))) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -1192))
-((-3925 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3925 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3924 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3924 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3923 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-583 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-1192 *4 *5 *6 *7))) (-5 *1 (-1192 *4 *5 *6 *7)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT)))
-(((-1193 |#1|) (-113) (-961)) (T -1193))
-NIL
-(-13 (-961) (-82 |t#1| |t#1|) (-555 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
-((-2568 (((-85) $ $) 69 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 |#1|) $) 54 T ELT)) (-3946 (($ $ (-694)) 47 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3934 (($ $ (-694)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3723 (($) NIL T CONST)) (-3938 (($ $ $) 72 T ELT) (($ $ (-739 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3157 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3156 (((-739 |#1|) $) NIL T ELT)) (-3958 (($ $) 40 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3950 (((-85) $) NIL T ELT)) (-3949 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-739 |#1|) |#2|) 39 T ELT)) (-3935 (($ $) 41 T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3954 (((-739 |#1|) $) NIL T ELT)) (-3955 (((-739 |#1|) $) 42 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3939 (($ $ $) 71 T ELT) (($ $ (-739 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1748 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2894 (((-739 |#1|) $) 36 T ELT)) (-3174 ((|#2| $) 38 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3947 (((-694) $) 44 T ELT)) (-3952 (((-85) $) 48 T ELT)) (-3951 ((|#2| $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-739 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-484)) NIL T ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3953 ((|#2| $ $) 78 T ELT) ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 14 T CONST)) (-2666 (($) 20 T CONST)) (-2665 (((-583 (-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) 45 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 29 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-739 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT)))
-(((-1194 |#1| |#2|) (-13 (-334 |#2| (-739 |#1|)) (-1201 |#1| |#2|)) (-756) (-961)) (T -1194))
-NIL
-((-3941 ((|#3| |#3| (-694)) 28 T ELT)) (-3942 ((|#3| |#3| (-694)) 34 T ELT)) (-3926 ((|#3| |#3| |#3| (-694)) 35 T ELT)))
-(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -3942 (|#3| |#3| (-694))) (-15 -3941 (|#3| |#3| (-694))) (-15 -3926 (|#3| |#3| |#3| (-694)))) (-13 (-961) (-654 (-349 (-484)))) (-756) (-1201 |#2| |#1|)) (T -1195))
-((-3926 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))))
-((-3931 (((-85) $) 15 T ELT)) (-3932 (((-85) $) 14 T ELT)) (-3927 (($ $) 19 T ELT) (($ $ (-694)) 21 T ELT)))
-(((-1196 |#1| |#2|) (-10 -7 (-15 -3927 (|#1| |#1| (-694))) (-15 -3927 (|#1| |#1|)) (-15 -3931 ((-85) |#1|)) (-15 -3932 ((-85) |#1|))) (-1197 |#2|) (-312)) (T -1196))
-NIL
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3931 (((-85) $) 114 T ELT)) (-3928 (((-694)) 110 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| "failed") $) 121 T ELT)) (-3156 ((|#1| $) 122 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1763 (($ $ (-694)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) 89 T ELT)) (-3771 (((-743 (-830)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3930 (((-85) $) 113 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-3929 (((-743 (-830))) 111 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1764 (((-3 (-694) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) 119 T ELT)) (-3947 (((-743 (-830)) $) 112 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2702 (((-632 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3932 (((-85) $) 115 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3927 (($ $) 109 (|has| |#1| (-319)) ELT) (($ $ (-694)) 108 (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
-(((-1197 |#1|) (-113) (-312)) (T -1197))
-((-3932 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) (-3929 (*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) (-3928 (*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-694)))) (-3927 (*1 *1 *1) (-12 (-4 *1 (-1197 *2)) (-4 *2 (-312)) (-4 *2 (-319)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-4 *3 (-319)))))
-(-13 (-312) (-950 |t#1|) (-1186 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-344)) |%noBranch|) (-15 -3932 ((-85) $)) (-15 -3931 ((-85) $)) (-15 -3930 ((-85) $)) (-15 -3947 ((-743 (-830)) $)) (-15 -3929 ((-743 (-830)))) (-15 -3928 ((-694))) (IF (|has| |t#1| (-319)) (PROGN (-6 (-344)) (-15 -3927 ($ $)) (-15 -3927 ($ $ (-694)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-319)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-344) OR (|has| |#1| (-319)) (|has| |#1| (-118))) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T) ((-1186 |#1|) . T))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3933 (((-583 |#1|) $) 55 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3934 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-694)) 57 (|has| |#2| (-146)) ELT)) (-3723 (($) 23 T CONST)) (-3938 (($ $ |#1|) 69 T ELT) (($ $ (-739 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3157 (((-3 (-739 |#1|) "failed") $) 79 T ELT)) (-3156 (((-739 |#1|) $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3950 (((-85) $) 60 T ELT)) (-3949 (($ $) 59 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3936 (((-85) $) 65 T ELT)) (-3937 (($ (-739 |#1|) |#2|) 66 T ELT)) (-3935 (($ $) 64 T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3954 (((-739 |#1|) $) 76 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3939 (($ $ |#1|) 72 T ELT) (($ $ (-739 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3952 (((-85) $) 62 T ELT)) (-3951 ((|#2| $) 61 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-739 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3953 ((|#2| $ (-739 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT)))
-(((-1198 |#1| |#2|) (-113) (-756) (-961)) (T -1198))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4))))) (-3953 (*1 *2 *1 *3) (-12 (-5 *3 (-739 *4)) (-4 *1 (-1198 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961)))) (-3953 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3939 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3939 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3938 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3937 (*1 *1 *2 *3) (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1198 *4 *3)) (-4 *3 (-961)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3945 (*1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3949 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3934 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-4 *4 (-146)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
-(-13 (-961) (-1193 |t#2|) (-950 (-739 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3954 ((-739 |t#1|) $)) (-15 -3940 ((-2 (|:| |k| (-739 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3953 (|t#2| $ (-739 |t#1|))) (-15 -3953 (|t#2| $ $)) (-15 -3939 ($ $ |t#1|)) (-15 -3939 ($ $ (-739 |t#1|))) (-15 -3939 ($ $ $)) (-15 -3938 ($ $ |t#1|)) (-15 -3938 ($ $ (-739 |t#1|))) (-15 -3938 ($ $ $)) (-15 -3937 ($ (-739 |t#1|) |t#2|)) (-15 -3936 ((-85) $)) (-15 -3935 ($ $)) (-15 -3945 ($ |t#1|)) (-15 -3952 ((-85) $)) (-15 -3951 (|t#2| $)) (-15 -3950 ((-85) $)) (-15 -3949 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3934 ($ $ $)) (-15 -3934 ($ $ (-694)))) |%noBranch|) (-15 -3957 ($ (-1 |t#2| |t#2|) $)) (-15 -3933 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -3987)) (-6 -3987) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1193 |#2|) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 |#1|) $) 99 T ELT)) (-3946 (($ $ (-694)) 103 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3934 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-3723 (($) NIL T CONST)) (-3938 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3157 (((-3 (-739 |#1|) #1#) $) NIL T ELT) (((-3 (-803 |#1|) #1#) $) NIL T ELT)) (-3156 (((-739 |#1|) $) NIL T ELT) (((-803 |#1|) $) NIL T ELT)) (-3958 (($ $) 102 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3950 (((-85) $) 90 T ELT)) (-3949 (($ $) 93 T ELT)) (-3943 (($ $ $ (-694)) 104 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-739 |#1|) |#2|) NIL T ELT) (($ (-803 |#1|) |#2|) 28 T ELT)) (-3935 (($ $) 120 T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3954 (((-739 |#1|) $) NIL T ELT)) (-3955 (((-739 |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3939 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3941 (($ $ (-694)) 113 (|has| |#2| (-654 (-349 (-484)))) ELT)) (-1748 (((-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2894 (((-803 |#1|) $) 84 T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3942 (($ $ (-694)) 110 (|has| |#2| (-654 (-349 (-484)))) ELT)) (-3947 (((-694) $) 100 T ELT)) (-3952 (((-85) $) 85 T ELT)) (-3951 ((|#2| $) 88 T ELT)) (-3945 (((-772) $) 70 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-739 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-803 |#1|)) NIL T ELT) (($ (-606 |#1| |#2|)) 47 T ELT) (((-1194 |#1| |#2|) $) 77 T ELT) (((-1203 |#1| |#2|) $) 82 T ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-803 |#1|)) NIL T ELT)) (-3953 ((|#2| $ (-739 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 27 T CONST)) (-2665 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3944 (((-3 (-606 |#1| |#2|) #1#) $) 119 T ELT)) (-3056 (((-85) $ $) 78 T ELT)) (-3836 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3838 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-803 |#1|)) NIL T ELT)))
-(((-1199 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-334 |#2| (-803 |#1|)) (-10 -8 (-15 -3945 ($ (-606 |#1| |#2|))) (-15 -3945 ((-1194 |#1| |#2|) $)) (-15 -3945 ((-1203 |#1| |#2|) $)) (-15 -3944 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -3943 ($ $ $ (-694))) (IF (|has| |#2| (-654 (-349 (-484)))) (PROGN (-15 -3942 ($ $ (-694))) (-15 -3941 ($ $ (-694)))) |%noBranch|))) (-756) (-146)) (T -1199))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-1199 *3 *4)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3944 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3943 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-654 (-349 (-484)))) (-4 *3 (-756)) (-4 *4 (-146)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-654 (-349 (-484)))) (-4 *3 (-756)) (-4 *4 (-146)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 (-1089)) $) NIL T ELT)) (-3961 (($ (-1194 (-1089) |#1|)) NIL T ELT)) (-3946 (($ $ (-694)) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3934 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-3723 (($) NIL T CONST)) (-3938 (($ $ (-1089)) NIL T ELT) (($ $ (-739 (-1089))) NIL T ELT) (($ $ $) NIL T ELT)) (-3157 (((-3 (-739 (-1089)) #1#) $) NIL T ELT)) (-3156 (((-739 (-1089)) $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3950 (((-85) $) NIL T ELT)) (-3949 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-739 (-1089)) |#1|) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3940 (((-2 (|:| |k| (-739 (-1089))) (|:| |c| |#1|)) $) NIL T ELT)) (-3954 (((-739 (-1089)) $) NIL T ELT)) (-3955 (((-739 (-1089)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3939 (($ $ (-1089)) NIL T ELT) (($ $ (-739 (-1089))) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3962 (((-1194 (-1089) |#1|) $) NIL T ELT)) (-3947 (((-694) $) NIL T ELT)) (-3952 (((-85) $) NIL T ELT)) (-3951 ((|#1| $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT)) (-3953 ((|#1| $ (-739 (-1089))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3960 (((-583 (-2 (|:| |k| (-1089)) (|:| |c| $))) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1089) $) NIL T ELT)))
-(((-1200 |#1|) (-13 (-1201 (-1089) |#1|) (-10 -8 (-15 -3962 ((-1194 (-1089) |#1|) $)) (-15 -3961 ($ (-1194 (-1089) |#1|))) (-15 -3960 ((-583 (-2 (|:| |k| (-1089)) (|:| |c| $))) $)))) (-961)) (T -1200))
-((-3962 (*1 *2 *1) (-12 (-5 *2 (-1194 (-1089) *3)) (-5 *1 (-1200 *3)) (-4 *3 (-961)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1194 (-1089) *3)) (-4 *3 (-961)) (-5 *1 (-1200 *3)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1089)) (|:| |c| (-1200 *3))))) (-5 *1 (-1200 *3)) (-4 *3 (-961)))))
-((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3933 (((-583 |#1|) $) 55 T ELT)) (-3946 (($ $ (-694)) 89 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3934 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-694)) 57 (|has| |#2| (-146)) ELT)) (-3723 (($) 23 T CONST)) (-3938 (($ $ |#1|) 69 T ELT) (($ $ (-739 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3157 (((-3 (-739 |#1|) "failed") $) 79 T ELT)) (-3156 (((-739 |#1|) $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3950 (((-85) $) 60 T ELT)) (-3949 (($ $) 59 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3936 (((-85) $) 65 T ELT)) (-3937 (($ (-739 |#1|) |#2|) 66 T ELT)) (-3935 (($ $) 64 T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3954 (((-739 |#1|) $) 76 T ELT)) (-3955 (((-739 |#1|) $) 91 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3939 (($ $ |#1|) 72 T ELT) (($ $ (-739 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3947 (((-694) $) 90 T ELT)) (-3952 (((-85) $) 62 T ELT)) (-3951 ((|#2| $) 61 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-739 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3953 ((|#2| $ (-739 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT)))
-(((-1201 |#1| |#2|) (-113) (-756) (-961)) (T -1201))
-((-3955 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
-(-13 (-1198 |t#1| |t#2|) (-10 -8 (-15 -3955 ((-739 |t#1|) $)) (-15 -3947 ((-694) $)) (-15 -3946 ($ $ (-694)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1193 |#2|) . T) ((-1198 |#1| |#2|) . T))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 43 T ELT)) (-3950 (((-85) $) 37 T ELT)) (-3949 (($ $) 38 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ |#2| |#1|) NIL T ELT)) (-3954 ((|#2| $) 25 T ELT)) (-3955 ((|#2| $) 23 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1748 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2894 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3952 (((-85) $) 33 T ELT)) (-3951 ((|#1| $) 34 T ELT)) (-3945 (((-772) $) 66 T ELT) (($ (-484)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ |#2|) NIL T ELT)) (-3953 ((|#1| $ |#2|) 29 T ELT)) (-3126 (((-694)) 14 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 30 T CONST)) (-2666 (($) 11 T CONST)) (-2665 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3056 (((-85) $ $) 31 T ELT)) (-3948 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3956 (((-694) $) 18 T ELT)))
-(((-1202 |#1| |#2|) (-13 (-961) (-1193 |#1|) (-334 |#1| |#2|) (-555 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3956 ((-694) $)) (-15 -3955 (|#2| $)) (-15 -3954 (|#2| $)) (-15 -3958 ($ $)) (-15 -3953 (|#1| $ |#2|)) (-15 -3952 ((-85) $)) (-15 -3951 (|#1| $)) (-15 -3950 ((-85) $)) (-15 -3949 ($ $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3948 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3987)) (-6 -3987) |%noBranch|) (IF (|has| |#1| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |#1| (-6 -3992)) (-6 -3992) |%noBranch|))) (-961) (-754)) (T -1202))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-754)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3955 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-961)))) (-3954 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-961)))) (-3953 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-754)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3951 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-754)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3949 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-754)))))
-((-2568 (((-85) $ $) 27 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 |#1|) $) 132 T ELT)) (-3961 (($ (-1194 |#1| |#2|)) 50 T ELT)) (-3946 (($ $ (-694)) 38 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3934 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-694)) 52 (|has| |#2| (-146)) ELT)) (-3723 (($) NIL T CONST)) (-3938 (($ $ |#1|) 114 T ELT) (($ $ (-739 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3157 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3156 (((-739 |#1|) $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 122 T ELT)) (-3950 (((-85) $) 117 T ELT)) (-3949 (($ $) 118 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-739 |#1|) |#2|) 20 T ELT)) (-3935 (($ $) NIL T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3954 (((-739 |#1|) $) 123 T ELT)) (-3955 (((-739 |#1|) $) 126 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3939 (($ $ |#1|) 112 T ELT) (($ $ (-739 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3962 (((-1194 |#1| |#2|) $) 94 T ELT)) (-3947 (((-694) $) 129 T ELT)) (-3952 (((-85) $) 81 T ELT)) (-3951 ((|#2| $) 32 T ELT)) (-3945 (((-772) $) 73 T ELT) (($ (-484)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-739 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3953 ((|#2| $ (-739 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3126 (((-694)) 120 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-3960 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2666 (($) 33 T CONST)) (-3056 (((-85) $ $) 14 T ELT)) (-3836 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3838 (($ $ $) 61 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 55 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 53 T ELT) (($ (-484) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
-(((-1203 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-10 -8 (-15 -3962 ((-1194 |#1| |#2|) $)) (-15 -3961 ($ (-1194 |#1| |#2|))) (-15 -3960 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-756) (-961)) (T -1203))
-((-3962 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *1 (-1203 *3 *4)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4))))) (-5 *1 (-1203 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3964 (($ (-583 (-830))) 11 T ELT)) (-3963 (((-884) $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 25 T ELT) (($ (-884)) 14 T ELT) (((-884) $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT)))
-(((-1204) (-13 (-1013) (-429 (-884)) (-10 -8 (-15 -3964 ($ (-583 (-830)))) (-15 -3963 ((-884) $))))) (T -1204))
-((-3964 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1204)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1204)))))
-((-3965 (((-583 (-1068 |#1|)) (-1 (-583 (-1068 |#1|)) (-583 (-1068 |#1|))) (-484)) 16 T ELT) (((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|))) 13 T ELT)))
-(((-1205 |#1|) (-10 -7 (-15 -3965 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -3965 ((-583 (-1068 |#1|)) (-1 (-583 (-1068 |#1|)) (-583 (-1068 |#1|))) (-484)))) (-1128)) (T -1205))
-((-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1068 *5)) (-583 (-1068 *5)))) (-5 *4 (-484)) (-5 *2 (-583 (-1068 *5))) (-5 *1 (-1205 *5)) (-4 *5 (-1128)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1205 *4)) (-4 *4 (-1128)))))
-((-3967 (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 174 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 173 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 172 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-958 |#1| |#2|)) 156 T ELT)) (-3966 (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|))) 85 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85)) 84 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85)) 83 T ELT)) (-3970 (((-583 (-1059 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|)) 73 T ELT)) (-3968 (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|))) 140 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85)) 139 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 138 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-958 |#1| |#2|)) 132 T ELT)) (-3969 (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|))) 145 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85)) 144 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 143 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-958 |#1| |#2|)) 142 T ELT)) (-3971 (((-583 (-703 |#1| (-773 |#3|))) (-1059 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) 111 T ELT) (((-1084 (-937 (-349 |#1|))) (-1084 |#1|)) 102 T ELT) (((-857 (-937 (-349 |#1|))) (-703 |#1| (-773 |#3|))) 109 T ELT) (((-857 (-937 (-349 |#1|))) (-857 |#1|)) 107 T ELT) (((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|))) 33 T ELT)))
-(((-1206 |#1| |#2| |#3|) (-10 -7 (-15 -3966 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3966 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85))) (-15 -3966 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-958 |#1| |#2|))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-958 |#1| |#2|))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)))) (-15 -3969 ((-583 (-583 (-937 (-349 |#1|)))) (-958 |#1| |#2|))) (-15 -3969 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3969 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3969 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)))) (-15 -3970 ((-583 (-1059 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|))) (-15 -3971 ((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|)))) (-15 -3971 ((-857 (-937 (-349 |#1|))) (-857 |#1|))) (-15 -3971 ((-857 (-937 (-349 |#1|))) (-703 |#1| (-773 |#3|)))) (-15 -3971 ((-1084 (-937 (-349 |#1|))) (-1084 |#1|))) (-15 -3971 ((-583 (-703 |#1| (-773 |#3|))) (-1059 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))))) (-13 (-755) (-258) (-120) (-933)) (-583 (-1089)) (-583 (-1089))) (T -1206))
-((-3971 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-1084 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1089))) (-5 *2 (-857 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-857 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-1059 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3968 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3968 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4)))))) (-5 *1 (-1206 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3967 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3967 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3967 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4)))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3966 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3966 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))))
-((-3974 (((-3 (-1178 (-349 (-484))) #1="failed") (-1178 |#1|) |#1|) 21 T ELT)) (-3972 (((-85) (-1178 |#1|)) 12 T ELT)) (-3973 (((-3 (-1178 (-484)) #1#) (-1178 |#1|)) 16 T ELT)))
-(((-1207 |#1|) (-10 -7 (-15 -3972 ((-85) (-1178 |#1|))) (-15 -3973 ((-3 (-1178 (-484)) #1="failed") (-1178 |#1|))) (-15 -3974 ((-3 (-1178 (-349 (-484))) #1#) (-1178 |#1|) |#1|))) (-13 (-961) (-580 (-484)))) (T -1207))
-((-3974 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-1178 (-349 (-484)))) (-5 *1 (-1207 *4)))) (-3973 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-1178 (-484))) (-5 *1 (-1207 *4)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-1207 *4)))))
-((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 12 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) 9 T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) 57 T ELT)) (-2994 (($) 46 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 38 T ELT)) (-3444 (((-632 $) $) 36 T ELT)) (-2010 (((-830) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3445 (($) 26 T CONST)) (-2400 (($ (-830)) 47 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (((-484) $) 16 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ (-484)) 18 T ELT)) (-3126 (((-694)) 10 T CONST)) (-1264 (((-85) $ $) 59 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 23 T CONST)) (-2666 (($) 25 T CONST)) (-3056 (((-85) $ $) 31 T ELT)) (-3836 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3838 (($ $ $) 29 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 52 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 41 T ELT) (($ $ $) 40 T ELT)))
-(((-1208 |#1|) (-13 (-146) (-319) (-553 (-484)) (-1065)) (-830)) (T -1208))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 2825032 2825037 2825042 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2825017 2825022 2825027 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2825002 2825007 2825012 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2824987 2824992 2824997 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1208 2823966 2824905 2824982 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1207 2823181 2823360 2823579 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1206 2814340 2816209 2818143 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1205 2813728 2813881 2814070 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1204 2813190 2813493 2813606 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1203 2810750 2812652 2812855 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1202 2807514 2809167 2809738 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1201 2804771 2806501 2806555 "XPOLYC" 2806840 XPOLYC (NIL T T) -9 NIL 2806953 NIL) (-1200 2802290 2804275 2804478 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1199 2798538 2801149 2801537 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1198 2793385 2795018 2795072 "XFALG" 2797217 XFALG (NIL T T) -9 NIL 2798001 NIL) (-1197 2788541 2791274 2791316 "XF" 2791934 XF (NIL T) -9 NIL 2792330 NIL) (-1196 2788259 2788369 2788536 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1195 2787486 2787608 2787812 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1194 2785228 2787386 2787481 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1193 2783809 2784604 2784646 "XALG" 2784651 XALG (NIL T) -9 NIL 2784760 NIL) (-1192 2777515 2782219 2782697 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1191 2775758 2776760 2777081 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1190 2775357 2775629 2775698 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1189 2774844 2775147 2775240 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1188 2773921 2774131 2774426 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1187 2772217 2772680 2773142 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1186 2771106 2771691 2771733 "VSPACE" 2771869 VSPACE (NIL T) -9 NIL 2771943 NIL) (-1185 2770977 2771010 2771101 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1184 2770820 2770874 2770942 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1183 2767803 2768598 2769335 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1182 2758901 2761502 2763675 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1181 2752478 2754369 2755948 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1180 2750962 2751357 2751763 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1179 2749789 2750070 2750386 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1178 2745054 2749616 2749708 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1177 2738286 2742746 2742789 "VECTCAT" 2743777 VECTCAT (NIL T) -9 NIL 2744361 NIL) (-1176 2737565 2737891 2738281 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1175 2737059 2737301 2737421 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1174 2736992 2736997 2737027 "UTYPE" 2737032 UTYPE (NIL) -9 NIL NIL NIL) (-1173 2735979 2736155 2736416 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1172 2733830 2734338 2734862 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1171 2723712 2729682 2729724 "UTSCAT" 2730822 UTSCAT (NIL T) -9 NIL 2731579 NIL) (-1170 2721777 2722720 2723707 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1169 2721451 2721500 2721631 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1168 2713162 2719647 2720126 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2707157 2709970 2710013 "URAGG" 2712083 URAGG (NIL T) -9 NIL 2712805 NIL) (-1166 2705172 2706134 2707152 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1165 2700879 2704148 2704610 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1164 2693308 2700803 2700874 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1163 2681959 2689446 2689507 "UPXSCCA" 2690075 UPXSCCA (NIL T T) -9 NIL 2690307 NIL) (-1162 2681680 2681782 2681954 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1161 2670232 2677444 2677486 "UPXSCAT" 2678126 UPXSCAT (NIL T) -9 NIL 2678734 NIL) (-1160 2669745 2669830 2670007 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1159 2661431 2669336 2669598 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1158 2660326 2660596 2660946 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1157 2653029 2656514 2656568 "UPSCAT" 2657637 UPSCAT (NIL T T) -9 NIL 2658401 NIL) (-1156 2652449 2652701 2653024 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1155 2652123 2652172 2652303 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1154 2636253 2645207 2645249 "UPOLYC" 2647327 UPOLYC (NIL T) -9 NIL 2648547 NIL) (-1153 2630308 2633156 2636248 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1152 2629744 2629869 2630032 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1151 2629378 2629465 2629604 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1150 2628191 2628458 2628762 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1149 2627524 2627654 2627839 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1148 2627116 2627191 2627338 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1147 2617880 2626882 2627010 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1146 2617242 2617379 2617584 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1145 2615843 2616690 2616966 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1144 2615072 2615269 2615494 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1143 2601882 2614996 2615067 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1142 2581688 2594923 2594984 "ULSCCAT" 2595615 ULSCCAT (NIL T T) -9 NIL 2595902 NIL) (-1141 2581023 2581309 2581683 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1140 2569395 2576529 2576571 "ULSCAT" 2577424 ULSCAT (NIL T) -9 NIL 2578154 NIL) (-1139 2568908 2568993 2569170 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1138 2551025 2568407 2568648 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1137 2550059 2550752 2550866 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2550977) (-1136 2549092 2549785 2549899 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2550010) (-1135 2548125 2548818 2548932 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2549043) (-1134 2547158 2547851 2547965 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2548076) (-1133 2545165 2546386 2546416 "UFD" 2546627 UFD (NIL) -9 NIL 2546740 NIL) (-1132 2545009 2545066 2545160 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1131 2544261 2544468 2544684 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1130 2542481 2542934 2543399 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1129 2542206 2542446 2542476 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1128 2542144 2542149 2542179 "TYPE" 2542184 TYPE (NIL) -9 NIL 2542191 NIL) (-1127 2541303 2541523 2541763 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1126 2540481 2540912 2541147 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1125 2538635 2539208 2539747 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1124 2537669 2537905 2538141 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1123 2526164 2530484 2530580 "TSETCAT" 2535795 TSETCAT (NIL T T T T) -9 NIL 2537296 NIL) (-1122 2522501 2524317 2526159 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1121 2516893 2521727 2522009 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1120 2512230 2513243 2514172 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1119 2511727 2511802 2511965 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1118 2509803 2510093 2510448 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1117 2509287 2509436 2509466 "TRIGCAT" 2509679 TRIGCAT (NIL) -9 NIL NIL NIL) (-1116 2509038 2509141 2509282 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1115 2506182 2508146 2508425 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1114 2505288 2505984 2506014 "TRANFUN" 2506049 TRANFUN (NIL) -9 NIL 2506115 NIL) (-1113 2504752 2505003 2505283 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1112 2504589 2504627 2504688 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1111 2504046 2504177 2504328 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1110 2502787 2503444 2503680 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1109 2502599 2502636 2502708 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1108 2500813 2501459 2501888 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1107 2499193 2499530 2499852 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1106 2488124 2497028 2497084 "TBAGG" 2497401 TBAGG (NIL T T) -9 NIL 2497611 NIL) (-1105 2483635 2485822 2488119 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1104 2483112 2483237 2483382 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1103 2482622 2482942 2483032 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1102 2482119 2482236 2482374 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1101 2473411 2482047 2482114 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1100 2469164 2470459 2471704 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1099 2468533 2468692 2468873 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1098 2465687 2466440 2467223 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1097 2465461 2465651 2465682 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1096 2464415 2465100 2465226 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2465412) (-1095 2463679 2464227 2464306 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2464366) (-1094 2460502 2461661 2462361 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1093 2458185 2458868 2459502 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1092 2454263 2455309 2456286 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1091 2451362 2453918 2454147 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1090 2450958 2451045 2451167 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1089 2447582 2449056 2449875 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1088 2440542 2446779 2447072 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1087 2432228 2440133 2440395 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1086 2431507 2431646 2431863 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1085 2431191 2431256 2431367 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1084 2421914 2430903 2431028 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1083 2420644 2420942 2421297 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1082 2420049 2420127 2420318 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1081 2402201 2419548 2419789 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1080 2401800 2402072 2402141 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1079 2401136 2401417 2401557 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1078 2395738 2396997 2397950 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1077 2395270 2395370 2395534 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1076 2390381 2391663 2392810 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1075 2384839 2386310 2387621 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1074 2377754 2379818 2381609 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1073 2368670 2377666 2377749 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1072 2363513 2368384 2368499 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1071 2363100 2363183 2363327 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1070 2362251 2362452 2362687 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1069 2361991 2362049 2362142 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1068 2354729 2360196 2360802 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1067 2353905 2354110 2354341 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1066 2353150 2353521 2353668 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1065 2352638 2352880 2352910 "STEP" 2353004 STEP (NIL) -9 NIL 2353075 NIL) (-1064 2343920 2352556 2352633 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1063 2338135 2342718 2342761 "STAGG" 2343188 STAGG (NIL T) -9 NIL 2343362 NIL) (-1062 2336514 2337262 2338130 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1061 2334820 2336341 2336433 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1060 2334100 2334639 2334669 "SRING" 2334674 SRING (NIL) -9 NIL 2334694 NIL) (-1059 2326871 2332638 2333077 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1058 2320645 2322084 2323588 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1057 2313198 2317961 2317991 "SRAGG" 2319290 SRAGG (NIL) -9 NIL 2319894 NIL) (-1056 2312495 2312815 2313193 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1055 2306699 2311817 2312240 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1054 2301047 2304067 2304803 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1053 2297476 2298295 2298932 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1052 2296451 2296756 2296786 "SPFCAT" 2297230 SPFCAT (NIL) -9 NIL NIL NIL) (-1051 2295388 2295640 2295904 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1050 2286146 2288420 2288450 "SPADXPT" 2293087 SPADXPT (NIL) -9 NIL 2295211 NIL) (-1049 2285948 2285994 2286063 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1048 2283604 2285912 2285943 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1047 2275278 2277367 2277409 "SPACEC" 2281724 SPACEC (NIL T) -9 NIL 2283529 NIL) (-1046 2273107 2275225 2275273 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1045 2272043 2272232 2272522 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1044 2270447 2270780 2271191 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1043 2269712 2269946 2270207 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1042 2265892 2266852 2267847 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1041 2262250 2262949 2263678 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1040 2256166 2261572 2261668 "SNTSCAT" 2261673 SNTSCAT (NIL T T T T) -9 NIL 2261743 NIL) (-1039 2249987 2254807 2255197 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1038 2243759 2249906 2249982 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1037 2242191 2242522 2242920 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1036 2233927 2238757 2238859 "SMATCAT" 2240202 SMATCAT (NIL NIL T T T) -9 NIL 2240750 NIL) (-1035 2231768 2232752 2233922 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1034 2229489 2230954 2230997 "SKAGG" 2231258 SKAGG (NIL T) -9 NIL 2231394 NIL) (-1033 2225535 2229309 2229420 "SINT" NIL SINT (NIL) -8 NIL NIL 2229461) (-1032 2225345 2225389 2225455 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1031 2224420 2224652 2224920 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1030 2223424 2223586 2223862 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1029 2222770 2223110 2223233 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1028 2222116 2222423 2222563 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1027 2220227 2220719 2221225 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1026 2213816 2220146 2220222 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1025 2213319 2213556 2213586 "SGROUP" 2213679 SGROUP (NIL) -9 NIL 2213741 NIL) (-1024 2213209 2213241 2213314 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1023 2212847 2212887 2212928 "SGPOPC" 2212933 SGPOPC (NIL T) -9 NIL 2213134 NIL) (-1022 2212381 2212658 2212764 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1021 2209804 2210573 2211295 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1020 2203819 2209225 2209321 "SFRTCAT" 2209326 SFRTCAT (NIL T T T T) -9 NIL 2209364 NIL) (-1019 2198211 2199324 2200451 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1018 2192387 2193548 2194712 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1017 2191359 2192261 2192382 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1016 2186967 2187862 2187957 "SEXCAT" 2190570 SEXCAT (NIL T T T T T) -9 NIL 2191121 NIL) (-1015 2185940 2186894 2186962 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1014 2184331 2184916 2185218 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1013 2183854 2184039 2184069 "SETCAT" 2184186 SETCAT (NIL) -9 NIL 2184270 NIL) (-1012 2183686 2183750 2183849 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1011 2179909 2182140 2182183 "SETAGG" 2183051 SETAGG (NIL T) -9 NIL 2183389 NIL) (-1010 2179515 2179667 2179904 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1009 2176618 2179462 2179510 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1008 2176084 2176394 2176494 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1007 2175211 2175577 2175638 "SEGXCAT" 2175924 SEGXCAT (NIL T T) -9 NIL 2176044 NIL) (-1006 2174136 2174404 2174447 "SEGCAT" 2174969 SEGCAT (NIL T) -9 NIL 2175190 NIL) (-1005 2173816 2173881 2173994 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1004 2172882 2173352 2173560 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1003 2172460 2172739 2172815 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1002 2171825 2171961 2172165 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1001 2170891 2171638 2171820 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1000 2170144 2170839 2170886 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-999 2161631 2170013 2170139 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-998 2160491 2160781 2161098 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-997 2159797 2160009 2160197 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-996 2159147 2159304 2159480 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-995 2158720 2158951 2158979 "SASTCAT" 2158984 SASTCAT (NIL) -9 NIL 2158997 NIL) (-994 2158187 2158612 2158686 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-993 2157790 2157831 2158002 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-992 2157421 2157462 2157619 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-991 2150502 2157338 2157416 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-990 2149152 2149481 2149877 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-989 2147913 2148274 2148574 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-988 2147537 2147758 2147839 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-987 2144997 2145631 2146084 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-986 2144836 2144869 2144937 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-985 2144327 2144630 2144721 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-984 2139955 2140823 2141734 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-983 2128904 2134310 2134404 "RSETCAT" 2138460 RSETCAT (NIL T T T T) -9 NIL 2139548 NIL) (-982 2127442 2128084 2128899 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-981 2121216 2122661 2124168 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-980 2119098 2119655 2119727 "RRCC" 2120800 RRCC (NIL T T) -9 NIL 2121141 NIL) (-979 2118623 2118822 2119093 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-978 2118093 2118403 2118501 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-977 2090645 2101358 2101422 "RPOLCAT" 2111896 RPOLCAT (NIL T T T) -9 NIL 2115041 NIL) (-976 2084744 2087567 2090640 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-975 2080911 2084492 2084630 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-974 2079239 2079978 2080234 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-973 2074882 2077694 2077722 "RNS" 2077984 RNS (NIL) -9 NIL 2078236 NIL) (-972 2073785 2074272 2074809 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-971 2072903 2073304 2073504 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-970 2072041 2072603 2072631 "RNG" 2072691 RNG (NIL) -9 NIL 2072745 NIL) (-969 2071930 2071964 2072036 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-968 2071192 2071697 2071737 "RMODULE" 2071742 RMODULE (NIL T) -9 NIL 2071768 NIL) (-967 2070131 2070237 2070567 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-966 2067126 2069721 2070014 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-965 2059917 2062260 2062372 "RMATCAT" 2065677 RMATCAT (NIL NIL NIL T T T) -9 NIL 2066643 NIL) (-964 2059434 2059613 2059912 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-963 2059002 2059213 2059254 "RLINSET" 2059315 RLINSET (NIL T) -9 NIL 2059359 NIL) (-962 2058647 2058728 2058854 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-961 2057493 2058224 2058252 "RING" 2058307 RING (NIL) -9 NIL 2058399 NIL) (-960 2057338 2057394 2057488 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-959 2056392 2056659 2056915 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-958 2047528 2056020 2056221 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-957 2046753 2047264 2047303 "RGBCSPC" 2047360 RGBCSPC (NIL T) -9 NIL 2047411 NIL) (-956 2045787 2046273 2046312 "RGBCMDL" 2046540 RGBCMDL (NIL T) -9 NIL 2046654 NIL) (-955 2045499 2045568 2045669 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-954 2045262 2045303 2045398 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-953 2043686 2044116 2044496 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-952 2041273 2041941 2042609 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-951 2040823 2040921 2041081 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-950 2040445 2040543 2040584 "RETRACT" 2040715 RETRACT (NIL T) -9 NIL 2040802 NIL) (-949 2040325 2040356 2040440 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-948 2039927 2040199 2040266 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-947 2038407 2039298 2039495 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-946 2038098 2038159 2038255 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-945 2037841 2037882 2037987 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-944 2037576 2037617 2037726 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-943 2032647 2034098 2035313 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-942 2029746 2030504 2031312 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-941 2027715 2028337 2028937 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-940 2020499 2026266 2026702 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-939 2019811 2020091 2020240 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-938 2019296 2019411 2019576 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-937 2014889 2018699 2018920 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-936 2014121 2014320 2014533 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-935 2011411 2012249 2013131 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-934 2007993 2009029 2010088 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-933 2007829 2007882 2007910 "REAL" 2007915 REAL (NIL) -9 NIL 2007950 NIL) (-932 2007319 2007623 2007714 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-931 2006799 2006877 2007082 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-930 2006032 2006224 2006435 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-929 2004920 2005217 2005584 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-928 2003187 2003657 2004190 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-927 2002109 2002386 2002773 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-926 2000936 2001245 2001664 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-925 1994284 1997796 1997824 "RCFIELD" 1999101 RCFIELD (NIL) -9 NIL 1999831 NIL) (-924 1992902 1993514 1994211 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-923 1989102 1990994 1991035 "RCAGG" 1992102 RCAGG (NIL T) -9 NIL 1992563 NIL) (-922 1988829 1988939 1989097 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-921 1988274 1988403 1988564 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-920 1987891 1987970 1988089 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-919 1987306 1987456 1987606 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-918 1987088 1987138 1987209 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-917 1979530 1986206 1986514 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-916 1969232 1979397 1979525 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-915 1968866 1968959 1968987 "RADCAT" 1969144 RADCAT (NIL) -9 NIL NIL NIL) (-914 1968704 1968764 1968861 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-913 1966953 1968535 1968624 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-912 1966634 1966683 1966810 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-911 1958921 1963005 1963045 "QUATCAT" 1963823 QUATCAT (NIL T) -9 NIL 1964587 NIL) (-910 1956171 1957451 1958827 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-909 1952011 1956121 1956166 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-908 1949527 1951045 1951086 "QUAGG" 1951461 QUAGG (NIL T) -9 NIL 1951637 NIL) (-907 1949129 1949401 1949468 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-906 1948135 1948765 1948928 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-905 1947816 1947865 1947992 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-904 1937416 1943585 1943625 "QFCAT" 1944283 QFCAT (NIL T) -9 NIL 1945276 NIL) (-903 1934300 1935739 1937322 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-902 1933846 1933980 1934110 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-901 1928042 1929203 1930365 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-900 1927461 1927641 1927873 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-899 1925283 1925811 1926234 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-898 1924182 1924424 1924741 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-897 1922543 1922741 1923094 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-896 1918299 1919515 1919556 "PTRANFN" 1921440 PTRANFN (NIL T) -9 NIL NIL NIL) (-895 1916946 1917291 1917612 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-894 1916639 1916702 1916809 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-893 1910842 1915417 1915457 "PTCAT" 1915749 PTCAT (NIL T) -9 NIL 1915902 NIL) (-892 1910535 1910576 1910700 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-891 1909414 1909730 1910064 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-890 1898293 1900854 1903163 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-889 1891329 1894076 1894170 "PSETCAT" 1897144 PSETCAT (NIL T T T T) -9 NIL 1897953 NIL) (-888 1889779 1890513 1891324 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-887 1889098 1889293 1889321 "PSCURVE" 1889589 PSCURVE (NIL) -9 NIL 1889756 NIL) (-886 1884700 1886520 1886584 "PSCAT" 1887419 PSCAT (NIL T T T) -9 NIL 1887658 NIL) (-885 1884014 1884296 1884695 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-884 1882411 1883326 1883589 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-883 1881902 1882205 1882296 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-882 1872922 1875344 1877532 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-881 1870794 1872222 1872262 "PRQAGG" 1872445 PRQAGG (NIL T) -9 NIL 1872548 NIL) (-880 1869967 1870413 1870441 "PROPLOG" 1870580 PROPLOG (NIL) -9 NIL 1870694 NIL) (-879 1869642 1869705 1869828 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-878 1869078 1869217 1869389 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-877 1867326 1868089 1868386 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-876 1866878 1867010 1867138 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-875 1861319 1865818 1866638 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-874 1861148 1861186 1861245 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-873 1860587 1860727 1860878 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-872 1859055 1859474 1859940 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-871 1858772 1858833 1858861 "PRIMCAT" 1858985 PRIMCAT (NIL) -9 NIL NIL NIL) (-870 1857943 1858139 1858367 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-869 1853973 1857893 1857938 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-868 1853672 1853734 1853845 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-867 1850808 1853321 1853554 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-866 1850259 1850416 1850444 "PPCURVE" 1850649 PPCURVE (NIL) -9 NIL 1850785 NIL) (-865 1849872 1850117 1850200 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-864 1847628 1848049 1848641 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-863 1847071 1847135 1847368 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-862 1843791 1844277 1844888 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-861 1829382 1835511 1835575 "POLYCAT" 1839060 POLYCAT (NIL T T T) -9 NIL 1840937 NIL) (-860 1824892 1827039 1829377 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-859 1824549 1824623 1824742 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-858 1824242 1824305 1824412 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-857 1817605 1823975 1824134 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-856 1816492 1816755 1817031 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-855 1815096 1815409 1815739 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-854 1810407 1815046 1815091 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-853 1808895 1809306 1809681 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-852 1807652 1807961 1808357 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-851 1807323 1807407 1807524 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-850 1806902 1806977 1807151 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-849 1806388 1806484 1806644 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-848 1805860 1805980 1806134 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-847 1804755 1804973 1805350 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-846 1804366 1804451 1804603 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-845 1803917 1803999 1804180 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-844 1803609 1803690 1803803 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-843 1803122 1803197 1803405 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-842 1802470 1802598 1802800 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-841 1801832 1801966 1802129 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-840 1801136 1801318 1801499 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-839 1800859 1800933 1801027 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-838 1797427 1798616 1799532 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-837 1796511 1796712 1796947 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-836 1792076 1793460 1794602 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-835 1771997 1776884 1781731 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-834 1771737 1771790 1771893 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-833 1771178 1771312 1771492 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-832 1769187 1770408 1770436 "PID" 1770633 PID (NIL) -9 NIL 1770760 NIL) (-831 1768975 1769018 1769093 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-830 1768162 1768822 1768909 "PI" NIL PI (NIL) -8 NIL NIL 1768949) (-829 1767614 1767765 1767941 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-828 1763942 1764900 1765805 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-827 1762306 1762595 1762961 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-826 1761748 1761863 1762024 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-825 1758289 1760617 1760970 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-824 1756895 1757175 1757500 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-823 1755660 1755914 1756262 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-822 1754370 1754597 1754949 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-821 1751380 1752940 1752968 "PFECAT" 1753561 PFECAT (NIL) -9 NIL 1753938 NIL) (-820 1751003 1751168 1751375 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-819 1749827 1750109 1750410 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-818 1748009 1748396 1748826 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-817 1743979 1747935 1748004 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-816 1739882 1741029 1741896 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-815 1737814 1738903 1738944 "PERMCAT" 1739343 PERMCAT (NIL T) -9 NIL 1739640 NIL) (-814 1737510 1737557 1737680 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-813 1733959 1735640 1736285 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-812 1731424 1733714 1733835 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-811 1730293 1730556 1730597 "PDSPC" 1731130 PDSPC (NIL T) -9 NIL 1731375 NIL) (-810 1729660 1729926 1730288 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-809 1728295 1729288 1729329 "PDRING" 1729334 PDRING (NIL T) -9 NIL 1729361 NIL) (-808 1727005 1727794 1727847 "PDMOD" 1727852 PDMOD (NIL T T) -9 NIL 1727955 NIL) (-807 1726098 1726310 1726559 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-806 1725703 1725770 1725824 "PDDOM" 1725989 PDDOM (NIL T T) -9 NIL 1726069 NIL) (-805 1725555 1725591 1725698 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-804 1725341 1725380 1725469 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-803 1723658 1724412 1724711 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-802 1723347 1723410 1723519 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-801 1721485 1721915 1722366 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-800 1715105 1716934 1718226 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-799 1714736 1714809 1714941 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-798 1712438 1713118 1713599 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-797 1710642 1711070 1711473 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-796 1710088 1710336 1710377 "PATMAB" 1710484 PATMAB (NIL T) -9 NIL 1710567 NIL) (-795 1708735 1709139 1709396 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-794 1708273 1708404 1708445 "PATAB" 1708450 PATAB (NIL T) -9 NIL 1708622 NIL) (-793 1706816 1707253 1707676 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-792 1706494 1706569 1706671 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-791 1706183 1706246 1706355 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-790 1705988 1706034 1706101 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-789 1705666 1705741 1705843 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-788 1705355 1705418 1705527 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-787 1705046 1705116 1705213 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-786 1704735 1704798 1704907 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-785 1703896 1704275 1704454 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-784 1703503 1703601 1703720 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-783 1702471 1702896 1703115 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-782 1701136 1701790 1702150 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-781 1694226 1700540 1700734 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-780 1686647 1693724 1693908 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-779 1683372 1685287 1685327 "PADICCT" 1685908 PADICCT (NIL NIL) -9 NIL 1686190 NIL) (-778 1681362 1683322 1683367 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-777 1680524 1680734 1681000 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-776 1679866 1680009 1680213 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-775 1678247 1679274 1679552 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-774 1677771 1678030 1678127 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-773 1676830 1677508 1677680 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-772 1667252 1670121 1672320 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-771 1666644 1666958 1667084 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-770 1665921 1666116 1666144 "OUTBCON" 1666462 OUTBCON (NIL) -9 NIL 1666628 NIL) (-769 1665629 1665759 1665916 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-768 1665010 1665155 1665316 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-767 1664381 1664808 1664897 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-766 1663796 1664211 1664239 "OSGROUP" 1664244 OSGROUP (NIL) -9 NIL 1664266 NIL) (-765 1662760 1663021 1663306 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-764 1660029 1662635 1662755 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-763 1657170 1659780 1659906 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-762 1655188 1655716 1656276 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-761 1648530 1651070 1651110 "OREPCAT" 1653431 OREPCAT (NIL T) -9 NIL 1654533 NIL) (-760 1646556 1647490 1648525 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-759 1645753 1646024 1646052 "ORDTYPE" 1646357 ORDTYPE (NIL) -9 NIL 1646515 NIL) (-758 1645287 1645498 1645748 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-757 1644749 1645125 1645282 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-756 1644243 1644606 1644634 "ORDSET" 1644639 ORDSET (NIL) -9 NIL 1644661 NIL) (-755 1642808 1643830 1643858 "ORDRING" 1643863 ORDRING (NIL) -9 NIL 1643891 NIL) (-754 1642056 1642613 1642641 "ORDMON" 1642646 ORDMON (NIL) -9 NIL 1642667 NIL) (-753 1641360 1641522 1641714 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-752 1640571 1641079 1641107 "ORDFIN" 1641172 ORDFIN (NIL) -9 NIL 1641246 NIL) (-751 1639965 1640104 1640290 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-750 1636640 1638933 1639339 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-749 1636047 1636402 1636507 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-748 1635855 1635900 1635966 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-747 1635156 1635432 1635473 "OPERCAT" 1635684 OPERCAT (NIL T) -9 NIL 1635780 NIL) (-746 1634968 1635035 1635151 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-745 1632334 1633770 1634266 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-744 1631755 1631882 1632056 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-743 1628656 1630894 1631260 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-742 1625418 1628068 1628108 "OMSAGG" 1628169 OMSAGG (NIL T) -9 NIL 1628233 NIL) (-741 1623830 1625089 1625257 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-740 1622026 1623267 1623295 "OINTDOM" 1623300 OINTDOM (NIL) -9 NIL 1623321 NIL) (-739 1619456 1621028 1621357 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-738 1618710 1619406 1619451 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-737 1615912 1618551 1618705 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-736 1607449 1615783 1615907 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-735 1601009 1607340 1607444 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-734 1599981 1600218 1600491 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-733 1597615 1598285 1598989 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-732 1593392 1594352 1595375 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-731 1592900 1592988 1593182 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-730 1590349 1590931 1591604 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-729 1587744 1588252 1588848 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-728 1584741 1585280 1585926 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-727 1584096 1584204 1584462 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-726 1583254 1583379 1583600 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-725 1579538 1580334 1581247 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-724 1578978 1579073 1579295 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-723 1578659 1578708 1578835 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-722 1575262 1578458 1578577 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-721 1574422 1575044 1575072 "OCAMON" 1575077 OCAMON (NIL) -9 NIL 1575098 NIL) (-720 1568634 1571448 1571488 "OC" 1572583 OC (NIL T) -9 NIL 1573439 NIL) (-719 1566634 1567560 1568540 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-718 1566050 1566468 1566496 "OASGP" 1566501 OASGP (NIL) -9 NIL 1566521 NIL) (-717 1565113 1565762 1565790 "OAMONS" 1565830 OAMONS (NIL) -9 NIL 1565873 NIL) (-716 1564258 1564839 1564867 "OAMON" 1564924 OAMON (NIL) -9 NIL 1564975 NIL) (-715 1564154 1564186 1564253 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-714 1562905 1563679 1563707 "OAGROUP" 1563853 OAGROUP (NIL) -9 NIL 1563945 NIL) (-713 1562696 1562783 1562900 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-712 1562436 1562492 1562580 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-711 1557498 1559061 1560588 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-710 1554193 1555227 1556262 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-709 1553303 1553536 1553754 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-708 1542164 1545192 1547640 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-707 1536181 1541587 1541681 "NTSCAT" 1541686 NTSCAT (NIL T T T T) -9 NIL 1541724 NIL) (-706 1535522 1535701 1535894 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-705 1535215 1535278 1535385 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-704 1522882 1532835 1533645 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-703 1511891 1522747 1522877 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-702 1510611 1510936 1511293 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-701 1509447 1509711 1510069 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-700 1508614 1508747 1508963 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-699 1506932 1507251 1507657 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-698 1506645 1506679 1506803 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-697 1506464 1506499 1506568 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-696 1506240 1506430 1506459 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-695 1505804 1505871 1506048 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-694 1504090 1505167 1505422 "NNI" NIL NNI (NIL) -8 NIL NIL 1505769) (-693 1502818 1503155 1503519 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-692 1501795 1502047 1502349 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-691 1500882 1501447 1501488 "NETCLT" 1501659 NETCLT (NIL T) -9 NIL 1501740 NIL) (-690 1499786 1500053 1500334 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-689 1499585 1499628 1499703 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-688 1498116 1498504 1498924 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-687 1496749 1497715 1497743 "NASRING" 1497853 NASRING (NIL) -9 NIL 1497933 NIL) (-686 1496594 1496650 1496744 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-685 1495523 1496201 1496229 "NARNG" 1496346 NARNG (NIL) -9 NIL 1496437 NIL) (-684 1495299 1495384 1495518 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-683 1494065 1494819 1494859 "NAALG" 1494938 NAALG (NIL T) -9 NIL 1494999 NIL) (-682 1493935 1493970 1494060 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-681 1488914 1490099 1491285 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-680 1488309 1488396 1488580 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-679 1480319 1484813 1484865 "MTSCAT" 1485925 MTSCAT (NIL T T) -9 NIL 1486439 NIL) (-678 1480085 1480145 1480237 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-677 1479911 1479950 1480010 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-676 1476773 1479462 1479503 "MSETAGG" 1479508 MSETAGG (NIL T) -9 NIL 1479542 NIL) (-675 1473039 1475818 1476137 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-674 1469313 1471136 1471876 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-673 1468950 1469023 1469152 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-672 1468603 1468644 1468788 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-671 1466468 1466805 1467236 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-670 1459866 1466367 1466463 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-669 1459391 1459432 1459640 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-668 1458950 1458999 1459182 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1458224 1458317 1458536 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-666 1456841 1457202 1457592 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-665 1456362 1456429 1456468 "MONOPC" 1456528 MONOPC (NIL T) -9 NIL 1456747 NIL) (-664 1455813 1456149 1456277 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-663 1454955 1455334 1455362 "MONOID" 1455580 MONOID (NIL) -9 NIL 1455724 NIL) (-662 1454614 1454764 1454950 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-661 1443552 1450422 1450481 "MONOGEN" 1451155 MONOGEN (NIL T T) -9 NIL 1451611 NIL) (-660 1441564 1442450 1443433 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-659 1440278 1440822 1440850 "MONADWU" 1441241 MONADWU (NIL) -9 NIL 1441476 NIL) (-658 1439826 1440026 1440273 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-657 1439103 1439404 1439432 "MONAD" 1439639 MONAD (NIL) -9 NIL 1439751 NIL) (-656 1438870 1438966 1439098 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-655 1437260 1438030 1438309 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-654 1436394 1436921 1436961 "MODULE" 1436966 MODULE (NIL T) -9 NIL 1437004 NIL) (-653 1436073 1436199 1436389 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-652 1433784 1434670 1434984 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-651 1430963 1432380 1432893 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-650 1429597 1430171 1430447 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-649 1418816 1428262 1428675 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-648 1415772 1417816 1418085 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-647 1414856 1415223 1415413 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-646 1414425 1414474 1414653 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-645 1412250 1413246 1413286 "MLO" 1413703 MLO (NIL T) -9 NIL 1413943 NIL) (-644 1410131 1410658 1411253 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-643 1409599 1409695 1409849 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-642 1409269 1409345 1409468 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-641 1408481 1408667 1408895 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-640 1407974 1408090 1408246 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-639 1407346 1407460 1407645 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-638 1406373 1406646 1406923 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-637 1405806 1405894 1406065 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-636 1402964 1403843 1404722 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-635 1401631 1401979 1402332 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-634 1398288 1400755 1400796 "MDAGG" 1401053 MDAGG (NIL T) -9 NIL 1401198 NIL) (-633 1397562 1397726 1397926 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-632 1396640 1396926 1397156 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-631 1394737 1395314 1395875 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-630 1390639 1394327 1394574 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-629 1386988 1387757 1388491 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-628 1385741 1385910 1386239 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-627 1375388 1378847 1378923 "MATCAT" 1383911 MATCAT (NIL T T T) -9 NIL 1385357 NIL) (-626 1372669 1373975 1375383 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-625 1371070 1371430 1371814 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-624 1370203 1370400 1370622 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-623 1368954 1369280 1369607 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-622 1368116 1368518 1368694 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-621 1367785 1367849 1367972 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-620 1367433 1367506 1367620 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-619 1366968 1367083 1367225 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-618 1365177 1365945 1366246 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-617 1364671 1364973 1365063 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-616 1358180 1362986 1363027 "LZSTAGG" 1363804 LZSTAGG (NIL T) -9 NIL 1364094 NIL) (-615 1355299 1356733 1358175 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-614 1352686 1353652 1354135 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-613 1352267 1352546 1352620 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-612 1344580 1352128 1352262 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-611 1343943 1344088 1344316 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-610 1341427 1342125 1342837 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-609 1339539 1339862 1340310 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-608 1332839 1338608 1338649 "LSAGG" 1338711 LSAGG (NIL T) -9 NIL 1338789 NIL) (-607 1330533 1331632 1332834 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-606 1328013 1329882 1330131 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-605 1327680 1327771 1327894 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-604 1327351 1327430 1327458 "LOGIC" 1327569 LOGIC (NIL) -9 NIL 1327651 NIL) (-603 1327246 1327275 1327346 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-602 1326565 1326723 1326916 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-601 1325350 1325599 1325950 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-600 1321172 1323971 1324011 "LODOCAT" 1324443 LODOCAT (NIL T) -9 NIL 1324654 NIL) (-599 1320965 1321041 1321167 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-598 1317965 1320842 1320960 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-597 1315063 1317915 1317960 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-596 1312150 1314993 1315058 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-595 1311203 1311378 1311680 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-594 1309335 1310465 1310718 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-593 1304430 1307494 1307535 "LNAGG" 1308397 LNAGG (NIL T) -9 NIL 1308832 NIL) (-592 1303817 1304084 1304425 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-591 1300389 1301330 1301967 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-590 1299651 1300156 1300196 "LMODULE" 1300201 LMODULE (NIL T) -9 NIL 1300227 NIL) (-589 1296978 1299387 1299510 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-588 1296546 1296757 1296798 "LLINSET" 1296859 LLINSET (NIL T) -9 NIL 1296903 NIL) (-587 1296222 1296482 1296541 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-586 1295821 1295901 1296040 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-585 1294272 1294620 1295019 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-584 1293443 1293639 1293867 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-583 1286638 1292699 1292953 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-582 1286215 1286448 1286489 "LINSET" 1286494 LINSET (NIL T) -9 NIL 1286527 NIL) (-581 1285116 1285838 1286005 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-580 1283382 1284137 1284177 "LINEXP" 1284663 LINEXP (NIL T) -9 NIL 1284936 NIL) (-579 1282004 1282991 1283172 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-578 1280831 1281103 1281405 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-577 1280044 1280633 1280743 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-576 1277594 1278316 1279066 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-575 1276224 1276521 1276912 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-574 1275017 1275619 1275659 "LIECAT" 1275799 LIECAT (NIL T) -9 NIL 1275950 NIL) (-573 1274891 1274924 1275012 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-572 1269147 1274581 1274809 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-571 1259551 1268823 1268979 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-570 1256003 1256952 1257887 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-569 1254627 1255535 1255563 "LFCAT" 1255770 LFCAT (NIL) -9 NIL 1255909 NIL) (-568 1252866 1253196 1253541 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-567 1250383 1251048 1251729 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-566 1247395 1248373 1248876 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-565 1246886 1247189 1247280 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-564 1245593 1245917 1246317 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-563 1244859 1244944 1245170 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-562 1239862 1243427 1243963 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-561 1239487 1239537 1239697 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-560 1238258 1239031 1239071 "LALG" 1239132 LALG (NIL T) -9 NIL 1239190 NIL) (-559 1238041 1238118 1238253 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-558 1235894 1237309 1237560 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-557 1235723 1235753 1235794 "KVTFROM" 1235856 KVTFROM (NIL T) -9 NIL NIL NIL) (-556 1234539 1235254 1235443 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-555 1234368 1234398 1234439 "KRCFROM" 1234501 KRCFROM (NIL T) -9 NIL NIL NIL) (-554 1233470 1233667 1233962 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-553 1233299 1233329 1233370 "KONVERT" 1233432 KONVERT (NIL T) -9 NIL NIL NIL) (-552 1233128 1233158 1233199 "KOERCE" 1233261 KOERCE (NIL T) -9 NIL NIL NIL) (-551 1232698 1232791 1232923 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-550 1230751 1231645 1232017 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-549 1221956 1228590 1228644 "KDAGG" 1229020 KDAGG (NIL T T) -9 NIL 1229246 NIL) (-548 1221421 1221653 1221951 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-547 1214392 1221213 1221359 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-546 1214042 1214324 1214387 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-545 1213012 1213511 1213760 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-544 1212138 1212587 1212792 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-543 1211002 1211494 1211794 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-542 1210284 1210683 1210844 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-541 1209994 1210230 1210279 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-540 1204249 1209684 1209912 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-539 1203667 1204000 1204120 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-538 1199829 1201844 1201898 "IXAGG" 1202825 IXAGG (NIL T T) -9 NIL 1203282 NIL) (-537 1199035 1199406 1199824 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-536 1198002 1198277 1198540 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-535 1196664 1196871 1197164 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-534 1195615 1195837 1196120 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-533 1195290 1195353 1195476 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-532 1194552 1194924 1195098 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-531 1192528 1193828 1194102 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-530 1182076 1187845 1189002 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-529 1181321 1181473 1181709 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-528 1180812 1181115 1181206 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-527 1180105 1180196 1180409 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-526 1179237 1179462 1179702 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-525 1177650 1178031 1178459 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-524 1177435 1177479 1177555 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-523 1176285 1176582 1176877 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-522 1175558 1175909 1176060 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-521 1174761 1174892 1175105 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-520 1172916 1173413 1173957 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-519 1169997 1171265 1171954 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-518 1169822 1169862 1169922 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-517 1165820 1169748 1169817 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-516 1163823 1165759 1165815 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-515 1163194 1163493 1163623 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-514 1162647 1162935 1163067 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-513 1161728 1162353 1162479 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-512 1161138 1161632 1161660 "IOBCON" 1161665 IOBCON (NIL) -9 NIL 1161686 NIL) (-511 1160709 1160773 1160955 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-510 1152753 1155124 1157449 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-509 1149864 1150647 1151511 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-508 1149541 1149638 1149755 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-507 1146983 1149477 1149536 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-506 1145095 1145624 1146191 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-505 1144597 1144711 1144851 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-504 1142981 1143387 1143849 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-503 1140760 1141354 1141965 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-502 1138133 1138743 1139463 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-501 1137537 1137695 1137903 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-500 1137056 1137142 1137330 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-499 1135261 1135782 1136239 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-498 1128343 1129996 1131725 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-497 1127709 1127871 1128044 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-496 1125582 1126046 1126590 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-495 1123708 1124658 1124686 "INTDOM" 1124985 INTDOM (NIL) -9 NIL 1125190 NIL) (-494 1123261 1123463 1123703 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-493 1119068 1121540 1121594 "INTCAT" 1122390 INTCAT (NIL T) -9 NIL 1122706 NIL) (-492 1118633 1118753 1118880 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-491 1117473 1117645 1117951 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-490 1117046 1117142 1117299 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-489 1108317 1116953 1117041 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-488 1107615 1108170 1108235 "INT8" NIL INT8 (NIL) -8 NIL NIL 1108269) (-487 1106912 1107467 1107532 "INT64" NIL INT64 (NIL) -8 NIL NIL 1107566) (-486 1106209 1106764 1106829 "INT32" NIL INT32 (NIL) -8 NIL NIL 1106863) (-485 1105506 1106061 1106126 "INT16" NIL INT16 (NIL) -8 NIL NIL 1106160) (-484 1101969 1105425 1105501 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-483 1096026 1099509 1099537 "INS" 1100467 INS (NIL) -9 NIL 1101126 NIL) (-482 1094088 1095006 1095953 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-481 1093147 1093370 1093645 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-480 1092361 1092502 1092699 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-479 1091351 1091492 1091729 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-478 1090503 1090667 1090927 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-477 1089783 1089898 1090086 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-476 1088522 1088791 1089115 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-475 1087802 1087943 1088126 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-474 1087465 1087537 1087635 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-473 1084543 1086029 1086552 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-472 1084142 1084249 1084363 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-471 1083298 1083943 1084044 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-470 1082148 1082416 1082737 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-469 1081138 1082078 1082143 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-468 1080763 1080843 1080960 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-467 1079677 1080222 1080426 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-466 1075772 1076827 1077770 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-465 1074626 1074949 1074977 "INBCON" 1075490 INBCON (NIL) -9 NIL 1075756 NIL) (-464 1074080 1074345 1074621 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-463 1073574 1073876 1073966 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-462 1073031 1073340 1073445 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-461 1071871 1072010 1072325 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-460 1070295 1070562 1070899 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-459 1065138 1070226 1070290 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-458 1064518 1064852 1064967 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-457 1059474 1063956 1064142 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-456 1058504 1059396 1059469 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-455 1058076 1058153 1058207 "IEVALAB" 1058414 IEVALAB (NIL T T) -9 NIL NIL NIL) (-454 1057831 1057911 1058071 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-453 1057216 1057443 1057600 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-452 1056209 1057136 1057211 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-451 1055272 1056129 1056204 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-450 1054354 1055001 1055138 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-449 1052717 1053288 1053339 "IDPC" 1053845 IDPC (NIL T T) -9 NIL 1054158 NIL) (-448 1052005 1052639 1052712 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-447 1051175 1051927 1052000 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-446 1050868 1051081 1051141 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-445 1050572 1050612 1050651 "IDEMOPC" 1050656 IDEMOPC (NIL T) -9 NIL 1050793 NIL) (-444 1047643 1048524 1049416 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-443 1041269 1042546 1043585 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-442 1040531 1040661 1040860 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-441 1039704 1040203 1040341 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-440 1038093 1038424 1038815 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-439 1034011 1038049 1038088 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-438 1031269 1031893 1032588 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-437 1029495 1029975 1030508 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-436 1027473 1029401 1029490 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-435 1023483 1027411 1027468 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-434 1017062 1022447 1022915 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-433 1016630 1016693 1016866 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-432 1016122 1016271 1016299 "HYPCAT" 1016506 HYPCAT (NIL) -9 NIL NIL NIL) (-431 1015778 1015931 1016117 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-430 1015391 1015636 1015719 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-429 1015224 1015273 1015314 "HOMOTOP" 1015319 HOMOTOP (NIL T) -9 NIL 1015352 NIL) (-428 1011792 1013166 1013207 "HOAGG" 1014182 HOAGG (NIL T) -9 NIL 1014903 NIL) (-427 1010798 1011268 1011787 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-426 1003998 1010523 1010671 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-425 1002933 1003191 1003454 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-424 1001868 1002798 1002928 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-423 1000211 1001701 1001789 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-422 999526 999878 1000011 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-421 993129 999459 999521 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-420 986268 992865 993016 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-419 985721 985878 986041 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-418 977009 985638 985716 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-417 976500 976803 976894 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-416 974050 976287 976466 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-415 969592 973933 974045 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-414 960857 969489 969587 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-413 952794 960226 960481 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-412 951818 952327 952355 "GROUP" 952558 GROUP (NIL) -9 NIL 952692 NIL) (-411 951361 951562 951813 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-410 950033 950372 950759 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-409 948855 949212 949263 "GRMOD" 949792 GRMOD (NIL T T) -9 NIL 949958 NIL) (-408 948674 948722 948850 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-407 944797 946008 947008 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-406 943519 943843 944158 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-405 943072 943200 943341 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-404 942145 942644 942695 "GRALG" 942848 GRALG (NIL T T) -9 NIL 942938 NIL) (-403 941864 941965 942140 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-402 938741 941557 941722 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-401 938154 938217 938474 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-400 934008 934904 935429 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-399 933183 933385 933623 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-398 928186 929113 930132 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-397 927934 927991 928080 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-396 927416 927505 927670 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-395 926925 926966 927179 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-394 925726 926009 926313 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-393 919001 925416 925577 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-392 908784 913791 914895 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-391 906836 907939 907967 "GCDDOM" 908222 GCDDOM (NIL) -9 NIL 908379 NIL) (-390 906459 906616 906831 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-389 897252 899722 902110 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-388 895387 895712 896130 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-387 894328 894517 894784 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-386 893199 893406 893710 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-385 892662 892804 892952 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-384 891274 891622 891935 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-383 889819 890140 890462 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-382 887445 887801 888206 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-381 880697 882358 883936 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-380 880349 880570 880638 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-379 879973 880194 880275 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-378 878070 878753 879213 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-377 876663 876970 877362 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-376 875318 875677 876001 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-375 874621 874745 874932 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-374 873595 873861 874208 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-373 871253 871783 872265 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-372 870836 870896 871065 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-371 869136 870050 870353 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-370 868284 868418 868641 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-369 867455 867616 867843 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-368 863567 866369 866410 "FSAGG" 866780 FSAGG (NIL T) -9 NIL 867041 NIL) (-367 861921 862680 863472 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-366 859877 860173 860717 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-365 858924 859106 859406 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-364 858605 858654 858781 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-363 838761 848262 848303 "FS" 852173 FS (NIL T) -9 NIL 854451 NIL) (-362 830992 834485 838464 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-361 830526 830653 830805 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-360 825049 828207 828247 "FRNAALG" 829567 FRNAALG (NIL T) -9 NIL 830165 NIL) (-359 821790 823041 824299 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-358 821471 821520 821647 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-357 819958 820515 820809 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-356 819244 819337 819624 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 817078 817844 818160 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-354 816187 816630 816671 "FRETRCT" 816676 FRETRCT (NIL T) -9 NIL 816847 NIL) (-353 815560 815838 816182 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-352 812304 813824 813883 "FRAMALG" 814765 FRAMALG (NIL T T) -9 NIL 815057 NIL) (-351 810900 811451 812081 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-350 810593 810656 810763 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-349 804234 810398 810588 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-348 803927 803990 804097 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-347 796235 800806 802134 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-346 790013 793516 793544 "FPS" 794663 FPS (NIL) -9 NIL 795219 NIL) (-345 789570 789703 789867 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-344 786380 788423 788451 "FPC" 788676 FPC (NIL) -9 NIL 788818 NIL) (-343 786226 786278 786375 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-342 785003 785712 785753 "FPATMAB" 785758 FPATMAB (NIL T) -9 NIL 785910 NIL) (-341 783433 784029 784376 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-340 783008 783066 783239 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-339 781511 782406 782580 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-338 780126 780631 780659 "FNCAT" 781116 FNCAT (NIL) -9 NIL 781373 NIL) (-337 779583 780093 780121 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-336 778170 779532 779578 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-335 774758 776116 776157 "FMONCAT" 777374 FMONCAT (NIL T) -9 NIL 777978 NIL) (-334 771616 772694 772747 "FMCAT" 773928 FMCAT (NIL T T) -9 NIL 774420 NIL) (-333 770316 771439 771538 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-332 769364 770164 770311 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-331 767551 768003 768497 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-330 765486 766022 766600 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-329 758872 763823 764437 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-328 757353 758454 758494 "FLINEXP" 758499 FLINEXP (NIL T) -9 NIL 758592 NIL) (-327 756762 757021 757348 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-326 755977 756136 756357 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-325 752860 753939 753991 "FLALG" 755218 FLALG (NIL T T) -9 NIL 755685 NIL) (-324 752031 752192 752419 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-323 745568 749430 749471 "FLAGG" 750726 FLAGG (NIL T) -9 NIL 751373 NIL) (-322 744676 745080 745563 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-321 741237 742501 742560 "FINRALG" 743688 FINRALG (NIL T T) -9 NIL 744196 NIL) (-320 740628 740893 741232 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-319 739926 740222 740250 "FINITE" 740446 FINITE (NIL) -9 NIL 740553 NIL) (-318 739834 739860 739921 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-317 737281 738506 738547 "FINAGG" 739181 FINAGG (NIL T) -9 NIL 739495 NIL) (-316 729242 731833 731873 "FINAALG" 735525 FINAALG (NIL T) -9 NIL 736963 NIL) (-315 725509 726754 727877 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 724061 724480 724534 "FILECAT" 725218 FILECAT (NIL T T) -9 NIL 725434 NIL) (-313 723412 723886 723989 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 720660 722538 722566 "FIELD" 722606 FIELD (NIL) -9 NIL 722686 NIL) (-311 719685 720146 720655 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 717689 718635 718981 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 716932 717113 717332 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 712202 716870 716927 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 711864 711931 712066 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 711404 711446 711655 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 708084 708961 709738 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 703368 708016 708079 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 698047 702857 703047 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 692528 697328 697586 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 686735 691979 692190 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 685758 685968 686283 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 681198 683903 683931 "FFIELDC" 684550 FFIELDC (NIL) -9 NIL 684925 NIL) (-298 680267 680707 681193 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 679882 679940 680064 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 678026 678549 679066 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 673120 677825 677926 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 668220 672909 673016 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 662886 668011 668119 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 662340 662389 662624 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 640915 651949 652035 "FFCAT" 657185 FFCAT (NIL T T T) -9 NIL 658621 NIL) (-290 637155 638381 639687 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 631998 637086 637150 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 630890 631359 631400 "FEVALAB" 631484 FEVALAB (NIL T) -9 NIL 631745 NIL) (-287 630295 630547 630885 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 627122 628033 628148 "FDIVCAT" 629715 FDIVCAT (NIL T T T T) -9 NIL 630151 NIL) (-285 626916 626948 627117 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 626223 626316 626593 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 624709 625707 625910 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 623802 624186 624388 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 622924 623413 623553 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 614511 619154 619194 "FAXF" 620995 FAXF (NIL T) -9 NIL 621685 NIL) (-279 612427 613231 614046 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 607440 611949 612123 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 601898 604321 604373 "FAMR" 605384 FAMR (NIL T T) -9 NIL 605843 NIL) (-276 601097 601462 601893 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 600118 601039 601092 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 597712 598591 598644 "FAMONC" 599585 FAMONC (NIL T T) -9 NIL 599970 NIL) (-273 596268 597570 597707 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 594348 594709 595111 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 593625 593822 594044 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 585485 593072 593271 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 583504 584074 584660 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 580406 581048 581768 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 575563 576270 577075 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 575252 575315 575424 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 560045 574301 574727 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 550572 559365 559653 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 550066 550368 550458 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 549842 550032 550061 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 549531 549599 549712 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 549048 549190 549231 "EVALAB" 549401 EVALAB (NIL T) -9 NIL 549505 NIL) (-259 548676 548822 549043 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 545719 547314 547342 "EUCDOM" 547896 EUCDOM (NIL) -9 NIL 548245 NIL) (-257 544646 545139 545714 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 544371 544427 544527 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 544059 544123 544232 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 537830 539730 539758 "ES" 542500 ES (NIL) -9 NIL 543884 NIL) (-253 534345 535877 537669 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 533693 533846 534022 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 524961 533597 533688 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 524650 524713 524822 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 518277 521402 522835 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 514580 515676 516769 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 513409 513759 514064 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 512294 513025 513053 "ENTIRER" 513058 ENTIRER (NIL) -9 NIL 513102 NIL) (-245 512183 512217 512289 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 508816 510613 510962 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 507908 508119 508173 "ELTAGG" 508553 ELTAGG (NIL T T) -9 NIL 508764 NIL) (-242 507688 507762 507903 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 507434 507469 507523 "ELTAB" 507607 ELTAB (NIL T T) -9 NIL 507659 NIL) (-240 506685 506855 507054 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 506409 506483 506511 "ELEMFUN" 506616 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 506309 506336 506404 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 500855 504350 504391 "ELAGG" 505328 ELAGG (NIL T) -9 NIL 505788 NIL) (-236 499653 500191 500850 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 499071 499238 499394 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 497984 498303 498582 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 491377 493375 494202 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 485356 487352 488162 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 483170 483576 484047 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 474170 476083 477624 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 473283 473784 473933 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 471981 472655 472695 "DVARCAT" 472978 DVARCAT (NIL T) -9 NIL 473118 NIL) (-227 471400 471664 471976 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 463467 471268 471395 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 461805 462596 462637 "DSEXT" 463000 DSEXT (NIL T) -9 NIL 463294 NIL) (-224 460610 461134 461800 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 460334 460399 460497 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 456485 457701 458832 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 452131 453486 454550 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 450806 451167 451553 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 450492 450551 450669 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 449467 449765 450055 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 449052 449127 449277 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 441465 443577 445692 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 436982 438001 439080 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 433708 435628 435669 "DQAGG" 436298 DQAGG (NIL T) -9 NIL 436571 NIL) (-213 420251 427891 427973 "DPOLCAT" 429810 DPOLCAT (NIL T T T T) -9 NIL 430353 NIL) (-212 416659 418307 420246 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 409813 416557 416654 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 402876 409642 409808 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 402469 402729 402818 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 401883 402331 402411 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 401169 401494 401645 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 394308 400905 401056 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 392057 393374 393414 "DMEXT" 393419 DMEXT (NIL T) -9 NIL 393594 NIL) (-204 391713 391775 391919 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 385187 391198 391388 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 381853 384010 384051 "DLAGG" 384601 DLAGG (NIL T) -9 NIL 384830 NIL) (-201 380204 381075 381103 "DIVRING" 381195 DIVRING (NIL) -9 NIL 381278 NIL) (-200 379655 379899 380199 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 378083 378500 378906 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 377120 377341 377606 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 370743 377052 377115 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 359191 365503 365556 "DIRPCAT" 365812 DIRPCAT (NIL NIL T) -9 NIL 366687 NIL) (-195 357197 357967 358854 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 356644 356810 356996 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 353190 355530 355571 "DIOPS" 356003 DIOPS (NIL T) -9 NIL 356229 NIL) (-192 352850 352994 353185 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 351857 352603 352631 "DIOID" 352636 DIOID (NIL) -9 NIL 352658 NIL) (-190 350685 351514 351542 "DIFRING" 351547 DIFRING (NIL) -9 NIL 351568 NIL) (-189 350321 350419 350447 "DIFFSPC" 350566 DIFFSPC (NIL) -9 NIL 350641 NIL) (-188 350062 350164 350316 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 348965 349590 349630 "DIFFMOD" 349635 DIFFMOD (NIL T) -9 NIL 349732 NIL) (-186 348649 348706 348747 "DIFFDOM" 348868 DIFFDOM (NIL T) -9 NIL 348936 NIL) (-185 348530 348560 348644 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 346203 347724 347764 "DIFEXT" 347769 DIFEXT (NIL T) -9 NIL 347921 NIL) (-183 343364 345704 345745 "DIAGG" 345750 DIAGG (NIL T) -9 NIL 345770 NIL) (-182 342920 343110 343359 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 338262 342110 342387 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 334720 335773 336783 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 329270 333874 334201 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 327836 328128 328503 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 324956 326208 326604 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 322825 324787 324876 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 322208 322353 322535 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 319526 320250 321050 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 317635 318093 318655 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 317018 317351 317465 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 310218 316743 316891 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 308138 308648 309152 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 307777 307826 307977 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 307036 307598 307689 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 305060 305502 305862 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 304352 304641 304787 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 303803 303949 304101 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 301165 301958 302685 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 300604 300750 300921 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 298676 298987 299354 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 298233 298488 298589 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 297434 297817 297845 "CTORCAT" 298026 CTORCAT (NIL) -9 NIL 298138 NIL) (-159 297137 297271 297429 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 296630 296887 296995 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 296046 296477 296550 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 295505 295622 295775 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 291899 292655 293410 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 291390 291693 291784 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 290609 290818 291046 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 290113 290218 290422 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 289866 289900 290006 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 286805 287567 288285 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 286324 286466 286605 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 282217 284787 285279 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 282091 282118 282146 "CONDUIT" 282183 CONDUIT (NIL) -9 NIL NIL NIL) (-146 280970 281701 281729 "COMRING" 281734 COMRING (NIL) -9 NIL 281784 NIL) (-145 280135 280502 280680 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 279831 279872 280000 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 279524 279587 279694 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 268366 279474 279519 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 267827 267966 268126 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 267580 267621 267719 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 249011 261261 261301 "COMPCAT" 262302 COMPCAT (NIL T) -9 NIL 263644 NIL) (-138 241549 245062 248655 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 241308 241342 241444 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 241138 241177 241235 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 240719 240998 241072 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 240296 240537 240624 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 239491 239739 239767 "COMBOPC" 240105 COMBOPC (NIL) -9 NIL 240280 NIL) (-132 238555 238807 239049 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 235487 236171 236794 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 234367 234818 235053 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 233858 234161 234252 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 233545 233598 233723 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 233015 233325 233423 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 229535 230605 231685 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 227830 228815 229053 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 223942 225950 225991 "CLAGG" 226917 CLAGG (NIL T) -9 NIL 227450 NIL) (-123 222835 223362 223937 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 222464 222555 222695 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 220401 220908 221456 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 219362 220093 220121 "CHARZ" 220126 CHARZ (NIL) -9 NIL 220140 NIL) (-119 219156 219202 219280 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 217995 218758 218786 "CHARNZ" 218847 CHARNZ (NIL) -9 NIL 218895 NIL) (-117 215473 216570 217093 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 215181 215260 215288 "CFCAT" 215399 CFCAT (NIL) -9 NIL NIL NIL) (-115 214524 214653 214835 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 210662 213937 214217 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 210040 210227 210404 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 209568 209987 210035 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 209041 209350 209447 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 208532 208835 208926 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 207781 207941 208162 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 203881 205138 205846 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 202247 203278 203529 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 201828 202107 202181 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 201262 201515 201543 "CACHSET" 201675 CACHSET (NIL) -9 NIL 201753 NIL) (-104 200614 201029 201057 "CABMON" 201107 CABMON (NIL) -9 NIL 201163 NIL) (-103 200144 200408 200518 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 195527 199812 199973 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 194497 195201 195336 "BYTE" NIL BYTE (NIL) -8 NIL NIL 195499) (-100 192117 194264 194370 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 189697 191860 191979 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 187066 189121 189160 "BTCAT" 189227 BTCAT (NIL T) -9 NIL 189305 NIL) (-97 186817 186915 187061 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 182056 186029 186055 "BTAGG" 186166 BTAGG (NIL) -9 NIL 186274 NIL) (-95 181687 181848 182051 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 178909 181168 181369 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 178179 178331 178509 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 174712 176885 176924 "BRAGG" 177565 BRAGG (NIL T) -9 NIL 177822 NIL) (-91 173667 174162 174707 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 166201 173172 173353 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 164193 166153 166196 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 163926 163962 164073 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 162165 162598 163046 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 158131 159547 160437 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 157007 157898 158020 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 156593 156750 156776 "BOOLE" 156884 BOOLE (NIL) -9 NIL 156965 NIL) (-83 156386 156467 156588 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 155524 156051 156101 "BMODULE" 156106 BMODULE (NIL T T) -9 NIL 156170 NIL) (-81 151290 155381 155450 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 151103 151143 151182 "BINOPC" 151187 BINOPC (NIL T) -9 NIL 151232 NIL) (-79 150645 150918 151020 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 150166 150310 150448 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 143372 149896 150041 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 141106 142601 142640 "BGAGG" 142896 BGAGG (NIL T) -9 NIL 143033 NIL) (-75 140975 141013 141101 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 139826 140027 140312 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 136624 138995 139311 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 136209 136302 136328 "BASTYPE" 136499 BASTYPE (NIL) -9 NIL 136595 NIL) (-71 135979 136075 136204 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 135494 135582 135732 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 134393 135068 135253 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 134119 134124 134150 "ATTREG" 134155 ATTREG (NIL) -9 NIL NIL NIL) (-67 133724 133996 134061 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 133224 133373 133399 "ATRIG" 133600 ATRIG (NIL) -9 NIL NIL NIL) (-65 133079 133132 133219 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 132649 132880 132906 "ASTCAT" 132911 ASTCAT (NIL) -9 NIL 132941 NIL) (-63 132448 132525 132644 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 130756 132281 132369 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 129563 129876 130241 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 127519 129493 129558 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 126710 126901 127122 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 122446 126441 126555 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 116882 118784 118859 "ARR2CAT" 121371 ARR2CAT (NIL T T T) -9 NIL 122089 NIL) (-56 115843 116325 116877 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 115211 115582 115704 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 114143 114311 114607 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 113844 113898 114016 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 113227 113373 113529 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 112632 112922 113042 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 110200 111361 111684 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 109725 109985 110081 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 103420 108787 109229 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 98954 100617 100667 "AMR" 101405 AMR (NIL T T) -9 NIL 102002 NIL) (-46 98308 98588 98949 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79800 98242 98303 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 76203 79476 79645 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 73213 73873 74480 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 72592 72705 72889 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 69004 69629 70221 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 58493 68697 68847 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57810 57964 58142 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 56523 57318 57356 "ALGEBRA" 57361 ALGEBRA (NIL T) -9 NIL 57401 NIL) (-37 56309 56386 56518 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34238 53471 53523 "ALAGG" 53658 ALAGG (NIL T T) -9 NIL 53816 NIL) (-35 33738 33887 33913 "AHYP" 34114 AHYP (NIL) -9 NIL NIL NIL) (-34 33034 33215 33241 "AGG" 33522 AGG (NIL) -9 NIL 33709 NIL) (-33 32823 32910 33029 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30962 31422 31822 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30457 30760 30849 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29827 30122 30278 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17385 26664 26702 "ACFS" 27309 ACFS (NIL T) -9 NIL 27548 NIL) (-28 16008 16618 17380 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11560 13939 13965 "ACF" 14844 ACF (NIL) -9 NIL 15256 NIL) (-26 10656 11062 11555 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10158 10398 10424 "ABELSG" 10516 ABELSG (NIL) -9 NIL 10581 NIL) (-24 10056 10087 10153 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9211 9585 9611 "ABELMON" 9836 ABELMON (NIL) -9 NIL 9969 NIL) (-22 8893 9033 9206 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8105 8588 8614 "ABELGRP" 8686 ABELGRP (NIL) -9 NIL 8761 NIL) (-20 7658 7854 8100 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6898 6937 "A1AGG" 6942 A1AGG (NIL T) -9 NIL 6982 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL)) \ No newline at end of file
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 9 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1130) (-996)) (T -1130))
+NIL
+((-3717 (((-85)) 18 T ELT)) (-3714 (((-1185) (-584 |#1|) (-584 |#1|)) 22 T ELT) (((-1185) (-584 |#1|)) 23 T ELT)) (-3719 (((-85) |#1| |#1|) 37 (|has| |#1| (-757)) ELT)) (-3716 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3718 ((|#1| (-584 |#1|)) 38 (|has| |#1| (-757)) ELT) ((|#1| (-584 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3715 (((-2 (|:| -3230 (-584 |#1|)) (|:| -3229 (-584 |#1|)))) 20 T ELT)))
+(((-1131 |#1|) (-10 -7 (-15 -3714 ((-1185) (-584 |#1|))) (-15 -3714 ((-1185) (-584 |#1|) (-584 |#1|))) (-15 -3715 ((-2 (|:| -3230 (-584 |#1|)) (|:| -3229 (-584 |#1|))))) (-15 -3716 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3716 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3718 (|#1| (-584 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3717 ((-85))) (IF (|has| |#1| (-757)) (PROGN (-15 -3718 (|#1| (-584 |#1|))) (-15 -3719 ((-85) |#1| |#1|))) |%noBranch|)) (-1014)) (T -1131))
+((-3719 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-757)) (-4 *3 (-1014)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1131 *2)))) (-3717 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1014)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1131 *2)) (-4 *2 (-1014)))) (-3716 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-85)) (-5 *1 (-1131 *3)))) (-3716 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1014)))) (-3715 (*1 *2) (-12 (-5 *2 (-2 (|:| -3230 (-584 *3)) (|:| -3229 (-584 *3)))) (-5 *1 (-1131 *3)) (-4 *3 (-1014)))) (-3714 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1185)) (-5 *1 (-1131 *4)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1185)) (-5 *1 (-1131 *4)))))
+((-3720 (((-1185) (-584 (-1090)) (-584 (-1090))) 14 T ELT) (((-1185) (-584 (-1090))) 12 T ELT)) (-3722 (((-1185)) 16 T ELT)) (-3721 (((-2 (|:| -3229 (-584 (-1090))) (|:| -3230 (-584 (-1090))))) 20 T ELT)))
+(((-1132) (-10 -7 (-15 -3720 ((-1185) (-584 (-1090)))) (-15 -3720 ((-1185) (-584 (-1090)) (-584 (-1090)))) (-15 -3721 ((-2 (|:| -3229 (-584 (-1090))) (|:| -3230 (-584 (-1090)))))) (-15 -3722 ((-1185))))) (T -1132))
+((-3722 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1132)))) (-3721 (*1 *2) (-12 (-5 *2 (-2 (|:| -3229 (-584 (-1090))) (|:| -3230 (-584 (-1090))))) (-5 *1 (-1132)))) (-3720 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-584 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132)))))
+((-3775 (($ $) 17 T ELT)) (-3723 (((-85) $) 27 T ELT)))
+(((-1133 |#1|) (-10 -7 (-15 -3775 (|#1| |#1|)) (-15 -3723 ((-85) |#1|))) (-1134)) (T -1133))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 66 T ELT)) (-3971 (((-348 $) $) 67 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3723 (((-85) $) 68 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3732 (((-348 $) $) 65 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-1134) (-113)) (T -1134))
+((-3723 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-85)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134)))) (-3775 (*1 *1 *1) (-4 *1 (-1134))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134)))))
+(-13 (-392) (-10 -8 (-15 -3723 ((-85) $)) (-15 -3971 ((-348 $) $)) (-15 -3775 ($ $)) (-15 -3732 ((-348 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
+(((-1135) (-13 (-753) (-605) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -1135))
+((-3726 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3724 (*1 *1) (-5 *1 (-1135))))
+((-695) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
+(((-1136) (-13 (-753) (-605) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -1136))
+((-3726 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3724 (*1 *1) (-5 *1 (-1136))))
+((-695) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
+(((-1137) (-13 (-753) (-605) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -1137))
+((-3726 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3724 (*1 *1) (-5 *1 (-1137))))
+((-695) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
+(((-1138) (-13 (-753) (-605) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -1138))
+((-3726 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3724 (*1 *1) (-5 *1 (-1138))))
+((-695) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) 10 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3771 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3731 (((-1169 |#1| |#2| |#3|) $) NIL T ELT)) (-3728 (((-3 (-1169 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3729 (((-1169 |#1| |#2| |#3|) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3623 (((-485) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-1169 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-951 (-1090))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3157 (((-1169 |#1| |#2| |#3|) $) NIL T ELT) (((-1090) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-951 (-1090))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3730 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-1169 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1169 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1169 |#1| |#2| |#3|)))) (-631 $) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3727 (((-350 (-858 |#1|)) $ (-485)) NIL (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) NIL (|has| |#1| (-496)) ELT)) (-2995 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3772 (((-485) $) NIL T ELT) (((-485) $ (-485)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3445 (((-633 $) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3777 (($ $ (-831)) NIL T ELT)) (-3815 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-485)) 18 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2532 (($ $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2858 (($ $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 (-1169 |#1| |#2| |#3|)) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1169 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1169 |#1| |#2| |#3|)))) (-1179 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1179 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (($ (-485) (-1169 |#1| |#2| |#3|)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 27 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 28 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3129 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3131 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-485)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1090) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-456 (-1090) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1090)) (-584 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-456 (-1090) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 (-1169 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1169 |#1| |#2| |#3|)) (-584 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-485)) NIL T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT) (($ $ (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-241 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3948 (((-485) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3972 (((-474) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2892 (($ $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1169 |#1| |#2| |#3|)) NIL T ELT) (($ (-1176 |#2|)) 24 T ELT) (($ (-1090)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-951 (-1090))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-350 (-485))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3677 ((|#1| $ (-485)) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3773 ((|#1| $) 11 T ELT)) (-3132 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3383 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2661 (($) 20 T CONST)) (-2667 (($) 15 T CONST)) (-2670 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-810 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1139 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1169 |#1| |#2| |#3|)) (-807 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1176 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-962) (-1090) |#1|) (T -1139))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-3958 (((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)) 23 T ELT)))
+(((-1140 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3958 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)))) (-962) (-962) (-1090) (-1090) |#1| |#2|) (T -1140))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) 23 T CONST)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3727 (((-350 (-858 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) 127 T ELT)) (-3815 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-485)) 81 T ELT) (($ $ (-995) (-485)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1891 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-485)) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-1607 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1090))) 117 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090) (-695)) 116 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3948 (((-485) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-485)) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1090))) 114 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090) (-695)) 113 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1141 |#1|) (-113) (-962)) (T -1141))
+((-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1141 *3)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1141 *3)) (-4 *3 (-962)))) (-3727 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1141 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-350 (-858 *4))))) (-3727 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1141 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-350 (-858 *4))))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3812 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1115)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3082 ((-584 *2) *3))) (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))))
+(-13 (-1158 |t#1| (-485)) (-10 -8 (-15 -3818 ($ (-1069 (-2 (|:| |k| (-485)) (|:| |c| |t#1|))))) (-15 -3815 ($ (-1 |t#1| (-485)) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -3727 ((-350 (-858 |t#1|)) $ (-485))) (-15 -3727 ((-350 (-858 |t#1|)) $ (-485) (-485)))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3812 ($ $)) (IF (|has| |t#1| (-15 -3812 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3082 ((-584 (-1090)) |t#1|))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1115))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-485) |#1|) . T) ((-241 $ $) |has| (-485) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-810 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-812 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1115) |has| |#1| (-38 (-350 (-485)))) ((-1118) |has| |#1| (-38 (-350 (-485)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1158 |#1| (-485)) . T))
+((-3189 (((-85) $) 12 T ELT)) (-3158 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT)) (-3157 ((|#3| $) 14 T ELT) (((-1090) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT)))
+(((-1142 |#1| |#2| |#3|) (-10 -7 (-15 -3158 ((-3 (-485) #1="failed") |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-1090) #1#) |#1|)) (-15 -3157 ((-1090) |#1|)) (-15 -3158 ((-3 |#3| #1#) |#1|)) (-15 -3157 (|#3| |#1|)) (-15 -3189 ((-85) |#1|))) (-1143 |#2| |#3|) (-962) (-1172 |#2|)) (T -1142))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 ((|#2| $) 266 (-2563 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3731 ((|#2| $) 302 T ELT)) (-3728 (((-3 |#2| "failed") $) 298 T ELT)) (-3729 ((|#2| $) 299 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 275 (-2563 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-3775 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1="failed") (-584 (-1085 $)) (-1085 $)) 272 (-2563 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3623 (((-485) $) 284 (-2563 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-485) #2#) $) 295 (-2563 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #2#) $) 293 (-2563 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-1090) #2#) $) 277 (-2563 (|has| |#2| (-951 (-1090))) (|has| |#1| (-312))) ELT)) (-3157 ((|#2| $) 306 T ELT) (((-485) $) 294 (-2563 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) 292 (-2563 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-1090) $) 276 (-2563 (|has| |#2| (-951 (-1090))) (|has| |#1| (-312))) ELT)) (-3730 (($ $) 301 T ELT) (($ (-485) $) 300 T ELT)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 80 T ELT)) (-2280 (((-631 |#2|) (-631 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 252 (-2563 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) 251 (-2563 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3727 (((-350 (-858 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2995 (($) 268 (-2563 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) 282 (-2563 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 260 (-2563 (|has| |#2| (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 259 (-2563 (|has| |#2| (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3772 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2997 (($ $) 264 (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3445 (((-633 $) $) 296 (-2563 (|has| |#2| (-1066)) (|has| |#1| (-312))) ELT)) (-3188 (((-85) $) 283 (-2563 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-3777 (($ $ (-831)) 127 T ELT)) (-3815 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1605 (((-3 (-584 $) #3="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-485)) 81 T ELT) (($ $ (-995) (-485)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 96 T ELT)) (-2532 (($ $ $) 291 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2858 (($ $ $) 290 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 |#2|) (-1179 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 250 (-2563 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1179 $)) 249 (-2563 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1891 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3779 (($ (-485) |#2|) 303 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3446 (($) 297 (-2563 (|has| |#2| (-1066)) (|has| |#1| (-312))) CONST)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3129 (($ $) 267 (-2563 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3131 ((|#2| $) 270 (-2563 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 273 (-2563 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 274 (-2563 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-3732 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-485)) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1090) |#2|) 243 (-2563 (|has| |#2| (-456 (-1090) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1090)) (-584 |#2|)) 242 (-2563 (|has| |#2| (-456 (-1090) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 |#2|))) 241 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 238 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1607 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1026)) ELT) (($ $ |#2|) 237 (-2563 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-695)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 109 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090)) 119 (OR (-2563 (|has| |#2| (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090))) 117 (OR (-2563 (|has| |#2| (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1090) (-695)) 116 (OR (-2563 (|has| |#2| (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 115 (OR (-2563 (|has| |#2| (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2996 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3948 (((-485) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3972 (((-179) $) 281 (-2563 (|has| |#2| (-934)) (|has| |#1| (-312))) ELT) (((-330) $) 280 (-2563 (|has| |#2| (-934)) (|has| |#1| (-312))) ELT) (((-474) $) 279 (-2563 (|has| |#2| (-554 (-474))) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) 258 (-2563 (|has| |#2| (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) 257 (-2563 (|has| |#2| (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) 271 (-2563 (-2563 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#1| (-312))) ELT)) (-2892 (($ $) 93 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1090)) 278 (-2563 (|has| |#2| (-951 (-1090))) (|has| |#1| (-312))) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-485)) 79 T ELT)) (-2703 (((-633 $) $) 68 (OR (-2563 (OR (|has| |#2| (-118)) (-2563 (|has| $ (-118)) (|has| |#2| (-822)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-3132 ((|#2| $) 269 (-2563 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3383 (($ $) 285 (-2563 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 108 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090)) 118 (OR (-2563 (|has| |#2| (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090))) 114 (OR (-2563 (|has| |#2| (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1090) (-695)) 113 (OR (-2563 (|has| |#2| (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 112 (OR (-2563 (|has| |#2| (-812 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2567 (((-85) $ $) 289 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2568 (((-85) $ $) 287 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 288 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2686 (((-85) $ $) 286 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1143 |#1| |#2|) (-113) (-962) (-1172 |t#1|)) (T -1143))
+((-3948 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1172 *3)) (-5 *2 (-485)))) (-3779 (*1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1172 *3)))) (-3730 (*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1172 *2)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1172 *3)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1172 *3)))) (-3728 (*1 *2 *1) (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1172 *3)))))
+(-13 (-1141 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3779 ($ (-485) |t#2|)) (-15 -3948 ((-485) $)) (-15 -3731 (|t#2| $)) (-15 -3730 ($ $)) (-15 -3730 ($ (-485) $)) (-15 -3729 (|t#2| $)) (-15 -3728 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-905 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 (-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1090)))) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-554 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-554 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-554 (-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-485) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-485) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-329 |#2|) |has| |#1| (-312)) ((-343 |#2|) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-456 (-1090) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1090) |#2|))) ((-456 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-312)) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-312)) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 |#2|) |has| |#1| (-312)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-581 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((-581 |#2|) |has| |#1| (-312)) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 |#2|) |has| |#1| (-312)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-715) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-717) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-719) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-722) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-741) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-756) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-757) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) ((-760) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) ((-807 $ (-1090)) OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1090))))) ((-810 (-1090)) OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1090))))) ((-812 (-1090)) OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1090))))) ((-797 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))) ((-795 |#2|) |has| |#1| (-312)) ((-822) -12 (|has| |#1| (-312)) (|has| |#2| (-822))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-312)) ((-905 |#2|) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-934) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-951 (-350 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ((-951 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ((-951 (-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1090)))) ((-951 |#2|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 |#2|) |has| |#1| (-312)) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 |#2|) |has| |#1| (-312)) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1066) -12 (|has| |#1| (-312)) (|has| |#2| (-1066))) ((-1115) |has| |#1| (-38 (-350 (-485)))) ((-1118) |has| |#1| (-38 (-350 (-485)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1141 |#1|) . T) ((-1158 |#1| (-485)) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 83 T ELT)) (-3130 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) 102 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-485)) 111 T ELT) (($ $ (-485) (-485)) 114 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 51 T ELT)) (-3731 ((|#2| $) 11 T ELT)) (-3728 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3729 ((|#2| $) 36 T ELT)) (-3492 (($ $) 208 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3623 (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 59 T ELT)) (-3494 (($ $) 212 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 188 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-1090) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1090)))) ELT)) (-3157 ((|#2| $) 158 T ELT) (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-1090) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1090)))) ELT)) (-3730 (($ $) 65 T ELT) (($ (-485) $) 28 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 |#2|) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT)) (-3467 (((-3 $ #1#) $) 90 T ELT)) (-3727 (((-350 (-858 |#1|)) $ (-485)) 126 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 128 (|has| |#1| (-496)) ELT)) (-2995 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-2893 (((-85) $) 76 T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))) ELT)) (-3772 (((-485) $) 107 T ELT) (((-485) $ (-485)) 109 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3445 (((-633 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1066))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-3777 (($ $ (-831)) 150 T ELT)) (-3815 (($ (-1 |#1| (-485)) $) 146 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-485)) 20 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2532 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2858 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 |#2|) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-1179 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (($ (-485) |#2|) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 230 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) 235 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT)) (-3446 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1066))) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3129 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3131 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-485)) 140 T ELT)) (-3466 (((-3 $ #1#) $ $) 130 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1090) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1090) |#2|))) ELT) (($ $ (-584 (-1090)) (-584 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1090) |#2|))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-485)) 105 T ELT) (($ $ $) 92 (|has| (-485) (-1026)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090)) 155 (OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090))))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090))))) ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3948 (((-485) $) 12 T ELT)) (-3495 (($ $) 214 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 210 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3972 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-934))) ELT) (((-330) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-934))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))) ELT) (((-801 (-330)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-2892 (($ $) 138 T ELT)) (-3946 (((-773) $) 268 T ELT) (($ (-485)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1090)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1090)))) ELT) (($ (-350 (-485))) 171 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-485)) 87 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-822))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3127 (((-695)) 157 T CONST)) (-3773 ((|#1| $) 104 T ELT)) (-3132 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 220 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 196 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) 216 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 224 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-485)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 226 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 222 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 198 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 218 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3383 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-2661 (($) 13 T CONST)) (-2667 (($) 18 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090))))) ELT) (($ $ (-584 (-1090))) NIL (OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090))))) ELT) (($ $ (-1090) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090))))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1090))))) ELT)) (-2567 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2568 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3057 (((-85) $ $) 74 T ELT)) (-2685 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2686 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3839 (($ $ $) 78 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 86 T ELT) (($ $ (-485)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 174 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1144 |#1| |#2|) (-1143 |#1| |#2|) (-962) (-1172 |#1|)) (T -1144))
+NIL
+((-3734 (((-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)) 13 T ELT)) (-3733 (((-348 |#1|) |#1|) 26 T ELT)) (-3732 (((-348 |#1|) |#1|) 24 T ELT)))
+(((-1145 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3734 ((-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)))) (-1155 (-485))) (T -1145))
+((-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1779 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-485))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-485))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-485))))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3736 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3958 (((-1069 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3230 ((|#1| $) 15 T ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-3228 (((-485) $) 19 T ELT)) (-3229 ((|#1| $) 18 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3735 (((-85) $) 17 T ELT)) (-3963 (((-1069 |#1|) $) 41 (|has| |#1| (-756)) ELT) (((-1069 |#1|) (-584 $)) 40 (|has| |#1| (-756)) ELT)) (-3972 (($ |#1|) 26 T ELT)) (-3946 (($ (-1002 |#1|)) 25 T ELT) (((-773) $) 37 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3737 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3233 (($ $ (-485)) 14 T ELT)) (-3057 (((-85) $ $) 30 (|has| |#1| (-1014)) ELT)))
+(((-1146 |#1|) (-13 (-1007 |#1|) (-10 -8 (-15 -3737 ($ |#1|)) (-15 -3736 ($ |#1|)) (-15 -3946 ($ (-1002 |#1|))) (-15 -3735 ((-85) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-1069 |#1|))) |%noBranch|))) (-1129)) (T -1146))
+((-3737 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))) (-3736 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-1129)) (-5 *1 (-1146 *3)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1146 *3)) (-4 *3 (-1129)))))
+((-3958 (((-1069 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 23 (|has| |#1| (-756)) ELT) (((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 17 T ELT)))
+(((-1147 |#1| |#2|) (-10 -7 (-15 -3958 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (IF (|has| |#1| (-756)) (-15 -3958 ((-1069 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) |%noBranch|)) (-1129) (-1129)) (T -1147))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-756)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1069 *6)) (-5 *1 (-1147 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1146 *6)) (-5 *1 (-1147 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3767 (((-1179 |#2|) $ (-695)) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3765 (($ (-1085 |#2|)) NIL T ELT)) (-3084 (((-1085 $) $ (-995)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3755 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1#) (-584 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-695)) NIL T ELT)) (-3760 (($ $ (-695)) NIL T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-392)) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3756 (($ $ $ (-995)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-631 $) (-1179 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ $) NIL T ELT)) (-3753 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-3752 (((-2 (|:| -3954 |#2|) (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#2| (-312)) ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1624 (($ $ |#2| (-695) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-3772 (((-695) $ $) NIL (|has| |#2| (-496)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3445 (((-633 $) $) NIL (|has| |#2| (-1066)) ELT)) (-3085 (($ (-1085 |#2|) (-995)) NIL T ELT) (($ (-1085 $) (-995)) NIL T ELT)) (-3777 (($ $ (-695)) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-695)) 18 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1625 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3766 (((-1085 |#2|) $) NIL T ELT)) (-3083 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1179 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-631 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3762 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3812 (($ $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT)) (-3446 (($) NIL (|has| |#2| (-1066)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#2| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3738 (($ $ (-695) |#2| $) NIL T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-822)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-3768 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#2|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1607 (((-695) $) NIL (|has| |#2| (-312)) ELT)) (-3800 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#2| (-496)) ELT) ((|#2| (-350 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#2| (-496)) ELT)) (-3764 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-995)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT)) (-3948 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3972 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3754 (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#2| (-496)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) NIL T ELT) (($ (-1176 |#1|)) 20 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3817 (((-584 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 14 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) NIL (|has| |#2| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (|has| |#2| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-1148 |#1| |#2|) (-13 (-1155 |#2|) (-556 (-1176 |#1|)) (-10 -8 (-15 -3738 ($ $ (-695) |#2| $)))) (-1090) (-962)) (T -1148))
+((-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1148 *4 *3)) (-14 *4 (-1090)) (-4 *3 (-962)))))
+((-3958 (((-1148 |#3| |#4|) (-1 |#4| |#2|) (-1148 |#1| |#2|)) 15 T ELT)))
+(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 ((-1148 |#3| |#4|) (-1 |#4| |#2|) (-1148 |#1| |#2|)))) (-1090) (-962) (-1090) (-962)) (T -1149))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1148 *5 *6)) (-14 *5 (-1090)) (-4 *6 (-962)) (-4 *8 (-962)) (-5 *2 (-1148 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8)) (-14 *7 (-1090)))))
+((-3741 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3739 ((|#1| |#3|) 13 T ELT)) (-3740 ((|#3| |#3|) 19 T ELT)))
+(((-1150 |#1| |#2| |#3|) (-10 -7 (-15 -3739 (|#1| |#3|)) (-15 -3740 (|#3| |#3|)) (-15 -3741 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-1155 |#2|)) (T -1150))
+((-3741 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-3740 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1150 *3 *4 *2)) (-4 *2 (-1155 *4)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1150 *2 *4 *3)) (-4 *3 (-1155 *4)))))
+((-3743 (((-3 |#2| #1="failed") |#2| (-695) |#1|) 35 T ELT)) (-3742 (((-3 |#2| #1#) |#2| (-695)) 36 T ELT)) (-3745 (((-3 (-2 (|:| -3139 |#2|) (|:| -3138 |#2|)) #1#) |#2|) 50 T ELT)) (-3746 (((-584 |#2|) |#2|) 52 T ELT)) (-3744 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT)))
+(((-1151 |#1| |#2|) (-10 -7 (-15 -3742 ((-3 |#2| #1="failed") |#2| (-695))) (-15 -3743 ((-3 |#2| #1#) |#2| (-695) |#1|)) (-15 -3744 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3745 ((-3 (-2 (|:| -3139 |#2|) (|:| -3138 |#2|)) #1#) |#2|)) (-15 -3746 ((-584 |#2|) |#2|))) (-13 (-496) (-120)) (-1155 |#1|)) (T -1151))
+((-3746 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1155 *4)))) (-3745 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1155 *4)))) (-3744 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1155 *3)))) (-3743 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))) (-3742 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))))
+((-3747 (((-3 (-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) "failed") |#2| |#2|) 30 T ELT)))
+(((-1152 |#1| |#2|) (-10 -7 (-15 -3747 ((-3 (-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) "failed") |#2| |#2|))) (-496) (-1155 |#1|)) (T -1152))
+((-3747 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1155 *4)))))
+((-3748 ((|#2| |#2| |#2|) 22 T ELT)) (-3749 ((|#2| |#2| |#2|) 36 T ELT)) (-3750 ((|#2| |#2| |#2| (-695) (-695)) 44 T ELT)))
+(((-1153 |#1| |#2|) (-10 -7 (-15 -3748 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2| (-695) (-695)))) (-962) (-1155 |#1|)) (T -1153))
+((-3750 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1155 *4)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))) (-3748 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))))
+((-3767 (((-1179 |#2|) $ (-695)) 129 T ELT)) (-3082 (((-584 (-995)) $) 16 T ELT)) (-3765 (($ (-1085 |#2|)) 80 T ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) 21 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 217 T ELT)) (-3775 (($ $) 207 T ELT)) (-3971 (((-348 $) $) 205 T ELT)) (-2705 (((-3 (-584 (-1085 $)) #1="failed") (-584 (-1085 $)) (-1085 $)) 95 T ELT)) (-3761 (($ $ (-695)) 84 T ELT)) (-3760 (($ $ (-695)) 86 T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3158 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3157 ((|#2| $) 130 T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) (((-995) $) NIL T ELT)) (-3753 (($ $ $) 182 T ELT)) (-3752 (((-2 (|:| -3954 |#2|) (|:| -1973 $) (|:| -2903 $)) $ $) 185 T ELT)) (-3772 (((-695) $ $) 202 T ELT)) (-3445 (((-633 $) $) 149 T ELT)) (-2894 (($ |#2| (-695)) NIL T ELT) (($ $ (-995) (-695)) 59 T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) 54 T ELT) (((-584 (-695)) $ (-584 (-995))) 55 T ELT)) (-3766 (((-1085 |#2|) $) 72 T ELT)) (-3083 (((-3 (-995) #1#) $) 52 T ELT)) (-3762 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) 83 T ELT)) (-3812 (($ $) 232 T ELT)) (-3446 (($) 134 T CONST)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 214 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 101 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 99 T ELT)) (-3732 (((-348 $) $) 120 T ELT)) (-3768 (($ $ (-584 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) 39 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 36 T ELT) (($ $ (-995) $) 32 T ELT) (($ $ (-584 (-995)) (-584 $)) 30 T ELT)) (-1607 (((-695) $) 220 T ELT)) (-3800 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) 176 T ELT) ((|#2| (-350 $) |#2|) 219 T ELT) (((-350 $) $ (-350 $)) 201 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 225 T ELT)) (-3758 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-584 (-1090))) NIL T ELT) (($ $ (-1090) (-695)) NIL T ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL T ELT)) (-3948 (((-695) $) NIL T ELT) (((-695) $ (-995)) 17 T ELT) (((-584 (-695)) $ (-584 (-995))) 23 T ELT)) (-2818 ((|#2| $) NIL T ELT) (($ $ (-995)) 151 T ELT)) (-3754 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-350 $) #1#) (-350 $) $) 189 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) 64 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)))
+(((-1154 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| |#1|)) (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3758 (|#1| |#1| (-584 (-1090)) (-584 (-695)))) (-15 -3758 (|#1| |#1| (-1090) (-695))) (-15 -3758 (|#1| |#1| (-584 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3446 (|#1|) -3952) (-15 -3445 ((-633 |#1|) |#1|)) (-15 -3800 ((-350 |#1|) |#1| (-350 |#1|))) (-15 -1607 ((-695) |#1|)) (-15 -2880 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -3800 (|#2| (-350 |#1|) |#2|)) (-15 -3751 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3752 ((-2 (|:| -3954 |#2|) (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3753 (|#1| |#1| |#1|)) (-15 -3754 ((-3 (-350 |#1|) #1="failed") (-350 |#1|) |#1|)) (-15 -3754 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3772 ((-695) |#1| |#1|)) (-15 -3800 ((-350 |#1|) (-350 |#1|) (-350 |#1|))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3761 (|#1| |#1| (-695))) (-15 -3762 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| (-695))) (-15 -3765 (|#1| (-1085 |#2|))) (-15 -3766 ((-1085 |#2|) |#1|)) (-15 -3767 ((-1179 |#2|) |#1| (-695))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3758 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1|)) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3800 (|#2| |#1| |#2|)) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -2708 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2707 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2706 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2705 ((-3 (-584 (-1085 |#1|)) #1#) (-584 (-1085 |#1|)) (-1085 |#1|))) (-15 -2818 (|#1| |#1| (-995))) (-15 -3082 ((-584 (-995)) |#1|)) (-15 -2820 ((-695) |#1| (-584 (-995)))) (-15 -2820 ((-695) |#1|)) (-15 -2894 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-15 -2894 (|#1| |#1| (-995) (-695))) (-15 -2821 ((-584 (-695)) |#1| (-584 (-995)))) (-15 -2821 ((-695) |#1| (-995))) (-15 -3083 ((-3 (-995) #1#) |#1|)) (-15 -3948 ((-584 (-695)) |#1| (-584 (-995)))) (-15 -3948 ((-695) |#1| (-995))) (-15 -3946 (|#1| (-995))) (-15 -3158 ((-3 (-995) #1#) |#1|)) (-15 -3157 ((-995) |#1|)) (-15 -3768 (|#1| |#1| (-584 (-995)) (-584 |#1|))) (-15 -3768 (|#1| |#1| (-995) |#1|)) (-15 -3768 (|#1| |#1| (-584 (-995)) (-584 |#2|))) (-15 -3768 (|#1| |#1| (-995) |#2|)) (-15 -3768 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3948 ((-695) |#1|)) (-15 -2894 (|#1| |#2| (-695))) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -2821 ((-695) |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3758 (|#1| |#1| (-995))) (-15 -3758 (|#1| |#1| (-584 (-995)))) (-15 -3758 (|#1| |#1| (-995) (-695))) (-15 -3758 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-15 -3946 (|#1| (-485))) (-15 -3946 ((-773) |#1|))) (-1155 |#2|) (-962)) (T -1154))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3767 (((-1179 |#1|) $ (-695)) 271 T ELT)) (-3082 (((-584 (-995)) $) 123 T ELT)) (-3765 (($ (-1085 |#1|)) 269 T ELT)) (-3084 (((-1085 $) $ (-995)) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) 125 T ELT) (((-695) $ (-584 (-995))) 124 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3755 (($ $ $) 256 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-822)) ELT)) (-3775 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1085 $)) #1="failed") (-584 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-822)) ELT)) (-1608 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-695)) 264 T ELT)) (-3760 (($ $ (-695)) 263 T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-392)) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #2#) $) 153 T ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) (((-995) $) 154 T ELT)) (-3756 (($ $ $ (-995)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-631 $) (-1179 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-631 $) (-1179 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3759 (($ $ $) 262 T ELT)) (-3753 (($ $ $) 253 (|has| |#1| (-496)) ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1973 $) (|:| -2903 $)) $ $) 252 (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 239 (|has| |#1| (-312)) ELT)) (-3503 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ (-995)) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) 122 T ELT)) (-3723 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1624 (($ $ |#1| (-695) $) 189 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3772 (((-695) $ $) 257 (|has| |#1| (-496)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3445 (((-633 $) $) 237 (|has| |#1| (-1066)) ELT)) (-3085 (($ (-1085 |#1|) (-995)) 130 T ELT) (($ (-1085 $) (-995)) 129 T ELT)) (-3777 (($ $ (-695)) 268 T ELT)) (-1605 (((-3 (-584 $) #3="failed") (-584 $) $) 248 (|has| |#1| (-312)) ELT)) (-2822 (((-584 $) $) 139 T ELT)) (-3937 (((-85) $) 169 T ELT)) (-2894 (($ |#1| (-695)) 170 T ELT) (($ $ (-995) (-695)) 132 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 131 T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) 133 T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 266 T ELT)) (-2821 (((-695) $) 187 T ELT) (((-695) $ (-995)) 135 T ELT) (((-584 (-695)) $ (-584 (-995))) 134 T ELT)) (-1625 (($ (-1 (-695) (-695)) $) 188 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3766 (((-1085 |#1|) $) 270 T ELT)) (-3083 (((-3 (-995) #4="failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1179 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1179 (-485)))) (-1179 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-631 |#1|) (-1179 $)) 144 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT)) (-1891 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3762 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) 265 T ELT)) (-2824 (((-3 (-584 $) #4#) $) 127 T ELT)) (-2823 (((-3 (-584 $) #4#) $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #4#) $) 126 T ELT)) (-3812 (($ $) 249 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (($) 236 (|has| |#1| (-1066)) CONST)) (-3244 (((-1034) $) 12 T ELT)) (-1797 (((-85) $) 183 T ELT)) (-1796 ((|#1| $) 184 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-822)) ELT)) (-3732 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 240 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ (-995) |#1|) 158 T ELT) (($ $ (-584 (-995)) (-584 |#1|)) 157 T ELT) (($ $ (-995) $) 156 T ELT) (($ $ (-584 (-995)) (-584 $)) 155 T ELT)) (-1607 (((-695) $) 242 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-350 $) (-350 $) (-350 $)) 258 (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) 238 (|has| |#1| (-496)) ELT)) (-3764 (((-3 $ "failed") $ (-695)) 267 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-995)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-584 (-995)) (-584 (-695))) 52 T ELT) (($ $ (-995) (-695)) 51 T ELT) (($ $ (-584 (-995))) 50 T ELT) (($ $ (-995)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-695)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1090)) 235 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 233 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 232 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 231 (|has| |#1| (-812 (-1090))) ELT)) (-3948 (((-695) $) 167 T ELT) (((-695) $ (-995)) 143 T ELT) (((-584 (-695)) $ (-584 (-995))) 142 T ELT)) (-3972 (((-801 (-330)) $) 95 (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ (-995)) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-631 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3754 (((-3 $ "failed") $ $) 255 (|has| |#1| (-496)) ELT) (((-3 (-350 $) "failed") (-350 $) $) 254 (|has| |#1| (-496)) ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-995)) 152 T ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3817 (((-584 |#1|) $) 185 T ELT)) (-3677 ((|#1| $ (-695)) 172 T ELT) (($ $ (-995) (-695)) 141 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 140 T ELT)) (-2703 (((-633 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1623 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) 55 T ELT) (($ $ (-995) (-695)) 54 T ELT) (($ $ (-584 (-995))) 53 T ELT) (($ $ (-995)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-695)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 272 T ELT) (($ $ (-1090)) 234 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090))) 230 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-1090) (-695)) 229 (|has| |#1| (-812 (-1090))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 228 (|has| |#1| (-812 (-1090))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
+(((-1155 |#1|) (-113) (-962)) (T -1155))
+((-3767 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1155 *4)) (-4 *4 (-962)) (-5 *2 (-1179 *4)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-962)) (-5 *2 (-1085 *3)))) (-3765 (*1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-962)) (-4 *1 (-1155 *3)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1155 *3)) (-4 *3 (-962)))) (-3764 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1155 *3)) (-4 *3 (-962)))) (-3763 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-1155 *3)))) (-3762 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-1155 *4)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1155 *3)) (-4 *3 (-962)))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1155 *3)) (-4 *3 (-962)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)))) (-3758 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-962)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3756 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3800 (*1 *2 *2 *2) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3772 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3754 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3754 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3753 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3752 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3954 *3) (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-1155 *3)))) (-3751 (*1 *2 *1 *1) (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1155 *3)))) (-3800 (*1 *2 *3 *2) (-12 (-5 *3 (-350 *1)) (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))))
+(-13 (-862 |t#1| (-695) (-995)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3767 ((-1179 |t#1|) $ (-695))) (-15 -3766 ((-1085 |t#1|) $)) (-15 -3765 ($ (-1085 |t#1|))) (-15 -3777 ($ $ (-695))) (-15 -3764 ((-3 $ "failed") $ (-695))) (-15 -3763 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -3762 ((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695))) (-15 -3761 ($ $ (-695))) (-15 -3760 ($ $ (-695))) (-15 -3759 ($ $ $)) (-15 -3758 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3757 (|t#1| $)) (-15 -3756 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-241 (-350 $) (-350 $))) (-15 -3800 ((-350 $) (-350 $) (-350 $))) (-15 -3772 ((-695) $ $)) (-15 -3755 ($ $ $)) (-15 -3754 ((-3 $ "failed") $ $)) (-15 -3754 ((-3 (-350 $) "failed") (-350 $) $)) (-15 -3753 ($ $ $)) (-15 -3752 ((-2 (|:| -3954 |t#1|) (|:| -1973 $) (|:| -2903 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (-15 -3751 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3991) (-15 -3800 (|t#1| (-350 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (-15 -3812 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 (-995)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| (-995) (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| (-995) (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| (-995) (-554 (-801 (-485))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-350 $) (-350 $)) |has| |#1| (-496)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-695)) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-456 (-995) |#1|) . T) ((-456 (-995) $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-995)) . T) ((-807 $ (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-810 (-995)) . T) ((-810 (-1090)) |has| |#1| (-810 (-1090))) ((-812 (-995)) . T) ((-812 (-1090)) OR (|has| |#1| (-812 (-1090))) (|has| |#1| (-810 (-1090)))) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| (-995) (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| (-995) (-797 (-485)))) ((-862 |#1| (-695) (-995)) . T) ((-822) |has| |#1| (-822)) ((-833) |has| |#1| (-312)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-995)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1066) |has| |#1| (-1066)) ((-1129) . T) ((-1134) |has| |#1| (-822)))
+((-3958 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT)))
+(((-1156 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-1155 |#1|) (-962) (-1155 |#3|)) (T -1156))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1155 *6)) (-5 *1 (-1156 *5 *4 *6 *2)) (-4 *4 (-1155 *5)))))
+((-3082 (((-584 (-995)) $) 34 T ELT)) (-3959 (($ $) 31 T ELT)) (-2894 (($ |#2| |#3|) NIL T ELT) (($ $ (-995) |#3|) 28 T ELT) (($ $ (-584 (-995)) (-584 |#3|)) 27 T ELT)) (-2895 (($ $) 14 T ELT)) (-3175 ((|#2| $) 12 T ELT)) (-3948 ((|#3| $) 10 T ELT)))
+(((-1157 |#1| |#2| |#3|) (-10 -7 (-15 -3082 ((-584 (-995)) |#1|)) (-15 -2894 (|#1| |#1| (-584 (-995)) (-584 |#3|))) (-15 -2894 (|#1| |#1| (-995) |#3|)) (-15 -3959 (|#1| |#1|)) (-15 -2894 (|#1| |#2| |#3|)) (-15 -3948 (|#3| |#1|)) (-15 -2895 (|#1| |#1|)) (-15 -3175 (|#2| |#1|))) (-1158 |#2| |#3|) (-962) (-717)) (T -1157))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3771 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2893 (((-85) $) 94 T ELT)) (-3772 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3777 (($ $ (-831)) 127 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT) (($ $ (-995) |#2|) 97 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3769 (($ $ |#2|) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3800 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1026)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1090))) 117 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1090) (-695)) 116 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3948 ((|#2| $) 84 T ELT)) (-2892 (($ $) 93 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3770 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1090))) 114 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1090) (-695)) 113 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1158 |#1| |#2|) (-113) (-962) (-717)) (T -1158))
+((-3774 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1069 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1090)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3772 (*1 *2 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3771 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3770 (*1 *2 *1 *3) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3946 (*2 (-1090)))) (-4 *2 (-962)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3768 (*1 *2 *1 *3) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1069 *3)))))
+(-13 (-887 |t#1| |t#2| (-995)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3774 ((-1069 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3831 ((-1090) $)) (-15 -3773 (|t#1| $)) (-15 -3777 ($ $ (-831))) (-15 -3772 (|t#2| $)) (-15 -3772 (|t#2| $ |t#2|)) (-15 -3771 ($ $ |t#2|)) (-15 -3771 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3946 (|t#1| (-1090)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3770 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3769 ($ $ |t#2|)) (IF (|has| |t#2| (-1026)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-810 (-1090))) (-6 (-810 (-1090))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3768 ((-1069 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1026)) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-810 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-812 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-887 |#1| |#2| (-995)) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-3775 ((|#2| |#2|) 12 T ELT)) (-3971 (((-348 |#2|) |#2|) 14 T ELT)) (-3776 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))) 30 T ELT)))
+(((-1159 |#1| |#2|) (-10 -7 (-15 -3971 ((-348 |#2|) |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3776 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))))) (-496) (-13 (-1155 |#1|) (-496) (-10 -8 (-15 -3145 ($ $ $))))) (T -1159))
+((-3776 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-485)))) (-4 *4 (-13 (-1155 *3) (-496) (-10 -8 (-15 -3145 ($ $ $))))) (-4 *3 (-496)) (-5 *1 (-1159 *3 *4)))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-1159 *3 *2)) (-4 *2 (-13 (-1155 *3) (-496) (-10 -8 (-15 -3145 ($ $ $))))))) (-3971 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-1159 *4 *3)) (-4 *3 (-13 (-1155 *4) (-496) (-10 -8 (-15 -3145 ($ $ $))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) 11 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-695) (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-1139 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1169 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3157 (((-1139 |#1| |#2| |#3|) $) NIL T ELT) (((-1169 |#1| |#2| |#3|) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3781 (((-350 (-485)) $) 68 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-350 (-485)) (-1139 |#1| |#2| |#3|)) NIL T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) 30 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (((-1139 |#1| |#2| |#3|) $) 71 T ELT)) (-3778 (((-3 (-1139 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3779 (((-1139 |#1| |#2| |#3|) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 39 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 40 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-485))) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1176 |#2|)) 38 T ELT)) (-3948 (((-350 (-485)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3946 (((-773) $) 107 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1139 |#1| |#2| |#3|)) 16 T ELT) (($ (-1169 |#1| |#2| |#3|)) 17 T ELT) (($ (-1176 |#2|)) 36 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3773 ((|#1| $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-350 (-485))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 32 T CONST)) (-2667 (($) 26 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 34 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1160 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1139 |#1| |#2| |#3|)) (-807 $ (-1176 |#2|)) (-951 (-1169 |#1| |#2| |#3|)) (-556 (-1176 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-962) (-1090) |#1|) (T -1160))
+((-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-3958 (((-1160 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1160 |#1| |#3| |#5|)) 24 T ELT)))
+(((-1161 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3958 ((-1160 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1160 |#1| |#3| |#5|)))) (-962) (-962) (-1090) (-1090) |#1| |#2|) (T -1161))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1160 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-350 (-485))) 124 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-695) (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) 23 T CONST)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-350 (-485)) $) 126 T ELT) (((-350 (-485)) $ (-350 (-485))) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) 127 T ELT) (($ $ (-350 (-485))) 198 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-350 (-485))) 81 T ELT) (($ $ (-995) (-350 (-485))) 97 T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1891 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-485))) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1607 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) 117 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) 116 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3948 (((-350 (-485)) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-350 (-485))) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-350 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) 114 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) 113 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1162 |#1|) (-113) (-962)) (T -1162))
+((-3818 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))) (-4 *4 (-962)) (-4 *1 (-1162 *4)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-1162 *3)) (-4 *3 (-962)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3812 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1115)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3082 ((-584 *2) *3))) (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))))
+(-13 (-1158 |t#1| (-350 (-485))) (-10 -8 (-15 -3818 ($ (-695) (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |t#1|))))) (-15 -3777 ($ $ (-350 (-485)))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3812 ($ $)) (IF (|has| |t#1| (-15 -3812 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3082 ((-584 (-1090)) |t#1|))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1115))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-485))) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-350 (-485)) |#1|) . T) ((-241 $ $) |has| (-350 (-485)) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-810 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-812 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-887 |#1| (-350 (-485)) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1115) |has| |#1| (-38 (-350 (-485)))) ((-1118) |has| |#1| (-38 (-350 (-485)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1158 |#1| (-350 (-485))) . T))
+((-3189 (((-85) $) 12 T ELT)) (-3158 (((-3 |#3| "failed") $) 17 T ELT)) (-3157 ((|#3| $) 14 T ELT)))
+(((-1163 |#1| |#2| |#3|) (-10 -7 (-15 -3158 ((-3 |#3| "failed") |#1|)) (-15 -3157 (|#3| |#1|)) (-15 -3189 ((-85) |#1|))) (-1164 |#2| |#3|) (-962) (-1141 |#2|)) (T -1163))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-350 (-485))) 124 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-695) (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#2| "failed") $) 212 T ELT)) (-3157 ((|#2| $) 213 T ELT)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3781 (((-350 (-485)) $) 209 T ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3782 (($ (-350 (-485)) |#2|) 210 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-350 (-485)) $) 126 T ELT) (((-350 (-485)) $ (-350 (-485))) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) 127 T ELT) (($ $ (-350 (-485))) 198 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-350 (-485))) 81 T ELT) (($ $ (-995) (-350 (-485))) 97 T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1891 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3780 ((|#2| $) 208 T ELT)) (-3778 (((-3 |#2| "failed") $) 206 T ELT)) (-3779 ((|#2| $) 207 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-485))) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1607 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) 117 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) 116 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3948 (((-350 (-485)) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-350 (-485))) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-350 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) 114 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) 113 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1164 |#1| |#2|) (-113) (-962) (-1141 |t#1|)) (T -1164))
+((-3948 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1141 *3)) (-5 *2 (-350 (-485))))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-4 *4 (-962)) (-4 *1 (-1164 *4 *3)) (-4 *3 (-1141 *4)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1141 *3)) (-5 *2 (-350 (-485))))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1141 *3)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1141 *3)))) (-3778 (*1 *2 *1) (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1141 *3)))))
+(-13 (-1162 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3782 ($ (-350 (-485)) |t#2|)) (-15 -3781 ((-350 (-485)) $)) (-15 -3780 (|t#2| $)) (-15 -3948 ((-350 (-485)) $)) (-15 -3779 (|t#2| $)) (-15 -3778 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-485))) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-350 (-485)) |#1|) . T) ((-241 $ $) |has| (-350 (-485)) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-810 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-812 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-887 |#1| (-350 (-485)) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-951 |#2|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1115) |has| |#1| (-38 (-350 (-485)))) ((-1118) |has| |#1| (-38 (-350 (-485)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1158 |#1| (-350 (-485))) . T) ((-1162 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) 104 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-350 (-485))) 116 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 118 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 54 T ELT)) (-3492 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) 188 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-695) (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 65 T ELT)) (-3494 (($ $) 196 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 85 T ELT)) (-3781 (((-350 (-485)) $) 13 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-350 (-485)) |#2|) 11 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 74 T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-350 (-485)) $) 113 T ELT) (((-350 (-485)) $ (-350 (-485))) 114 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) 130 T ELT) (($ $ (-350 (-485))) 128 T ELT)) (-1605 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) 33 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3942 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1891 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 ((|#2| $) 12 T ELT)) (-3778 (((-3 |#2| #1#) $) 44 T ELT)) (-3779 ((|#2| $) 45 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) 151 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-485))) 122 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1607 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-485))) 108 T ELT) (($ $ $) 94 (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 138 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3948 (((-350 (-485)) $) 16 T ELT)) (-3495 (($ $) 198 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 120 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-350 (-485))) 139 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3677 ((|#1| $ (-350 (-485))) 107 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 127 T CONST)) (-3773 ((|#1| $) 106 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 208 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 210 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 17 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3057 (((-85) $ $) 72 T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3839 (($ $ $) 76 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 82 T ELT) (($ $ (-485)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1165 |#1| |#2|) (-1164 |#1| |#2|) (-962) (-1141 |#1|)) (T -1165))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 37 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-951 (-350 (-485)))) ELT) (((-3 (-1160 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3157 (((-485) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-951 (-350 (-485)))) ELT) (((-1160 |#2| |#3| |#4|) $) NIL T ELT)) (-3959 (($ $) 41 T ELT)) (-3467 (((-3 $ #1#) $) 27 T ELT)) (-3503 (($ $) NIL (|has| (-1160 |#2| |#3| |#4|) (-392)) ELT)) (-1624 (($ $ (-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 11 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ (-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2821 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1625 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3958 (($ (-1 (-1160 |#2| |#3| |#4|) (-1160 |#2| |#3| |#4|)) $) NIL T ELT)) (-3784 (((-3 (-751 |#2|) #1#) $) 91 T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 (((-1160 |#2| |#3| |#4|) $) 20 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 (((-1160 |#2| |#3| |#4|) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ (-1160 |#2| |#3| |#4|)) NIL (|has| (-1160 |#2| |#3| |#4|) (-496)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3783 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) #1#) $) 74 T ELT)) (-3948 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2818 (((-1160 |#2| |#3| |#4|) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-392)) ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1160 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-1160 |#2| |#3| |#4|) (-951 (-350 (-485)))) (|has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485))))) ELT)) (-3817 (((-584 (-1160 |#2| |#3| |#4|)) $) NIL T ELT)) (-3677 (((-1160 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1623 (($ $ $ (-695)) NIL (|has| (-1160 |#2| |#3| |#4|) (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ (-1160 |#2| |#3| |#4|)) NIL (|has| (-1160 |#2| |#3| |#4|) (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1160 |#2| |#3| |#4|)) NIL T ELT) (($ (-1160 |#2| |#3| |#4|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-485)))) ELT)))
+(((-1166 |#1| |#2| |#3| |#4|) (-13 (-277 (-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-496) (-10 -8 (-15 -3784 ((-3 (-751 |#2|) #1="failed") $)) (-15 -3783 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) #1#) $)))) (-13 (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1115) (-364 |#1|)) (-1090) |#2|) (T -1166))
+((-3784 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))) (-3783 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))))) (|:| |%type| (-1073)))) (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))))
+((-3402 ((|#2| $) 34 T ELT)) (-3795 ((|#2| $) 18 T ELT)) (-3797 (($ $) 44 T ELT)) (-3785 (($ $ (-485)) 79 T ELT)) (-3026 ((|#2| $ |#2|) 76 T ELT)) (-3786 ((|#2| $ |#2|) 72 T ELT)) (-3788 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3027 (($ $ (-584 $)) 75 T ELT)) (-3796 ((|#2| $) 17 T ELT)) (-3799 (($ $) NIL T ELT) (($ $ (-695)) 52 T ELT)) (-3032 (((-584 $) $) 31 T ELT)) (-3028 (((-85) $ $) 63 T ELT)) (-3527 (((-85) $) 33 T ELT)) (-3798 ((|#2| $) 25 T ELT) (($ $ (-695)) 58 T ELT)) (-3800 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3633 (((-85) $) 23 T ELT)) (-3792 (($ $) 47 T ELT)) (-3790 (($ $) 80 T ELT)) (-3793 (((-695) $) 51 T ELT)) (-3794 (($ $) 50 T ELT)) (-3802 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3522 (((-584 $) $) 32 T ELT)) (-3057 (((-85) $ $) 61 T ELT)) (-3957 (((-695) $) 43 T ELT)))
+(((-1167 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3785 (|#1| |#1| (-485))) (-15 -3788 (|#2| |#1| #1="last" |#2|)) (-15 -3786 (|#2| |#1| |#2|)) (-15 -3788 (|#1| |#1| #2="rest" |#1|)) (-15 -3788 (|#2| |#1| #3="first" |#2|)) (-15 -3790 (|#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -3793 ((-695) |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3795 (|#2| |#1|)) (-15 -3796 (|#2| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3798 (|#1| |#1| (-695))) (-15 -3800 (|#2| |#1| #1#)) (-15 -3798 (|#2| |#1|)) (-15 -3799 (|#1| |#1| (-695))) (-15 -3800 (|#1| |#1| #2#)) (-15 -3799 (|#1| |#1|)) (-15 -3800 (|#2| |#1| #3#)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3026 (|#2| |#1| |#2|)) (-15 -3788 (|#2| |#1| #4="value" |#2|)) (-15 -3027 (|#1| |#1| (-584 |#1|))) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3633 ((-85) |#1|)) (-15 -3800 (|#2| |#1| #4#)) (-15 -3402 (|#2| |#1|)) (-15 -3527 ((-85) |#1|)) (-15 -3032 ((-584 |#1|) |#1|)) (-15 -3522 ((-584 |#1|) |#1|)) (-15 -3957 ((-695) |#1|))) (-1168 |#2|) (-1129)) (T -1167))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3795 ((|#1| $) 71 T ELT)) (-3797 (($ $) 73 T ELT)) (-3785 (($ $ (-485)) 58 (|has| $ (-6 -3996)) ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 62 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) 60 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3996)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3996)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3996)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3796 ((|#1| $) 72 T ELT)) (-3724 (($) 7 T CONST)) (-3799 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-3798 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-3792 (($ $) 68 T ELT)) (-3790 (($ $) 65 (|has| $ (-6 -3996)) ELT)) (-3793 (((-695) $) 69 T ELT)) (-3794 (($ $) 70 T ELT)) (-1946 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3791 (($ $ $) 67 (|has| $ (-6 -3996)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3996)) ELT)) (-3802 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3522 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-695) $) 6 (|has| $ (-6 -3995)) ELT)))
+(((-1168 |#1|) (-113) (-1129)) (T -1168))
+((-3802 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3802 (*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1129)) (-5 *2 (-695)))) (-3792 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3791 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3791 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3790 (*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3789 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3787 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3788 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3786 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (|has| *1 (-6 -3996)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))))
+(-13 (-924 |t#1|) (-10 -8 (-15 -3802 ($ $ $)) (-15 -3802 ($ |t#1| $)) (-15 -3801 (|t#1| $)) (-15 -3800 (|t#1| $ "first")) (-15 -3801 ($ $ (-695))) (-15 -3799 ($ $)) (-15 -3800 ($ $ "rest")) (-15 -3799 ($ $ (-695))) (-15 -3798 (|t#1| $)) (-15 -3800 (|t#1| $ "last")) (-15 -3798 ($ $ (-695))) (-15 -3797 ($ $)) (-15 -3796 (|t#1| $)) (-15 -3795 (|t#1| $)) (-15 -3794 ($ $)) (-15 -3793 ((-695) $)) (-15 -3792 ($ $)) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3791 ($ $ $)) (-15 -3791 ($ $ |t#1|)) (-15 -3790 ($ $)) (-15 -3789 (|t#1| $ |t#1|)) (-15 -3788 (|t#1| $ "first" |t#1|)) (-15 -3787 ($ $ $)) (-15 -3788 ($ $ "rest" $)) (-15 -3786 (|t#1| $ |t#1|)) (-15 -3788 (|t#1| $ "last" |t#1|)) (-15 -3785 ($ $ (-485)))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3831 (((-1090) $) 87 T ELT)) (-3811 (((-1148 |#2| |#1|) $ (-695)) 70 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 139 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-695)) 125 T ELT) (($ $ (-695) (-695)) 127 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 42 T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1069 |#1|)) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) NIL T CONST)) (-3805 (($ $) 131 T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3816 (($ $) 137 T ELT)) (-3814 (((-858 |#1|) $ (-695)) 60 T ELT) (((-858 |#1|) $ (-695) (-695)) 62 T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-695) $) NIL T ELT) (((-695) $ (-695)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3808 (($ $) 115 T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3804 (($ (-485) (-485) $) 133 T ELT)) (-3777 (($ $ (-831)) 136 T ELT)) (-3815 (($ (-1 |#1| (-485)) $) 109 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) 16 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3809 (($ $) 113 T ELT)) (-3810 (($ $) 111 T ELT)) (-3803 (($ (-485) (-485) $) 135 T ELT)) (-3812 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) 153 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3806 (($ $ (-485) (-485)) 119 T ELT)) (-3769 (($ $ (-695)) 121 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3807 (($ $) 117 T ELT)) (-3768 (((-1069 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3800 ((|#1| $ (-695)) 93 T ELT) (($ $ $) 129 (|has| (-695) (-1026)) ELT)) (-3758 (($ $ (-1090)) 106 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1176 |#2|)) 101 T ELT)) (-3948 (((-695) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 123 T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) 26 T ELT) (($ (-350 (-485))) 145 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1148 |#2| |#1|)) 78 T ELT) (($ (-1176 |#2|)) 22 T ELT)) (-3817 (((-1069 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-695)) 92 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3773 ((|#1| $) 88 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-695)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 18 T CONST)) (-2667 (($) 13 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1090) (-695)) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3839 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1169 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-807 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1148 |#2| |#1|))) (-15 -3811 ((-1148 |#2| |#1|) $ (-695))) (-15 -3946 ($ (-1176 |#2|))) (-15 -3810 ($ $)) (-15 -3809 ($ $)) (-15 -3808 ($ $)) (-15 -3807 ($ $)) (-15 -3806 ($ $ (-485) (-485))) (-15 -3805 ($ $)) (-15 -3804 ($ (-485) (-485) $)) (-15 -3803 ($ (-485) (-485) $)) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-962) (-1090) |#1|) (T -1169))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1169 *3 *4 *5)))) (-3811 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1169 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1090)) (-14 *6 *4))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))) (-3806 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1090)) (-14 *5 *3))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))) (-3804 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1090)) (-14 *5 *3))) (-3803 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1090)) (-14 *5 *3))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-3958 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT)))
+(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#2| |#1|) |#3|))) (-962) (-962) (-1172 |#1|) (-1172 |#2|)) (T -1170))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5)))))
+((-3189 (((-85) $) 17 T ELT)) (-3492 (($ $) 105 T ELT)) (-3639 (($ $) 81 T ELT)) (-3490 (($ $) 101 T ELT)) (-3638 (($ $) 77 T ELT)) (-3494 (($ $) 109 T ELT)) (-3637 (($ $) 85 T ELT)) (-3942 (($ $) 75 T ELT)) (-3943 (($ $) 73 T ELT)) (-3495 (($ $) 111 T ELT)) (-3636 (($ $) 87 T ELT)) (-3493 (($ $) 107 T ELT)) (-3635 (($ $) 83 T ELT)) (-3491 (($ $) 103 T ELT)) (-3634 (($ $) 79 T ELT)) (-3946 (((-773) $) 61 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3498 (($ $) 117 T ELT)) (-3486 (($ $) 93 T ELT)) (-3496 (($ $) 113 T ELT)) (-3484 (($ $) 89 T ELT)) (-3500 (($ $) 121 T ELT)) (-3488 (($ $) 97 T ELT)) (-3501 (($ $) 123 T ELT)) (-3489 (($ $) 99 T ELT)) (-3499 (($ $) 119 T ELT)) (-3487 (($ $) 95 T ELT)) (-3497 (($ $) 115 T ELT)) (-3485 (($ $) 91 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-350 (-485))) 71 T ELT)))
+(((-1171 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| |#1|)) (-15 -3946 (|#1| (-350 (-485)))) (-15 -3946 (|#1| (-485))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3189 ((-85) |#1|)) (-15 -3946 ((-773) |#1|))) (-1172 |#2|) (-962)) (T -1171))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-695)) 124 T ELT) (($ $ (-695) (-695)) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 130 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1069 |#1|)) 181 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3816 (($ $) 180 T ELT)) (-3814 (((-858 |#1|) $ (-695)) 178 T ELT) (((-858 |#1|) $ (-695) (-695)) 177 T ELT)) (-2893 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 (((-695) $) 126 T ELT) (((-695) $ (-695)) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3777 (($ $ (-831)) 127 T ELT)) (-3815 (($ (-1 |#1| (-485)) $) 179 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-695)) 81 T ELT) (($ $ (-995) (-695)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3812 (($ $) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1090)) 174 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3769 (($ $ (-695)) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3800 ((|#1| $ (-695)) 131 T ELT) (($ $ $) 107 (|has| (-695) (-1026)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090))) 117 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1090) (-695)) 116 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3948 (((-695) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3817 (((-1069 |#1|) $) 182 T ELT)) (-3677 ((|#1| $ (-695)) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 ((|#1| $ (-695)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090))) 114 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1090) (-695)) 113 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1090)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
+(((-1172 |#1|) (-113) (-962)) (T -1172))
+((-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1172 *3)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-962)) (-5 *2 (-1069 *3)))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-4 *1 (-1172 *3)))) (-3816 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-962)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1172 *3)) (-4 *3 (-962)))) (-3814 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1172 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (-3814 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1172 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3812 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1115)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3082 ((-584 *2) *3))) (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))))
+(-13 (-1158 |t#1| (-695)) (-10 -8 (-15 -3818 ($ (-1069 (-2 (|:| |k| (-695)) (|:| |c| |t#1|))))) (-15 -3817 ((-1069 |t#1|) $)) (-15 -3818 ($ (-1069 |t#1|))) (-15 -3816 ($ $)) (-15 -3815 ($ (-1 |t#1| (-485)) $)) (-15 -3814 ((-858 |t#1|) $ (-695))) (-15 -3814 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3812 ($ $)) (IF (|has| |t#1| (-15 -3812 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3082 ((-584 (-1090)) |t#1|))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1115))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-695) |#1|) . T) ((-241 $ $) |has| (-695) (-1026)) ((-246) |has| |#1| (-496)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-810 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-812 (-1090)) -12 (|has| |#1| (-810 (-1090))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-887 |#1| (-695) (-995)) . T) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1115) |has| |#1| (-38 (-350 (-485)))) ((-1118) |has| |#1| (-38 (-350 (-485)))) ((-1129) . T) ((-1158 |#1| (-695)) . T))
+((-3821 (((-1 (-1069 |#1|) (-584 (-1069 |#1|))) (-1 |#2| (-584 |#2|))) 24 T ELT)) (-3820 (((-1 (-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3819 (((-1 (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3824 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3823 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3825 ((|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|)) 60 T ELT)) (-3826 (((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))) 66 T ELT)) (-3822 ((|#2| |#2| |#2|) 43 T ELT)))
+(((-1173 |#1| |#2|) (-10 -7 (-15 -3819 ((-1 (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2|))) (-15 -3820 ((-1 (-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3821 ((-1 (-1069 |#1|) (-584 (-1069 |#1|))) (-1 |#2| (-584 |#2|)))) (-15 -3822 (|#2| |#2| |#2|)) (-15 -3823 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3825 (|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|))) (-15 -3826 ((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))))) (-38 (-350 (-485))) (-1172 |#1|)) (T -1173))
+((-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) (-4 *5 (-38 (-350 (-485)))) (-4 *6 (-1172 *5)) (-5 *2 (-584 *6)) (-5 *1 (-1173 *5 *6)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-350 (-485)))) (-4 *2 (-1172 *5)) (-5 *1 (-1173 *5 *2)))) (-3824 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) (-4 *4 (-38 (-350 (-485)))))) (-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) (-4 *4 (-38 (-350 (-485)))))) (-3822 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1172 *3)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1069 *4) (-584 (-1069 *4)))) (-5 *1 (-1173 *4 *5)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1069 *4) (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5)))))
+((-3828 ((|#2| |#4| (-695)) 31 T ELT)) (-3827 ((|#4| |#2|) 26 T ELT)) (-3830 ((|#4| (-350 |#2|)) 49 (|has| |#1| (-496)) ELT)) (-3829 (((-1 |#4| (-584 |#4|)) |#3|) 43 T ELT)))
+(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3827 (|#4| |#2|)) (-15 -3828 (|#2| |#4| (-695))) (-15 -3829 ((-1 |#4| (-584 |#4|)) |#3|)) (IF (|has| |#1| (-496)) (-15 -3830 (|#4| (-350 |#2|))) |%noBranch|)) (-962) (-1155 |#1|) (-601 |#2|) (-1172 |#1|)) (T -1174))
+((-3830 (*1 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-496)) (-4 *4 (-962)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *5 *6 *2)) (-4 *6 (-601 *5)))) (-3829 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-1155 *4)) (-5 *2 (-1 *6 (-584 *6))) (-5 *1 (-1174 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1172 *4)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1155 *5)) (-5 *1 (-1174 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1172 *5)))) (-3827 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-1155 *4)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *3 *5 *2)) (-4 *5 (-601 *3)))))
+NIL
+(((-1175) (-113)) (T -1175))
+NIL
+(-13 (-10 -7 (-6 -2288)))
+((-2569 (((-85) $ $) NIL T ELT)) (-3831 (((-1090)) 12 T ELT)) (-3243 (((-1073) $) 18 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 11 T ELT) (((-1090) $) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 15 T ELT)))
+(((-1176 |#1|) (-13 (-1014) (-553 (-1090)) (-10 -8 (-15 -3946 ((-1090) $)) (-15 -3831 ((-1090))))) (-1090)) (T -1176))
+((-3946 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2))) (-3831 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2))))
+((-3838 (($ (-695)) 19 T ELT)) (-3835 (((-631 |#2|) $ $) 41 T ELT)) (-3832 ((|#2| $) 51 T ELT)) (-3833 ((|#2| $) 50 T ELT)) (-3836 ((|#2| $ $) 36 T ELT)) (-3834 (($ $ $) 47 T ELT)) (-3837 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3839 (($ $ $) 15 T ELT)) (* (($ (-485) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
+(((-1177 |#1| |#2|) (-10 -7 (-15 -3832 (|#2| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3835 ((-631 |#2|) |#1| |#1|)) (-15 -3836 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3838 (|#1| (-695))) (-15 -3839 (|#1| |#1| |#1|))) (-1178 |#2|) (-1129)) (T -1177))
+NIL
+((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3838 (($ (-695)) 122 (|has| |#1| (-23)) ELT)) (-2199 (((-1185) $ (-485) (-485)) 44 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3996))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-757)) ELT)) (-3788 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2298 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) 110 T ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) 107 T ELT) (((-485) |#1| $) 106 (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) 105 (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3835 (((-631 |#1|) $ $) 115 (|has| |#1| (-962)) ELT)) (-3614 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3832 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3833 ((|#1| $) 113 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3243 (((-1073) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1146 (-485))) 75 T ELT)) (-3836 ((|#1| $ $) 116 (|has| |#1| (-962)) ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1146 (-485))) 67 T ELT)) (-3834 (($ $ $) 114 (|has| |#1| (-962)) ELT)) (-1946 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-1731 (($ $ $ (-485)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3946 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3837 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-664)) ELT) (($ $ |#1|) 117 (|has| |#1| (-664)) ELT)) (-3957 (((-695) $) 6 T ELT)))
+(((-1178 |#1|) (-113) (-1129)) (T -1178))
+((-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-25)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1178 *3)) (-4 *3 (-23)) (-4 *3 (-1129)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-664)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-664)))) (-3836 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-962)))) (-3835 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-962)) (-5 *2 (-631 *3)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-962)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-916)) (-4 *2 (-962)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-916)) (-4 *2 (-962)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3839 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3838 ($ (-695))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3837 ($ $)) (-15 -3837 ($ $ $)) (-15 * ($ (-485) $))) |%noBranch|) (IF (|has| |t#1| (-664)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-15 -3836 (|t#1| $ $)) (-15 -3835 ((-631 |t#1|) $ $)) (-15 -3834 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-962)) (PROGN (-15 -3833 (|t#1| $)) (-15 -3832 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1146 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3838 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-3840 (($ (-584 |#1|)) 9 T ELT)) (-2199 (((-1185) $ (-485) (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3788 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-485)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2299 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3419 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 15 (|has| $ (-6 -3995)) ELT)) (-3835 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3614 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 11 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1949 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3832 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-3836 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1146 (-485))) NIL T ELT)) (-3834 (($ $ $) NIL (|has| |#1| (-962)) ELT)) (-1946 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1731 (($ $ $ (-485)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) 19 (|has| |#1| (-554 (-474))) ELT)) (-3530 (($ (-584 |#1|)) 8 T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3946 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3837 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-1179 |#1|) (-13 (-1178 |#1|) (-10 -8 (-15 -3840 ($ (-584 |#1|))))) (-1129)) (T -1179))
+((-3840 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-1179 *3)))))
+((-3841 (((-1179 |#2|) (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|) 13 T ELT)) (-3842 ((|#2| (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|) 15 T ELT)) (-3958 (((-3 (-1179 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1179 |#1|)) 30 T ELT) (((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)) 18 T ELT)))
+(((-1180 |#1| |#2|) (-10 -7 (-15 -3841 ((-1179 |#2|) (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -3842 (|#2| (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -3958 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))) (-15 -3958 ((-3 (-1179 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1179 |#1|)))) (-1129) (-1129)) (T -1180))
+((-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-1180 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1179 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-1179 *5)) (-5 *1 (-1180 *6 *5)))))
+((-3843 (((-408) (-584 (-584 (-855 (-179)))) (-584 (-221))) 22 T ELT) (((-408) (-584 (-584 (-855 (-179))))) 21 T ELT) (((-408) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 20 T ELT)) (-3844 (((-1182) (-584 (-584 (-855 (-179)))) (-584 (-221))) 30 T ELT) (((-1182) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 29 T ELT)) (-3946 (((-1182) (-408)) 46 T ELT)))
+(((-1181) (-10 -7 (-15 -3843 ((-408) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3843 ((-408) (-584 (-584 (-855 (-179)))))) (-15 -3843 ((-408) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3844 ((-1182) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3844 ((-1182) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3946 ((-1182) (-408))))) (T -1181))
+((-3946 (*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-3844 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-3843 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1181)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-408)) (-5 *1 (-1181)))) (-3843 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1181)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3862 (((-1073) $ (-1073)) 107 T ELT) (((-1073) $ (-1073) (-1073)) 105 T ELT) (((-1073) $ (-1073) (-584 (-1073))) 104 T ELT)) (-3858 (($) 69 T ELT)) (-3845 (((-1185) $ (-408) (-831)) 54 T ELT)) (-3851 (((-1185) $ (-831) (-1073)) 89 T ELT) (((-1185) $ (-831) (-784)) 90 T ELT)) (-3873 (((-1185) $ (-831) (-330) (-330)) 57 T ELT)) (-3883 (((-1185) $ (-1073)) 84 T ELT)) (-3846 (((-1185) $ (-831) (-1073)) 94 T ELT)) (-3847 (((-1185) $ (-831) (-330) (-330)) 58 T ELT)) (-3884 (((-1185) $ (-831) (-831)) 55 T ELT)) (-3864 (((-1185) $) 85 T ELT)) (-3849 (((-1185) $ (-831) (-1073)) 93 T ELT)) (-3853 (((-1185) $ (-408) (-831)) 41 T ELT)) (-3850 (((-1185) $ (-831) (-1073)) 92 T ELT)) (-3886 (((-584 (-221)) $) 29 T ELT) (($ $ (-584 (-221))) 30 T ELT)) (-3885 (((-1185) $ (-695) (-695)) 52 T ELT)) (-3857 (($ $) 70 T ELT) (($ (-408) (-584 (-221))) 71 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3860 (((-485) $) 48 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3854 (((-1179 (-3 (-408) "undefined")) $) 47 T ELT)) (-3855 (((-1179 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3850 (-485)) (|:| -3848 (-485)) (|:| |spline| (-485)) (|:| -3879 (-485)) (|:| |axesColor| (-784)) (|:| -3851 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $) 46 T ELT)) (-3856 (((-1185) $ (-831) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485)) 83 T ELT)) (-3859 (((-584 (-855 (-179))) $) NIL T ELT)) (-3852 (((-408) $ (-831)) 43 T ELT)) (-3882 (((-1185) $ (-695) (-695) (-831) (-831)) 50 T ELT)) (-3880 (((-1185) $ (-1073)) 95 T ELT)) (-3848 (((-1185) $ (-831) (-1073)) 91 T ELT)) (-3946 (((-773) $) 102 T ELT)) (-3861 (((-1185) $) 96 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3879 (((-1185) $ (-831) (-1073)) 87 T ELT) (((-1185) $ (-831) (-784)) 88 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1182) (-13 (-1014) (-10 -8 (-15 -3859 ((-584 (-855 (-179))) $)) (-15 -3858 ($)) (-15 -3857 ($ $)) (-15 -3886 ((-584 (-221)) $)) (-15 -3886 ($ $ (-584 (-221)))) (-15 -3857 ($ (-408) (-584 (-221)))) (-15 -3856 ((-1185) $ (-831) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485))) (-15 -3855 ((-1179 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3850 (-485)) (|:| -3848 (-485)) (|:| |spline| (-485)) (|:| -3879 (-485)) (|:| |axesColor| (-784)) (|:| -3851 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $)) (-15 -3854 ((-1179 (-3 (-408) "undefined")) $)) (-15 -3883 ((-1185) $ (-1073))) (-15 -3853 ((-1185) $ (-408) (-831))) (-15 -3852 ((-408) $ (-831))) (-15 -3879 ((-1185) $ (-831) (-1073))) (-15 -3879 ((-1185) $ (-831) (-784))) (-15 -3851 ((-1185) $ (-831) (-1073))) (-15 -3851 ((-1185) $ (-831) (-784))) (-15 -3850 ((-1185) $ (-831) (-1073))) (-15 -3849 ((-1185) $ (-831) (-1073))) (-15 -3848 ((-1185) $ (-831) (-1073))) (-15 -3880 ((-1185) $ (-1073))) (-15 -3861 ((-1185) $)) (-15 -3882 ((-1185) $ (-695) (-695) (-831) (-831))) (-15 -3847 ((-1185) $ (-831) (-330) (-330))) (-15 -3873 ((-1185) $ (-831) (-330) (-330))) (-15 -3846 ((-1185) $ (-831) (-1073))) (-15 -3885 ((-1185) $ (-695) (-695))) (-15 -3845 ((-1185) $ (-408) (-831))) (-15 -3884 ((-1185) $ (-831) (-831))) (-15 -3862 ((-1073) $ (-1073))) (-15 -3862 ((-1073) $ (-1073) (-1073))) (-15 -3862 ((-1073) $ (-1073) (-584 (-1073)))) (-15 -3864 ((-1185) $)) (-15 -3860 ((-485) $)) (-15 -3946 ((-773) $))))) (T -1182))
+((-3946 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1182)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1182)))) (-3858 (*1 *1) (-5 *1 (-1182))) (-3857 (*1 *1 *1) (-5 *1 (-1182))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182)))) (-3857 (*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-584 (-221))) (-5 *1 (-1182)))) (-3856 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-784)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1179 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3850 (-485)) (|:| -3848 (-485)) (|:| |spline| (-485)) (|:| -3879 (-485)) (|:| |axesColor| (-784)) (|:| -3851 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485))))) (-5 *1 (-1182)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-1179 (-3 (-408) "undefined"))) (-5 *1 (-1182)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3879 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3879 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3882 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3847 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3873 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3846 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1182)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1182)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3874 (((-1185) $ (-330)) 168 T ELT) (((-1185) $ (-330) (-330) (-330)) 169 T ELT)) (-3862 (((-1073) $ (-1073)) 177 T ELT) (((-1073) $ (-1073) (-1073)) 175 T ELT) (((-1073) $ (-1073) (-584 (-1073))) 174 T ELT)) (-3890 (($) 67 T ELT)) (-3881 (((-1185) $ (-330) (-330) (-330) (-330) (-330)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1185) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1185) $ (-485) (-485) (-330) (-330) (-330)) 143 T ELT) (((-1185) $ (-330) (-330)) 144 T ELT) (((-1185) $ (-330) (-330) (-330)) 151 T ELT)) (-3893 (((-330)) 121 T ELT) (((-330) (-330)) 122 T ELT)) (-3895 (((-330)) 116 T ELT) (((-330) (-330)) 118 T ELT)) (-3894 (((-330)) 119 T ELT) (((-330) (-330)) 120 T ELT)) (-3891 (((-330)) 125 T ELT) (((-330) (-330)) 126 T ELT)) (-3892 (((-330)) 123 T ELT) (((-330) (-330)) 124 T ELT)) (-3873 (((-1185) $ (-330) (-330)) 170 T ELT)) (-3883 (((-1185) $ (-1073)) 152 T ELT)) (-3888 (((-1047 (-179)) $) 68 T ELT) (($ $ (-1047 (-179))) 69 T ELT)) (-3869 (((-1185) $ (-1073)) 186 T ELT)) (-3868 (((-1185) $ (-1073)) 187 T ELT)) (-3875 (((-1185) $ (-330) (-330)) 150 T ELT) (((-1185) $ (-485) (-485)) 167 T ELT)) (-3884 (((-1185) $ (-831) (-831)) 159 T ELT)) (-3864 (((-1185) $) 136 T ELT)) (-3872 (((-1185) $ (-1073)) 185 T ELT)) (-3877 (((-1185) $ (-1073)) 133 T ELT)) (-3886 (((-584 (-221)) $) 70 T ELT) (($ $ (-584 (-221))) 71 T ELT)) (-3885 (((-1185) $ (-695) (-695)) 158 T ELT)) (-3887 (((-1185) $ (-695) (-855 (-179))) 192 T ELT)) (-3889 (($ $) 73 T ELT) (($ (-1047 (-179)) (-1073)) 74 T ELT) (($ (-1047 (-179)) (-584 (-221))) 75 T ELT)) (-3866 (((-1185) $ (-330) (-330) (-330)) 130 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3860 (((-485) $) 127 T ELT)) (-3865 (((-1185) $ (-330)) 172 T ELT)) (-3870 (((-1185) $ (-330)) 190 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3871 (((-1185) $ (-330)) 189 T ELT)) (-3876 (((-1185) $ (-1073)) 135 T ELT)) (-3882 (((-1185) $ (-695) (-695) (-831) (-831)) 157 T ELT)) (-3878 (((-1185) $ (-1073)) 132 T ELT)) (-3880 (((-1185) $ (-1073)) 134 T ELT)) (-3863 (((-1185) $ (-130) (-130)) 156 T ELT)) (-3946 (((-773) $) 165 T ELT)) (-3861 (((-1185) $) 137 T ELT)) (-3867 (((-1185) $ (-1073)) 188 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3879 (((-1185) $ (-1073)) 131 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1183) (-13 (-1014) (-10 -8 (-15 -3895 ((-330))) (-15 -3895 ((-330) (-330))) (-15 -3894 ((-330))) (-15 -3894 ((-330) (-330))) (-15 -3893 ((-330))) (-15 -3893 ((-330) (-330))) (-15 -3892 ((-330))) (-15 -3892 ((-330) (-330))) (-15 -3891 ((-330))) (-15 -3891 ((-330) (-330))) (-15 -3890 ($)) (-15 -3889 ($ $)) (-15 -3889 ($ (-1047 (-179)) (-1073))) (-15 -3889 ($ (-1047 (-179)) (-584 (-221)))) (-15 -3888 ((-1047 (-179)) $)) (-15 -3888 ($ $ (-1047 (-179)))) (-15 -3887 ((-1185) $ (-695) (-855 (-179)))) (-15 -3886 ((-584 (-221)) $)) (-15 -3886 ($ $ (-584 (-221)))) (-15 -3885 ((-1185) $ (-695) (-695))) (-15 -3884 ((-1185) $ (-831) (-831))) (-15 -3883 ((-1185) $ (-1073))) (-15 -3882 ((-1185) $ (-695) (-695) (-831) (-831))) (-15 -3881 ((-1185) $ (-330) (-330) (-330) (-330) (-330))) (-15 -3881 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3881 ((-1185) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3881 ((-1185) $ (-485) (-485) (-330) (-330) (-330))) (-15 -3881 ((-1185) $ (-330) (-330))) (-15 -3881 ((-1185) $ (-330) (-330) (-330))) (-15 -3880 ((-1185) $ (-1073))) (-15 -3879 ((-1185) $ (-1073))) (-15 -3878 ((-1185) $ (-1073))) (-15 -3877 ((-1185) $ (-1073))) (-15 -3876 ((-1185) $ (-1073))) (-15 -3875 ((-1185) $ (-330) (-330))) (-15 -3875 ((-1185) $ (-485) (-485))) (-15 -3874 ((-1185) $ (-330))) (-15 -3874 ((-1185) $ (-330) (-330) (-330))) (-15 -3873 ((-1185) $ (-330) (-330))) (-15 -3872 ((-1185) $ (-1073))) (-15 -3871 ((-1185) $ (-330))) (-15 -3870 ((-1185) $ (-330))) (-15 -3869 ((-1185) $ (-1073))) (-15 -3868 ((-1185) $ (-1073))) (-15 -3867 ((-1185) $ (-1073))) (-15 -3866 ((-1185) $ (-330) (-330) (-330))) (-15 -3865 ((-1185) $ (-330))) (-15 -3864 ((-1185) $)) (-15 -3863 ((-1185) $ (-130) (-130))) (-15 -3862 ((-1073) $ (-1073))) (-15 -3862 ((-1073) $ (-1073) (-1073))) (-15 -3862 ((-1073) $ (-1073) (-584 (-1073)))) (-15 -3861 ((-1185) $)) (-15 -3860 ((-485) $))))) (T -1183))
+((-3895 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3894 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3893 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3892 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3891 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3890 (*1 *1) (-5 *1 (-1183))) (-3889 (*1 *1 *1) (-5 *1 (-1183))) (-3889 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1073)) (-5 *1 (-1183)))) (-3889 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1183)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183)))) (-3888 (*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183)))) (-3887 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3882 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-485)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3875 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3875 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3874 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3873 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3866 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1183)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183)))))
+((-3904 (((-584 (-1073)) (-584 (-1073))) 103 T ELT) (((-584 (-1073))) 96 T ELT)) (-3905 (((-584 (-1073))) 94 T ELT)) (-3902 (((-584 (-831)) (-584 (-831))) 69 T ELT) (((-584 (-831))) 64 T ELT)) (-3901 (((-584 (-695)) (-584 (-695))) 61 T ELT) (((-584 (-695))) 55 T ELT)) (-3903 (((-1185)) 71 T ELT)) (-3907 (((-831) (-831)) 87 T ELT) (((-831)) 86 T ELT)) (-3906 (((-831) (-831)) 85 T ELT) (((-831)) 84 T ELT)) (-3899 (((-784) (-784)) 81 T ELT) (((-784)) 80 T ELT)) (-3909 (((-179)) 91 T ELT) (((-179) (-330)) 93 T ELT)) (-3908 (((-831)) 88 T ELT) (((-831) (-831)) 89 T ELT)) (-3900 (((-831) (-831)) 83 T ELT) (((-831)) 82 T ELT)) (-3896 (((-784) (-784)) 75 T ELT) (((-784)) 73 T ELT)) (-3897 (((-784) (-784)) 77 T ELT) (((-784)) 76 T ELT)) (-3898 (((-784) (-784)) 79 T ELT) (((-784)) 78 T ELT)))
+(((-1184) (-10 -7 (-15 -3896 ((-784))) (-15 -3896 ((-784) (-784))) (-15 -3897 ((-784))) (-15 -3897 ((-784) (-784))) (-15 -3898 ((-784))) (-15 -3898 ((-784) (-784))) (-15 -3899 ((-784))) (-15 -3899 ((-784) (-784))) (-15 -3900 ((-831))) (-15 -3900 ((-831) (-831))) (-15 -3901 ((-584 (-695)))) (-15 -3901 ((-584 (-695)) (-584 (-695)))) (-15 -3902 ((-584 (-831)))) (-15 -3902 ((-584 (-831)) (-584 (-831)))) (-15 -3903 ((-1185))) (-15 -3904 ((-584 (-1073)))) (-15 -3904 ((-584 (-1073)) (-584 (-1073)))) (-15 -3905 ((-584 (-1073)))) (-15 -3906 ((-831))) (-15 -3907 ((-831))) (-15 -3906 ((-831) (-831))) (-15 -3907 ((-831) (-831))) (-15 -3908 ((-831) (-831))) (-15 -3908 ((-831))) (-15 -3909 ((-179) (-330))) (-15 -3909 ((-179))))) (T -1184))
+((-3909 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1184)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1184)))) (-3908 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))) (-3907 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))) (-3906 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))) (-3905 (*1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1184)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1184)))) (-3904 (*1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1184)))) (-3903 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1184)))) (-3902 (*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1184)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1184)))) (-3901 (*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1184)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))) (-3900 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))) (-3899 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))) (-3898 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))) (-3897 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))) (-3896 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))))
+((-3910 (($) 6 T ELT)) (-3946 (((-773) $) 9 T ELT)))
+(((-1185) (-13 (-553 (-773)) (-10 -8 (-15 -3910 ($))))) (T -1185))
+((-3910 (*1 *1) (-5 *1 (-1185))))
+((-3949 (($ $ |#2|) 10 T ELT)))
+(((-1186 |#1| |#2|) (-10 -7 (-15 -3949 (|#1| |#1| |#2|))) (-1187 |#2|) (-312)) (T -1186))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3911 (((-107)) 39 T ELT)) (-3946 (((-773) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 40 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-1187 |#1|) (-113) (-312)) (T -1187))
+((-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-312)))) (-3911 (*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-312)) (-5 *2 (-107)))))
+(-13 (-655 |t#1|) (-10 -8 (-15 -3949 ($ $ |t#1|)) (-15 -3911 ((-107)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1129) . T))
+((-3916 (((-584 (-1122 |#1|)) (-1090) (-1122 |#1|)) 83 T ELT)) (-3914 (((-1069 (-1069 (-858 |#1|))) (-1090) (-1069 (-858 |#1|))) 63 T ELT)) (-3917 (((-1 (-1069 (-1122 |#1|)) (-1069 (-1122 |#1|))) (-695) (-1122 |#1|) (-1069 (-1122 |#1|))) 74 T ELT)) (-3912 (((-1 (-1069 (-858 |#1|)) (-1069 (-858 |#1|))) (-695)) 65 T ELT)) (-3915 (((-1 (-1085 (-858 |#1|)) (-858 |#1|)) (-1090)) 32 T ELT)) (-3913 (((-1 (-1069 (-858 |#1|)) (-1069 (-858 |#1|))) (-695)) 64 T ELT)))
+(((-1188 |#1|) (-10 -7 (-15 -3912 ((-1 (-1069 (-858 |#1|)) (-1069 (-858 |#1|))) (-695))) (-15 -3913 ((-1 (-1069 (-858 |#1|)) (-1069 (-858 |#1|))) (-695))) (-15 -3914 ((-1069 (-1069 (-858 |#1|))) (-1090) (-1069 (-858 |#1|)))) (-15 -3915 ((-1 (-1085 (-858 |#1|)) (-858 |#1|)) (-1090))) (-15 -3916 ((-584 (-1122 |#1|)) (-1090) (-1122 |#1|))) (-15 -3917 ((-1 (-1069 (-1122 |#1|)) (-1069 (-1122 |#1|))) (-695) (-1122 |#1|) (-1069 (-1122 |#1|))))) (-312)) (T -1188))
+((-3917 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695)) (-4 *6 (-312)) (-5 *4 (-1122 *6)) (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1188 *6)) (-5 *5 (-1069 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-584 (-1122 *5))) (-5 *1 (-1188 *5)) (-5 *4 (-1122 *5)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1085 (-858 *4)) (-858 *4))) (-5 *1 (-1188 *4)) (-4 *4 (-312)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-1069 (-1069 (-858 *5)))) (-5 *1 (-1188 *5)) (-5 *4 (-1069 (-858 *5))))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1069 (-858 *4)) (-1069 (-858 *4)))) (-5 *1 (-1188 *4)) (-4 *4 (-312)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1069 (-858 *4)) (-1069 (-858 *4)))) (-5 *1 (-1188 *4)) (-4 *4 (-312)))))
+((-3919 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 80 T ELT)) (-3918 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 79 T ELT)))
+(((-1189 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3918 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3919 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|))) (-299) (-1155 |#1|) (-1155 |#2|) (-353 |#2| |#3|)) (T -1189))
+((-3919 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-1189 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))) (-3918 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-1189 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3920 (((-1049) $) 12 T ELT)) (-3921 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1190) (-13 (-996) (-10 -8 (-15 -3921 ((-1049) $)) (-15 -3920 ((-1049) $))))) (T -1190))
+((-3921 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3922 (((-1049) $) 11 T ELT)) (-3946 (((-773) $) 17 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1191) (-13 (-996) (-10 -8 (-15 -3922 ((-1049) $))))) (T -1191))
+((-3922 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1191)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 59 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 82 T ELT) (($ (-485)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3923 (((-1185) (-695)) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 36 T CONST)) (-2667 (($) 85 T CONST)) (-3057 (((-85) $ $) 88 T ELT)) (-3949 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 64 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-1192 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-962) (-430 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3949 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3923 ((-1185) (-695))))) (-962) (-757) (-718) (-862 |#1| |#3| |#2|) (-584 |#2|) (-584 (-695)) (-695)) (T -1192))
+((-3949 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) (-14 *6 (-584 *3)) (-5 *1 (-1192 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-14 *8 (-584 *5)) (-5 *2 (-1185)) (-5 *1 (-1192 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3681 (((-584 (-2 (|:| -3861 $) (|:| -1702 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3682 (((-584 $) (-584 |#4|)) 95 T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2905 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3689 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 28 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-3799 (((-3 $ #1#) $) 77 T ELT)) (-3685 ((|#4| |#4| $) 82 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-584 |#4|)) (|:| -1702 (-584 |#4|))) $) NIL T ELT)) (-2890 (((-584 |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 83 T ELT)) (-2609 (((-584 |#4|) $) 32 T ELT)) (-3246 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-3926 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-584 |#4|)) 38 T ELT)) (-1949 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3798 (((-3 |#4| #1#) $) NIL T ELT)) (-3697 (((-584 |#4|) $) 53 T ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) 81 T ELT)) (-3699 (((-85) $ $) 92 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 76 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3769 (($ $ |#4|) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 74 T ELT)) (-3565 (($) 45 T ELT)) (-3948 (((-695) $) NIL T ELT)) (-1946 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3530 (($ (-584 |#4|)) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3684 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (((-584 |#4|) $) 62 T ELT)) (-3678 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-3925 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-584 |#4|)) 44 T ELT)) (-3924 (((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-584 $) (-584 |#4|)) 73 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-584 |#3|) $) NIL T ELT)) (-3933 (((-85) |#3| $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3957 (((-695) $) NIL T ELT)))
+(((-1193 |#1| |#2| |#3| |#4|) (-13 (-1124 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3926 ((-3 $ #1="failed") (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3926 ((-3 $ #1#) (-584 |#4|))) (-15 -3925 ((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3925 ((-3 $ #1#) (-584 |#4|))) (-15 -3924 ((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3924 ((-584 $) (-584 |#4|))))) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1193))
+((-3926 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1193 *5 *6 *7 *8)))) (-3926 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1193 *3 *4 *5 *6)))) (-3925 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1193 *5 *6 *7 *8)))) (-3925 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1193 *3 *4 *5 *6)))) (-3924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-584 (-1193 *6 *7 *8 *9))) (-5 *1 (-1193 *6 *7 *8 *9)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-1193 *4 *5 *6 *7))) (-5 *1 (-1193 *4 *5 *6 *7)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT)))
+(((-1194 |#1|) (-113) (-962)) (T -1194))
+NIL
+(-13 (-962) (-82 |t#1| |t#1|) (-556 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 69 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3934 (((-584 |#1|) $) 54 T ELT)) (-3947 (($ $ (-695)) 47 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3935 (($ $ (-695)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3724 (($) NIL T CONST)) (-3939 (($ $ $) 72 T ELT) (($ $ (-740 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3158 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3157 (((-740 |#1|) $) NIL T ELT)) (-3959 (($ $) 40 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3951 (((-85) $) NIL T ELT)) (-3950 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-740 |#1|) |#2|) 39 T ELT)) (-3936 (($ $) 41 T ELT)) (-3941 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3955 (((-740 |#1|) $) NIL T ELT)) (-3956 (((-740 |#1|) $) 42 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3940 (($ $ $) 71 T ELT) (($ $ (-740 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1749 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2895 (((-740 |#1|) $) 36 T ELT)) (-3175 ((|#2| $) 38 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3948 (((-695) $) 44 T ELT)) (-3953 (((-85) $) 48 T ELT)) (-3952 ((|#2| $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-740 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-485)) NIL T ELT)) (-3817 (((-584 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3954 ((|#2| $ $) 78 T ELT) ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 14 T CONST)) (-2667 (($) 20 T CONST)) (-2666 (((-584 (-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) 45 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 29 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-740 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT)))
+(((-1195 |#1| |#2|) (-13 (-335 |#2| (-740 |#1|)) (-1202 |#1| |#2|)) (-757) (-962)) (T -1195))
+NIL
+((-3942 ((|#3| |#3| (-695)) 28 T ELT)) (-3943 ((|#3| |#3| (-695)) 34 T ELT)) (-3927 ((|#3| |#3| |#3| (-695)) 35 T ELT)))
+(((-1196 |#1| |#2| |#3|) (-10 -7 (-15 -3943 (|#3| |#3| (-695))) (-15 -3942 (|#3| |#3| (-695))) (-15 -3927 (|#3| |#3| |#3| (-695)))) (-13 (-962) (-655 (-350 (-485)))) (-757) (-1202 |#2| |#1|)) (T -1196))
+((-3927 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))) (-3943 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))))
+((-3932 (((-85) $) 15 T ELT)) (-3933 (((-85) $) 14 T ELT)) (-3928 (($ $) 19 T ELT) (($ $ (-695)) 21 T ELT)))
+(((-1197 |#1| |#2|) (-10 -7 (-15 -3928 (|#1| |#1| (-695))) (-15 -3928 (|#1| |#1|)) (-15 -3932 ((-85) |#1|)) (-15 -3933 ((-85) |#1|))) (-1198 |#2|) (-312)) (T -1197))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3932 (((-85) $) 114 T ELT)) (-3929 (((-695)) 110 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-3158 (((-3 |#1| "failed") $) 121 T ELT)) (-3157 ((|#1| $) 122 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3954 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1764 (($ $ (-695)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) 89 T ELT)) (-3772 (((-744 (-831)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1605 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3931 (((-85) $) 113 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-3930 (((-744 (-831))) 111 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1607 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1765 (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) 119 T ELT)) (-3948 (((-744 (-831)) $) 112 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2703 (((-633 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3933 (((-85) $) 115 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3928 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-695)) 108 (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
+(((-1198 |#1|) (-113) (-312)) (T -1198))
+((-3933 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) (-3930 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) (-3929 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-695)))) (-3928 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-312)) (-4 *2 (-320)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-4 *3 (-320)))))
+(-13 (-312) (-951 |t#1|) (-1187 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-345)) |%noBranch|) (-15 -3933 ((-85) $)) (-15 -3932 ((-85) $)) (-15 -3931 ((-85) $)) (-15 -3948 ((-744 (-831)) $)) (-15 -3930 ((-744 (-831)))) (-15 -3929 ((-695))) (IF (|has| |t#1| (-320)) (PROGN (-6 (-345)) (-15 -3928 ($ $)) (-15 -3928 ($ $ (-695)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1134) . T) ((-1187 |#1|) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3934 (((-584 |#1|) $) 55 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3935 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-695)) 57 (|has| |#2| (-146)) ELT)) (-3724 (($) 23 T CONST)) (-3939 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3158 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3157 (((-740 |#1|) $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3951 (((-85) $) 60 T ELT)) (-3950 (($ $) 59 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3937 (((-85) $) 65 T ELT)) (-3938 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3936 (($ $) 64 T ELT)) (-3941 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3955 (((-740 |#1|) $) 76 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3940 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3953 (((-85) $) 62 T ELT)) (-3952 ((|#2| $) 61 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3954 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT)))
+(((-1199 |#1| |#2|) (-113) (-757) (-962)) (T -1199))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))) (-3954 (*1 *2 *1 *3) (-12 (-5 *3 (-740 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) (-3954 (*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3940 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3940 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3939 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3939 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3938 (*1 *1 *2 *3) (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1199 *4 *3)) (-4 *3 (-962)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3936 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3946 (*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3950 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3935 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-4 *4 (-146)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3)))))
+(-13 (-962) (-1194 |t#2|) (-951 (-740 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3955 ((-740 |t#1|) $)) (-15 -3941 ((-2 (|:| |k| (-740 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3954 (|t#2| $ (-740 |t#1|))) (-15 -3954 (|t#2| $ $)) (-15 -3940 ($ $ |t#1|)) (-15 -3940 ($ $ (-740 |t#1|))) (-15 -3940 ($ $ $)) (-15 -3939 ($ $ |t#1|)) (-15 -3939 ($ $ (-740 |t#1|))) (-15 -3939 ($ $ $)) (-15 -3938 ($ (-740 |t#1|) |t#2|)) (-15 -3937 ((-85) $)) (-15 -3936 ($ $)) (-15 -3946 ($ |t#1|)) (-15 -3953 ((-85) $)) (-15 -3952 (|t#2| $)) (-15 -3951 ((-85) $)) (-15 -3950 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3935 ($ $ $)) (-15 -3935 ($ $ (-695)))) |%noBranch|) (-15 -3958 ($ (-1 |t#2| |t#2|) $)) (-15 -3934 ((-584 |t#1|) $)) (IF (|has| |t#2| (-6 -3988)) (-6 -3988) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1194 |#2|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3934 (((-584 |#1|) $) 99 T ELT)) (-3947 (($ $ (-695)) 103 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3935 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-3724 (($) NIL T CONST)) (-3939 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3158 (((-3 (-740 |#1|) #1#) $) NIL T ELT) (((-3 (-804 |#1|) #1#) $) NIL T ELT)) (-3157 (((-740 |#1|) $) NIL T ELT) (((-804 |#1|) $) NIL T ELT)) (-3959 (($ $) 102 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3951 (((-85) $) 90 T ELT)) (-3950 (($ $) 93 T ELT)) (-3944 (($ $ $ (-695)) 104 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-740 |#1|) |#2|) NIL T ELT) (($ (-804 |#1|) |#2|) 28 T ELT)) (-3936 (($ $) 120 T ELT)) (-3941 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3955 (((-740 |#1|) $) NIL T ELT)) (-3956 (((-740 |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3940 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3942 (($ $ (-695)) 113 (|has| |#2| (-655 (-350 (-485)))) ELT)) (-1749 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2895 (((-804 |#1|) $) 84 T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3943 (($ $ (-695)) 110 (|has| |#2| (-655 (-350 (-485)))) ELT)) (-3948 (((-695) $) 100 T ELT)) (-3953 (((-85) $) 85 T ELT)) (-3952 ((|#2| $) 88 T ELT)) (-3946 (((-773) $) 70 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-740 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-804 |#1|)) NIL T ELT) (($ (-607 |#1| |#2|)) 47 T ELT) (((-1195 |#1| |#2|) $) 77 T ELT) (((-1204 |#1| |#2|) $) 82 T ELT)) (-3817 (((-584 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-804 |#1|)) NIL T ELT)) (-3954 ((|#2| $ (-740 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 27 T CONST)) (-2666 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3945 (((-3 (-607 |#1| |#2|) #1#) $) 119 T ELT)) (-3057 (((-85) $ $) 78 T ELT)) (-3837 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3839 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-804 |#1|)) NIL T ELT)))
+(((-1200 |#1| |#2|) (-13 (-1202 |#1| |#2|) (-335 |#2| (-804 |#1|)) (-10 -8 (-15 -3946 ($ (-607 |#1| |#2|))) (-15 -3946 ((-1195 |#1| |#2|) $)) (-15 -3946 ((-1204 |#1| |#2|) $)) (-15 -3945 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -3944 ($ $ $ (-695))) (IF (|has| |#2| (-655 (-350 (-485)))) (PROGN (-15 -3943 ($ $ (-695))) (-15 -3942 ($ $ (-695)))) |%noBranch|))) (-757) (-146)) (T -1200))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-1200 *3 *4)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3945 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3944 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-655 (-350 (-485)))) (-4 *3 (-757)) (-4 *4 (-146)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-655 (-350 (-485)))) (-4 *3 (-757)) (-4 *4 (-146)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3934 (((-584 (-1090)) $) NIL T ELT)) (-3962 (($ (-1195 (-1090) |#1|)) NIL T ELT)) (-3947 (($ $ (-695)) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3935 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-3724 (($) NIL T CONST)) (-3939 (($ $ (-1090)) NIL T ELT) (($ $ (-740 (-1090))) NIL T ELT) (($ $ $) NIL T ELT)) (-3158 (((-3 (-740 (-1090)) #1#) $) NIL T ELT)) (-3157 (((-740 (-1090)) $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3951 (((-85) $) NIL T ELT)) (-3950 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-740 (-1090)) |#1|) NIL T ELT)) (-3936 (($ $) NIL T ELT)) (-3941 (((-2 (|:| |k| (-740 (-1090))) (|:| |c| |#1|)) $) NIL T ELT)) (-3955 (((-740 (-1090)) $) NIL T ELT)) (-3956 (((-740 (-1090)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ $ (-1090)) NIL T ELT) (($ $ (-740 (-1090))) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3963 (((-1195 (-1090) |#1|) $) NIL T ELT)) (-3948 (((-695) $) NIL T ELT)) (-3953 (((-85) $) NIL T ELT)) (-3952 ((|#1| $) NIL T ELT)) (-3946 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1090))) NIL T ELT) (($ (-1090)) NIL T ELT)) (-3954 ((|#1| $ (-740 (-1090))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3961 (((-584 (-2 (|:| |k| (-1090)) (|:| |c| $))) $) NIL T ELT)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1090) $) NIL T ELT)))
+(((-1201 |#1|) (-13 (-1202 (-1090) |#1|) (-10 -8 (-15 -3963 ((-1195 (-1090) |#1|) $)) (-15 -3962 ($ (-1195 (-1090) |#1|))) (-15 -3961 ((-584 (-2 (|:| |k| (-1090)) (|:| |c| $))) $)))) (-962)) (T -1201))
+((-3963 (*1 *2 *1) (-12 (-5 *2 (-1195 (-1090) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-962)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1195 (-1090) *3)) (-4 *3 (-962)) (-5 *1 (-1201 *3)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-1090)) (|:| |c| (-1201 *3))))) (-5 *1 (-1201 *3)) (-4 *3 (-962)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3934 (((-584 |#1|) $) 55 T ELT)) (-3947 (($ $ (-695)) 89 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3935 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-695)) 57 (|has| |#2| (-146)) ELT)) (-3724 (($) 23 T CONST)) (-3939 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3158 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3157 (((-740 |#1|) $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3951 (((-85) $) 60 T ELT)) (-3950 (($ $) 59 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3937 (((-85) $) 65 T ELT)) (-3938 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3936 (($ $) 64 T ELT)) (-3941 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3955 (((-740 |#1|) $) 76 T ELT)) (-3956 (((-740 |#1|) $) 91 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3940 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3948 (((-695) $) 90 T ELT)) (-3953 (((-85) $) 62 T ELT)) (-3952 ((|#2| $) 61 T ELT)) (-3946 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3954 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT)))
+(((-1202 |#1| |#2|) (-113) (-757) (-962)) (T -1202))
+((-3956 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1202 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
+(-13 (-1199 |t#1| |t#2|) (-10 -8 (-15 -3956 ((-740 |t#1|) $)) (-15 -3948 ((-695) $)) (-15 -3947 ($ $ (-695)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1061) . T) ((-1014) . T) ((-1129) . T) ((-1194 |#2|) . T) ((-1199 |#1| |#2|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 43 T ELT)) (-3951 (((-85) $) 37 T ELT)) (-3950 (($ $) 38 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ |#2| |#1|) NIL T ELT)) (-3955 ((|#2| $) 25 T ELT)) (-3956 ((|#2| $) 23 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1749 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2895 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3953 (((-85) $) 33 T ELT)) (-3952 ((|#1| $) 34 T ELT)) (-3946 (((-773) $) 66 T ELT) (($ (-485)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3817 (((-584 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ |#2|) NIL T ELT)) (-3954 ((|#1| $ |#2|) 29 T ELT)) (-3127 (((-695)) 14 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 30 T CONST)) (-2667 (($) 11 T CONST)) (-2666 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3057 (((-85) $ $) 31 T ELT)) (-3949 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3957 (((-695) $) 18 T ELT)))
+(((-1203 |#1| |#2|) (-13 (-962) (-1194 |#1|) (-335 |#1| |#2|) (-556 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3957 ((-695) $)) (-15 -3956 (|#2| $)) (-15 -3955 (|#2| $)) (-15 -3959 ($ $)) (-15 -3954 (|#1| $ |#2|)) (-15 -3953 ((-85) $)) (-15 -3952 (|#1| $)) (-15 -3951 ((-85) $)) (-15 -3950 ($ $)) (-15 -3958 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3949 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3988)) (-6 -3988) |%noBranch|) (IF (|has| |#1| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |#1| (-6 -3993)) (-6 -3993) |%noBranch|))) (-962) (-755)) (T -1203))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1203 *3 *4)) (-4 *4 (-755)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3956 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-962)))) (-3955 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-962)))) (-3954 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-755)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3952 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-755)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3950 (*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-755)))))
+((-2569 (((-85) $ $) 27 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3934 (((-584 |#1|) $) 132 T ELT)) (-3962 (($ (-1195 |#1| |#2|)) 50 T ELT)) (-3947 (($ $ (-695)) 38 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3935 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-695)) 52 (|has| |#2| (-146)) ELT)) (-3724 (($) NIL T CONST)) (-3939 (($ $ |#1|) 114 T ELT) (($ $ (-740 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3158 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3157 (((-740 |#1|) $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 122 T ELT)) (-3951 (((-85) $) 117 T ELT)) (-3950 (($ $) 118 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-740 |#1|) |#2|) 20 T ELT)) (-3936 (($ $) NIL T ELT)) (-3941 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3955 (((-740 |#1|) $) 123 T ELT)) (-3956 (((-740 |#1|) $) 126 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3940 (($ $ |#1|) 112 T ELT) (($ $ (-740 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3963 (((-1195 |#1| |#2|) $) 94 T ELT)) (-3948 (((-695) $) 129 T ELT)) (-3953 (((-85) $) 81 T ELT)) (-3952 ((|#2| $) 32 T ELT)) (-3946 (((-773) $) 73 T ELT) (($ (-485)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-740 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3954 ((|#2| $ (-740 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3127 (((-695)) 120 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-3961 (((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2667 (($) 33 T CONST)) (-3057 (((-85) $ $) 14 T ELT)) (-3837 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3839 (($ $ $) 61 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 55 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 53 T ELT) (($ (-485) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
+(((-1204 |#1| |#2|) (-13 (-1202 |#1| |#2|) (-10 -8 (-15 -3963 ((-1195 |#1| |#2|) $)) (-15 -3962 ($ (-1195 |#1| |#2|))) (-15 -3961 ((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-757) (-962)) (T -1204))
+((-3963 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *1 (-1204 *3 *4)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1204 *3 *4))))) (-5 *1 (-1204 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3965 (($ (-584 (-831))) 11 T ELT)) (-3964 (((-885) $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3946 (((-773) $) 25 T ELT) (($ (-885)) 14 T ELT) (((-885) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT)))
+(((-1205) (-13 (-1014) (-430 (-885)) (-10 -8 (-15 -3965 ($ (-584 (-831)))) (-15 -3964 ((-885) $))))) (T -1205))
+((-3965 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1205)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1205)))))
+((-3966 (((-584 (-1069 |#1|)) (-1 (-584 (-1069 |#1|)) (-584 (-1069 |#1|))) (-485)) 16 T ELT) (((-1069 |#1|) (-1 (-1069 |#1|) (-1069 |#1|))) 13 T ELT)))
+(((-1206 |#1|) (-10 -7 (-15 -3966 ((-1069 |#1|) (-1 (-1069 |#1|) (-1069 |#1|)))) (-15 -3966 ((-584 (-1069 |#1|)) (-1 (-584 (-1069 |#1|)) (-584 (-1069 |#1|))) (-485)))) (-1129)) (T -1206))
+((-3966 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 (-1069 *5)) (-584 (-1069 *5)))) (-5 *4 (-485)) (-5 *2 (-584 (-1069 *5))) (-5 *1 (-1206 *5)) (-4 *5 (-1129)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1 (-1069 *4) (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1206 *4)) (-4 *4 (-1129)))))
+((-3968 (((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 174 T ELT) (((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 173 T ELT) (((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 172 T ELT) (((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-959 |#1| |#2|)) 156 T ELT)) (-3967 (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|))) 85 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85)) 84 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85)) 83 T ELT)) (-3971 (((-584 (-1060 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|)) 73 T ELT)) (-3969 (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|))) 140 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85)) 139 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 138 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|)) 132 T ELT)) (-3970 (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|))) 145 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85)) 144 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 143 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|)) 142 T ELT)) (-3972 (((-584 (-704 |#1| (-774 |#3|))) (-1060 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) 111 T ELT) (((-1085 (-938 (-350 |#1|))) (-1085 |#1|)) 102 T ELT) (((-858 (-938 (-350 |#1|))) (-704 |#1| (-774 |#3|))) 109 T ELT) (((-858 (-938 (-350 |#1|))) (-858 |#1|)) 107 T ELT) (((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|))) 33 T ELT)))
+(((-1207 |#1| |#2| |#3|) (-10 -7 (-15 -3967 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3967 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85))) (-15 -3967 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)))) (-15 -3968 ((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-959 |#1| |#2|))) (-15 -3968 ((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3968 ((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3968 ((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3968 ((-584 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3969 ((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|))) (-15 -3969 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3969 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3969 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3969 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)))) (-15 -3970 ((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|))) (-15 -3970 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3970 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3970 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)))) (-15 -3971 ((-584 (-1060 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|))) (-15 -3972 ((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|)))) (-15 -3972 ((-858 (-938 (-350 |#1|))) (-858 |#1|))) (-15 -3972 ((-858 (-938 (-350 |#1|))) (-704 |#1| (-774 |#3|)))) (-15 -3972 ((-1085 (-938 (-350 |#1|))) (-1085 |#1|))) (-15 -3972 ((-584 (-704 |#1| (-774 |#3|))) (-1060 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))))) (-13 (-756) (-258) (-120) (-934)) (-584 (-1090)) (-584 (-1090))) (T -1207))
+((-3972 (*1 *2 *3) (-12 (-5 *3 (-1060 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1090))) (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-584 (-1090))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-1085 (-938 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1090))) (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-584 (-1090))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1090))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-584 (-1090))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1090))) (-5 *2 (-584 (-1060 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-584 (-1090))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))) (-3970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1090))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-584 (-1090))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))) (-3969 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1090))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-584 (-1090))))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1747 (-1085 *4)) (|:| -3225 (-584 (-858 *4)))))) (-5 *1 (-1207 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090))))) (-3968 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))) (-3968 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))) (-3968 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1090))) (-5 *2 (-584 (-2 (|:| -1747 (-1085 *4)) (|:| -3225 (-584 (-858 *4)))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-584 (-1090))))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090))))) (-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))) (-3967 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090))))))
+((-3975 (((-3 (-1179 (-350 (-485))) #1="failed") (-1179 |#1|) |#1|) 21 T ELT)) (-3973 (((-85) (-1179 |#1|)) 12 T ELT)) (-3974 (((-3 (-1179 (-485)) #1#) (-1179 |#1|)) 16 T ELT)))
+(((-1208 |#1|) (-10 -7 (-15 -3973 ((-85) (-1179 |#1|))) (-15 -3974 ((-3 (-1179 (-485)) #1="failed") (-1179 |#1|))) (-15 -3975 ((-3 (-1179 (-350 (-485))) #1#) (-1179 |#1|) |#1|))) (-13 (-962) (-581 (-485)))) (T -1208))
+((-3975 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-1179 (-350 (-485)))) (-5 *1 (-1208 *4)))) (-3974 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-1179 (-485))) (-5 *1 (-1208 *4)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-1208 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 12 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) 9 T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) 57 T ELT)) (-2995 (($) 46 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 38 T ELT)) (-3445 (((-633 $) $) 36 T ELT)) (-2011 (((-831) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3446 (($) 26 T CONST)) (-2401 (($ (-831)) 47 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3972 (((-485) $) 16 T ELT)) (-3946 (((-773) $) 21 T ELT) (($ (-485)) 18 T ELT)) (-3127 (((-695)) 10 T CONST)) (-1265 (((-85) $ $) 59 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 23 T CONST)) (-2667 (($) 25 T CONST)) (-3057 (((-85) $ $) 31 T ELT)) (-3837 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3839 (($ $ $) 29 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 52 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 41 T ELT) (($ $ $) 40 T ELT)))
+(((-1209 |#1|) (-13 (-146) (-320) (-554 (-485)) (-1066)) (-831)) (T -1209))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 2824568 2824573 2824578 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2824553 2824558 2824563 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2824538 2824543 2824548 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2824523 2824528 2824533 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1209 2823502 2824441 2824518 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1208 2822717 2822896 2823115 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1207 2813876 2815745 2817679 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1206 2813264 2813417 2813606 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1205 2812726 2813029 2813142 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1204 2810286 2812188 2812391 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1203 2807050 2808703 2809274 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1202 2804307 2806037 2806091 "XPOLYC" 2806376 XPOLYC (NIL T T) -9 NIL 2806489 NIL) (-1201 2801826 2803811 2804014 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1200 2798074 2800685 2801073 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1199 2792921 2794554 2794608 "XFALG" 2796753 XFALG (NIL T T) -9 NIL 2797537 NIL) (-1198 2788077 2790810 2790852 "XF" 2791470 XF (NIL T) -9 NIL 2791866 NIL) (-1197 2787795 2787905 2788072 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1196 2787022 2787144 2787348 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1195 2784764 2786922 2787017 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1194 2783345 2784140 2784182 "XALG" 2784187 XALG (NIL T) -9 NIL 2784296 NIL) (-1193 2777055 2781755 2782233 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1192 2775298 2776300 2776621 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1191 2774897 2775169 2775238 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1190 2774384 2774687 2774780 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1189 2773461 2773671 2773966 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1188 2771757 2772220 2772682 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1187 2770646 2771231 2771273 "VSPACE" 2771409 VSPACE (NIL T) -9 NIL 2771483 NIL) (-1186 2770517 2770550 2770641 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1185 2770360 2770414 2770482 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1184 2767343 2768138 2768875 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1183 2758441 2761042 2763215 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1182 2752018 2753909 2755488 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1181 2750502 2750897 2751303 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1180 2749329 2749610 2749926 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1179 2744598 2749156 2749248 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1178 2737834 2742290 2742333 "VECTCAT" 2743321 VECTCAT (NIL T) -9 NIL 2743905 NIL) (-1177 2737113 2737439 2737829 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1176 2736607 2736849 2736969 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1175 2736540 2736545 2736575 "UTYPE" 2736580 UTYPE (NIL) -9 NIL NIL NIL) (-1174 2735527 2735703 2735964 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1173 2733378 2733886 2734410 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1172 2723260 2729230 2729272 "UTSCAT" 2730370 UTSCAT (NIL T) -9 NIL 2731127 NIL) (-1171 2721325 2722268 2723255 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1170 2720999 2721048 2721179 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1169 2712710 2719195 2719674 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1168 2706709 2709518 2709561 "URAGG" 2711631 URAGG (NIL T) -9 NIL 2712353 NIL) (-1167 2704724 2705686 2706704 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1166 2700431 2703700 2704162 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1165 2692860 2700355 2700426 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1164 2681511 2688998 2689059 "UPXSCCA" 2689627 UPXSCCA (NIL T T) -9 NIL 2689859 NIL) (-1163 2681232 2681334 2681506 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1162 2669784 2676996 2677038 "UPXSCAT" 2677678 UPXSCAT (NIL T) -9 NIL 2678286 NIL) (-1161 2669297 2669382 2669559 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1160 2660983 2668888 2669150 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1159 2659878 2660148 2660498 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1158 2652581 2656066 2656120 "UPSCAT" 2657189 UPSCAT (NIL T T) -9 NIL 2657953 NIL) (-1157 2652001 2652253 2652576 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1156 2651675 2651724 2651855 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1155 2635805 2644759 2644801 "UPOLYC" 2646879 UPOLYC (NIL T) -9 NIL 2648099 NIL) (-1154 2629860 2632708 2635800 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1153 2629296 2629421 2629584 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1152 2628930 2629017 2629156 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1151 2627743 2628010 2628314 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1150 2627076 2627206 2627391 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1149 2626668 2626743 2626890 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1148 2617432 2626434 2626562 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1147 2616794 2616931 2617136 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1146 2615395 2616242 2616518 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1145 2614624 2614821 2615046 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1144 2601434 2614548 2614619 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1143 2581240 2594475 2594536 "ULSCCAT" 2595167 ULSCCAT (NIL T T) -9 NIL 2595454 NIL) (-1142 2580575 2580861 2581235 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1141 2568947 2576081 2576123 "ULSCAT" 2576976 ULSCAT (NIL T) -9 NIL 2577706 NIL) (-1140 2568460 2568545 2568722 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1139 2550577 2567959 2568200 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1138 2549611 2550304 2550418 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2550529) (-1137 2548644 2549337 2549451 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2549562) (-1136 2547677 2548370 2548484 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2548595) (-1135 2546710 2547403 2547517 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2547628) (-1134 2544717 2545938 2545968 "UFD" 2546179 UFD (NIL) -9 NIL 2546292 NIL) (-1133 2544561 2544618 2544712 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1132 2543813 2544020 2544236 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1131 2542033 2542486 2542951 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1130 2541758 2541998 2542028 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1129 2541696 2541701 2541731 "TYPE" 2541736 TYPE (NIL) -9 NIL 2541743 NIL) (-1128 2540855 2541075 2541315 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1127 2540033 2540464 2540699 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1126 2538187 2538760 2539299 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1125 2537221 2537457 2537693 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1124 2525720 2530036 2530132 "TSETCAT" 2535347 TSETCAT (NIL T T T T) -9 NIL 2536848 NIL) (-1123 2522057 2523873 2525715 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1122 2516449 2521283 2521565 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1121 2511786 2512799 2513728 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1120 2511283 2511358 2511521 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1119 2509359 2509649 2510004 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1118 2508843 2508992 2509022 "TRIGCAT" 2509235 TRIGCAT (NIL) -9 NIL NIL NIL) (-1117 2508594 2508697 2508838 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1116 2505742 2507702 2507981 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1115 2504848 2505544 2505574 "TRANFUN" 2505609 TRANFUN (NIL) -9 NIL 2505675 NIL) (-1114 2504312 2504563 2504843 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1113 2504149 2504187 2504248 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1112 2503606 2503737 2503888 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1111 2502347 2503004 2503240 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1110 2502159 2502196 2502268 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1109 2500373 2501019 2501448 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1108 2498753 2499090 2499412 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1107 2487696 2496588 2496644 "TBAGG" 2496961 TBAGG (NIL T T) -9 NIL 2497171 NIL) (-1106 2483207 2485394 2487691 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1105 2482684 2482809 2482954 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1104 2482194 2482514 2482604 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1103 2481691 2481808 2481946 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1102 2472995 2481619 2481686 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1101 2468748 2470043 2471288 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1100 2468117 2468276 2468457 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1099 2465271 2466024 2466807 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1098 2465045 2465235 2465266 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1097 2463999 2464684 2464810 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2464996) (-1096 2463263 2463811 2463890 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2463950) (-1095 2460086 2461245 2461945 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1094 2457769 2458452 2459086 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1093 2453847 2454893 2455870 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1092 2450946 2453502 2453731 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1091 2450542 2450629 2450751 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1090 2447166 2448640 2449459 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1089 2440126 2446363 2446656 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2431812 2439717 2439979 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1087 2431091 2431230 2431447 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1086 2430775 2430840 2430951 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1085 2421498 2430487 2430612 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1084 2420228 2420526 2420881 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1083 2419633 2419711 2419902 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1082 2401785 2419132 2419373 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1081 2401384 2401656 2401725 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1080 2400720 2401001 2401141 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1079 2395322 2396581 2397534 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1078 2394854 2394954 2395118 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1077 2389965 2391247 2392394 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1076 2384423 2385894 2387205 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1075 2377338 2379402 2381193 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1074 2368292 2377276 2377333 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1073 2363139 2368006 2368121 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1072 2362726 2362809 2362953 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1071 2361877 2362078 2362313 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1070 2361617 2361675 2361768 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1069 2354359 2359822 2360428 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1068 2353535 2353740 2353971 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1067 2352780 2353151 2353298 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1066 2352268 2352510 2352540 "STEP" 2352634 STEP (NIL) -9 NIL 2352705 NIL) (-1065 2343562 2352186 2352263 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1064 2337781 2342360 2342403 "STAGG" 2342830 STAGG (NIL T) -9 NIL 2343004 NIL) (-1063 2336160 2336908 2337776 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1062 2334470 2335987 2336079 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1061 2333750 2334289 2334319 "SRING" 2334324 SRING (NIL) -9 NIL 2334344 NIL) (-1060 2326525 2332288 2332727 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1059 2320299 2321738 2323242 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1058 2312856 2317615 2317645 "SRAGG" 2318944 SRAGG (NIL) -9 NIL 2319548 NIL) (-1057 2312153 2312473 2312851 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1056 2306361 2311475 2311898 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1055 2300713 2303729 2304465 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1054 2297142 2297961 2298598 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1053 2296117 2296422 2296452 "SPFCAT" 2296896 SPFCAT (NIL) -9 NIL NIL NIL) (-1052 2295054 2295306 2295570 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1051 2285812 2288086 2288116 "SPADXPT" 2292753 SPADXPT (NIL) -9 NIL 2294877 NIL) (-1050 2285614 2285660 2285729 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1049 2283270 2285578 2285609 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1048 2274944 2277033 2277075 "SPACEC" 2281390 SPACEC (NIL T) -9 NIL 2283195 NIL) (-1047 2272773 2274891 2274939 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1046 2271709 2271898 2272188 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1045 2270113 2270446 2270857 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1044 2269378 2269612 2269873 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1043 2265558 2266518 2267513 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1042 2261916 2262615 2263344 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1041 2255836 2261238 2261334 "SNTSCAT" 2261339 SNTSCAT (NIL T T T T) -9 NIL 2261409 NIL) (-1040 2249657 2254477 2254867 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1039 2243429 2249576 2249652 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1038 2241861 2242192 2242590 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1037 2233601 2238427 2238529 "SMATCAT" 2239872 SMATCAT (NIL NIL T T T) -9 NIL 2240420 NIL) (-1036 2231442 2232426 2233596 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1035 2229167 2230628 2230671 "SKAGG" 2230932 SKAGG (NIL T) -9 NIL 2231068 NIL) (-1034 2225213 2228987 2229098 "SINT" NIL SINT (NIL) -8 NIL NIL 2229139) (-1033 2225023 2225067 2225133 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1032 2224098 2224330 2224598 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1031 2223102 2223264 2223540 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1030 2222448 2222788 2222911 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1029 2221794 2222101 2222241 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1028 2219905 2220397 2220903 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1027 2213498 2219824 2219900 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1026 2213001 2213238 2213268 "SGROUP" 2213361 SGROUP (NIL) -9 NIL 2213423 NIL) (-1025 2212891 2212923 2212996 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1024 2212529 2212569 2212610 "SGPOPC" 2212615 SGPOPC (NIL T) -9 NIL 2212816 NIL) (-1023 2212063 2212340 2212446 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1022 2209486 2210255 2210977 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1021 2203505 2208907 2209003 "SFRTCAT" 2209008 SFRTCAT (NIL T T T T) -9 NIL 2209046 NIL) (-1020 2197897 2199010 2200137 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1019 2192073 2193234 2194398 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2191045 2191947 2192068 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1017 2186653 2187548 2187643 "SEXCAT" 2190256 SEXCAT (NIL T T T T T) -9 NIL 2190807 NIL) (-1016 2185626 2186580 2186648 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1015 2184017 2184602 2184904 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1014 2183540 2183725 2183755 "SETCAT" 2183872 SETCAT (NIL) -9 NIL 2183956 NIL) (-1013 2183372 2183436 2183535 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1012 2179599 2181826 2181869 "SETAGG" 2182737 SETAGG (NIL T) -9 NIL 2183075 NIL) (-1011 2179205 2179357 2179594 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1010 2176312 2179152 2179200 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1009 2175778 2176088 2176188 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1008 2174905 2175271 2175332 "SEGXCAT" 2175618 SEGXCAT (NIL T T) -9 NIL 2175738 NIL) (-1007 2173830 2174098 2174141 "SEGCAT" 2174663 SEGCAT (NIL T) -9 NIL 2174884 NIL) (-1006 2173510 2173575 2173688 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1005 2172576 2173046 2173254 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1004 2172154 2172433 2172509 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1003 2171519 2171655 2171859 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1002 2170585 2171332 2171514 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1001 2169838 2170533 2170580 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1000 2161323 2169705 2169833 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-999 2160183 2160473 2160790 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-998 2159489 2159701 2159889 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-997 2158839 2158996 2159172 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-996 2158412 2158643 2158671 "SASTCAT" 2158676 SASTCAT (NIL) -9 NIL 2158689 NIL) (-995 2157879 2158304 2158378 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-994 2157482 2157523 2157694 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-993 2157113 2157154 2157311 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-992 2150194 2157030 2157108 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-991 2148844 2149173 2149569 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-990 2147605 2147966 2148266 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-989 2147229 2147450 2147531 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-988 2144689 2145323 2145776 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-987 2144528 2144561 2144629 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-986 2144019 2144322 2144413 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-985 2139647 2140515 2141426 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-984 2128600 2134002 2134096 "RSETCAT" 2138152 RSETCAT (NIL T T T T) -9 NIL 2139240 NIL) (-983 2127138 2127780 2128595 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-982 2120912 2122357 2123864 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-981 2118794 2119351 2119423 "RRCC" 2120496 RRCC (NIL T T) -9 NIL 2120837 NIL) (-980 2118319 2118518 2118789 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-979 2117789 2118099 2118197 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-978 2090341 2101054 2101118 "RPOLCAT" 2111592 RPOLCAT (NIL T T T) -9 NIL 2114737 NIL) (-977 2084440 2087263 2090336 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-976 2080607 2084188 2084326 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-975 2078935 2079674 2079930 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-974 2074578 2077390 2077418 "RNS" 2077680 RNS (NIL) -9 NIL 2077932 NIL) (-973 2073481 2073968 2074505 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-972 2072599 2073000 2073200 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-971 2071737 2072299 2072327 "RNG" 2072387 RNG (NIL) -9 NIL 2072441 NIL) (-970 2071626 2071660 2071732 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-969 2070888 2071393 2071433 "RMODULE" 2071438 RMODULE (NIL T) -9 NIL 2071464 NIL) (-968 2069827 2069933 2070263 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-967 2066826 2069417 2069710 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-966 2059621 2061960 2062072 "RMATCAT" 2065377 RMATCAT (NIL NIL NIL T T T) -9 NIL 2066343 NIL) (-965 2059138 2059317 2059616 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-964 2058706 2058917 2058958 "RLINSET" 2059019 RLINSET (NIL T) -9 NIL 2059063 NIL) (-963 2058351 2058432 2058558 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-962 2057197 2057928 2057956 "RING" 2058011 RING (NIL) -9 NIL 2058103 NIL) (-961 2057042 2057098 2057192 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-960 2056096 2056363 2056619 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-959 2047236 2055724 2055925 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-958 2046461 2046972 2047011 "RGBCSPC" 2047068 RGBCSPC (NIL T) -9 NIL 2047119 NIL) (-957 2045495 2045981 2046020 "RGBCMDL" 2046248 RGBCMDL (NIL T) -9 NIL 2046362 NIL) (-956 2045207 2045276 2045377 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-955 2044970 2045011 2045106 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-954 2043394 2043824 2044204 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-953 2040981 2041649 2042317 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-952 2040531 2040629 2040789 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-951 2040153 2040251 2040292 "RETRACT" 2040423 RETRACT (NIL T) -9 NIL 2040510 NIL) (-950 2040033 2040064 2040148 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-949 2039635 2039907 2039974 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-948 2038115 2039006 2039203 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-947 2037806 2037867 2037963 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-946 2037549 2037590 2037695 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-945 2037284 2037325 2037434 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-944 2032355 2033806 2035021 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-943 2029454 2030212 2031020 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-942 2027423 2028045 2028645 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-941 2020211 2025974 2026410 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-940 2019523 2019803 2019952 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-939 2019008 2019123 2019288 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-938 2014601 2018411 2018632 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-937 2013833 2014032 2014245 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-936 2011123 2011961 2012843 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-935 2007705 2008741 2009800 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-934 2007541 2007594 2007622 "REAL" 2007627 REAL (NIL) -9 NIL 2007662 NIL) (-933 2007031 2007335 2007426 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-932 2006511 2006589 2006794 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-931 2005744 2005936 2006147 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-930 2004632 2004929 2005296 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-929 2002899 2003369 2003902 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-928 2001821 2002098 2002485 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-927 2000648 2000957 2001376 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-926 1993996 1997508 1997536 "RCFIELD" 1998813 RCFIELD (NIL) -9 NIL 1999543 NIL) (-925 1992614 1993226 1993923 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-924 1988818 1990706 1990747 "RCAGG" 1991814 RCAGG (NIL T) -9 NIL 1992275 NIL) (-923 1988545 1988655 1988813 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-922 1987990 1988119 1988280 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-921 1987607 1987686 1987805 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-920 1987022 1987172 1987322 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-919 1986804 1986854 1986925 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-918 1979246 1985922 1986230 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-917 1968948 1979113 1979241 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-916 1968582 1968675 1968703 "RADCAT" 1968860 RADCAT (NIL) -9 NIL NIL NIL) (-915 1968420 1968480 1968577 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-914 1966673 1968251 1968340 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-913 1966354 1966403 1966530 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-912 1958641 1962725 1962765 "QUATCAT" 1963543 QUATCAT (NIL T) -9 NIL 1964307 NIL) (-911 1955891 1957171 1958547 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-910 1951731 1955841 1955886 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-909 1949251 1950765 1950806 "QUAGG" 1951181 QUAGG (NIL T) -9 NIL 1951357 NIL) (-908 1948853 1949125 1949192 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-907 1947859 1948489 1948652 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-906 1947540 1947589 1947716 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1937140 1943309 1943349 "QFCAT" 1944007 QFCAT (NIL T) -9 NIL 1945000 NIL) (-904 1934024 1935463 1937046 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-903 1933570 1933704 1933834 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-902 1927766 1928927 1930089 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-901 1927185 1927365 1927597 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-900 1925007 1925535 1925958 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-899 1923906 1924148 1924465 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-898 1922267 1922465 1922818 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-897 1918023 1919239 1919280 "PTRANFN" 1921164 PTRANFN (NIL T) -9 NIL NIL NIL) (-896 1916670 1917015 1917336 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-895 1916363 1916426 1916533 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-894 1910570 1915141 1915181 "PTCAT" 1915473 PTCAT (NIL T) -9 NIL 1915626 NIL) (-893 1910263 1910304 1910428 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-892 1909142 1909458 1909792 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-891 1898021 1900582 1902891 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-890 1891061 1893804 1893898 "PSETCAT" 1896872 PSETCAT (NIL T T T T) -9 NIL 1897681 NIL) (-889 1889511 1890245 1891056 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-888 1888830 1889025 1889053 "PSCURVE" 1889321 PSCURVE (NIL) -9 NIL 1889488 NIL) (-887 1884432 1886252 1886316 "PSCAT" 1887151 PSCAT (NIL T T T) -9 NIL 1887390 NIL) (-886 1883746 1884028 1884427 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-885 1882143 1883058 1883321 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-884 1881634 1881937 1882028 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-883 1872654 1875076 1877264 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-882 1870530 1871954 1871994 "PRQAGG" 1872177 PRQAGG (NIL T) -9 NIL 1872280 NIL) (-881 1869703 1870149 1870177 "PROPLOG" 1870316 PROPLOG (NIL) -9 NIL 1870430 NIL) (-880 1869378 1869441 1869564 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-879 1868814 1868953 1869125 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-878 1867062 1867825 1868122 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-877 1866614 1866746 1866874 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-876 1861055 1865554 1866374 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-875 1860884 1860922 1860981 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-874 1860323 1860463 1860614 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-873 1858791 1859210 1859676 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-872 1858508 1858569 1858597 "PRIMCAT" 1858721 PRIMCAT (NIL) -9 NIL NIL NIL) (-871 1857679 1857875 1858103 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-870 1853713 1857629 1857674 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-869 1853412 1853474 1853585 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-868 1850548 1853061 1853294 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-867 1849999 1850156 1850184 "PPCURVE" 1850389 PPCURVE (NIL) -9 NIL 1850525 NIL) (-866 1849612 1849857 1849940 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-865 1847368 1847789 1848381 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-864 1846811 1846875 1847108 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-863 1843531 1844017 1844628 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-862 1829122 1835251 1835315 "POLYCAT" 1838800 POLYCAT (NIL T T T) -9 NIL 1840677 NIL) (-861 1824632 1826779 1829117 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-860 1824289 1824363 1824482 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-859 1823982 1824045 1824152 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-858 1817345 1823715 1823874 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-857 1816232 1816495 1816771 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-856 1814836 1815149 1815479 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-855 1810151 1814786 1814831 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-854 1808639 1809050 1809425 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-853 1807396 1807705 1808101 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-852 1807067 1807151 1807268 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-851 1806646 1806721 1806895 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-850 1806132 1806228 1806388 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-849 1805604 1805724 1805878 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-848 1804499 1804717 1805094 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-847 1804110 1804195 1804347 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-846 1803661 1803743 1803924 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-845 1803353 1803434 1803547 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-844 1802866 1802941 1803149 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-843 1802214 1802342 1802544 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-842 1801576 1801710 1801873 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-841 1800880 1801062 1801243 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-840 1800603 1800677 1800771 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-839 1797171 1798360 1799276 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-838 1796255 1796456 1796691 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-837 1791820 1793204 1794346 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-836 1771741 1776628 1781475 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-835 1771481 1771534 1771637 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-834 1770922 1771056 1771236 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-833 1768931 1770152 1770180 "PID" 1770377 PID (NIL) -9 NIL 1770504 NIL) (-832 1768719 1768762 1768837 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-831 1767906 1768566 1768653 "PI" NIL PI (NIL) -8 NIL NIL 1768693) (-830 1767358 1767509 1767685 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-829 1763686 1764644 1765549 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-828 1762050 1762339 1762705 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-827 1761492 1761607 1761768 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-826 1758033 1760361 1760714 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-825 1756639 1756919 1757244 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-824 1755404 1755658 1756006 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-823 1754114 1754341 1754693 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-822 1751124 1752684 1752712 "PFECAT" 1753305 PFECAT (NIL) -9 NIL 1753682 NIL) (-821 1750747 1750912 1751119 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-820 1749571 1749853 1750154 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-819 1747753 1748140 1748570 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-818 1743723 1747679 1747748 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-817 1739626 1740773 1741640 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-816 1737558 1738647 1738688 "PERMCAT" 1739087 PERMCAT (NIL T) -9 NIL 1739384 NIL) (-815 1737254 1737301 1737424 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-814 1733703 1735384 1736029 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-813 1731172 1733458 1733579 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-812 1730041 1730304 1730345 "PDSPC" 1730878 PDSPC (NIL T) -9 NIL 1731123 NIL) (-811 1729408 1729674 1730036 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-810 1728043 1729036 1729077 "PDRING" 1729082 PDRING (NIL T) -9 NIL 1729109 NIL) (-809 1726753 1727542 1727595 "PDMOD" 1727600 PDMOD (NIL T T) -9 NIL 1727703 NIL) (-808 1725846 1726058 1726307 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-807 1725451 1725518 1725572 "PDDOM" 1725737 PDDOM (NIL T T) -9 NIL 1725817 NIL) (-806 1725303 1725339 1725446 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-805 1725089 1725128 1725217 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-804 1723406 1724160 1724459 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-803 1723095 1723158 1723267 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-802 1721233 1721663 1722114 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-801 1714853 1716682 1717974 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-800 1714484 1714557 1714689 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-799 1712186 1712866 1713347 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-798 1710390 1710818 1711221 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-797 1709836 1710084 1710125 "PATMAB" 1710232 PATMAB (NIL T) -9 NIL 1710315 NIL) (-796 1708483 1708887 1709144 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-795 1708021 1708152 1708193 "PATAB" 1708198 PATAB (NIL T) -9 NIL 1708370 NIL) (-794 1706564 1707001 1707424 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-793 1706242 1706317 1706419 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-792 1705931 1705994 1706103 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-791 1705736 1705782 1705849 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-790 1705414 1705489 1705591 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-789 1705103 1705166 1705275 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-788 1704794 1704864 1704961 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-787 1704483 1704546 1704655 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-786 1703644 1704023 1704202 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-785 1703251 1703349 1703468 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-784 1702219 1702644 1702863 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-783 1700884 1701538 1701898 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-782 1693974 1700288 1700482 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-781 1686395 1693472 1693656 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-780 1683120 1685035 1685075 "PADICCT" 1685656 PADICCT (NIL NIL) -9 NIL 1685938 NIL) (-779 1681110 1683070 1683115 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-778 1680272 1680482 1680748 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-777 1679614 1679757 1679961 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-776 1677995 1679022 1679300 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-775 1677519 1677778 1677875 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-774 1676578 1677256 1677428 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-773 1667000 1669869 1672068 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-772 1666392 1666706 1666832 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-771 1665669 1665864 1665892 "OUTBCON" 1666210 OUTBCON (NIL) -9 NIL 1666376 NIL) (-770 1665377 1665507 1665664 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-769 1664758 1664903 1665064 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-768 1664129 1664556 1664645 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-767 1663544 1663959 1663987 "OSGROUP" 1663992 OSGROUP (NIL) -9 NIL 1664014 NIL) (-766 1662508 1662769 1663054 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-765 1659777 1662383 1662503 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-764 1656918 1659528 1659654 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-763 1654936 1655464 1656024 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-762 1648278 1650818 1650858 "OREPCAT" 1653179 OREPCAT (NIL T) -9 NIL 1654281 NIL) (-761 1646304 1647238 1648273 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-760 1645501 1645772 1645800 "ORDTYPE" 1646105 ORDTYPE (NIL) -9 NIL 1646263 NIL) (-759 1645035 1645246 1645496 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-758 1644497 1644873 1645030 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-757 1643991 1644354 1644382 "ORDSET" 1644387 ORDSET (NIL) -9 NIL 1644409 NIL) (-756 1642556 1643578 1643606 "ORDRING" 1643611 ORDRING (NIL) -9 NIL 1643639 NIL) (-755 1641804 1642361 1642389 "ORDMON" 1642394 ORDMON (NIL) -9 NIL 1642415 NIL) (-754 1641108 1641270 1641462 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-753 1640319 1640827 1640855 "ORDFIN" 1640920 ORDFIN (NIL) -9 NIL 1640994 NIL) (-752 1639713 1639852 1640038 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-751 1636388 1638681 1639087 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-750 1635795 1636150 1636255 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-749 1635603 1635648 1635714 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-748 1634904 1635180 1635221 "OPERCAT" 1635432 OPERCAT (NIL T) -9 NIL 1635528 NIL) (-747 1634716 1634783 1634899 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-746 1632082 1633518 1634014 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-745 1631503 1631630 1631804 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1628404 1630642 1631008 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-743 1625170 1627816 1627856 "OMSAGG" 1627917 OMSAGG (NIL T) -9 NIL 1627981 NIL) (-742 1623582 1624841 1625009 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-741 1621778 1623019 1623047 "OINTDOM" 1623052 OINTDOM (NIL) -9 NIL 1623073 NIL) (-740 1619208 1620780 1621109 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-739 1618462 1619158 1619203 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-738 1615664 1618303 1618457 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-737 1607201 1615535 1615659 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-736 1600765 1607092 1607196 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-735 1599737 1599974 1600247 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-734 1597371 1598041 1598745 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-733 1593148 1594108 1595131 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-732 1592656 1592744 1592938 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-731 1590105 1590687 1591360 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-730 1587500 1588008 1588604 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-729 1584497 1585036 1585682 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-728 1583852 1583960 1584218 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-727 1583010 1583135 1583356 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-726 1579294 1580090 1581003 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-725 1578734 1578829 1579051 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-724 1578415 1578464 1578591 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-723 1575018 1578214 1578333 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-722 1574178 1574800 1574828 "OCAMON" 1574833 OCAMON (NIL) -9 NIL 1574854 NIL) (-721 1568390 1571204 1571244 "OC" 1572339 OC (NIL T) -9 NIL 1573195 NIL) (-720 1566390 1567316 1568296 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-719 1565806 1566224 1566252 "OASGP" 1566257 OASGP (NIL) -9 NIL 1566277 NIL) (-718 1564869 1565518 1565546 "OAMONS" 1565586 OAMONS (NIL) -9 NIL 1565629 NIL) (-717 1564014 1564595 1564623 "OAMON" 1564680 OAMON (NIL) -9 NIL 1564731 NIL) (-716 1563910 1563942 1564009 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-715 1562661 1563435 1563463 "OAGROUP" 1563609 OAGROUP (NIL) -9 NIL 1563701 NIL) (-714 1562452 1562539 1562656 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-713 1562192 1562248 1562336 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-712 1557254 1558817 1560344 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-711 1553949 1554983 1556018 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-710 1553059 1553292 1553510 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-709 1541920 1544948 1547396 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-708 1535941 1541343 1541437 "NTSCAT" 1541442 NTSCAT (NIL T T T T) -9 NIL 1541480 NIL) (-707 1535282 1535461 1535654 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-706 1534975 1535038 1535145 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-705 1522642 1532595 1533405 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-704 1511651 1522507 1522637 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-703 1510371 1510696 1511053 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-702 1509207 1509471 1509829 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-701 1508374 1508507 1508723 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-700 1506692 1507011 1507417 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-699 1506405 1506439 1506563 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-698 1506224 1506259 1506328 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-697 1506000 1506190 1506219 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-696 1505564 1505631 1505808 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-695 1503850 1504927 1505182 "NNI" NIL NNI (NIL) -8 NIL NIL 1505529) (-694 1502578 1502915 1503279 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-693 1501555 1501807 1502109 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-692 1500642 1501207 1501248 "NETCLT" 1501419 NETCLT (NIL T) -9 NIL 1501500 NIL) (-691 1499546 1499813 1500094 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-690 1499345 1499388 1499463 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-689 1497876 1498264 1498684 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-688 1496509 1497475 1497503 "NASRING" 1497613 NASRING (NIL) -9 NIL 1497693 NIL) (-687 1496354 1496410 1496504 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-686 1495283 1495961 1495989 "NARNG" 1496106 NARNG (NIL) -9 NIL 1496197 NIL) (-685 1495059 1495144 1495278 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-684 1493825 1494579 1494619 "NAALG" 1494698 NAALG (NIL T) -9 NIL 1494759 NIL) (-683 1493695 1493730 1493820 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-682 1488674 1489859 1491045 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-681 1488069 1488156 1488340 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-680 1480079 1484573 1484625 "MTSCAT" 1485685 MTSCAT (NIL T T) -9 NIL 1486199 NIL) (-679 1479845 1479905 1479997 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-678 1479671 1479710 1479770 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-677 1476537 1479222 1479263 "MSETAGG" 1479268 MSETAGG (NIL T) -9 NIL 1479302 NIL) (-676 1472807 1475582 1475901 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-675 1469081 1470904 1471644 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-674 1468718 1468791 1468920 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-673 1468371 1468412 1468556 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-672 1466236 1466573 1467004 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-671 1459634 1466135 1466231 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-670 1459159 1459200 1459408 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-669 1458718 1458767 1458950 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1457992 1458085 1458304 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1456609 1456970 1457360 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-666 1456130 1456197 1456236 "MONOPC" 1456296 MONOPC (NIL T) -9 NIL 1456515 NIL) (-665 1455581 1455917 1456045 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-664 1454723 1455102 1455130 "MONOID" 1455348 MONOID (NIL) -9 NIL 1455492 NIL) (-663 1454382 1454532 1454718 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-662 1443320 1450190 1450249 "MONOGEN" 1450923 MONOGEN (NIL T T) -9 NIL 1451379 NIL) (-661 1441332 1442218 1443201 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-660 1440046 1440590 1440618 "MONADWU" 1441009 MONADWU (NIL) -9 NIL 1441244 NIL) (-659 1439594 1439794 1440041 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-658 1438871 1439172 1439200 "MONAD" 1439407 MONAD (NIL) -9 NIL 1439519 NIL) (-657 1438638 1438734 1438866 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-656 1437028 1437798 1438077 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-655 1436162 1436689 1436729 "MODULE" 1436734 MODULE (NIL T) -9 NIL 1436772 NIL) (-654 1435841 1435967 1436157 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-653 1433552 1434438 1434752 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-652 1430731 1432148 1432661 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-651 1429365 1429939 1430215 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-650 1418584 1428030 1428443 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-649 1415540 1417584 1417853 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1414624 1414991 1415181 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-647 1414193 1414242 1414421 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-646 1412018 1413014 1413054 "MLO" 1413471 MLO (NIL T) -9 NIL 1413711 NIL) (-645 1409899 1410426 1411021 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-644 1409367 1409463 1409617 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-643 1409037 1409113 1409236 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-642 1408249 1408435 1408663 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-641 1407742 1407858 1408014 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-640 1407114 1407228 1407413 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-639 1406141 1406414 1406691 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-638 1405574 1405662 1405833 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-637 1402732 1403611 1404490 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-636 1401399 1401747 1402100 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-635 1398060 1400523 1400564 "MDAGG" 1400821 MDAGG (NIL T) -9 NIL 1400966 NIL) (-634 1397334 1397498 1397698 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-633 1396412 1396698 1396928 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-632 1394509 1395086 1395647 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-631 1390415 1394099 1394346 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-630 1386764 1387533 1388267 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-629 1385517 1385686 1386015 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-628 1375168 1378623 1378699 "MATCAT" 1383687 MATCAT (NIL T T T) -9 NIL 1385133 NIL) (-627 1372449 1373755 1375163 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-626 1370850 1371210 1371594 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-625 1369983 1370180 1370402 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-624 1368734 1369060 1369387 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-623 1367896 1368298 1368474 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-622 1367565 1367629 1367752 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-621 1367213 1367286 1367400 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-620 1366748 1366863 1367005 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-619 1364957 1365725 1366026 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-618 1364451 1364753 1364843 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-617 1357964 1362766 1362807 "LZSTAGG" 1363584 LZSTAGG (NIL T) -9 NIL 1363874 NIL) (-616 1355083 1356517 1357959 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-615 1352470 1353436 1353919 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-614 1352051 1352330 1352404 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-613 1344368 1351912 1352046 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-612 1343731 1343876 1344104 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-611 1341215 1341913 1342625 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-610 1339327 1339650 1340098 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-609 1332631 1338396 1338437 "LSAGG" 1338499 LSAGG (NIL T) -9 NIL 1338577 NIL) (-608 1330325 1331424 1332626 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-607 1327805 1329674 1329923 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-606 1327472 1327563 1327686 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-605 1327143 1327222 1327250 "LOGIC" 1327361 LOGIC (NIL) -9 NIL 1327443 NIL) (-604 1327038 1327067 1327138 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-603 1326357 1326515 1326708 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-602 1325142 1325391 1325742 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-601 1320964 1323763 1323803 "LODOCAT" 1324235 LODOCAT (NIL T) -9 NIL 1324446 NIL) (-600 1320757 1320833 1320959 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-599 1317757 1320634 1320752 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-598 1314855 1317707 1317752 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-597 1311942 1314785 1314850 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-596 1310995 1311170 1311472 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-595 1309127 1310257 1310510 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-594 1304226 1307286 1307327 "LNAGG" 1308189 LNAGG (NIL T) -9 NIL 1308624 NIL) (-593 1303613 1303880 1304221 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-592 1300185 1301126 1301763 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-591 1299447 1299952 1299992 "LMODULE" 1299997 LMODULE (NIL T) -9 NIL 1300023 NIL) (-590 1296778 1299183 1299306 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-589 1296346 1296557 1296598 "LLINSET" 1296659 LLINSET (NIL T) -9 NIL 1296703 NIL) (-588 1296022 1296282 1296341 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-587 1295621 1295701 1295840 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-586 1294072 1294420 1294819 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-585 1293243 1293439 1293667 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-584 1286442 1292499 1292753 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-583 1286019 1286252 1286293 "LINSET" 1286298 LINSET (NIL T) -9 NIL 1286331 NIL) (-582 1284920 1285642 1285809 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-581 1283186 1283941 1283981 "LINEXP" 1284467 LINEXP (NIL T) -9 NIL 1284740 NIL) (-580 1281808 1282795 1282976 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-579 1280635 1280907 1281209 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-578 1279848 1280437 1280547 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-577 1277398 1278120 1278870 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-576 1276028 1276325 1276716 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-575 1274821 1275423 1275463 "LIECAT" 1275603 LIECAT (NIL T) -9 NIL 1275754 NIL) (-574 1274695 1274728 1274816 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-573 1268951 1274385 1274613 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-572 1259367 1268627 1268783 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-571 1255819 1256768 1257703 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-570 1254443 1255351 1255379 "LFCAT" 1255586 LFCAT (NIL) -9 NIL 1255725 NIL) (-569 1252682 1253012 1253357 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-568 1250199 1250864 1251545 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-567 1247211 1248189 1248692 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-566 1246702 1247005 1247096 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-565 1245409 1245733 1246133 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-564 1244675 1244760 1244986 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-563 1239678 1243243 1243779 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-562 1239303 1239353 1239513 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-561 1238074 1238847 1238887 "LALG" 1238948 LALG (NIL T) -9 NIL 1239006 NIL) (-560 1237857 1237934 1238069 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-559 1235710 1237125 1237376 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-558 1235539 1235569 1235610 "KVTFROM" 1235672 KVTFROM (NIL T) -9 NIL NIL NIL) (-557 1234355 1235070 1235259 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-556 1234184 1234214 1234255 "KRCFROM" 1234317 KRCFROM (NIL T) -9 NIL NIL NIL) (-555 1233286 1233483 1233778 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-554 1233115 1233145 1233186 "KONVERT" 1233248 KONVERT (NIL T) -9 NIL NIL NIL) (-553 1232944 1232974 1233015 "KOERCE" 1233077 KOERCE (NIL T) -9 NIL NIL NIL) (-552 1232514 1232607 1232739 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-551 1230567 1231461 1231833 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-550 1221780 1228406 1228460 "KDAGG" 1228836 KDAGG (NIL T T) -9 NIL 1229062 NIL) (-549 1221245 1221477 1221775 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-548 1214224 1221037 1221183 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-547 1213874 1214156 1214219 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-546 1212844 1213343 1213592 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-545 1211970 1212419 1212624 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-544 1210834 1211326 1211626 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-543 1210116 1210515 1210676 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-542 1209826 1210062 1210111 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-541 1204081 1209516 1209744 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-540 1203499 1203832 1203952 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-539 1199665 1201676 1201730 "IXAGG" 1202657 IXAGG (NIL T T) -9 NIL 1203114 NIL) (-538 1198871 1199242 1199660 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-537 1197838 1198113 1198376 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-536 1196500 1196707 1197000 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-535 1195451 1195673 1195956 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-534 1195126 1195189 1195312 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-533 1194388 1194760 1194934 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-532 1192364 1193664 1193938 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-531 1181912 1187681 1188838 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-530 1181157 1181309 1181545 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-529 1180648 1180951 1181042 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-528 1179941 1180032 1180245 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-527 1179073 1179298 1179538 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-526 1177486 1177867 1178295 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-525 1177271 1177315 1177391 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-524 1176121 1176418 1176713 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-523 1175394 1175745 1175896 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-522 1174597 1174728 1174941 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-521 1172752 1173249 1173793 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-520 1169833 1171101 1171790 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-519 1169658 1169698 1169758 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-518 1165656 1169584 1169653 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-517 1163659 1165595 1165651 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-516 1163030 1163329 1163459 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-515 1162483 1162771 1162903 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-514 1161564 1162189 1162315 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-513 1160974 1161468 1161496 "IOBCON" 1161501 IOBCON (NIL) -9 NIL 1161522 NIL) (-512 1160545 1160609 1160791 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-511 1152589 1154960 1157285 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-510 1149700 1150483 1151347 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-509 1149377 1149474 1149591 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-508 1146819 1149313 1149372 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-507 1144931 1145460 1146027 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-506 1144433 1144547 1144687 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-505 1142817 1143223 1143685 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-504 1140596 1141190 1141801 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-503 1137969 1138579 1139299 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-502 1137373 1137531 1137739 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-501 1136892 1136978 1137166 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-500 1135097 1135618 1136075 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-499 1128179 1129832 1131561 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-498 1127545 1127707 1127880 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-497 1125418 1125882 1126426 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-496 1123544 1124494 1124522 "INTDOM" 1124821 INTDOM (NIL) -9 NIL 1125026 NIL) (-495 1123097 1123299 1123539 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-494 1118904 1121376 1121430 "INTCAT" 1122226 INTCAT (NIL T) -9 NIL 1122542 NIL) (-493 1118469 1118589 1118716 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-492 1117309 1117481 1117787 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-491 1116882 1116978 1117135 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-490 1108165 1116789 1116877 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-489 1107463 1108018 1108083 "INT8" NIL INT8 (NIL) -8 NIL NIL 1108117) (-488 1106760 1107315 1107380 "INT64" NIL INT64 (NIL) -8 NIL NIL 1107414) (-487 1106057 1106612 1106677 "INT32" NIL INT32 (NIL) -8 NIL NIL 1106711) (-486 1105354 1105909 1105974 "INT16" NIL INT16 (NIL) -8 NIL NIL 1106008) (-485 1101817 1105273 1105349 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-484 1095874 1099357 1099385 "INS" 1100315 INS (NIL) -9 NIL 1100974 NIL) (-483 1093936 1094854 1095801 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-482 1092995 1093218 1093493 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-481 1092209 1092350 1092547 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-480 1091199 1091340 1091577 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-479 1090351 1090515 1090775 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-478 1089631 1089746 1089934 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-477 1088370 1088639 1088963 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-476 1087650 1087791 1087974 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-475 1087313 1087385 1087483 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-474 1084391 1085877 1086400 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-473 1083990 1084097 1084211 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-472 1083146 1083791 1083892 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-471 1081996 1082264 1082585 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-470 1080986 1081926 1081991 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-469 1080611 1080691 1080808 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-468 1079525 1080070 1080274 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-467 1075620 1076675 1077618 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-466 1074474 1074797 1074825 "INBCON" 1075338 INBCON (NIL) -9 NIL 1075604 NIL) (-465 1073928 1074193 1074469 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-464 1073422 1073724 1073814 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-463 1072879 1073188 1073293 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-462 1071719 1071858 1072173 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-461 1070143 1070410 1070747 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-460 1064986 1070074 1070138 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-459 1064366 1064700 1064815 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-458 1059326 1063804 1063990 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-457 1058356 1059248 1059321 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-456 1057928 1058005 1058059 "IEVALAB" 1058266 IEVALAB (NIL T T) -9 NIL NIL NIL) (-455 1057683 1057763 1057923 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-454 1057068 1057295 1057452 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-453 1056061 1056988 1057063 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-452 1055124 1055981 1056056 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-451 1054206 1054853 1054990 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-450 1052569 1053140 1053191 "IDPC" 1053697 IDPC (NIL T T) -9 NIL 1054010 NIL) (-449 1051857 1052491 1052564 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-448 1051027 1051779 1051852 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-447 1050720 1050933 1050993 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-446 1050424 1050464 1050503 "IDEMOPC" 1050508 IDEMOPC (NIL T) -9 NIL 1050645 NIL) (-445 1047495 1048376 1049268 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-444 1041121 1042398 1043437 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-443 1040383 1040513 1040712 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-442 1039556 1040055 1040193 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-441 1037945 1038276 1038667 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-440 1033867 1037901 1037940 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-439 1031125 1031749 1032444 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-438 1029351 1029831 1030364 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-437 1027333 1029257 1029346 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-436 1023347 1027271 1027328 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-435 1016926 1022311 1022779 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-434 1016494 1016557 1016730 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-433 1015986 1016135 1016163 "HYPCAT" 1016370 HYPCAT (NIL) -9 NIL NIL NIL) (-432 1015642 1015795 1015981 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-431 1015255 1015500 1015583 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-430 1015088 1015137 1015178 "HOMOTOP" 1015183 HOMOTOP (NIL T) -9 NIL 1015216 NIL) (-429 1011666 1013036 1013077 "HOAGG" 1014048 HOAGG (NIL T) -9 NIL 1014767 NIL) (-428 1010672 1011142 1011661 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-427 1003872 1010397 1010545 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-426 1002807 1003065 1003328 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-425 1001742 1002672 1002802 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-424 1000089 1001575 1001663 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-423 999404 999756 999889 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-422 993011 999337 999399 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-421 986150 992747 992898 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-420 985603 985760 985923 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-419 976903 985520 985598 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-418 976394 976697 976788 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-417 973944 976181 976360 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-416 969490 973827 973939 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-415 960767 969387 969485 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-414 952704 960136 960391 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-413 951728 952237 952265 "GROUP" 952468 GROUP (NIL) -9 NIL 952602 NIL) (-412 951271 951472 951723 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-411 949943 950282 950669 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-410 948765 949122 949173 "GRMOD" 949702 GRMOD (NIL T T) -9 NIL 949868 NIL) (-409 948584 948632 948760 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-408 944707 945918 946918 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-407 943429 943753 944068 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-406 942982 943110 943251 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-405 942055 942554 942605 "GRALG" 942758 GRALG (NIL T T) -9 NIL 942848 NIL) (-404 941774 941875 942050 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-403 938655 941467 941632 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-402 938068 938131 938388 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-401 933922 934818 935343 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-400 933097 933299 933537 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-399 928100 929027 930046 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-398 927848 927905 927994 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-397 927330 927419 927584 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-396 926839 926880 927093 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-395 925640 925923 926227 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-394 918915 925330 925491 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-393 908698 913705 914809 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-392 906750 907853 907881 "GCDDOM" 908136 GCDDOM (NIL) -9 NIL 908293 NIL) (-391 906373 906530 906745 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-390 897166 899636 902024 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-389 895301 895626 896044 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-388 894242 894431 894698 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-387 893113 893320 893624 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-386 892576 892718 892866 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-385 891188 891536 891849 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-384 889733 890054 890376 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-383 887359 887715 888120 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-382 880611 882272 883850 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-381 880263 880484 880552 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-380 879887 880108 880189 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 877984 878667 879127 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 876577 876884 877276 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 875232 875591 875915 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 874535 874659 874846 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 873509 873775 874122 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 871167 871697 872179 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 870750 870810 870979 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 869050 869964 870267 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 868198 868332 868555 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 867369 867530 867757 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 863485 866283 866324 "FSAGG" 866694 FSAGG (NIL T) -9 NIL 866955 NIL) (-368 861839 862598 863390 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 859795 860091 860635 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 858842 859024 859324 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 858523 858572 858699 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 838679 848180 848221 "FS" 852091 FS (NIL T) -9 NIL 854369 NIL) (-363 830910 834403 838382 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 830444 830571 830723 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 824967 828125 828165 "FRNAALG" 829485 FRNAALG (NIL T) -9 NIL 830083 NIL) (-360 821708 822959 824217 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 821389 821438 821565 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 819876 820433 820727 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 819162 819255 819542 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 816996 817762 818078 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 816105 816548 816589 "FRETRCT" 816594 FRETRCT (NIL T) -9 NIL 816765 NIL) (-354 815478 815756 816100 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 812222 813742 813801 "FRAMALG" 814683 FRAMALG (NIL T T) -9 NIL 814975 NIL) (-352 810818 811369 811999 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 810511 810574 810681 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 804152 810316 810506 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 803845 803908 804015 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 796153 800724 802052 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 789931 793434 793462 "FPS" 794581 FPS (NIL) -9 NIL 795137 NIL) (-346 789488 789621 789785 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 786298 788341 788369 "FPC" 788594 FPC (NIL) -9 NIL 788736 NIL) (-344 786144 786196 786293 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 784921 785630 785671 "FPATMAB" 785676 FPATMAB (NIL T) -9 NIL 785828 NIL) (-342 783351 783947 784294 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 782926 782984 783157 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 781429 782324 782498 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 780044 780549 780577 "FNCAT" 781034 FNCAT (NIL) -9 NIL 781291 NIL) (-338 779501 780011 780039 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 778088 779450 779496 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 774676 776034 776075 "FMONCAT" 777292 FMONCAT (NIL T) -9 NIL 777896 NIL) (-335 771534 772612 772665 "FMCAT" 773846 FMCAT (NIL T T) -9 NIL 774338 NIL) (-334 770234 771357 771456 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 769282 770082 770229 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 767469 767921 768415 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 765404 765940 766518 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 758790 763741 764355 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 757271 758372 758412 "FLINEXP" 758417 FLINEXP (NIL T) -9 NIL 758510 NIL) (-328 756680 756939 757266 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 755895 756054 756275 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 752778 753857 753909 "FLALG" 755136 FLALG (NIL T T) -9 NIL 755603 NIL) (-325 751949 752110 752337 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 745490 749348 749389 "FLAGG" 750644 FLAGG (NIL T) -9 NIL 751291 NIL) (-323 744598 745002 745485 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 741159 742423 742482 "FINRALG" 743610 FINRALG (NIL T T) -9 NIL 744118 NIL) (-321 740550 740815 741154 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 739848 740144 740172 "FINITE" 740368 FINITE (NIL) -9 NIL 740475 NIL) (-319 739756 739782 739843 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 737213 738434 738475 "FINAGG" 739105 FINAGG (NIL T) -9 NIL 739417 NIL) (-317 737091 737123 737208 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 729052 731643 731683 "FINAALG" 735335 FINAALG (NIL T) -9 NIL 736773 NIL) (-315 725319 726564 727687 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 723871 724290 724344 "FILECAT" 725028 FILECAT (NIL T T) -9 NIL 725244 NIL) (-313 723222 723696 723799 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 720470 722348 722376 "FIELD" 722416 FIELD (NIL) -9 NIL 722496 NIL) (-311 719495 719956 720465 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 717499 718445 718791 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 716742 716923 717142 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 712012 716680 716737 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 711674 711741 711876 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 711214 711256 711465 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 707894 708771 709548 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 703178 707826 707889 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 697857 702667 702857 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 692338 697138 697396 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 686545 691789 692000 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 685568 685778 686093 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 681008 683713 683741 "FFIELDC" 684360 FFIELDC (NIL) -9 NIL 684735 NIL) (-298 680077 680517 681003 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 679692 679750 679874 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 677836 678359 678876 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 672930 677635 677736 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 668030 672719 672826 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 662696 667821 667929 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 662150 662199 662434 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 640725 651759 651845 "FFCAT" 656995 FFCAT (NIL T T T) -9 NIL 658431 NIL) (-290 636965 638191 639497 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 631808 636896 636960 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 630700 631169 631210 "FEVALAB" 631294 FEVALAB (NIL T) -9 NIL 631555 NIL) (-287 630105 630357 630695 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 626932 627843 627958 "FDIVCAT" 629525 FDIVCAT (NIL T T T T) -9 NIL 629961 NIL) (-285 626726 626758 626927 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 626033 626126 626403 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 624519 625517 625720 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 623612 623996 624198 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 622734 623223 623363 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 614321 618964 619004 "FAXF" 620805 FAXF (NIL T) -9 NIL 621495 NIL) (-279 612237 613041 613856 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 607254 611759 611933 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 601712 604135 604187 "FAMR" 605198 FAMR (NIL T T) -9 NIL 605657 NIL) (-276 600911 601276 601707 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 599932 600853 600906 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 597526 598405 598458 "FAMONC" 599399 FAMONC (NIL T T) -9 NIL 599784 NIL) (-273 596082 597384 597521 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 594162 594523 594925 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 593439 593636 593858 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 585299 592886 593085 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 583318 583888 584474 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 580220 580862 581582 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 575377 576084 576889 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 575066 575129 575238 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 559859 574115 574541 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 550386 559179 559467 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 549880 550182 550272 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 549656 549846 549875 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 549345 549413 549526 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 548862 549004 549045 "EVALAB" 549215 EVALAB (NIL T) -9 NIL 549319 NIL) (-259 548490 548636 548857 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 545533 547128 547156 "EUCDOM" 547710 EUCDOM (NIL) -9 NIL 548059 NIL) (-257 544460 544953 545528 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 544185 544241 544341 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 543873 543937 544046 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 537644 539544 539572 "ES" 542314 ES (NIL) -9 NIL 543698 NIL) (-253 534159 535691 537483 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 533507 533660 533836 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 524813 533437 533502 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 524502 524565 524674 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 518129 521254 522687 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 514432 515528 516621 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 513261 513611 513916 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 512146 512877 512905 "ENTIRER" 512910 ENTIRER (NIL) -9 NIL 512954 NIL) (-245 512035 512069 512141 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 508668 510465 510814 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 507760 507971 508025 "ELTAGG" 508405 ELTAGG (NIL T T) -9 NIL 508616 NIL) (-242 507540 507614 507755 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 507286 507321 507375 "ELTAB" 507459 ELTAB (NIL T T) -9 NIL 507511 NIL) (-240 506537 506707 506906 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 506261 506335 506363 "ELEMFUN" 506468 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 506161 506188 506256 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 500711 504202 504243 "ELAGG" 505180 ELAGG (NIL T) -9 NIL 505640 NIL) (-236 499509 500047 500706 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 498927 499094 499250 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 497840 498159 498438 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 491233 493231 494058 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 485212 487208 488018 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 483026 483432 483903 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 474026 475939 477480 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 473139 473640 473789 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 471837 472511 472551 "DVARCAT" 472834 DVARCAT (NIL T) -9 NIL 472974 NIL) (-227 471256 471520 471832 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 463323 471124 471251 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 461661 462452 462493 "DSEXT" 462856 DSEXT (NIL T) -9 NIL 463150 NIL) (-224 460466 460990 461656 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 460190 460255 460353 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 456341 457557 458688 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 451987 453342 454406 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 450662 451023 451409 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 450348 450407 450525 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 449323 449621 449911 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 448908 448983 449133 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 441321 443433 445548 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 436838 437857 438936 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 433568 435484 435525 "DQAGG" 436154 DQAGG (NIL T) -9 NIL 436427 NIL) (-213 420111 427751 427833 "DPOLCAT" 429670 DPOLCAT (NIL T T T T) -9 NIL 430213 NIL) (-212 416519 418167 420106 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 409677 416417 416514 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 402744 409506 409672 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 402337 402597 402686 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 401751 402199 402279 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 401037 401362 401513 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 394176 400773 400924 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 391925 393242 393282 "DMEXT" 393287 DMEXT (NIL T) -9 NIL 393462 NIL) (-204 391581 391643 391787 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 385059 391066 391256 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 381729 383882 383923 "DLAGG" 384473 DLAGG (NIL T) -9 NIL 384702 NIL) (-201 380080 380951 380979 "DIVRING" 381071 DIVRING (NIL) -9 NIL 381154 NIL) (-200 379531 379775 380075 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 377959 378376 378782 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 376996 377217 377482 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 370623 376928 376991 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 359075 365383 365436 "DIRPCAT" 365692 DIRPCAT (NIL NIL T) -9 NIL 366567 NIL) (-195 357081 357851 358738 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 356528 356694 356880 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 353078 355414 355455 "DIOPS" 355887 DIOPS (NIL T) -9 NIL 356113 NIL) (-192 352738 352882 353073 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 351745 352491 352519 "DIOID" 352524 DIOID (NIL) -9 NIL 352546 NIL) (-190 350573 351402 351430 "DIFRING" 351435 DIFRING (NIL) -9 NIL 351456 NIL) (-189 350209 350307 350335 "DIFFSPC" 350454 DIFFSPC (NIL) -9 NIL 350529 NIL) (-188 349950 350052 350204 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 348853 349478 349518 "DIFFMOD" 349523 DIFFMOD (NIL T) -9 NIL 349620 NIL) (-186 348537 348594 348635 "DIFFDOM" 348756 DIFFDOM (NIL T) -9 NIL 348824 NIL) (-185 348418 348448 348532 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 346091 347612 347652 "DIFEXT" 347657 DIFEXT (NIL T) -9 NIL 347809 NIL) (-183 343256 345592 345633 "DIAGG" 345638 DIAGG (NIL T) -9 NIL 345658 NIL) (-182 342812 343002 343251 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 338158 342002 342279 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 334616 335669 336679 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 329166 333770 334097 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 327732 328024 328399 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 324852 326104 326500 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 322725 324683 324772 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 322108 322253 322435 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 319426 320150 320950 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 317535 317993 318555 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 316918 317251 317365 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 310118 316643 316791 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 308038 308548 309052 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 307677 307726 307877 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 306936 307498 307589 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 304960 305402 305762 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 304252 304541 304687 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 303703 303849 304001 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 301065 301858 302585 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 300504 300650 300821 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 298576 298887 299254 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 298133 298388 298489 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 297334 297717 297745 "CTORCAT" 297926 CTORCAT (NIL) -9 NIL 298038 NIL) (-159 297037 297171 297329 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 296530 296787 296895 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 295946 296377 296450 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 295405 295522 295675 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 291799 292555 293310 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 291290 291593 291684 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 290509 290718 290946 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 290013 290118 290322 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 289766 289800 289906 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 286705 287467 288185 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 286224 286366 286505 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 282117 284687 285179 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 281991 282018 282046 "CONDUIT" 282083 CONDUIT (NIL) -9 NIL NIL NIL) (-146 280870 281601 281629 "COMRING" 281634 COMRING (NIL) -9 NIL 281684 NIL) (-145 280035 280402 280580 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 279731 279772 279900 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 279424 279487 279594 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 268266 279374 279419 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 267727 267866 268026 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 267480 267521 267619 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 248911 261161 261201 "COMPCAT" 262202 COMPCAT (NIL T) -9 NIL 263544 NIL) (-138 241449 244962 248555 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 241208 241242 241344 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 241038 241077 241135 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 240619 240898 240972 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 240196 240437 240524 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 239391 239639 239667 "COMBOPC" 240005 COMBOPC (NIL) -9 NIL 240180 NIL) (-132 238455 238707 238949 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 235387 236071 236694 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 234267 234718 234953 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 233758 234061 234152 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 233445 233498 233623 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 232915 233225 233323 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 229435 230505 231585 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 227730 228715 228953 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 223846 225850 225891 "CLAGG" 226817 CLAGG (NIL T) -9 NIL 227350 NIL) (-123 222739 223266 223841 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 222368 222459 222599 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 220305 220812 221360 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 219266 219997 220025 "CHARZ" 220030 CHARZ (NIL) -9 NIL 220044 NIL) (-119 219060 219106 219184 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 217899 218662 218690 "CHARNZ" 218751 CHARNZ (NIL) -9 NIL 218799 NIL) (-117 215377 216474 216997 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 215085 215164 215192 "CFCAT" 215303 CFCAT (NIL) -9 NIL NIL NIL) (-115 214428 214557 214739 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 210570 213841 214121 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 209948 210135 210312 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 209476 209895 209943 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 208949 209258 209355 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 208440 208743 208834 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 207689 207849 208070 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 203789 205046 205754 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 202155 203186 203437 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 201736 202015 202089 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 201170 201423 201451 "CACHSET" 201583 CACHSET (NIL) -9 NIL 201661 NIL) (-104 200522 200937 200965 "CABMON" 201015 CABMON (NIL) -9 NIL 201071 NIL) (-103 200052 200316 200426 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 195439 199720 199881 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 194409 195113 195248 "BYTE" NIL BYTE (NIL) -8 NIL NIL 195411) (-100 192033 194176 194282 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 189617 191776 191895 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 186990 189041 189080 "BTCAT" 189147 BTCAT (NIL T) -9 NIL 189225 NIL) (-97 186741 186839 186985 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 181984 185953 185979 "BTAGG" 186090 BTAGG (NIL) -9 NIL 186198 NIL) (-95 181615 181776 181979 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 178841 181096 181297 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 178111 178263 178441 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 174648 176817 176856 "BRAGG" 177497 BRAGG (NIL T) -9 NIL 177754 NIL) (-91 173603 174098 174643 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 166137 173108 173289 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 164129 166089 166132 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 163862 163898 164009 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 162101 162534 162982 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 158067 159483 160373 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 156943 157834 157956 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 156529 156686 156712 "BOOLE" 156820 BOOLE (NIL) -9 NIL 156901 NIL) (-83 156322 156403 156524 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 155460 155987 156037 "BMODULE" 156042 BMODULE (NIL T T) -9 NIL 156106 NIL) (-81 151230 155317 155386 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 151043 151083 151122 "BINOPC" 151127 BINOPC (NIL T) -9 NIL 151172 NIL) (-79 150585 150858 150960 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 150106 150250 150388 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 143312 149836 149981 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 141050 142541 142580 "BGAGG" 142836 BGAGG (NIL T) -9 NIL 142973 NIL) (-75 140919 140957 141045 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 139770 139971 140256 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 136572 138939 139255 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 136157 136250 136276 "BASTYPE" 136447 BASTYPE (NIL) -9 NIL 136543 NIL) (-71 135927 136023 136152 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 135442 135530 135680 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 134341 135016 135201 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 134067 134072 134098 "ATTREG" 134103 ATTREG (NIL) -9 NIL NIL NIL) (-67 133672 133944 134009 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 133172 133321 133347 "ATRIG" 133548 ATRIG (NIL) -9 NIL NIL NIL) (-65 133027 133080 133167 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 132597 132828 132854 "ASTCAT" 132859 ASTCAT (NIL) -9 NIL 132889 NIL) (-63 132396 132473 132592 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 130708 132229 132317 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 129515 129828 130193 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 127475 129445 129510 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 126666 126857 127078 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 122406 126397 126511 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 116846 118744 118819 "ARR2CAT" 121331 ARR2CAT (NIL T T T) -9 NIL 122049 NIL) (-56 115807 116289 116841 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 115175 115546 115668 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 114107 114275 114571 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 113808 113862 113980 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 113191 113337 113493 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 112596 112886 113006 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 110164 111325 111648 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 109689 109949 110045 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 103384 108751 109193 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 98918 100581 100631 "AMR" 101369 AMR (NIL T T) -9 NIL 101966 NIL) (-46 98272 98552 98913 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79780 98206 98267 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 76183 79456 79625 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 73193 73853 74460 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 72572 72685 72869 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68984 69609 70201 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 58473 68677 68827 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57790 57944 58122 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 56503 57298 57336 "ALGEBRA" 57341 ALGEBRA (NIL T) -9 NIL 57381 NIL) (-37 56289 56366 56498 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34234 53451 53503 "ALAGG" 53638 ALAGG (NIL T T) -9 NIL 53796 NIL) (-35 33734 33883 33909 "AHYP" 34110 AHYP (NIL) -9 NIL NIL NIL) (-34 33030 33211 33237 "AGG" 33518 AGG (NIL) -9 NIL 33705 NIL) (-33 32819 32906 33025 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30958 31418 31818 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30453 30756 30845 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29823 30118 30274 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17381 26660 26698 "ACFS" 27305 ACFS (NIL T) -9 NIL 27544 NIL) (-28 16004 16614 17376 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11556 13935 13961 "ACF" 14840 ACF (NIL) -9 NIL 15252 NIL) (-26 10652 11058 11551 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10154 10394 10420 "ABELSG" 10512 ABELSG (NIL) -9 NIL 10577 NIL) (-24 10052 10083 10149 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9207 9581 9607 "ABELMON" 9832 ABELMON (NIL) -9 NIL 9965 NIL) (-22 8889 9029 9202 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8101 8584 8610 "ABELGRP" 8682 ABELGRP (NIL) -9 NIL 8757 NIL) (-20 7654 7850 8096 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6894 6933 "A1AGG" 6938 A1AGG (NIL T) -9 NIL 6978 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index e5fac2c6..e49c635b 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,794 +1,794 @@
-(631459 . 3577755912)
+(631451 . 3577772103)
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484))))
- (-5 *2 (-1178 (-349 (-484)))) (-5 *1 (-1207 *4)))))
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 (-485))))
+ (-5 *2 (-1179 (-350 (-485)))) (-5 *1 (-1208 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484))))
- (-5 *2 (-1178 (-484))) (-5 *1 (-1207 *4)))))
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 (-485))))
+ (-5 *2 (-1179 (-485))) (-5 *1 (-1208 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-85))
- (-5 *1 (-1207 *4)))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-85))
+ (-5 *1 (-1208 *4)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3))
- (-4 *4 (-1013)) (-4 *3 (-139 *5))))
+ (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3))
+ (-4 *4 (-1014)) (-4 *3 (-139 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-352 *3 *4))
- (-4 *4 (-1154 *3))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4))
+ (-4 *4 (-1155 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3))
- (-5 *2 (-1178 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-360 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3))))
+ (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3))
+ (-5 *2 (-1179 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-347 *1)) (-4 *1 (-363 *3)) (-4 *3 (-495)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-496)) (-4 *3 (-1014))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-402 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473))))
- ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1154 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-474))))
+ ((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *1 *2)
- (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5))
- (-4 *5 (-553 (-1089))) (-4 *4 (-717)) (-4 *5 (-756))))
+ (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5))
+ (-4 *5 (-554 (-1090))) (-4 *4 (-718)) (-4 *5 (-757))))
((*1 *1 *2)
(OR
- (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
- (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484)))
- (-4 *5 (-553 (-1089))))
- (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485)))
+ (-4 *5 (-554 (-1090))))
+ (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
- (-12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8)))
- (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1072))
- (-5 *1 (-981 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8)))
- (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1072))
- (-5 *1 (-1058 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1108))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-14 *5 (-583 (-1089))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1206 *4 *5 *6))
- (-14 *6 (-583 (-1089)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-857 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6))
- (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-14 *6 (-583 (-1089))) (-5 *2 (-857 (-937 (-349 *4))))
- (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1084 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-1084 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6))
- (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1059 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))
- (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1089)))
- (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1206 *4 *5 *6))
- (-14 *5 (-583 (-1089))))))
-(((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3))
- (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-4 *7 (-861 *6 *4 *5))
- (-5 *2 (-347 (-1084 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1084 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-391)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-347 *1)) (-4 *1 (-861 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-391)) (-5 *2 (-347 *3))
- (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-391)) (-4 *7 (-861 *6 *4 *5))
- (-5 *2 (-347 (-1084 (-349 *7)))) (-5 *1 (-1086 *4 *5 *6 *7))
- (-5 *3 (-1084 (-349 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1133))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-1158 *4 *3))
- (-4 *3 (-13 (-1154 *4) (-495) (-10 -8 (-15 -3144 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-14 *5 (-583 (-1089)))
- (-5 *2 (-583 (-1059 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))))
- (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-583 (-937 (-349 *4)))))
- (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089)))))
+ (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1600 *8)))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1073))
+ (-5 *1 (-982 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1600 *8)))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1073))
+ (-5 *1 (-1059 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1095))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1109))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1109))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-14 *5 (-584 (-1090))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *6 (-584 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-14 *6 (-584 (-1090))) (-5 *2 (-858 (-938 (-350 *4))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-584 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-1085 (-938 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1060 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))
+ (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1090)))
+ (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-584 (-1090))))))
+(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3))
+ (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-4 *7 (-862 *6 *4 *5))
+ (-5 *2 (-348 (-1085 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1085 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-348 *1)) (-4 *1 (-862 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-348 *3))
+ (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5))
+ (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7))
+ (-5 *3 (-1085 (-350 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-1159 *4 *3))
+ (-4 *3 (-13 (-1155 *4) (-496) (-10 -8 (-15 -3145 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-14 *5 (-584 (-1090)))
+ (-5 *2 (-584 (-1060 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-584 (-1090))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-14 *5 (-584 (-1090))) (-5 *2 (-584 (-584 (-938 (-350 *4)))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-584 (-1090)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7))
- (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7))
- (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6))
- (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-583 (-1089)))
- (-5 *2 (-583 (-583 (-329)))) (-5 *1 (-936)) (-5 *5 (-329))))
+ (-12 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1090)))
+ (-5 *2 (-584 (-584 (-330)))) (-5 *1 (-937)) (-5 *5 (-330))))
((*1 *2 *3)
- (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-583 (-937 (-349 *4)))))
- (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089)))))
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-14 *5 (-584 (-1090))) (-5 *2 (-584 (-584 (-938 (-350 *4)))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-584 (-1090)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7))
- (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089)))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7))
- (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7))
- (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6))
- (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-14 *5 (-583 (-1089)))
- (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4))))))
- (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089)))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-584 (-1090))) (-14 *6 (-584 (-1090))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-14 *5 (-584 (-1090)))
+ (-5 *2 (-584 (-2 (|:| -1747 (-1085 *4)) (|:| -3225 (-584 (-858 *4))))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-584 (-1090)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5))))))
- (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089)))
- (-14 *7 (-583 (-1089)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5))))))
+ (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090)))
+ (-14 *7 (-584 (-1090)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5))))))
- (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089)))
- (-14 *7 (-583 (-1089)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5))))))
- (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089)))
- (-14 *7 (-583 (-1089)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4))))))
- (-5 *1 (-1206 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1089)))
- (-14 *6 (-583 (-1089))))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5))))))
+ (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090)))
+ (-14 *7 (-584 (-1090)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5))))))
+ (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090)))
+ (-14 *7 (-584 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-2 (|:| -1747 (-1085 *4)) (|:| -3225 (-584 (-858 *4))))))
+ (-5 *1 (-1207 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-584 (-1090))))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6)))
- (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089)))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6)))
+ (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6)))
- (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089)))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6)))
+ (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-584 (-1090))) (-14 *7 (-584 (-1090)))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
- (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-583 (-1089))))))
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
+ (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-584 (-1090))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1205 *4))
- (-4 *4 (-1128))))
+ (-12 (-5 *3 (-1 (-1069 *4) (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1206 *4))
+ (-4 *4 (-1129))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-583 (-1068 *5)) (-583 (-1068 *5)))) (-5 *4 (-484))
- (-5 *2 (-583 (-1068 *5))) (-5 *1 (-1205 *5)) (-4 *5 (-1128)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1204)))))
-(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1204)))))
+ (-12 (-5 *3 (-1 (-584 (-1069 *5)) (-584 (-1069 *5)))) (-5 *4 (-485))
+ (-5 *2 (-584 (-1069 *5))) (-5 *1 (-1206 *5)) (-4 *5 (-1129)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1205)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-4 *6 (-495)) (-5 *2 (-583 (-265 *6)))
- (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-961))))
- ((*1 *2 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495))))
+ (-12 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-265 *6)))
+ (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-962))))
+ ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496))))
((*1 *2 *3)
- (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1114)))
- (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 *5))
- (-5 *1 (-521 *4 *5))))
+ (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1115)))
+ (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5))
+ (-5 *1 (-522 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-519 (-349 (-857 *4))))
- (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 (-265 *4)))
- (-5 *1 (-525 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1063 *3))))
+ (-12 (-5 *3 (-520 (-350 (-858 *4))))
+ (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-265 *4)))
+ (-5 *1 (-526 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1064 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755))
- (-4 *2 (-1063 *4))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756))
+ (-4 *2 (-1064 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1194 (-1089) *3)) (-5 *1 (-1200 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-1195 (-1090) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-756))
- (-4 *4 (-961)))))
+ (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-757))
+ (-4 *4 (-962)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1194 (-1089) *3)) (-4 *3 (-961)) (-5 *1 (-1200 *3))))
+ (-12 (-5 *2 (-1195 (-1090) *3)) (-4 *3 (-962)) (-5 *1 (-1201 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))
- (-5 *1 (-1203 *3 *4)))))
+ (-12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
+ (-5 *1 (-1204 *3 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| (-1089)) (|:| |c| (-1200 *3)))))
- (-5 *1 (-1200 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-584 (-2 (|:| |k| (-1090)) (|:| |c| (-1201 *3)))))
+ (-5 *1 (-1201 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4)))))
- (-5 *1 (-1203 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830))))
+ (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1204 *3 *4)))))
+ (-5 *1 (-1204 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))
((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114))) (-5 *1 (-181 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1128))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-333 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115))) (-5 *1 (-181 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3956 *3) (-694)))
+ (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3957 *3) (-695)))
(-14 *7
- (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6))
- (-2 (|:| -2400 *5) (|:| -2401 *6))))
- (-5 *1 (-400 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756))
- (-4 *2 (-861 *4 *6 (-773 *3)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
+ (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6))
+ (-2 (|:| -2401 *5) (|:| -2402 *6))))
+ (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757))
+ (-4 *2 (-862 *4 *6 (-774 *3)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-473)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-474)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1026))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-323 *3))
- (-4 *4 (-323 *3))))
+ (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-324 *3))
+ (-4 *4 (-324 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *2 (-323 *3))))
+ (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *2 (-324 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-657))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-658))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495))
- (-5 *1 (-882 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1 *1) (-4 *1 (-1025)))
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-496))
+ (-5 *1 (-883 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1026))))
+ ((*1 *1 *1 *1) (-4 *1 (-1026)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4))
+ (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4))
(-4 *5 (-196 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4))
+ (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4))
(-4 *2 (-196 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1039 *3 *4 *2))
- (-4 *2 (-861 *3 (-469 *4) *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1125))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-663))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-663))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1040 *3 *4 *2))
+ (-4 *2 (-862 *3 (-470 *4) *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1126))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-664))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-664))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-484)) (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-21))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))
- ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1089)))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
+ ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1090)))))
((*1 *1 *1)
- (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756)))
- (-14 *3 (-583 (-1089)))))
- ((*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013))))
+ (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757)))
+ (-14 *3 (-584 (-1090)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014))))
((*1 *1 *1)
- (-12 (-14 *2 (-583 (-1089))) (-4 *3 (-146)) (-4 *5 (-196 (-3956 *2) (-694)))
+ (-12 (-14 *2 (-584 (-1090))) (-4 *3 (-146)) (-4 *5 (-196 (-3957 *2) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5))
- (-2 (|:| -2400 *4) (|:| -2401 *5))))
- (-5 *1 (-400 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756))
- (-4 *7 (-861 *3 *5 (-773 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759))))
- ((*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961))))
+ (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5))
+ (-2 (|:| -2401 *4) (|:| -2402 *5))))
+ (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757))
+ (-4 *7 (-862 *3 *5 (-774 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760))))
+ ((*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962))))
((*1 *1 *1)
- (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663))))
- ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961))))
+ (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664))))
+ ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))))
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-584 (-1090)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129))
+ (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129))
+ (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129))
+ (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
(-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484))
- (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485))
+ (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
(-5 *1 (-109 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146))
(-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-961) (-756)))
- (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-962) (-757)))
+ (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1090)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1128))
- (-4 *7 (-1128)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-249 *3))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1129))
+ (-4 *7 (-1129)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-249 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
(-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-254))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-254))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-550 *6)) (-4 *6 (-254))
- (-4 *2 (-1128)) (-5 *1 (-255 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-551 *6)) (-4 *6 (-254))
+ (-4 *2 (-1129)) (-5 *1 (-255 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-254)) (-4 *2 (-254))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-254)) (-4 *2 (-254))
(-5 *1 (-256 *5 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
(-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312))
- (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7))
- (-4 *9 (-312)) (-4 *10 (-1154 *9)) (-4 *11 (-1154 (-349 *10)))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
+ (-4 *9 (-312)) (-4 *10 (-1155 *9)) (-4 *11 (-1155 (-350 *10)))
(-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-291 *9 *10 *11))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1133)) (-4 *8 (-1133)) (-4 *6 (-1154 *5))
- (-4 *7 (-1154 (-349 *6))) (-4 *9 (-1154 *8)) (-4 *2 (-291 *8 *9 *10))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1134)) (-4 *8 (-1134)) (-4 *6 (-1155 *5))
+ (-4 *7 (-1155 (-350 *6))) (-4 *9 (-1155 *8)) (-4 *2 (-291 *8 *9 *10))
(-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7))
- (-4 *10 (-1154 (-349 *9)))))
+ (-4 *10 (-1155 (-350 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-323 *6))
- (-5 *1 (-324 *5 *4 *6 *2)) (-4 *4 (-323 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *2 (-324 *6))
+ (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-347 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-348 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-495)) (-4 *6 (-495))
- (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496))
+ (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-349 *5)) (-4 *5 (-495)) (-4 *6 (-495))
- (-5 *2 (-349 *6)) (-5 *1 (-350 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-496)) (-4 *6 (-496))
+ (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-355 *5 *6 *7 *8)) (-4 *5 (-258))
- (-4 *6 (-904 *5)) (-4 *7 (-1154 *6)) (-4 *8 (-13 (-352 *6 *7) (-950 *6)))
- (-4 *9 (-258)) (-4 *10 (-904 *9)) (-4 *11 (-1154 *10))
- (-5 *2 (-355 *9 *10 *11 *12)) (-5 *1 (-356 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-352 *10 *11) (-950 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258))
+ (-4 *6 (-905 *5)) (-4 *7 (-1155 *6)) (-4 *8 (-13 (-353 *6 *7) (-951 *6)))
+ (-4 *9 (-258)) (-4 *10 (-905 *9)) (-4 *11 (-1155 *10))
+ (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-353 *10 *11) (-951 *10)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-360 *6))
- (-5 *1 (-358 *4 *5 *2 *6)) (-4 *4 (-360 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6))
+ (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-363 *6))
- (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-363 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-364 *6))
+ (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-368 *6))
- (-5 *1 (-369 *5 *4 *6 *2)) (-4 *4 (-368 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-428 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-369 *6))
+ (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1129))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-312)) (-4 *6 (-312))
- (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312))
+ (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2136 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312))
- (-4 *6 (-312)) (-5 *2 (-2 (|:| -2136 *6) (|:| |coeff| *6)))
- (-5 *1 (-520 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -2137 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312))
+ (-4 *6 (-312)) (-5 *2 (-2 (|:| -2137 *6) (|:| |coeff| *6)))
+ (-5 *1 (-521 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312))
- (-4 *2 (-312)) (-5 *1 (-520 *5 *2))))
+ (-4 *2 (-312)) (-5 *1 (-521 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
(-4 *5 (-312)) (-4 *6 (-312))
(-5 *2
(-2 (|:| |mainpart| *6)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-520 *5 *6))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-521 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7))
- (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-536 *8))
- (-5 *1 (-534 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-537 *8))
+ (-5 *1 (-535 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-536 *7))
- (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8))
- (-5 *1 (-534 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-537 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8))
+ (-5 *1 (-535 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1068 *7))
- (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8))
- (-5 *1 (-534 *6 *7 *8))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1069 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8))
+ (-5 *1 (-535 *6 *7 *8))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7))
- (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-583 *8))
- (-5 *1 (-586 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-584 *8))
+ (-5 *1 (-587 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1129))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-323 *5))
- (-4 *7 (-323 *5)) (-4 *2 (-627 *8 *9 *10))
- (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7))
- (-4 *9 (-323 *8)) (-4 *10 (-323 *8))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5))
+ (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10))
+ (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7))
+ (-4 *9 (-324 *8)) (-4 *10 (-324 *8))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961))
- (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *2 (-627 *8 *9 *10))
- (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7))
- (-4 *9 (-323 *8)) (-4 *10 (-323 *8))))
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962))
+ (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10))
+ (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7))
+ (-4 *9 (-324 *8)) (-4 *10 (-324 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1154 *5))
- (-4 *2 (-1154 (-349 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2))
- (-4 *4 (-1154 (-349 *6))) (-4 *8 (-1154 *7))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1155 *5))
+ (-4 *2 (-1155 (-350 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2))
+ (-4 *4 (-1155 (-350 *6))) (-4 *8 (-1155 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756))
- (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5))))
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757))
+ (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717))
- (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
- (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718))
+ (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961))
- (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961))
- (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6))
- (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6))
+ (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-5 *1 (-744 *5 *6))))
+ (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-5 *1 (-745 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-5 *1 (-751 *5 *6))))
+ (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-5 *1 (-752 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-4 *7 (-1013)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961))
- (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961))
- (-4 *6 (-717))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962))
+ (-4 *6 (-718))
(-4 *2
- (-13 (-1013)
- (-10 -8 (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694))))))
- (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7))))
+ (-13 (-1014)
+ (-10 -8 (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695))))))
+ (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961))
- (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6))
- (-4 *5 (-717))
+ (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6))
+ (-4 *5 (-718))
(-4 *6
- (-13 (-756)
- (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089))))))
- (-5 *1 (-897 *4 *5 *6 *2))))
+ (-13 (-757)
+ (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090))))))
+ (-5 *1 (-898 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-904 *6))
- (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6))
+ (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6))
- (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6))
+ (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962))
(-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962))
(-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694))
- (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
- (-4 *2 (-965 *5 *6 *10 *11 *12))
- (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695))
+ (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
+ (-4 *2 (-966 *5 *6 *10 *11 *12))
+ (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10))
(-4 *12 (-196 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-755)) (-4 *5 (-1128))
- (-4 *6 (-1128)) (-5 *2 (-583 *6)) (-5 *1 (-1002 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1129))
+ (-4 *6 (-1129)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755))
- (-4 *2 (-1063 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756))
+ (-4 *2 (-1064 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-1068 *6)) (-5 *1 (-1070 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1069 *6)) (-5 *1 (-1071 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7))
- (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8))
- (-5 *1 (-1071 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-1069 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8))
+ (-5 *1 (-1072 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-961)) (-4 *6 (-961))
- (-5 *2 (-1084 *6)) (-5 *1 (-1085 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-5 *2 (-1085 *6)) (-5 *1 (-1086 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1106 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1107 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-961))
- (-4 *6 (-961)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1139 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1089))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-1145 *6)) (-5 *1 (-1146 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1146 *6)) (-5 *1 (-1147 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-755)) (-4 *5 (-1128))
- (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1146 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-756)) (-4 *5 (-1129))
+ (-4 *6 (-1129)) (-5 *2 (-1069 *6)) (-5 *1 (-1147 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1089)) (-4 *6 (-961))
- (-4 *8 (-961)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1148 *5 *6 *7 *8))
- (-14 *7 (-1089))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1148 *5 *6)) (-14 *5 (-1090)) (-4 *6 (-962))
+ (-4 *8 (-962)) (-5 *2 (-1148 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8))
+ (-14 *7 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1154 *6))
- (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1154 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1155 *6))
+ (-5 *1 (-1156 *5 *4 *6 *2)) (-4 *4 (-1155 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-961))
- (-4 *6 (-961)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1160 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1089))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5 *7 *9)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1160 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1171 *6))
- (-5 *1 (-1169 *5 *6 *4 *2)) (-4 *4 (-1171 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1172 *6))
+ (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1178 *5))
- (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1179 *5))
+ (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-754)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-34)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209))))
- ((*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1203 *3 *4)) (-4 *4 (-755)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-34)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209))))
+ ((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885))))
((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-961)))))
+ (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-962)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-961)))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-962)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-325 *4 *2)) (-4 *4 (-756))
+ (-12 (-5 *3 (-1204 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-757))
(-4 *2 (-146))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-739 *4)) (-4 *1 (-1198 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-754)))))
+ (-12 (-5 *3 (-740 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-755)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5))
- (-4 *4 (-1013))))
- ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))
- ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961))))
- ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-754)))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5))
+ (-4 *4 (-1014))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-755)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
- ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-312))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179))))
((*1 *1 *1 *1)
- (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1128)))
- (-12 (-5 *1 (-249 *2)) (-4 *2 (-412)) (-4 *2 (-1128)))))
+ (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129)))
+ (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129)))))
((*1 *1 *1 *1) (-4 *1 (-312)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-329))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1038 *3 (-550 *1))) (-4 *3 (-495)) (-4 *3 (-1013))
- (-4 *1 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-412)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-473)))
+ (-12 (-5 *2 (-1039 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014))
+ (-4 *1 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-413)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-474)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-663) *4))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-664) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-663) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-312))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-664) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-312))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4))
- (-4 *3 (|SubsetCategory| (-663) *4))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4))
+ (-4 *3 (|SubsetCategory| (-664) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4))
- (-4 *2 (|SubsetCategory| (-663) *4))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))
+ (-4 *2 (|SubsetCategory| (-664) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)) (-4 *2 (-312))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2)) (-4 *2 (-312))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-961))
- (-14 *3 (-583 (-1089))) (-14 *4 (-583 (-694))) (-14 *5 (-694))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))
+ (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-962))
+ (-14 *3 (-584 (-1090))) (-14 *4 (-584 (-695))) (-14 *5 (-695))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2))
+ (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2))
(-4 *6 (-196 *3 *2)) (-4 *2 (-312))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-312))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-312))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717))
- (-14 *6 (-583 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694))))
+ (|partial| -12 (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718))
+ (-14 *6 (-584 *3)) (-5 *1 (-1192 *2 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-754)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
+ (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-755)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1090)))))
((*1 *2 *1)
- (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1090)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
- (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
+ (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756))
- (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694)))
+ (-12 (-5 *3 (-1085 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757))
+ (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695)))
(-5 *1 (-272 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830))))
+ ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831))))
((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-409 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1155 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 (-694)))))
+ (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 (-695)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-694))))
+ (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716))))
+ (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717))))
((*1 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1171 *3)) (-5 *2 (-484))))
+ (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1172 *3)) (-5 *2 (-485))))
((*1 *2 *1)
- (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1140 *3))
- (-5 *2 (-349 (-484)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830)))))
+ (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1141 *3))
+ (-5 *2 (-350 (-485)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-1202 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1178 *3)) (-4 *3 (-312)) (-14 *6 (-1178 (-630 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-14 *6 (-1179 (-631 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1129))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178 (-630 *4))) (-4 *4 (-146))
- (-5 *2 (-1178 (-630 (-349 (-857 *4))))) (-5 *1 (-163 *4))))
+ (-12 (-5 *3 (-1179 (-631 *4))) (-4 *4 (-146))
+ (-5 *2 (-1179 (-631 (-350 (-858 *4))))) (-5 *1 (-163 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1004 (-265 *4))) (-4 *4 (-13 (-756) (-495) (-553 (-329))))
- (-5 *2 (-1004 (-329))) (-5 *1 (-219 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229))))
+ (-12 (-5 *3 (-1005 (-265 *4))) (-4 *4 (-13 (-757) (-496) (-554 (-330))))
+ (-5 *2 (-1005 (-330))) (-5 *1 (-219 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229))))
((*1 *2 *1)
- (-12 (-4 *2 (-1154 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146))
+ (-12 (-4 *2 (-1155 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146))
(-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3)))
- (-14 *5 (-1089)) (-14 *6 *4)
- (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391)))
+ (-12 (-5 *2 (-1160 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3)))
+ (-14 *5 (-1090)) (-14 *6 *4)
+ (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392)))
(-5 *1 (-264 *3 *4 *5 *6))))
((*1 *2 *3)
(-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2))
@@ -797,11160 +797,11160 @@
(-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3))
(-4 *3 (-280 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
- (-5 *2 (-1203 *3 *4))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
+ (-5 *2 (-1204 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
- (-5 *2 (-1194 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
+ (-5 *2 (-1195 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146))))
((*1 *1 *2)
- (-12 (-5 *2 (-349 (-857 (-349 *3)))) (-4 *3 (-495)) (-4 *3 (-1013))
- (-4 *1 (-363 *3))))
+ (-12 (-5 *2 (-350 (-858 (-350 *3)))) (-4 *3 (-496)) (-4 *3 (-1014))
+ (-4 *1 (-364 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-857 (-349 *3))) (-4 *3 (-495)) (-4 *3 (-1013))
- (-4 *1 (-363 *3))))
+ (-12 (-5 *2 (-858 (-350 *3))) (-4 *3 (-496)) (-4 *3 (-1014))
+ (-4 *1 (-364 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-349 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3))))
+ (-12 (-5 *2 (-350 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1038 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1013))
- (-4 *1 (-363 *3))))
+ (-12 (-5 *2 (-1039 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014))
+ (-4 *1 (-364 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-371 *3 *4))
- (-4 *3 (-13 (-146) (-38 (-349 (-484)))))))
+ (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-372 *3 *4))
+ (-4 *3 (-13 (-146) (-38 (-350 (-485)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-371 *2 *3)) (-4 *2 (-13 (-146) (-38 (-349 (-484)))))
- (-4 *3 (-13 (-756) (-21)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-376))))
- ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-376)) (-5 *1 (-378))))
+ (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-485)))))
+ (-4 *3 (-13 (-757) (-21)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-377))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379))))
((*1 *1 *2)
- (-12 (-5 *2 (-1178 (-349 (-857 *3)))) (-4 *3 (-146))
- (-14 *6 (-1178 (-630 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *4 (-830))
- (-14 *5 (-583 (-1089)))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-407))))
+ (-12 (-5 *2 (-1179 (-350 (-858 *3)))) (-4 *3 (-146))
+ (-14 *6 (-1179 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-831))
+ (-14 *5 (-584 (-1090)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408))))
+ ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408))))
((*1 *1 *2)
- (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3)
- (-5 *1 (-413 *3 *4 *5))))
+ (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1090)) (-14 *5 *3)
+ (-5 *1 (-414 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-413 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-462))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-539))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-622))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-463))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-540))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1200 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-623))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014))))
((*1 *1 *2)
- (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-323 *3))
- (-4 *2 (-323 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647))))
+ (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-324 *3))
+ (-4 *2 (-324 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1073)) (-5 *1 (-648))))
((*1 *2 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -3953 *3) (|:| -3937 *4)))) (-4 *3 (-961))
- (-4 *4 (-663)) (-5 *1 (-674 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-687))))
- ((*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-767))))
- ((*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-265 (-484))) (-5 *1 (-784))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-349 (-857 (-48)))) (-5 *2 (-265 (-484))) (-5 *1 (-784))))
- ((*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2) (-12 (-5 *2 (-349 (-347 *3))) (-4 *3 (-258)) (-5 *1 (-825 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-349 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-416)) (-5 *2 (-265 *4)) (-5 *1 (-831 *4)) (-4 *4 (-495))))
- ((*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-946 *3)) (-4 *3 (-1128))))
- ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-946 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3954 *3) (|:| -3938 *4)))) (-4 *3 (-962))
+ (-4 *4 (-664)) (-5 *1 (-675 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-688))))
+ ((*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-768))))
+ ((*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-785))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-350 (-858 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-785))))
+ ((*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-826 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-947 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-947 *2)) (-4 *2 (-1129))))
((*1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2))))
- ((*1 *2 *3) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-495))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2))))
+ ((*1 *2 *3) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496))))
((*1 *1 *2)
- (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1039 *3 *4 *2))
- (-4 *2 (-861 *3 (-469 *4) *4))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1040 *3 *4 *2))
+ (-4 *2 (-862 *3 (-470 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1039 *3 *2 *4))
- (-4 *4 (-861 *3 (-469 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-772))))
- ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1057))))
- ((*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961))))
+ (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1040 *3 *2 *4))
+ (-4 *4 (-862 *3 (-470 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-773))))
+ ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1058))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-962))))
((*1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3)
- (-5 *1 (-1088 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101 (-1089) (-378))) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1102 *3)) (-4 *3 (-1013))))
- ((*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1109 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1121 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1090)) (-14 *5 *3)
+ (-5 *1 (-1089 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102 (-1090) (-379))) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1103 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1110 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1122 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-962))))
((*1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1128)) (-5 *1 (-1145 *3))))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-1129)) (-5 *1 (-1146 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3)
- (-5 *1 (-1168 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2)))
- ((*1 *2 *3) (-12 (-5 *3 (-407)) (-5 *2 (-1181)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1181))))
- ((*1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756))
+ (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1090)) (-14 *5 *3)
+ (-5 *1 (-1169 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2)))
+ ((*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1182)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1182))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1204 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146))))
((*1 *2 *1)
- (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756))
+ (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146))))
((*1 *1 *2)
- (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
- (-5 *1 (-1199 *3 *4)))))
+ (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
+ (-5 *1 (-1200 *3 *4)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
- (-5 *1 (-606 *3 *4))))
+ (|partial| -12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
+ (-5 *1 (-607 *3 *4))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756))
+ (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1004 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495))
+ (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496))
(-5 *1 (-131 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-584 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1090)))))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-239)))
((*1 *1 *2)
- (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-5 *1 (-566 *3 *4 *5))
- (-14 *5 (-830))))
+ (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-5 *1 (-567 *3 *4 *5))
+ (-14 *5 (-831))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756))
- (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757))
+ (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-654 (-349 (-484))))
- (-4 *3 (-756)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-655 (-350 (-485))))
+ (-4 *3 (-757)) (-4 *4 (-146)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-239)))
((*1 *2 *3)
- (-12 (-5 *3 (-347 *4)) (-4 *4 (-495))
- (-5 *2 (-583 (-2 (|:| -3953 (-694)) (|:| |logand| *4)))) (-5 *1 (-271 *4))))
+ (-12 (-5 *3 (-348 *4)) (-4 *4 (-496))
+ (-5 *2 (-584 (-2 (|:| -3954 (-695)) (|:| |logand| *4)))) (-5 *1 (-271 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830))))
+ (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756))
- (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757))
+ (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-654 (-349 (-484))))
- (-4 *3 (-756)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-655 (-350 (-485))))
+ (-4 *3 (-757)) (-4 *4 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))
- (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4))))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
+ (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756))
+ (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-739 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-740 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756))
+ (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-739 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013))))
+ (-12 (-5 *2 (-740 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-484)) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961))))
+ (-12 (-5 *4 (-485)) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-962))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1198 *4 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1199 *4 *3)) (-4 *3 (-962)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961))))
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1155 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))
((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))))
-(((*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))))
+(((*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146))))
((*1 *1 *1)
- (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756))
- (-4 *3 (-13 (-146) (-654 (-349 (-484))))) (-14 *4 (-830))))
- ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))))
+ (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757))
+ (-4 *3 (-13 (-146) (-655 (-350 (-485))))) (-14 *4 (-831))))
+ ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))
+ (-12 (-5 *2 (-695)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
(-4 *4 (-146))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146)))))
+ (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
+ (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1123 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756))
- (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *4 (-312)) (-5 *2 (-830)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-831)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
((*1 *2)
- (-12 (-4 *4 (-312)) (-5 *2 (-743 (-830))) (-5 *1 (-279 *3 *4))
+ (-12 (-4 *4 (-312)) (-5 *2 (-744 (-831))) (-5 *1 (-279 *3 *4))
(-4 *3 (-280 *4))))
- ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830))))
- ((*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))))
+ ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831))))
+ ((*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))))
(((*1 *2)
- (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
- ((*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-694)))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-695)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1154 *4))
- (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1154 *5)) (-14 *6 (-830))))
+ (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1155 *4))
+ (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1155 *5)) (-14 *6 (-831))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-4 *3 (-319))))
- ((*1 *1 *1) (-12 (-4 *1 (-1197 *2)) (-4 *2 (-312)) (-4 *2 (-319)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-4 *3 (-320))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-312)) (-4 *2 (-320)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756))
- (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757))
+ (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1192 *3 *4 *5 *6))))
+ (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1193 *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717))
- (-4 *7 (-756)) (-5 *1 (-1192 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718))
+ (-4 *7 (-757)) (-5 *1 (-1193 *5 *6 *7 *8)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1192 *3 *4 *5 *6))))
+ (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1193 *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717))
- (-4 *7 (-756)) (-5 *1 (-1192 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718))
+ (-4 *7 (-757)) (-5 *1 (-1193 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 (-1192 *4 *5 *6 *7)))
- (-5 *1 (-1192 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 (-1193 *4 *5 *6 *7)))
+ (-5 *1 (-1193 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756))
- (-5 *2 (-583 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-5 *2 (-584 (-1193 *6 *7 *8 *9))) (-5 *1 (-1193 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961))
- (-14 *5 (-583 (-1089))) (-14 *6 (-583 *3)) (-14 *7 *3)))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962))
+ (-14 *5 (-584 (-1090))) (-14 *6 (-584 *3)) (-14 *7 *3)))
((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717))
- (-14 *8 (-583 *5)) (-5 *2 (-1184)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10))
- (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718))
+ (-14 *8 (-584 *5)) (-5 *2 (-1185)) (-5 *1 (-1192 *4 *5 *6 *7 *8 *9 *10))
+ (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-459))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *2))
- (-4 *3 (-13 (-1013) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1190)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))))
+ (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1054 *3 *2))
+ (-4 *3 (-13 (-1014) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1191)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))))
- (-4 *4 (-1154 *3))
+ (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))))
+ (-4 *4 (-1155 *3))
(-5 *2
- (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-352 *3 *4))))
+ (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-484)) (-4 *4 (-1154 *3))
+ (-12 (-5 *3 (-485)) (-4 *4 (-1155 *3))
(-5 *2
- (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-5 *1 (-692 *4 *5)) (-4 *5 (-352 *3 *4))))
+ (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-5 *1 (-693 *4 *5)) (-4 *5 (-353 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3))
+ (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3))
(-5 *2
- (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5))))
+ (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3))
+ (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3))
(-5 *2
- (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-5 *1 (-1188 *4 *3 *5 *6)) (-4 *6 (-352 *3 *5)))))
+ (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-5 *1 (-1189 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4)))
- (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5))))
+ (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))))
- (-4 *4 (-1154 *3))
+ (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))))
+ (-4 *4 (-1155 *3))
(-5 *2
- (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-352 *3 *4))))
+ (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4))))
((*1 *2)
- (-12 (-4 *3 (-1154 (-484)))
+ (-12 (-4 *3 (-1155 (-485)))
(-5 *2
- (-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484))
- (|:| |basisInv| (-630 (-484)))))
- (-5 *1 (-692 *3 *4)) (-4 *4 (-352 (-484) *3))))
+ (-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485))
+ (|:| |basisInv| (-631 (-485)))))
+ (-5 *1 (-693 *3 *4)) (-4 *4 (-353 (-485) *3))))
((*1 *2)
- (-12 (-4 *3 (-299)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4))
+ (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4))
(-5 *2
- (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4))))
- (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5))))
+ (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4))))
+ (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-299)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4))
+ (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4))
(-5 *2
- (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4))))
- (-5 *1 (-1188 *3 *4 *5 *6)) (-4 *6 (-352 *4 *5)))))
+ (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4))))
+ (-5 *1 (-1189 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694)) (-4 *6 (-312)) (-5 *4 (-1121 *6))
- (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1187 *6)) (-5 *5 (-1068 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *6 (-312)) (-5 *4 (-1122 *6))
+ (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1188 *6)) (-5 *5 (-1069 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1089)) (-4 *5 (-312)) (-5 *2 (-583 (-1121 *5)))
- (-5 *1 (-1187 *5)) (-5 *4 (-1121 *5)))))
+ (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-584 (-1122 *5)))
+ (-5 *1 (-1188 *5)) (-5 *4 (-1122 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1084 (-857 *4)) (-857 *4)))
- (-5 *1 (-1187 *4)) (-4 *4 (-312)))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1085 (-858 *4)) (-858 *4)))
+ (-5 *1 (-1188 *4)) (-4 *4 (-312)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1089)) (-4 *5 (-312)) (-5 *2 (-1068 (-1068 (-857 *5))))
- (-5 *1 (-1187 *5)) (-5 *4 (-1068 (-857 *5))))))
+ (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-1069 (-1069 (-858 *5))))
+ (-5 *1 (-1188 *5)) (-5 *4 (-1069 (-858 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1068 (-857 *4)) (-1068 (-857 *4))))
- (-5 *1 (-1187 *4)) (-4 *4 (-312)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1069 (-858 *4)) (-1069 (-858 *4))))
+ (-5 *1 (-1188 *4)) (-4 *4 (-312)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1068 (-857 *4)) (-1068 (-857 *4))))
- (-5 *1 (-1187 *4)) (-4 *4 (-312)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1069 (-858 *4)) (-1069 (-858 *4))))
+ (-5 *1 (-1188 *4)) (-4 *4 (-312)))))
(((*1 *2)
- (-12 (-14 *4 (-694)) (-4 *5 (-1128)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5))
+ (-12 (-14 *4 (-695)) (-4 *5 (-1129)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5))
(-4 *3 (-196 *4 *5))))
((*1 *2)
(-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
((*1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-146))))
((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485))
+ (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717))
- (-5 *2 (-484)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830))))
- ((*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-312)) (-5 *2 (-107)))))
-(((*1 *1) (-5 *1 (-1184))))
-(((*1 *2 *3) (-12 (-5 *3 (-329)) (-5 *2 (-179)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1183)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183))))
- ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))))
-(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))
- ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))))
-(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))
- ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))))
-(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))
- ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))))
-(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))
- ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))))
-(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))
- ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))))
-(((*1 *1) (-5 *1 (-1182))))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718))
+ (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831))))
+ ((*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-312)) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-1185))))
+(((*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1184))))
+ ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1184)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184))))
+ ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1184)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *1) (-5 *1 (-1183))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1182))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1072)) (-5 *1 (-1182))))
- ((*1 *1 *1) (-5 *1 (-1182))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-1078 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))))
+ (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1183))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1073)) (-5 *1 (-1183))))
+ ((*1 *1 *1) (-5 *1 (-1183))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-1079 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1047 *4)) (-4 *4 (-961))))
+ (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1048 *4)) (-4 *4 (-962))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-1181))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1185)) (-5 *1 (-1182))))
((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
(-5 *1 (-221))))
((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
- (-5 *3 (-583 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))
+ (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))
((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-484)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))
+ (-12 (-5 *3 (-485)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))
((*1 *2 *1 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
- (-5 *2 (-1184)) (-5 *1 (-1182))))
+ (-5 *2 (-1185)) (-5 *1 (-1183))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
- (-5 *1 (-1182))))
+ (-5 *1 (-1183))))
((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1185)) (-5 *1 (-1182))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
- ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
+ ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115)))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1181))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181))))
- ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1181))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181))))
+ (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1182))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))
- ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181))))
- ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))))
-(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-407))))
- ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1181))))
- ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1181)))))
-(((*1 *1) (-5 *1 (-1181))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-221))) (-5 *1 (-1181))))
- ((*1 *1 *1) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-408))))
+ ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1182)))))
+(((*1 *1) (-5 *1 (-1182))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-584 (-221))) (-5 *1 (-1182))))
+ ((*1 *1 *1) (-5 *1 (-1182))))
(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-783))
- (-5 *2 (-1184)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-784))
+ (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-1178
+ (-1179
(-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179))
- (|:| |deltaY| (-179)) (|:| -3849 (-484)) (|:| -3847 (-484))
- (|:| |spline| (-484)) (|:| -3878 (-484)) (|:| |axesColor| (-783))
- (|:| -3850 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))))
- (-5 *1 (-1181)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178 (-3 (-407) "undefined"))) (-5 *1 (-1181)))))
+ (|:| |deltaY| (-179)) (|:| -3850 (-485)) (|:| -3848 (-485))
+ (|:| |spline| (-485)) (|:| -3879 (-485)) (|:| |axesColor| (-784))
+ (|:| -3851 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))))
+ (-5 *1 (-1182)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179 (-3 (-408) "undefined"))) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-407)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-407)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1182)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 (-329))) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-407))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-407))))
+ (-12 (-5 *2 (-584 (-330))) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1185)) (-5 *1 (-1182))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
- ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
+ ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-407)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830))
- (-5 *6 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831))
+ (-5 *6 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-1181))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221)))
- (-5 *2 (-1181)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221)))
+ (-5 *2 (-1182)) (-5 *1 (-1181)))))
(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830))
- (-5 *6 (-583 (-221))) (-5 *2 (-407)) (-5 *1 (-1180))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831))
+ (-5 *6 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1181))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-407)) (-5 *1 (-1180))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-408)) (-5 *1 (-1181))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-407))
- (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-408))
+ (-5 *1 (-1181)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
(-5 *1 (-59 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3994))
- (-4 *1 (-124 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (|has| *1 (-6 -3995))
+ (-4 *1 (-124 *2)) (-4 *2 (-1129))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2))
- (-4 *2 (-1128))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2))
+ (-4 *2 (-1129))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2))
- (-4 *2 (-1128))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2))
+ (-4 *2 (-1129))))
((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2004 (-1084 *4)) (|:| |deg| (-830))))
- (-5 *1 (-175 *4 *5)) (-5 *3 (-1084 *4)) (-4 *5 (-495))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2005 (-1085 *4)) (|:| |deg| (-831))))
+ (-5 *1 (-175 *4 *5)) (-5 *3 (-1085 *4)) (-4 *5 (-496))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694))
- (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-198 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695))
+ (-4 *6 (-1129)) (-4 *2 (-1129)) (-5 *1 (-198 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1154 *4))
+ (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1155 *4))
(-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-495)) (-4 *2 (-1013))))
+ ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1014))))
((*1 *1 *1)
- (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1154 *2))
- (-4 *4 (-1154 (-349 *3))) (-4 *5 (-291 *2 *3 *4))))
+ (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1155 *2))
+ (-4 *4 (-1155 (-350 *3))) (-4 *5 (-291 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128))
- (-5 *1 (-324 *5 *4 *2 *6)) (-4 *4 (-323 *5)) (-4 *6 (-323 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1129)) (-4 *2 (-1129))
+ (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013))
- (-5 *1 (-369 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2))))
- ((*1 *1 *1) (-5 *1 (-434)))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014))
+ (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2))))
+ ((*1 *1 *1) (-5 *1 (-435)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
- (-5 *1 (-584 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
+ (-5 *1 (-585 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-323 *5))
- (-4 *7 (-323 *5)) (-4 *8 (-323 *2)) (-4 *9 (-323 *2))
- (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7))
- (-4 *10 (-627 *2 *8 *9))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-324 *5))
+ (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2))
+ (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7))
+ (-4 *10 (-628 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1154 *3))))
+ ((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-312))
- (-4 *3 (-146)) (-4 *1 (-661 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1154 *3))))
+ (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-312))
+ (-4 *3 (-146)) (-4 *1 (-662 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
- (-5 *1 (-870 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
+ (-5 *1 (-871 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694))
- (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695))
+ (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
(-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2))
- (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11))))
+ (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
- (-5 *1 (-1070 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
+ (-5 *1 (-1071 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2))
- (-4 *1 (-1123 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *2 (-977 *5 *6 *7))))
+ (-4 *1 (-1124 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *2 (-978 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
- (-5 *1 (-1179 *5 *2)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
+ (-5 *1 (-1180 *5 *2)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1128)) (-4 *5 (-1128))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1129)) (-4 *5 (-1129))
(-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694))
- (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-197 *6 *5))
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695))
+ (-4 *7 (-1129)) (-4 *5 (-1129)) (-5 *2 (-197 *6 *5))
(-5 *1 (-198 *6 *7 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-323 *5))
- (-5 *1 (-324 *6 *4 *5 *2)) (-4 *4 (-323 *6))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-4 *2 (-324 *5))
+ (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-368 *5))
- (-5 *1 (-369 *6 *4 *5 *2)) (-4 *4 (-368 *6))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-369 *5))
+ (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1128)) (-4 *5 (-1128))
- (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1129)) (-4 *5 (-1129))
+ (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1128)) (-4 *5 (-1128))
- (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1129)) (-4 *5 (-1129))
+ (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1128)) (-4 *3 (-1128))
- (-5 *2 (-1068 *3)) (-5 *1 (-1070 *6 *3))))
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1069 *6)) (-4 *6 (-1129)) (-4 *3 (-1129))
+ (-5 *2 (-1069 *3)) (-5 *1 (-1071 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1178 *6)) (-4 *6 (-1128)) (-4 *5 (-1128))
- (-5 *2 (-1178 *5)) (-5 *1 (-1179 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1178 *3)))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1179 *6)) (-4 *6 (-1129)) (-4 *5 (-1129))
+ (-5 *2 (-1179 *5)) (-5 *1 (-1180 *6 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-1179 *3)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-167 *2))
(-4 *2
- (-13 (-756)
- (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $))
- (-15 -1963 ((-1184) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104))))
+ (-13 (-757)
+ (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $))
+ (-15 -1964 ((-1185) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *2)) (-4 *2 (-1154 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
+ (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-473)))
+ (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-474)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-25)))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-25)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-1177 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-1178 *3)) (-4 *3 (-23)) (-4 *3 (-1129)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-107)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-167 *2))
(-4 *2
- (-13 (-756)
- (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $))
- (-15 -1963 ((-1184) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
+ (-13 (-757)
+ (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $))
+ (-15 -1964 ((-1185) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
- ((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1125))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-961)))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2))))
+ ((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1129)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1126))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-962)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-961)) (-5 *2 (-630 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-961)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239)))
- (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4))))
- ((*1 *1 *1) (-4 *1 (-483)))
- ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1128)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1126 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-915)) (-4 *2 (-961)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-915)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-962)) (-5 *2 (-631 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4))))
+ ((*1 *1 *1) (-4 *1 (-484)))
+ ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1129)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1127 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-916)) (-4 *2 (-962)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-916)) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-902))))
+ (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-903))))
((*1 *2 *1)
- (-12 (-4 *4 (-1128)) (-5 *2 (-1089)) (-5 *1 (-971 *3 *4))
- (-4 *3 (-1006 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1004 *3)) (-4 *3 (-1128))))
+ (-12 (-4 *4 (-1129)) (-5 *2 (-1090)) (-5 *1 (-972 *3 *4))
+ (-4 *3 (-1007 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1005 *3)) (-4 *3 (-1129))))
((*1 *2 *1)
- (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1089))))
- ((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))))
+ (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1090))))
+ ((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2))))
(((*1 *2 *3)
- (-12 (-5 *3 (-349 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-495)) (-4 *4 (-961))
- (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *5 *6 *2)) (-4 *6 (-600 *5)))))
+ (-12 (-5 *3 (-350 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-496)) (-4 *4 (-962))
+ (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *5 *6 *2)) (-4 *6 (-601 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-1154 *4)) (-5 *2 (-1 *6 (-583 *6)))
- (-5 *1 (-1173 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1171 *4)))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-1155 *4)) (-5 *2 (-1 *6 (-584 *6)))
+ (-5 *1 (-1174 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1172 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1154 *5))
- (-5 *1 (-1173 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1171 *5)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1155 *5))
+ (-5 *1 (-1174 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1172 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *3 (-1154 *4)) (-4 *2 (-1171 *4))
- (-5 *1 (-1173 *4 *3 *5 *2)) (-4 *5 (-600 *3)))))
+ (-12 (-4 *4 (-962)) (-4 *3 (-1155 *4)) (-4 *2 (-1172 *4))
+ (-5 *1 (-1174 *4 *3 *5 *2)) (-4 *5 (-601 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6))))
- (-4 *5 (-38 (-349 (-484)))) (-4 *6 (-1171 *5)) (-5 *2 (-583 *6))
- (-5 *1 (-1172 *5 *6)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6))))
+ (-4 *5 (-38 (-350 (-485)))) (-4 *6 (-1172 *5)) (-5 *2 (-584 *6))
+ (-5 *1 (-1173 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-349 (-484))))
- (-4 *2 (-1171 *5)) (-5 *1 (-1172 *5 *2)))))
+ (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-350 (-485))))
+ (-4 *2 (-1172 *5)) (-5 *1 (-1173 *5 *2)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2))
- (-4 *4 (-38 (-349 (-484)))))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2))
+ (-4 *4 (-38 (-350 (-485)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2))
- (-4 *4 (-38 (-349 (-484)))))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2))
+ (-4 *4 (-38 (-350 (-485)))))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1171 *3)))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1172 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484))))
- (-5 *2 (-1 (-1068 *4) (-583 (-1068 *4)))) (-5 *1 (-1172 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-485))))
+ (-5 *2 (-1 (-1069 *4) (-584 (-1069 *4)))) (-5 *1 (-1173 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484))))
- (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-485))))
+ (-5 *2 (-1 (-1069 *4) (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484))))
- (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-485))))
+ (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4)))))
+ (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-349 (-484))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))
+ (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
(-5 *1 (-267 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-249 *3)) (-5 *5 (-349 (-484)))
- (-4 *3 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
(-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6))
- (-4 *6 (-13 (-27) (-1114) (-363 *5)))
- (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *5 *6))))
+ (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6))
+ (-4 *6 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *6 *3))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-484)))
- (-4 *7 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-485)))
+ (-4 *7 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-484)))
- (-4 *3 (-13 (-27) (-1114) (-363 *7)))
- (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *7 *3))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-485)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-349 (-484)))) (-5 *4 (-249 *8))
- (-5 *5 (-1145 (-349 (-484)))) (-5 *6 (-349 (-484)))
- (-4 *8 (-13 (-27) (-1114) (-363 *7)))
- (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8))
+ (-5 *5 (-1146 (-350 (-485)))) (-5 *6 (-350 (-485)))
+ (-4 *8 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-349 (-484))))
- (-5 *7 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *8)))
- (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *8 *3))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-485))))
+ (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1115) (-364 *8)))
+ (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961))
- (-5 *1 (-530 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-531 *3))))
+ (-12 (-5 *2 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962))
+ (-5 *1 (-531 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961))
- (-4 *1 (-1140 *3))))
+ (-12 (-5 *2 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962))
+ (-4 *1 (-1141 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-694)) (-5 *3 (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| *4))))
- (-4 *4 (-961)) (-4 *1 (-1161 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-4 *1 (-1171 *3))))
+ (-12 (-5 *2 (-695)) (-5 *3 (-1069 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4))))
+ (-4 *4 (-962)) (-4 *1 (-1162 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-4 *1 (-1172 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1068 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961))
- (-4 *1 (-1171 *3)))))
+ (-12 (-5 *2 (-1069 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962))
+ (-4 *1 (-1172 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3))))
+ (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-961)) (-5 *2 (-1068 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-530 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1140 *3)) (-4 *3 (-961))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1171 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-962)) (-5 *2 (-1069 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-962)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1141 *3)) (-4 *3 (-962))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1172 *3)) (-4 *3 (-962)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756))
- (-5 *2 (-857 *4))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757))
+ (-5 *2 (-858 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756))
- (-5 *2 (-857 *4))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757))
+ (-5 *2 (-858 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1171 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1172 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1171 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1172 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-349 (-484))) (-4 *4 (-950 (-484))) (-4 *4 (-495))
- (-5 *1 (-32 *4 *2)) (-4 *2 (-363 *4))))
+ (-12 (-5 *3 (-350 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4))))
((*1 *1 *1 *1) (-5 *1 (-107)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
((*1 *1 *1 *1) (-5 *1 (-179)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-349 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1171 *4))
- (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1142 *4 *5))))
+ (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1172 *4))
+ (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1143 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-349 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1140 *4))
- (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1163 *4 *5)) (-4 *6 (-896 *5))))
+ (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1141 *4))
+ (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-897 *5))))
((*1 *1 *1 *1) (-4 *1 (-239)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *1) (-5 *1 (-329)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-335 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *1) (-5 *1 (-330)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-336 *2)) (-4 *2 (-1014))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-484))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-1026))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-485))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-5 *2 (-695)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-473))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-474))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1013)) (-5 *1 (-623 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-4 *3 (-312))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-4 *3 (-312))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4))))
+ (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-484)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3))))
+ (-12 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5))
- (-4 *5 (-590 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-745 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5))
+ (-4 *5 (-591 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-745 *4)) (-4 *4 (-961))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-349 (-484)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-830))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-350 (-485)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-831))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-484)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *4 (-961))
+ (-12 (-5 *2 (-485)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-962))
(-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1004 (-750 *3))) (-4 *3 (-13 (-1114) (-871) (-29 *5)))
- (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-12 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-13 (-1115) (-872) (-29 *5)))
+ (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
(-5 *2
- (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3)))
+ (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3)))
(|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
(-5 *1 (-173 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1004 (-750 *3))) (-5 *5 (-1072))
- (-4 *3 (-13 (-1114) (-871) (-29 *6)))
- (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-12 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1073))
+ (-4 *3 (-13 (-1115) (-872) (-29 *6)))
+ (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
(-5 *2
- (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#)
+ (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#)
(|:| |pole| #2#)))
(-5 *1 (-173 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1004 (-750 (-265 *5))))
- (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1005 (-751 (-265 *5))))
+ (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
(-5 *2
- (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5))))
+ (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5))))
(|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
(-5 *1 (-174 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-349 (-857 *6))) (-5 *4 (-1004 (-750 (-265 *6))))
- (-5 *5 (-1072)) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1005 (-751 (-265 *6))))
+ (-5 *5 (-1073)) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
(-5 *2
- (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6))))
+ (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6))))
(|:| |fail| #3#) (|:| |pole| #4#)))
(-5 *1 (-174 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1004 (-750 (-349 (-857 *5))))) (-5 *3 (-349 (-857 *5)))
- (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-12 (-5 *4 (-1005 (-751 (-350 (-858 *5))))) (-5 *3 (-350 (-858 *5)))
+ (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
(-5 *2
- (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5))))
+ (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5))))
(|:| |fail| #3#) (|:| |pole| #4#)))
(-5 *1 (-174 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1004 (-750 (-349 (-857 *6))))) (-5 *5 (-1072))
- (-5 *3 (-349 (-857 *6)))
- (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-12 (-5 *4 (-1005 (-751 (-350 (-858 *6))))) (-5 *5 (-1073))
+ (-5 *3 (-350 (-858 *6)))
+ (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
(-5 *2
- (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6))))
+ (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6))))
(|:| |fail| #3#) (|:| |pole| #4#)))
(-5 *1 (-174 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-372 *5 *3))
- (-4 *3 (-13 (-1114) (-871) (-29 *5)))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-373 *5 *3))
+ (-4 *3 (-13 (-1115) (-872) (-29 *5)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-413 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4))
- (-5 *2 (-519 (-349 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-349 *5))))
+ (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-520 (-350 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-120))
- (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-3 (-265 *5) (-583 (-265 *5)))) (-5 *1 (-525 *5))))
+ (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-120))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-3 (-265 *5) (-584 (-265 *5)))) (-5 *1 (-526 *5))))
((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756))
- (-4 *3 (-38 (-349 (-484))))))
+ (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))
+ (-4 *3 (-38 (-350 (-485))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1089)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-349 (-484))))
- (-4 *3 (-961))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-350 (-485))))
+ (-4 *3 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-4 *2 (-756))
- (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-4 *2 (-757))
+ (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961))
- (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962))
+ (-5 *1 (-1075 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-38 (-349 (-484))))
- (-4 *3 (-961))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-38 (-350 (-485))))
+ (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
(OR
- (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-961))
- (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114))
- (-4 *3 (-38 (-349 (-484))))))
- (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-961))
- (-12 (|has| *3 (-15 -3081 ((-583 *2) *3)))
- (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484))))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-962))
+ (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1115))
+ (-4 *3 (-38 (-350 (-485))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-962))
+ (-12 (|has| *3 (-15 -3082 ((-584 *2) *3)))
+ (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1140 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484))))))
+ (-12 (-4 *1 (-1141 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484))))))
+ (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1159 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
(OR
- (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-961))
- (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114))
- (-4 *3 (-38 (-349 (-484))))))
- (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-961))
- (-12 (|has| *3 (-15 -3081 ((-583 *2) *3)))
- (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484))))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-962))
+ (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1115))
+ (-4 *3 (-38 (-350 (-485))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-962))
+ (-12 (|has| *3 (-15 -3082 ((-584 *2) *3)))
+ (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1161 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484))))))
+ (-12 (-4 *1 (-1162 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
(OR
- (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-961))
- (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114))
- (-4 *3 (-38 (-349 (-484))))))
- (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-961))
- (-12 (|has| *3 (-15 -3081 ((-583 *2) *3)))
- (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484))))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-962))
+ (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1115))
+ (-4 *3 (-38 (-350 (-485))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-962))
+ (-12 (|has| *3 (-15 -3082 ((-584 *2) *3)))
+ (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))))
+ (-12 (-4 *1 (-1172 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1088 *4 *5 *6))
- (-4 *4 (-961)) (-14 *5 (-1089)) (-14 *6 *4)))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1089 *4 *5 *6))
+ (-4 *4 (-962)) (-14 *5 (-1090)) (-14 *6 *4)))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1168 *4 *5 *6))
- (-4 *4 (-961)) (-14 *5 (-1089)) (-14 *6 *4))))
-(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1169 *4 *5 *6))
+ (-4 *4 (-962)) (-14 *5 (-1090)) (-14 *6 *4))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1075 *4))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089))
+ (-12 (-5 *2 (-485)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1090))
(-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1090)) (-14 *4 *2))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1075 *4))))
((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089))
+ (-12 (-5 *2 (-485)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1090))
(-14 *5 *3))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1075 *4))))
((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089))
+ (-12 (-5 *2 (-485)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1090))
(-14 *5 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1069 *4))
- (-4 *4 (-1128))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-756)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1070 *4))
+ (-4 *4 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-757)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1168 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2))
+ (-4 *5 (-324 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2))
+ (-4 *5 (-324 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1129))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2))
- (-14 *4 (-484)) (-14 *5 (-694))))
+ (-12 (-5 *3 (-584 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2))
+ (-14 *4 (-485)) (-14 *5 (-695))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-694))))
+ (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-695))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-694))))
+ (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-695))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-694))))
+ (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-695))))
((*1 *2 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-694))))
+ (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-695))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1089)) (-5 *2 (-203 (-1072))) (-5 *1 (-167 *4))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-203 (-1073))) (-5 *1 (-167 *4))
(-4 *4
- (-13 (-756)
- (-10 -8 (-15 -3799 ((-1072) $ *3)) (-15 -3616 ((-1184) $))
- (-15 -1963 ((-1184) $)))))))
+ (-13 (-757)
+ (-10 -8 (-15 -3800 ((-1073) $ *3)) (-15 -3617 ((-1185) $))
+ (-15 -1964 ((-1185) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-902)) (-5 *1 (-167 *3))
+ (-12 (-5 *2 (-903)) (-5 *1 (-167 *3))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $))
- (-15 -1963 ((-1184) $)))))))
+ (-13 (-757)
+ (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $))
+ (-15 -1964 ((-1185) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1128)) (-4 *2 (-1128))))
- ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254))))
+ (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1129)) (-4 *2 (-1129))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254))))
((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2))
- (-4 *4 (-1154 (-349 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-441))))
+ (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2))
+ (-4 *4 (-1155 (-350 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-442))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
+ (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4))
- (-4 *4 (-1013))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4))
+ (-4 *4 (-1014))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1129))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961))
+ (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962))
(-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
- (-4 *7 (-196 *4 *2)) (-4 *2 (-961))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
+ (-4 *7 (-196 *4 *2)) (-4 *2 (-962))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-830)) (-4 *4 (-1013))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2))
- (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4))))))
+ (-12 (-5 *3 (-831)) (-4 *4 (-1014))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2))
+ (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-830)) (-4 *4 (-1013))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-989 *4 *5 *2))
- (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4))))))
- ((*1 *1 *1 *1) (-4 *1 (-1057)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089))))
+ (-12 (-5 *3 (-831)) (-4 *4 (-1014))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2))
+ (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))
+ ((*1 *1 *1 *1) (-4 *1 (-1058)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1090))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-349 *1)) (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-312))))
+ (-12 (-5 *3 (-350 *1)) (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-312))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-349 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1167 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1167 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756))))
+ (-12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-962)) (-4 *3 (-496))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1168 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1168 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717))
- (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1008))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))
+ (|partial| -12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718))
+ (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1168 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1009))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1168 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129))))
((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
- ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1128))))
- ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1129)) (-5 *2 (-695)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2))
+ (-4 *5 (-324 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -3995)) (-4 *1 (-92 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -3996)) (-4 *1 (-92 *3)) (-4 *3 (-1129))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -3995)) (-4 *1 (-92 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -3996)) (-4 *1 (-92 *3)) (-4 *3 (-1129))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -3995)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013))
- (-4 *2 (-1128))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-571))))
+ (-12 (|has| *1 (-6 -3996)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014))
+ (-4 *2 (-1129))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-572))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1145 (-484))) (|has| *1 (-6 -3995)) (-4 *1 (-593 *2))
- (-4 *2 (-1128))))
+ (-12 (-5 *3 (-1146 (-485))) (|has| *1 (-6 -3996)) (-4 *1 (-594 *2))
+ (-4 *2 (-1129))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -3995)) (-4 *1 (-923 *2))
- (-4 *2 (-1128))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -3996)) (-4 *1 (-924 *2))
+ (-4 *2 (-1129))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2))
- (-4 *2 (-1128))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2))
+ (-4 *2 (-1129))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *3))
- (-4 *3 (-1128))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *3))
+ (-4 *3 (-1129))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2))
- (-4 *2 (-1128)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1068 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2))
+ (-4 *2 (-1129)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1069 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-484)) (|has| *1 (-6 -3995)) (-4 *1 (-1167 *3))
- (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-485)) (|has| *1 (-6 -3996)) (-4 *1 (-1168 *3))
+ (-4 *3 (-1129)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391)))
- (-5 *2 (-750 *4)) (-5 *1 (-264 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4)))
+ (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392)))
+ (-5 *2 (-751 *4)) (-5 *1 (-264 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4)))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391)))
- (-5 *2 (-750 *4)) (-5 *1 (-1165 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4))))
+ (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392)))
+ (-5 *2 (-751 *4)) (-5 *1 (-1166 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391)))
+ (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392)))
(-5 *2
(-2
(|:| |%term|
- (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6))
- (|:| |%expTerms| (-583 (-2 (|:| |k| (-349 (-484))) (|:| |c| *4))))))
- (|:| |%type| (-1072))))
- (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3)))
- (-14 *5 (-1089)) (-14 *6 *4))))
+ (-2 (|:| |%coef| (-1160 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6))
+ (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4))))))
+ (|:| |%type| (-1073))))
+ (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3)))
+ (-14 *5 (-1090)) (-14 *6 *4))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4)))))
+ (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-349 (-484))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))
+ (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
(-5 *1 (-267 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-249 *3)) (-5 *5 (-349 (-484)))
- (-4 *3 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
(-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-349 (-484)))) (-5 *4 (-249 *8))
- (-5 *5 (-1145 (-349 (-484)))) (-5 *6 (-349 (-484)))
- (-4 *8 (-13 (-27) (-1114) (-363 *7)))
- (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8))
+ (-5 *5 (-1146 (-350 (-485)))) (-5 *6 (-350 (-485)))
+ (-4 *8 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-349 (-484))))
- (-5 *7 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *8)))
- (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *8 *3))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-485))))
+ (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1115) (-364 *8)))
+ (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-349 (-484))) (-4 *4 (-961)) (-4 *1 (-1163 *4 *3))
- (-4 *3 (-1140 *4)))))
+ (-12 (-5 *2 (-350 (-485))) (-4 *4 (-962)) (-4 *1 (-1164 *4 *3))
+ (-4 *3 (-1141 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1140 *3))
- (-5 *2 (-349 (-484))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3)))))
+ (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1141 *3))
+ (-5 *2 (-350 (-485))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1141 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4)))))
+ (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-484)) (-4 *5 (-13 (-391) (-950 *4) (-580 *4))) (-5 *2 (-51))
- (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))
+ (-12 (-5 *4 (-485)) (-4 *5 (-13 (-392) (-951 *4) (-581 *4))) (-5 *2 (-51))
+ (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
(-5 *1 (-267 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-391) (-950 *5) (-580 *5))) (-5 *5 (-484)) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-51))
(-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-484)))
- (-4 *7 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-485)))
+ (-4 *7 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-484)))
- (-4 *3 (-13 (-27) (-1114) (-363 *7)))
- (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *7 *3))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-485)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-484)) (-4 *4 (-961)) (-4 *1 (-1142 *4 *3)) (-4 *3 (-1171 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3)))))
+ (-12 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1141 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961))))
+ (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1141 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1155 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-830)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-1161 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-831)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-1162 *3)) (-4 *3 (-962)))))
(((*1 *2 *2)
(-12
(-5 *2
(-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-484))))
- (-4 *4 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))) (-4 *3 (-495))
- (-5 *1 (-1158 *3 *4)))))
+ (|:| |xpnt| (-485))))
+ (-4 *4 (-13 (-1155 *3) (-496) (-10 -8 (-15 -3145 ($ $ $))))) (-4 *3 (-496))
+ (-5 *1 (-1159 *3 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-391))))
+ (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-392))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *1))))
- (-4 *1 (-983 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1133)))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *1))))
+ (-4 *1 (-984 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1134)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-1158 *3 *2))
- (-4 *2 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-1159 *3 *2))
+ (-4 *2 (-13 (-1155 *3) (-496) (-10 -8 (-15 -3145 ($ $ $))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104))
- (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4))))))
+ (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104))
+ (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 *4))))))
((*1 *2 *1)
- (-12 (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759))
- (-5 *2 (-583 (-453 *3 *4)))))
+ (-12 (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760))
+ (-5 *2 (-584 (-454 *3 *4)))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| -3953 *3) (|:| -3937 *4)))) (-5 *1 (-674 *3 *4))
- (-4 *3 (-961)) (-4 *4 (-663))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3954 *3) (|:| -3938 *4)))) (-5 *1 (-675 *3 *4))
+ (-4 *3 (-962)) (-4 *4 (-664))))
((*1 *2 *1)
- (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))
- (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199))))
+ (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
+ (-5 *2 (-1069 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-485)) (-5 *1 (-199))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-583 (-1072))) (-5 *3 (-484)) (-5 *4 (-1072)) (-5 *1 (-199))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))))
+ (-12 (-5 *2 (-584 (-1073))) (-5 *3 (-485)) (-5 *4 (-1073)) (-5 *1 (-199))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
- (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-830))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-319) (-312)))
- (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-4 *7 (-291 *4 *5 *6))
- (-5 *2 (-694)) (-5 *1 (-340 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-743 (-830)))))
- ((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
+ (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-831))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312)))
+ (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *7 (-291 *4 *5 *6))
+ (-5 *2 (-695)) (-5 *1 (-341 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-744 (-831)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1155 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4))
- (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7))
- (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-694))
- (-5 *1 (-822 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6))
- (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4)))
- (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6))))
+ (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
+ (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-695))
+ (-5 *1 (-823 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6))
+ (-4 *4 (-1155 (-350 (-485)))) (-4 *5 (-1155 (-350 *4)))
+ (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312))
- (-4 *7 (-1154 *6)) (-4 *4 (-1154 (-349 *7))) (-4 *8 (-291 *6 *7 *4))
- (-4 *9 (-13 (-319) (-312))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9))))
+ (-4 *7 (-1155 *6)) (-4 *4 (-1155 (-350 *7))) (-4 *8 (-291 *6 *7 *4))
+ (-4 *9 (-13 (-320) (-312))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495)) (-5 *2 (-694))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
- ((*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))))
-(((*1 *1 *1) (-4 *1 (-973)))
- ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))))
+ (-12 (-4 *1 (-1155 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
+(((*1 *1 *1) (-4 *1 (-974)))
+ ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-349 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))
+ (-12 (-5 *2 (-350 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-349 (-484))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-484))))
+ (-12 (-5 *2 (-350 (-485))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-485))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-349 (-484))) (-5 *1 (-781 *4 *5)) (-5 *3 (-484))
- (-4 *5 (-779 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-349 (-484)))))
+ (-12 (-14 *4 *3) (-5 *2 (-350 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485))
+ (-4 *5 (-780 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-350 (-485)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1154 *2))))
+ (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1155 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3)))
- (|has| *2 (-15 -3945 (*2 (-1089)))) (-4 *2 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-258))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-616 *3)) (-4 *3 (-1128))))
+ (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3)))
+ (|has| *2 (-15 -3946 (*2 (-1090)))) (-4 *2 (-962)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1129))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7))
- (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7))
+ (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-977 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-978 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-349 *5)) (-4 *4 (-1133)) (-4 *5 (-1154 *4))
- (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1154 *3))))
+ (-12 (-5 *3 (-350 *5)) (-4 *4 (-1134)) (-4 *5 (-1155 *4))
+ (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1155 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1091 (-349 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-164))))
+ (-12 (-5 *3 (-1092 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1013))
- (-4 *3 (-1128)) (-5 *1 (-249 *3))))
+ (-12 (-5 *2 (-584 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1014))
+ (-4 *3 (-1129)) (-5 *1 (-249 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-260 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)) (-5 *1 (-249 *2))))
+ (-12 (-4 *2 (-260 *2)) (-4 *2 (-1014)) (-4 *2 (-1129)) (-5 *1 (-249 *2))))
((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254))))
+ (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1013))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-584 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1091 (-349 (-484)))) (-5 *1 (-261 *2))
- (-4 *2 (-38 (-349 (-484))))))
+ (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1092 (-350 (-485)))) (-5 *1 (-261 *2))
+ (-4 *2 (-38 (-350 (-485))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-756))
+ (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-757))
(-4 *5 (-146))))
- ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146))))
+ ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-363 *5))
- (-4 *5 (-1013)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5))
+ (-4 *5 (-1014)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1)))
- (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1)))
+ (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-694)))
- (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-363 *5)) (-4 *5 (-1013))
- (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-584 (-695)))
+ (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1014))
+ (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1)))
- (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1)))
+ (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1089)) (-4 *1 (-363 *5))
- (-4 *5 (-1013)) (-4 *5 (-553 (-473)))))
+ (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1090)) (-4 *1 (-364 *5))
+ (-4 *5 (-1014)) (-4 *5 (-554 (-474)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1089)) (-4 *1 (-363 *4)) (-4 *4 (-1013))
- (-4 *4 (-553 (-473)))))
- ((*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-553 (-473)))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1090)) (-4 *1 (-364 *4)) (-4 *4 (-1014))
+ (-4 *4 (-554 (-474)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-1089))) (-4 *1 (-363 *3)) (-4 *3 (-1013))
- (-4 *3 (-553 (-473)))))
+ (-12 (-5 *2 (-584 (-1090))) (-4 *1 (-364 *3)) (-4 *3 (-1014))
+ (-4 *3 (-554 (-474)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013))
- (-4 *3 (-553 (-473)))))
- ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014))
+ (-4 *3 (-554 (-474)))))
+ ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1129))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-455 *4 *5)) (-4 *4 (-1013))
- (-4 *5 (-1128))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-312)) (-5 *1 (-655 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
+ (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014))
+ (-4 *5 (-1129))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-312)) (-5 *1 (-656 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-349 (-857 *4))) (-5 *3 (-1089)) (-4 *4 (-495))
- (-5 *1 (-952 *4))))
+ (-12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1090)) (-4 *4 (-496))
+ (-5 *1 (-953 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1089))) (-5 *4 (-583 (-349 (-857 *5))))
- (-5 *2 (-349 (-857 *5))) (-4 *5 (-495)) (-5 *1 (-952 *5))))
+ (-12 (-5 *3 (-584 (-1090))) (-5 *4 (-584 (-350 (-858 *5))))
+ (-5 *2 (-350 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-249 (-349 (-857 *4)))) (-5 *2 (-349 (-857 *4))) (-4 *4 (-495))
- (-5 *1 (-952 *4))))
+ (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496))
+ (-5 *1 (-953 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-249 (-349 (-857 *4))))) (-5 *2 (-349 (-857 *4)))
- (-4 *4 (-495)) (-5 *1 (-952 *4))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))
+ (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-5 *2 (-350 (-858 *4)))
+ (-4 *4 (-496)) (-5 *1 (-953 *4))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3)))))
+ (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1069 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1154 *4)) (-4 *4 (-961)) (-5 *2 (-1178 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-5 *2 (-1084 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-961)) (-4 *1 (-1154 *3)))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1155 *4)) (-4 *4 (-962)) (-5 *2 (-1179 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-962)) (-5 *2 (-1085 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-962)) (-4 *1 (-1155 *3)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))))
+ (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1155 *3)) (-4 *3 (-962)))))
(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-861 *4 *5 *3))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-862 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1)))
- (-4 *1 (-1154 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1)))
+ (-4 *1 (-1155 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1)))
- (-4 *1 (-1154 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1)))
+ (-4 *1 (-1155 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1155 *3)) (-4 *3 (-962)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1155 *3)) (-4 *3 (-962)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133))
- (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-312)) (-4 *2 (-809 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1089))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-312))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128))))
+ (-12 (-4 *2 (-312)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1090))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4))
- (-4 *4 (-1013))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013))))
- ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4))
+ (-4 *4 (-1014))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-962)))))
(((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *2 *4)) (-4 *4 (-1154 *2))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1155 *2))
(-4 *2 (-146))))
((*1 *2)
- (-12 (-4 *4 (-1154 *2)) (-4 *2 (-146)) (-5 *1 (-351 *3 *2 *4))
- (-4 *3 (-352 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146))))
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4))
+ (-4 *3 (-353 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146))))
((*1 *2)
- (-12 (-4 *3 (-1154 *2)) (-5 *2 (-484)) (-5 *1 (-692 *3 *4))
- (-4 *4 (-352 *2 *3))))
+ (-12 (-4 *3 (-1155 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4))
+ (-4 *4 (-353 *2 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
+ (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
(-4 *3 (-146))))
- ((*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-146)))))
+ ((*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-146)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
+ (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
(-4 *3 (-146))))
- ((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2))))
+ ((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1155 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-146)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-146)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-961))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-496)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-962))))
((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-349 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-961))
- (-4 *3 (-495))))
+ (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-962))
+ (-4 *3 (-496))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495)))))
+ (|partial| -12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-496)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-962)) (-4 *2 (-496)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3953 *4) (|:| -1972 *3) (|:| -2902 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3954 *4) (|:| -1973 *3) (|:| -2903 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-978 *3 *4 *5))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-495)) (-4 *3 (-961))
- (-5 *2 (-2 (|:| -3953 *3) (|:| -1972 *1) (|:| -2902 *1)))
- (-4 *1 (-1154 *3)))))
+ (-12 (-4 *3 (-496)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| -3954 *3) (|:| -1973 *1) (|:| -2903 *1)))
+ (-4 *1 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-4 *4 (-495)) (-4 *5 (-1154 *4))
- (-5 *2 (-2 (|:| -1761 (-562 *4 *5)) (|:| -1760 (-349 *5))))
- (-5 *1 (-562 *4 *5)) (-5 *3 (-349 *5))))
+ (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| -1762 (-563 *4 *5)) (|:| -1761 (-350 *5))))
+ (-5 *1 (-563 *4 *5)) (-5 *3 (-350 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961))))
+ (-12 (-5 *2 (-584 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-391)) (-4 *3 (-961))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1154 *3)))))
+ (-12 (-4 *3 (-392)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1155 *3)))))
(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1154 *4)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3)))
- (-5 *1 (-1151 *4 *3)) (-4 *3 (-1154 *4)))))
+ (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3)))
+ (-5 *1 (-1152 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1150 *4 *3))
- (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1151 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-495) (-120)))
- (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-1150 *4 *3))
- (-4 *3 (-1154 *4)))))
+ (|partial| -12 (-4 *4 (-13 (-496) (-120)))
+ (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-1151 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1150 *3 *2))
- (-4 *2 (-1154 *3)))))
+ (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1151 *3 *2))
+ (-4 *2 (-1155 *3)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120)))
- (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120)))
+ (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120)))
- (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120)))
+ (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-904 *4))
+ (-12 (-4 *4 (-496)) (-4 *5 (-905 *4))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3))
- (-4 *3 (-323 *5))))
+ (-4 *3 (-324 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-904 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-442 *4 *5 *6 *3))
- (-4 *6 (-323 *4)) (-4 *3 (-323 *5))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-905 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3))
+ (-4 *6 (-324 *4)) (-4 *3 (-324 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495))
- (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5))))
+ (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496))
+ (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5))
- (-5 *2 (-2 (|:| -3266 *7) (|:| |rh| (-583 (-349 *6)))))
- (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-349 *6))) (-4 *7 (-600 *6))
- (-4 *3 (-600 (-349 *6)))))
+ (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1155 *5))
+ (-5 *2 (-2 (|:| -3267 *7) (|:| |rh| (-584 (-350 *6)))))
+ (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-350 *6))) (-4 *7 (-601 *6))
+ (-4 *3 (-601 (-350 *6)))))
((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-904 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1149 *4 *5 *3))
- (-4 *3 (-1154 *5)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-905 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2))
- (-4 *2 (-323 *4))))
+ (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2))
+ (-4 *2 (-324 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-4 *2 (-323 *4))
- (-5 *1 (-442 *4 *5 *2 *3)) (-4 *3 (-323 *5))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-324 *4))
+ (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-324 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-630 *4))
- (-5 *1 (-633 *4 *5))))
+ (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4))
+ (-5 *1 (-634 *4 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-1149 *3 *4 *2))
- (-4 *2 (-1154 *4)))))
+ (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1150 *3 *4 *2))
+ (-4 *2 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3))
- (-4 *3 (-323 *4))))
+ (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3))
+ (-4 *3 (-324 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-442 *2 *4 *5 *3))
- (-4 *5 (-323 *2)) (-4 *3 (-323 *4))))
+ (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3))
+ (-4 *5 (-324 *2)) (-4 *3 (-324 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-495))
- (-5 *1 (-633 *2 *4))))
+ (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496))
+ (-5 *1 (-634 *2 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-1149 *2 *4 *3))
- (-4 *3 (-1154 *4)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961))))
+ (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1150 *2 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-961))
- (-4 *2 (-716))))
- ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1084 *3)) (-4 *3 (-961))))
+ (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-962))
+ (-4 *2 (-717))))
+ ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1085 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1091 *3)) (-4 *3 (-495))
- (-4 *3 (-961))))
+ (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1092 *3)) (-4 *3 (-496))
+ (-4 *3 (-962))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1089)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1145 *3)) (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1148 *4 *3)) (-14 *4 (-1090)) (-4 *3 (-962)))))
+(((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1146 *3)) (-4 *3 (-1129)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-85))
(-5 *2
- (-2 (|:| |contp| (-484))
- (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484)))))))
- (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))
+ (-2 (|:| |contp| (-485))
+ (|:| -1779 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485)))))))
+ (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-85))
(-5 *2
- (-2 (|:| |contp| (-484))
- (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484)))))))
- (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))))
+ (-2 (|:| |contp| (-485))
+ (|:| -1779 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485)))))))
+ (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-485))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-170 *4 *3))
- (-4 *3 (-1154 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3))
+ (-4 *3 (-1155 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3))
- (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-694))) (-5 *2 (-347 *3)) (-5 *1 (-381 *3))
- (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3))
- (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3))
- (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-485)))))
((*1 *2 *3)
- (-12 (-5 *2 (-347 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1154 (-349 (-484))))))
- ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))))
+ (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1155 (-350 (-485))))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-485))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-48))) (-5 *2 (-347 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1154 (-48)))))
- ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48)))))
+ (-12 (-5 *4 (-584 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1155 (-48)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-347 *3))
- (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5))))
+ (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3))
+ (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717))
- (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-42 *5 *6 *7))
- (-5 *3 (-1084 *7))))
+ (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718))
+ (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-42 *5 *6 *7))
+ (-5 *3 (-1085 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-140 *4 *3))
- (-4 *3 (-1154 (-142 *4)))))
+ (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3))
+ (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))
+ (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1154 (-142 *4)))))
+ (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1154 (-142 *4)))))
+ (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-170 *4 *3))
- (-4 *3 (-1154 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3))
+ (-4 *3 (-1155 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3))
- (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-694))) (-5 *2 (-347 *3)) (-5 *1 (-381 *3))
- (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3))
- (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3))
- (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-485)))))
((*1 *2 *3)
- (-12 (-5 *2 (-347 (-142 (-484)))) (-5 *1 (-385)) (-5 *3 (-142 (-484)))))
+ (-12 (-5 *2 (-348 (-142 (-485)))) (-5 *1 (-386)) (-5 *3 (-142 (-485)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-756)
- (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089))))))
- (-4 *5 (-717)) (-4 *7 (-495)) (-5 *2 (-347 *3))
- (-5 *1 (-395 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-861 *7 *5 *4))))
+ (-13 (-757)
+ (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090))))))
+ (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-348 *3))
+ (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-258)) (-5 *2 (-347 (-1084 *4))) (-5 *1 (-397 *4))
- (-5 *3 (-1084 *4))))
+ (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1085 *4))) (-5 *1 (-398 *4))
+ (-5 *3 (-1085 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312))
- (-4 *7 (-13 (-312) (-120) (-661 *5 *6))) (-5 *2 (-347 *3))
- (-5 *1 (-433 *5 *6 *7 *3)) (-4 *3 (-1154 *7))))
+ (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
+ (-4 *7 (-13 (-312) (-120) (-662 *5 *6))) (-5 *2 (-348 *3))
+ (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1155 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-347 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-258) (-120)))
- (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-347 *3)) (-5 *1 (-478 *5 *6 *7 *3))
- (-4 *3 (-861 *7 *6 *5))))
+ (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120)))
+ (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-479 *5 *6 *7 *3))
+ (-4 *3 (-862 *7 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-347 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-258) (-120)))
- (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5))
- (-5 *2 (-347 (-1084 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1084 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))
+ (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120)))
+ (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5))
+ (-5 *2 (-348 (-1085 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1085 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *6 (-1154 *5)) (-5 *2 (-583 (-597 (-349 *6)))) (-5 *1 (-601 *5 *6))
- (-5 *3 (-597 (-349 *6)))))
+ (-12 (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *6 (-1155 *5)) (-5 *2 (-584 (-598 (-350 *6)))) (-5 *1 (-602 *5 *6))
+ (-5 *3 (-598 (-350 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *5 (-1154 *4)) (-5 *2 (-583 (-597 (-349 *5)))) (-5 *1 (-601 *4 *5))
- (-5 *3 (-597 (-349 *5)))))
+ (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *5 (-1155 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5))
+ (-5 *3 (-598 (-350 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4)))
- (-5 *1 (-614 *4))))
+ (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4)))
+ (-5 *1 (-615 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-484)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1154 *4))))
+ (-12 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-5 *2 (-347 *3))
- (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-5 *2 (-348 *3))
+ (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-4 *7 (-861 *6 *5 *4))
- (-5 *2 (-347 (-1084 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1084 *7))))
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-4 *7 (-862 *6 *5 *4))
+ (-5 *2 (-348 (-1085 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1085 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-717))
+ (-12 (-4 *4 (-718))
(-4 *5
- (-13 (-756)
- (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089))))))
- (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-669 *4 *5 *6 *3))
- (-4 *3 (-861 (-857 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)))))
- (-4 *6 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-671 *4 *5 *6 *3))
- (-4 *3 (-861 (-349 (-857 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-258) (-120)))
- (-5 *2 (-347 *3)) (-5 *1 (-672 *4 *5 *6 *3))
- (-4 *3 (-861 (-349 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120)))
- (-5 *2 (-347 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120)))
- (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-680 *4 *5 *6 *7))
- (-5 *3 (-1084 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-347 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1154 (-349 (-484))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-347 *3)) (-5 *1 (-954 *3))
- (-4 *3 (-1154 (-349 (-857 (-484)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1154 (-349 (-484))))
- (-4 *5 (-13 (-312) (-120) (-661 (-349 (-484)) *4))) (-5 *2 (-347 *3))
- (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1154 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1154 (-349 (-857 (-484)))))
- (-4 *5 (-13 (-312) (-120) (-661 (-349 (-857 (-484))) *4))) (-5 *2 (-347 *3))
- (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1154 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-391)) (-4 *7 (-861 *6 *4 *5))
- (-5 *2 (-347 (-1084 (-349 *7)))) (-5 *1 (-1086 *4 *5 *6 *7))
- (-5 *3 (-1084 (-349 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1133))))
- ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-780 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-484))))
+ (-13 (-757)
+ (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090))))))
+ (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-670 *4 *5 *6 *3))
+ (-4 *3 (-862 (-858 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)))))
+ (-4 *6 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3))
+ (-4 *3 (-862 (-350 (-858 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-258) (-120)))
+ (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3))
+ (-4 *3 (-862 (-350 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120)))
+ (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120)))
+ (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-681 *4 *5 *6 *7))
+ (-5 *3 (-1085 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1155 (-350 (-485))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-348 *3)) (-5 *1 (-955 *3))
+ (-4 *3 (-1155 (-350 (-858 (-485)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-350 (-485))))
+ (-4 *5 (-13 (-312) (-120) (-662 (-350 (-485)) *4))) (-5 *2 (-348 *3))
+ (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-350 (-858 (-485)))))
+ (-4 *5 (-13 (-312) (-120) (-662 (-350 (-858 (-485))) *4))) (-5 *2 (-348 *3))
+ (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5))
+ (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7))
+ (-5 *3 (-1085 (-350 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1172 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-485))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3))))
- ((*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2))))
+ (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3))))
+ ((*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-484)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1171 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1171 *2)))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1172 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1172 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4)))))
+ (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
(-5 *1 (-267 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-249 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
(-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6))
- (-4 *6 (-13 (-27) (-1114) (-363 *5)))
- (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *5 *6))))
+ (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6))
+ (-4 *6 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *6 *3))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-694)))
- (-4 *7 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-695)))
+ (-4 *7 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-694)))
- (-4 *3 (-13 (-27) (-1114) (-363 *7)))
- (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
- (-5 *1 (-398 *7 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3)))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-695)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-5 *1 (-399 *7 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1172 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3)))))
+ (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1172 *3)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-961)) (-4 *4 (-495))
- (-5 *2 (-349 (-857 *4)))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-1141 *4)) (-4 *4 (-962)) (-4 *4 (-496))
+ (-5 *2 (-350 (-858 *4)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-961)) (-4 *4 (-495))
- (-5 *2 (-349 (-857 *4))))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-1141 *4)) (-4 *4 (-962)) (-4 *4 (-496))
+ (-5 *2 (-350 (-858 *4))))))
(((*1 *1 *1 *1) (-5 *1 (-101)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830))))
- ((*1 *1 *1 *1) (-5 *1 (-1134))) ((*1 *1 *1 *1) (-5 *1 (-1135)))
- ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831))))
+ ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136)))
+ ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138))))
(((*1 *1 *1 *1) (-5 *1 (-101)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830))))
- ((*1 *1 *1 *1) (-5 *1 (-1134))) ((*1 *1 *1 *1) (-5 *1 (-1135)))
- ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831))))
+ ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136)))
+ ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138))))
(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101)))
((*1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))
- ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487)))
- ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-663))) ((*1 *1) (-5 *1 (-1089)))
- ((*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830))))
- ((*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))) ((*1 *1) (-5 *1 (-1134)))
- ((*1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1136))) ((*1 *1) (-5 *1 (-1137))))
-(((*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-385))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))
+ ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-5 *1 (-488)))
+ ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-664))) ((*1 *1) (-5 *1 (-1090)))
+ ((*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831))))
+ ((*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831)))) ((*1 *1) (-5 *1 (-1135)))
+ ((*1 *1) (-5 *1 (-1136))) ((*1 *1) (-5 *1 (-1137))) ((*1 *1) (-5 *1 (-1138))))
+(((*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-386))))
((*1 *2 *3)
(-12
(-5 *3
- (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484)))))
- (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-483))))
- ((*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-85)))))
-(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1131)))))
+ (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))
+ (-14 *4 (-584 (-1090))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-484))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-85)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1132)))))
(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3228 (-583 (-1089))) (|:| -3229 (-583 (-1089)))))
- (-5 *1 (-1131)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))))
+ (-12 (-5 *2 (-2 (|:| -3229 (-584 (-1090))) (|:| -3230 (-584 (-1090)))))
+ (-5 *1 (-1132)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-756)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-757)) (-4 *3 (-1014)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1130 *2))
- (-4 *2 (-1013))))
+ (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1131 *2))
+ (-4 *2 (-1014))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-756)) (-5 *1 (-1130 *2)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1131 *2)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1014)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85))))
((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1014))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85))
- (-5 *1 (-1130 *3)))))
+ (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-85))
+ (-5 *1 (-1131 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3229 (-583 *3)) (|:| -3228 (-583 *3))))
- (-5 *1 (-1130 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-2 (|:| -3230 (-584 *3)) (|:| -3229 (-584 *3))))
+ (-5 *1 (-1131 *3)) (-4 *3 (-1014)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1185)) (-5 *1 (-1131 *4))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1185)) (-5 *1 (-1131 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-484)) (-4 *5 (-299)) (-5 *2 (-347 (-1084 (-1084 *5))))
- (-5 *1 (-1127 *5)) (-5 *3 (-1084 (-1084 *5))))))
+ (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-348 (-1085 (-1085 *5))))
+ (-5 *1 (-1128 *5)) (-5 *3 (-1085 (-1085 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-347 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4))
- (-5 *3 (-1084 (-1084 *4))))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4))
+ (-5 *3 (-1085 (-1085 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-347 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4))
- (-5 *3 (-1084 (-1084 *4))))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4))
+ (-5 *3 (-1085 (-1085 *4))))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *3))
- (-4 *3 (-1128))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *3))
+ (-4 *3 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1129))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1123 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-717))
- (-4 *3 (-756)) (-4 *2 (-977 *4 *5 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1126 *2)) (-4 *2 (-1128)))))
+ (|partial| -12 (-4 *1 (-1124 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718))
+ (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1127 *2)) (-4 *2 (-1129)))))
(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4)))
- (-5 *1 (-1125)) (-5 *3 (-854 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1125)))))
+ (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4)))
+ (-5 *1 (-1126)) (-5 *3 (-855 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1126)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1128))))
+ (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1129))))
((*1 *1 *2)
- (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3956 *3) (-694)))
+ (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3957 *3) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5))
- (-2 (|:| -2400 *2) (|:| -2401 *5))))
- (-5 *1 (-400 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756))
- (-4 *7 (-861 *4 *5 (-773 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))))
+ (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5))
+ (-2 (|:| -2401 *2) (|:| -2402 *5))))
+ (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757))
+ (-4 *7 (-862 *4 *5 (-774 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1047 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1047 *3)) (-4 *3 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-961))))
+ (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1185)) (-5 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1048 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1048 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-962))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)) (-5 *3 (-179)))))
+ (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1126)) (-5 *3 (-179)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1124 *3)) (-5 *1 (-712 *3))
- (-4 *3 (-887))))
+ (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1125 *3)) (-5 *1 (-713 *3))
+ (-4 *3 (-888))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1124 *2))
- (-4 *2 (-887)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887)))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1125 *2))
+ (-4 *2 (-888)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-888)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-888)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-888)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1124 *3)) (-4 *3 (-887)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-887)))))
+ (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1125 *3)) (-4 *3 (-888)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-888)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))))
(((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9))
- (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *9)))) (-5 *3 (-583 *9))
- (-4 *1 (-1123 *6 *7 *8 *9))))
+ (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-584 *9)))) (-5 *3 (-584 *9))
+ (-4 *1 (-1124 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *8)))) (-5 *3 (-583 *8))
- (-4 *1 (-1123 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-584 *8)))) (-5 *3 (-584 *8))
+ (-4 *1 (-1124 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5))
- (-5 *2 (-2 (|:| -3860 (-583 *6)) (|:| -1701 (-583 *6)))))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5))
+ (-5 *2 (-2 (|:| -3861 (-584 *6)) (|:| -1702 (-584 *6)))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1123 *5 *6 *7 *3)) (-4 *5 (-495))
- (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)))))
+ (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1124 *5 *6 *7 *3)) (-4 *5 (-496))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1123 *4 *5 *6 *7))
- (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1124 *4 *5 *6 *7))
+ (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
(-5 *2 (-85)))))
(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8))
- (-4 *1 (-1123 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-977 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8))
+ (-4 *1 (-1124 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-978 *5 *6 *7)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-977 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-978 *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-977 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-978 *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-977 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-978 *3 *4 *5)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-977 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-978 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *5 (-977 *2 *3 *4)))))
+ (-12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *5 (-978 *2 *3 *4)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-977 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-978 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10))
- (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8))
- (-4 *10 (-1020 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10))
+ (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8))
+ (-4 *10 (-1021 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391))
- (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-584 (-1090))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391))
- (-14 *6 (-583 (-1089)))
- (-5 *2 (-583 (-1059 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6)))))
- (-5 *1 (-567 *5 *6))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-584 (-1090)))
+ (-5 *2 (-584 (-1060 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6)))))
+ (-5 *1 (-568 *5 *6))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8)))
- (-5 *1 (-940 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
+ (-5 *1 (-941 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8)))
- (-5 *1 (-940 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
+ (-5 *1 (-941 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391))
- (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-584 (-1090))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8)))
- (-5 *1 (-1059 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1060 *5 *6 *7 *8)))
+ (-5 *1 (-1060 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8)))
- (-5 *1 (-1059 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1060 *5 *6 *7 *8)))
+ (-5 *1 (-1060 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1123 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1124 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| -3860 *1) (|:| -1701 (-583 *7))))) (-5 *3 (-583 *7))
- (-4 *1 (-1123 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-584 (-2 (|:| -3861 *1) (|:| -1702 (-584 *7))))) (-5 *3 (-584 *7))
+ (-4 *1 (-1124 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))))
+ (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-319)) (-5 *2 (-694)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-695)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1089)))))
+ (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1090)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 (-830))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5))
- (-14 *4 (-830)) (-14 *5 (-906 *4 *2))))
+ (-12 (-5 *3 (-584 (-831))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5))
+ (-14 *4 (-831)) (-14 *5 (-907 *4 *2))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1089)))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961))))
- ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-453 *2 *3)) (-4 *3 (-759))))
+ (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1090)))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1154 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663))))
+ (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1155 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5))
- (-4 *4 (-961)) (-4 *5 (-756))))
+ (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5))
+ (-4 *4 (-962)) (-4 *5 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6))
- (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))))
+ (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6))
+ (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *2 (-756))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *2 (-757))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-469 *5) *5)) (-5 *1 (-1039 *4 *5 *2))
- (-4 *4 (-961)) (-4 *5 (-756))))
+ (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1040 *4 *5 *2))
+ (-4 *4 (-962)) (-4 *5 (-757))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-961)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1122 *4)) (-4 *4 (-962)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1039 *4 *3 *5))) (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961))
- (-4 *3 (-756)) (-5 *1 (-1039 *4 *3 *5)) (-4 *5 (-861 *4 (-469 *3) *3))))
+ (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962))
+ (-4 *3 (-757)) (-5 *1 (-1040 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1089)) (-5 *1 (-1121 *4))
- (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-1 (-1122 *4))) (-5 *3 (-1090)) (-5 *1 (-1122 *4))
+ (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-391))
- (-5 *1 (-1120 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3))
- (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392))
+ (-5 *1 (-1121 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3))
+ (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
-(((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
+(((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-391)) (-4 *3 (-756))
- (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-484))) (-5 *1 (-1032))))
+ (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-757))
+ (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1033))))
((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-495)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-495)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-142 (-265 *4)))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-142 (-265 *4)))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4))))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-142 *3))
- (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))))
+ (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-142 *3))
+ (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3))
- (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))
+ (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85))
- (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))))
+ (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85))
+ (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 *3))))))
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))
+ (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 *3))))))
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 *3))))))
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 (-142 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 *3)))))
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 (-142 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 *3)))))
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-1115 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
+(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1116 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))))
+ (-12 (-5 *3 (-584 (-1116 *2))) (-5 *1 (-1116 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1014)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-584 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1014)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-584 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1014)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495))))
- ((*1 *1) (-5 *1 (-416))) ((*1 *1) (-4 *1 (-1114))))
-(((*1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-1111 *4)) (-4 *4 (-961)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-484))))
- ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))
+ (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496))))
+ ((*1 *1) (-5 *1 (-417))) ((*1 *1) (-4 *1 (-1115))))
+(((*1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1113)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073)) (-5 *2 (-485)) (-5 *1 (-1112 *4)) (-4 *4 (-962)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1112 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-485))))
+ ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4))
- (-5 *2 (-484))))
+ (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4))
+ (-5 *2 (-485))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484))
- (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4)))))
+ (|partial| -12 (-4 *4 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485))
+ (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-750 *3))
- (-4 *3 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484))
- (-5 *1 (-1030 *6 *3))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-751 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485))
+ (-5 *1 (-1031 *6 *3))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072))
- (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484))
- (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6)))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073))
+ (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485))
+ (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-391)) (-5 *2 (-484))
- (-5 *1 (-1031 *4))))
+ (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485))
+ (-5 *1 (-1032 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-750 (-349 (-857 *6))))
- (-5 *3 (-349 (-857 *6))) (-4 *6 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *6))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-751 (-350 (-858 *6))))
+ (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-349 (-857 *6))) (-5 *4 (-1089)) (-5 *5 (-1072))
- (-4 *6 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *6))))
- ((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1013))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1110)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86))))
- ((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3))
+ (|partial| -12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1090)) (-5 *5 (-1073))
+ (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6))))
+ ((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1112 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1111)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86))))
+ ((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $))
- (-15 -1963 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-441))))
- ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-647))))
- ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1108))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))))
+ (-13 (-757)
+ (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $))
+ (-15 -1964 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-442))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-648))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1109))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-694)) (-4 *3 (-1128)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-695)) (-4 *3 (-1129)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3))))
((*1 *1) (-5 *1 (-145)))
- ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1013))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-338))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1128))))
+ ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1014))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1129))))
((*1 *1)
- (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013))
- (-4 *4 (-608 *3))))
- ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
- ((*1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961))))
- ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))
- ((*1 *1 *1) (-5 *1 (-1089))) ((*1 *1) (-5 *1 (-1089)))
- ((*1 *1) (-5 *1 (-1108))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756))))
- ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1013))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1013)))))
+ (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014))
+ (-4 *4 (-609 *3))))
+ ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1056 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962))))
+ ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))
+ ((*1 *1 *1) (-5 *1 (-1090))) ((*1 *1) (-5 *1 (-1090)))
+ ((*1 *1) (-5 *1 (-1109))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-1109)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1014)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
(((*1 *2)
- (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
(((*1 *2)
- (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013))
- (-4 *5 (-1013)))))
+ (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1014))
+ (-4 *5 (-1014)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013))
- (-4 *5 (-1013)))))
+ (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1014))
+ (-4 *5 (-1014)))))
(((*1 *2)
- (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -3859 *3) (|:| |entry| *4)))) (-4 *3 (-1013))
- (-4 *4 (-1013)) (-4 *1 (-1106 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1106 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1104 *2)) (-4 *2 (-312)))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3860 *3) (|:| |entry| *4)))) (-4 *3 (-1014))
+ (-4 *4 (-1014)) (-4 *1 (-1107 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1107 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1105 *2)) (-4 *2 (-312)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-5 *2 (-1084 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-312)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1104 *2)) (-4 *2 (-312)))))
+ (-12 (-5 *4 (-831)) (-5 *2 (-1085 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-312)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-312)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-363 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-55)) (-5 *1 (-86))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *1 (-86))))
- ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-86))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-55)) (-5 *1 (-86))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-695)) (-5 *1 (-86))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-86))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-363 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-86)) (-5 *1 (-136))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-86)) (-5 *1 (-136))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4))
- (-4 *4 (-13 (-363 *3) (-915)))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4))
+ (-4 *4 (-13 (-364 *3) (-916)))))
((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254))))
((*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4))))
+ (-12 (-5 *2 (-86)) (-4 *4 (-1014)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-373 *3 *4)) (-4 *4 (-363 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-568 *3 *4))
- (-4 *4 (-13 (-363 *3) (-915) (-1114)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-932))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1103 *2)) (-4 *2 (-1013)))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4))
+ (-4 *4 (-13 (-364 *3) (-916) (-1115)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-933))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1104 *2)) (-4 *2 (-1014)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-583 (-583 *3)))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-584 (-584 *3)))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5)))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-1102 *3)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1103 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1103 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-756))
+ (-12 (-4 *4 (-757))
(-5 *2
- (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4))))
- (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4))))))
- (-5 *1 (-1100 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
+ (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4))))
+ (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4))))))
+ (-5 *1 (-1101 *4)) (-5 *3 (-584 (-584 (-584 *4)))))))
(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3))
+ (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3))
(-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5))))
- (-5 *1 (-1100 *6)) (-5 *4 (-583 *5)))))
+ (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5))))
+ (-5 *1 (-1101 *6)) (-5 *4 (-584 *5)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
+ (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9))
- (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6))
- (-4 *8 (-323 *7)) (-4 *9 (-323 *7))))
+ (|partial| -12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9))
+ (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6))
+ (-4 *8 (-324 *7)) (-4 *9 (-324 *7))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)) (-4 *2 (-312))))
+ (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2)) (-4 *2 (-312))))
((*1 *2 *2)
- (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
- ((*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-312)) (-4 *2 (-961))))
+ (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
+ ((*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-312)) (-4 *2 (-962))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1036 *2 *3 *4 *5)) (-4 *3 (-961))
+ (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-962))
(-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1100 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1101 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1100 *4))
- (-5 *3 (-583 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1100 *3)))))
+ (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1101 *4))
+ (-5 *3 (-584 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1101 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-5 *2 (-1102 (-583 *4))) (-5 *1 (-1100 *4))
- (-5 *3 (-583 *4)))))
+ (-12 (-4 *4 (-757)) (-5 *2 (-1103 (-584 *4))) (-5 *1 (-1101 *4))
+ (-5 *3 (-584 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1100 *4))
- (-5 *3 (-583 (-583 *4))))))
+ (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1101 *4))
+ (-5 *3 (-584 (-584 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1102 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4)))
- (-5 *1 (-1100 *4)))))
+ (-12 (-5 *3 (-1103 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4)))
+ (-5 *1 (-1101 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4)))
- (-5 *1 (-1100 *4)) (-4 *4 (-756)))))
+ (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4)))
+ (-5 *1 (-1101 *4)) (-4 *4 (-757)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756))
- (-5 *1 (-1100 *4)))))
+ (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757))
+ (-5 *1 (-1101 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756))
- (-5 *1 (-1100 *4)))))
+ (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757))
+ (-5 *1 (-1101 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5))
- (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1100 *5)))))
+ (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5))
+ (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1101 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6))
- (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4))))
- (-5 *1 (-1100 *6)) (-5 *5 (-583 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-495))
- (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1098 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-349 (-857 (-484)))))
- (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-331 *4))
- (-4 *4 (-13 (-755) (-312)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-249 (-349 (-857 (-484))))))
- (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-331 *4))
- (-4 *4 (-13 (-755) (-312)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 (-484)))) (-5 *2 (-583 (-249 (-857 *4))))
- (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-249 (-349 (-857 (-484))))) (-5 *2 (-583 (-249 (-857 *4))))
- (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312)))))
+ (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6))
+ (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4))))
+ (-5 *1 (-1101 *6)) (-5 *5 (-584 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1100)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1090))) (-4 *5 (-496))
+ (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1099 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-350 (-858 (-485)))))
+ (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4))
+ (-4 *4 (-13 (-756) (-312)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-249 (-350 (-858 (-485))))))
+ (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4))
+ (-4 *4 (-13 (-756) (-312)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 (-249 (-858 *4))))
+ (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-249 (-350 (-858 (-485))))) (-5 *2 (-584 (-249 (-858 *4))))
+ (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1089))
- (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-4 *4 (-13 (-29 *6) (-1114) (-871)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4))))
- (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4))))
+ (|partial| -12 (-5 *5 (-1090))
+ (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-4 *4 (-13 (-29 *6) (-1115) (-872)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4))))
+ (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 *2))
- (-4 *2 (-13 (-29 *6) (-1114) (-871)))
- (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-584 *2))
+ (-4 *2 (-13 (-29 *6) (-1115) (-872)))
+ (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995))))
- (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4))))
- (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996))))
+ (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4))))
+ (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995))))
- (-4 *7 (-13 (-323 *5) (-10 -7 (-6 -3995))))
- (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2012 (-583 *7)))))
- (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996))))
+ (-4 *7 (-13 (-324 *5) (-10 -7 (-6 -3996))))
+ (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2013 (-584 *7)))))
+ (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *5)) (-4 *5 (-312))
+ (-12 (-5 *3 (-631 *5)) (-4 *5 (-312))
(-5 *2
- (-2 (|:| |particular| (-3 (-1178 *5) #2="failed"))
- (|:| -2012 (-583 (-1178 *5)))))
- (-5 *1 (-610 *5)) (-5 *4 (-1178 *5))))
+ (-2 (|:| |particular| (-3 (-1179 *5) #2="failed"))
+ (|:| -2013 (-584 (-1179 *5)))))
+ (-5 *1 (-611 *5)) (-5 *4 (-1179 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312))
+ (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312))
(-5 *2
- (-2 (|:| |particular| (-3 (-1178 *5) #2#)) (|:| -2012 (-583 (-1178 *5)))))
- (-5 *1 (-610 *5)) (-5 *4 (-1178 *5))))
+ (-2 (|:| |particular| (-3 (-1179 *5) #2#)) (|:| -2013 (-584 (-1179 *5)))))
+ (-5 *1 (-611 *5)) (-5 *4 (-1179 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *5)) (-4 *5 (-312))
+ (-12 (-5 *3 (-631 *5)) (-4 *5 (-312))
(-5 *2
- (-583
- (-2 (|:| |particular| (-3 (-1178 *5) #2#))
- (|:| -2012 (-583 (-1178 *5))))))
- (-5 *1 (-610 *5)) (-5 *4 (-583 (-1178 *5)))))
+ (-584
+ (-2 (|:| |particular| (-3 (-1179 *5) #2#))
+ (|:| -2013 (-584 (-1179 *5))))))
+ (-5 *1 (-611 *5)) (-5 *4 (-584 (-1179 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312))
+ (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312))
(-5 *2
- (-583
- (-2 (|:| |particular| (-3 (-1178 *5) #2#))
- (|:| -2012 (-583 (-1178 *5))))))
- (-5 *1 (-610 *5)) (-5 *4 (-583 (-1178 *5)))))
+ (-584
+ (-2 (|:| |particular| (-3 (-1179 *5) #2#))
+ (|:| -2013 (-584 (-1179 *5))))))
+ (-5 *1 (-611 *5)) (-5 *4 (-584 (-1179 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-495))
- (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-693 *5))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1090))) (-4 *5 (-496))
+ (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495))
- (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-693 *4))))
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496))
+ (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1089))
- (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-695 *5 *2))
- (-4 *2 (-13 (-29 *5) (-1114) (-871)))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1090))
+ (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-696 *5 *2))
+ (-4 *2 (-13 (-29 *5) (-1115) (-872)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1089))
- (-4 *7 (-13 (-29 *6) (-1114) (-871)))
- (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7)))))
- (-5 *1 (-725 *6 *7)) (-5 *4 (-1178 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1089))
- (-4 *6 (-13 (-29 *5) (-1114) (-871)))
- (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-583 (-1178 *6))) (-5 *1 (-725 *5 *6))))
+ (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1090))
+ (-4 *7 (-13 (-29 *6) (-1115) (-872)))
+ (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2013 (-584 (-1179 *7)))))
+ (-5 *1 (-726 *6 *7)) (-5 *4 (-1179 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1090))
+ (-4 *6 (-13 (-29 *5) (-1115) (-872)))
+ (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-584 (-1179 *6))) (-5 *1 (-726 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1089))
- (-4 *7 (-13 (-29 *6) (-1114) (-871)))
- (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7)))))
- (-5 *1 (-725 *6 *7))))
+ (|partial| -12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1090))
+ (-4 *7 (-13 (-29 *6) (-1115) (-872)))
+ (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2013 (-584 (-1179 *7)))))
+ (-5 *1 (-726 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1089))
- (-4 *7 (-13 (-29 *6) (-1114) (-871)))
- (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7)))))
- (-5 *1 (-725 *6 *7))))
+ (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1090))
+ (-4 *7 (-13 (-29 *6) (-1115) (-872)))
+ (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2013 (-584 (-1179 *7)))))
+ (-5 *1 (-726 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1089))
- (-4 *7 (-13 (-29 *6) (-1114) (-871)))
- (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2012 (-583 *7))) *7 #3="failed"))
- (-5 *1 (-725 *6 *7))))
+ (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1090))
+ (-4 *7 (-13 (-29 *6) (-1115) (-872)))
+ (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2013 (-584 *7))) *7 #3="failed"))
+ (-5 *1 (-726 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-86)) (-5 *5 (-1089))
- (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2012 (-583 *3))) *3 #3#))
- (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-871)))))
+ (-12 (-5 *4 (-86)) (-5 *5 (-1090))
+ (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2013 (-584 *3))) *3 #3#))
+ (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1115) (-872)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2))
- (-4 *2 (-13 (-29 *6) (-1114) (-871))) (-5 *1 (-725 *6 *2))
- (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))))
+ (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2))
+ (-4 *2 (-13 (-29 *6) (-1115) (-872))) (-5 *1 (-726 *6 *2))
+ (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-583 *2))
- (-4 *2 (-13 (-29 *6) (-1114) (-871)))
- (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *1 (-725 *6 *2))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-584 *2))
+ (-4 *2 (-13 (-29 *6) (-1115) (-872)))
+ (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *1 (-726 *6 *2))))
((*1 *2 *3 *4 *5)
(|partial| -12
(-5 *5
- (-1 (-3 (-2 (|:| |particular| *6) (|:| -2012 (-583 *6))) "failed") *7 *6))
- (-4 *6 (-312)) (-4 *7 (-600 *6))
- (-5 *2 (-2 (|:| |particular| (-1178 *6)) (|:| -2012 (-630 *6))))
- (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1178 *6))))
+ (-1 (-3 (-2 (|:| |particular| *6) (|:| -2013 (-584 *6))) "failed") *7 *6))
+ (-4 *6 (-312)) (-4 *7 (-601 *6))
+ (-5 *2 (-2 (|:| |particular| (-1179 *6)) (|:| -2013 (-631 *6))))
+ (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1179 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 (-349 (-484)))) (-5 *2 (-583 (-329))) (-5 *1 (-936))
- (-5 *4 (-329))))
+ (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 (-330))) (-5 *1 (-937))
+ (-5 *4 (-330))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 (-329))) (-5 *1 (-936))
- (-5 *4 (-329))))
+ (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-330))) (-5 *1 (-937))
+ (-5 *4 (-330))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-265 *4))))
+ (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-265 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1044 *4))
+ (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1045 *4))
(-5 *3 (-249 (-265 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1044 *5))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1045 *5))
(-5 *3 (-249 (-265 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-265 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1089)))
- (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1044 *5))
- (-5 *3 (-583 (-249 (-265 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-495))
- (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-1098 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1089))) (-4 *5 (-495))
- (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-1098 *5))
- (-5 *3 (-583 (-249 (-349 (-857 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-349 (-857 *4)))) (-4 *4 (-495))
- (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-1098 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4))))))
- (-5 *1 (-1098 *4)) (-5 *3 (-583 (-249 (-349 (-857 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *5)))))
- (-5 *1 (-1098 *5)) (-5 *3 (-349 (-857 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *5)))))
- (-5 *1 (-1098 *5)) (-5 *3 (-249 (-349 (-857 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *4))))) (-5 *1 (-1098 *4))
- (-5 *3 (-349 (-857 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *4))))) (-5 *1 (-1098 *4))
- (-5 *3 (-249 (-349 (-857 *4)))))))
-(((*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-785))))
- ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-785))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-484))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1072))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-446))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-528))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-417))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-129))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1080))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-565))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1008))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1003))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-985))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-883))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-948))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-263))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-613))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-127))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1066))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-463))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1190))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-978))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-458))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-622))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-67))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1029))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-106))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-539))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-111))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1189))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-617))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1094))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-1094))) (-5 *1 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-484) (-179) (-446) (-1072) (-1094))) (-5 *1 (-1094)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-556))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2240)) (-5 *2 (-85)) (-5 *1 (-556))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-556))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-265 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-1090)))
+ (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1045 *5))
+ (-5 *3 (-584 (-249 (-265 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1090))) (-4 *5 (-496))
+ (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1099 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-1090))) (-4 *5 (-496))
+ (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1099 *5))
+ (-5 *3 (-584 (-249 (-350 (-858 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-496))
+ (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1099 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4))))))
+ (-5 *1 (-1099 *4)) (-5 *3 (-584 (-249 (-350 (-858 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5)))))
+ (-5 *1 (-1099 *5)) (-5 *3 (-350 (-858 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5)))))
+ (-5 *1 (-1099 *5)) (-5 *3 (-249 (-350 (-858 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1099 *4))
+ (-5 *3 (-350 (-858 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1099 *4))
+ (-5 *3 (-249 (-350 (-858 *4)))))))
+(((*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-786))))
+ ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-786))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-485))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1073))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-447))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-529))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-418))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1081))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-566))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1009))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1004))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-986))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-884))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-949))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-263))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-614))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-127))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-464))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1191))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-979))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-459))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-623))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-67))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1030))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-106))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-540))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-111))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1190))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-618))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-463))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1095)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1095))) (-5 *1 (-1095))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-1095))) (-5 *1 (-1095)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-485) (-179) (-447) (-1073) (-1095))) (-5 *1 (-1095)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1095))) (-5 *1 (-1095)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-557))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2241)) (-5 *2 (-85)) (-5 *1 (-557))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-557))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2365)) (-5 *2 (-85)) (-5 *1 (-632 *4))
- (-4 *4 (-552 (-772)))))
+ (-12 (-5 *3 (|[\|\|]| -2366)) (-5 *2 (-85)) (-5 *1 (-633 *4))
+ (-4 *4 (-553 (-773)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85))
- (-5 *1 (-632 *4))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-785))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-785))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-417))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-1094))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-1094))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1094))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1094)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-772)))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85))
+ (-5 *1 (-633 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-786))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-786))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-1095))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-1095))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1095))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1095)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-773)))
((*1 *1)
- (-12 (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-997)))
+ (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-998)))
((*1 *1)
- (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
- (-4 *3 (-13 (-1013) (-34)))))
- ((*1 *1) (-5 *1 (-1092))) ((*1 *1) (-5 *1 (-1093))))
-(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
+ (-4 *3 (-13 (-1014) (-34)))))
+ ((*1 *1) (-5 *1 (-1093))) ((*1 *1) (-5 *1 (-1094))))
+(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-378)) (-5 *3 (-583 (-1089))) (-5 *4 (-1089)) (-5 *1 (-1092))))
- ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1093))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-378)) (-5 *3 (-583 (-1089))) (-5 *1 (-1093)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-378)) (-5 *1 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1093)))))
+ (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1090))) (-5 *4 (-1090)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1094))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1090))) (-5 *1 (-1094)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-379)) (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-1094)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-376))
+ (-12 (-5 *3 (-377))
(-5 *2
- (-583
- (-3 (|:| -3541 (-1089))
- (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484)))))))))
- (-5 *1 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1093)))))
+ (-584
+ (-3 (|:| -3542 (-1090))
+ (|:| -3226 (-584 (-3 (|:| S (-1090)) (|:| P (-858 (-485)))))))))
+ (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-1094)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-583
- (-583
- (-3 (|:| -3541 (-1089))
- (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484))))))))))
- (-5 *1 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1093)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))
- ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1093)))))
+ (-584
+ (-584
+ (-3 (|:| -3542 (-1090))
+ (|:| -3226 (-584 (-3 (|:| S (-1090)) (|:| P (-858 (-485))))))))))
+ (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1094)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| (-378)))))
- (-5 *1 (-1093)))))
-(((*1 *1) (-5 *1 (-1092))))
-(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))
- ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))))
-(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))))
-(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1092))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| (-379)))))
+ (-5 *1 (-1094)))))
+(((*1 *1) (-5 *1 (-1093))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))))
+(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))))
+(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))
((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-583 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))))
+ (-12 (-5 *4 (-584 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-376)) (|:| -3909 #1="void"))) (-5 *2 (-1184))
- (-5 *1 (-1092))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3910 #1="void"))) (-5 *2 (-1185))
+ (-5 *1 (-1093))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3909 #1#)))
- (-5 *2 (-1184)) (-5 *1 (-1092))))
+ (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3910 #1#)))
+ (-5 *2 (-1185)) (-5 *1 (-1093))))
((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3909 #1#)))
- (-5 *2 (-1184)) (-5 *1 (-1092)))))
-(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092))))
- ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))))
+ (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3910 #1#)))
+ (-5 *2 (-1185)) (-5 *1 (-1093)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1089)) (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 "void")))
- (-5 *1 (-1092)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1178 *4)) (-5 *1 (-1090 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-5 *2 (-1178 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1089)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-67))))
- ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-78))))
- ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013))))
- ((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072))))
- ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-379 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-422))))
- ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-774))))
- ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-876))))
- ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-988 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1029)))) ((*1 *1 *1) (-5 *1 (-1089))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1089)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 "void")))
+ (-5 *1 (-1093)))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1179 *4)) (-5 *1 (-1091 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-831)) (-5 *2 (-1179 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-67))))
+ ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-78))))
+ ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-380 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-423))))
+ ((*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-775))))
+ ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-877))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-989 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1030)))) ((*1 *1 *1) (-5 *1 (-1090))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772)))
- (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772)))
- (|:| |args| (-583 (-772)))))
- (-5 *1 (-1089)))))
+ (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773)))
+ (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773)))
+ (|:| |args| (-584 (-773)))))
+ (-5 *1 (-1090)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772)))
- (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772)))
- (|:| |args| (-583 (-772)))))
- (-5 *1 (-1089))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1089)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))))
-(((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))
- ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-1072))))
- ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1072))))
- ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1072))))
- ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089)))))
-(((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1089)))))
+ (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773)))
+ (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773)))
+ (|:| |args| (-584 (-773)))))
+ (-5 *1 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1090)))))
+(((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))))
+(((*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-1090)))))
(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-484)) (-5 *2 (-772))
- (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6)))
+ (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773))
+ (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6)))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3))
+ (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3))
(-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772))))
- ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772))))
- ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-772))))
- ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1084 *3)) (-4 *3 (-961)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-773))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-773))))
+ ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1085 *3)) (-4 *3 (-962)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1001 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756))
- (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484))))
- (-5 *1 (-529 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-495))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3))
- (-4 *3 (-861 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1) (-5 *1 (-772)))
+ (-12 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757))
+ (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485))))
+ (-5 *1 (-530 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3))
+ (-4 *3 (-862 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1) (-5 *1 (-773)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484))))
- (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-363 *4) (-133) (-27) (-1114)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485))))
+ (-5 *1 (-1083 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-363 *4) (-133) (-27) (-1114)))
- (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1082 *4 *2))))
+ (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115)))
+ (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1083 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484))))
- (-5 *2 (-349 (-857 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-857 *5))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485))))
+ (-5 *2 (-350 (-858 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-858 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484))))
- (-5 *2 (-3 (-349 (-857 *5)) (-265 *5))) (-5 *1 (-1083 *5))
- (-5 *3 (-349 (-857 *5)))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485))))
+ (-5 *2 (-3 (-350 (-858 *5)) (-265 *5))) (-5 *1 (-1084 *5))
+ (-5 *3 (-350 (-858 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1004 (-857 *5))) (-5 *3 (-857 *5))
- (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 *3)) (-5 *1 (-1083 *5))))
+ (-12 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5))
+ (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 *3)) (-5 *1 (-1084 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1004 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5)))
- (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 *3 (-265 *5)))
- (-5 *1 (-1083 *5)))))
+ (-12 (-5 *4 (-1005 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5)))
+ (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-265 *5)))
+ (-5 *1 (-1084 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5))
- (-5 *1 (-801 *4 *5)) (-4 *5 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1080)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-124 *3))))
+ (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5))
+ (-5 *1 (-802 *4 *5)) (-4 *5 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1081)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-4 *1 (-124 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3772 *4) (|:| |num| *4))))
- (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *4))))
+ (-12 (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3773 *4) (|:| |num| *4))))
+ (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1="void")))
- (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-85)) (-5 *1 (-378))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1="void")))
+ (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-85)) (-5 *1 (-379))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *3 (-583 (-1089)))
- (-5 *4 (-85)) (-5 *1 (-378))))
- ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *3 (-584 (-1090)))
+ (-5 *4 (-85)) (-5 *1 (-379))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1013))
+ (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014))
(-14 *4
- (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3))
- (-2 (|:| -2400 *2) (|:| -2401 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-749))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128))))
+ (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3))
+ (-2 (|:| -2401 *2) (|:| -2402 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| *4)))) (-4 *4 (-1013))
- (-5 *1 (-798 *3 *4)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| *4)))) (-4 *4 (-1014))
+ (-5 *1 (-799 *3 *4)) (-4 *3 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1013) (-34)))
- (-5 *2 (-583 (-1053 *3 *5))) (-5 *1 (-1053 *3 *5))
- (-4 *3 (-13 (-1013) (-34)))))
+ (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1014) (-34)))
+ (-5 *2 (-584 (-1054 *3 *5))) (-5 *1 (-1054 *3 *5))
+ (-4 *3 (-13 (-1014) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1599 *5))))
- (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34)))
- (-5 *2 (-583 (-1053 *4 *5))) (-5 *1 (-1053 *4 *5))))
+ (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1600 *5))))
+ (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34)))
+ (-5 *2 (-584 (-1054 *4 *5))) (-5 *1 (-1054 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1599 *4))) (-4 *3 (-13 (-1013) (-34)))
- (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1600 *4))) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1054 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
- (-4 *3 (-13 (-1013) (-34)))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
+ (-4 *3 (-13 (-1014) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
- (-4 *3 (-13 (-1013) (-34)))))
+ (-12 (-5 *4 (-85)) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
+ (-4 *3 (-13 (-1014) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3))
- (-4 *2 (-13 (-1013) (-34)))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3))
+ (-4 *2 (-13 (-1014) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1053 *2 *3))) (-4 *2 (-13 (-1013) (-34)))
- (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3))))
+ (-12 (-5 *4 (-584 (-1054 *2 *3))) (-4 *2 (-13 (-1014) (-34)))
+ (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1054 *2 *3))) (-5 *1 (-1054 *2 *3))
- (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34)))))
+ (-12 (-5 *4 (-584 (-1055 *2 *3))) (-5 *1 (-1055 *2 *3))
+ (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
- (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-129))))
- ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-417))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-565))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3))))
- (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-129))))
- ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-417))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-565))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3))))
- (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-129))))
+ ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-529))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-566))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))
+ (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-129))))
+ ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-529))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-566))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))
+ (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-5 *2 (-85))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961)))))
+ (-12 (-5 *2 (-584 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-757))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-962))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-962))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-584 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1078 *4 *5))
- (-14 *4 (-830))))
+ (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-831))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1078 *4 *5))
- (-14 *4 (-830)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-831)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961))
- (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962))
+ (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)))))
+ (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)))))
(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-831)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5))
- (-14 *4 (-830))))
+ (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-831))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1078 *4 *5))
- (-14 *4 (-830)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-831)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961))
- (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962))
+ (-5 *1 (-1079 *4 *5)) (-14 *4 (-831)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1078 *4 *5))
- (-14 *4 (-830)) (-4 *5 (-961)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-831)) (-4 *5 (-962)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1078 *4 *5))
- (-14 *4 (-830)) (-4 *5 (-961)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-831)) (-4 *5 (-962)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-854 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-855 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-145)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-263))))
+ (-12 (-5 *2 (-145)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961)))))
+ (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-391))))
+ (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392))))
((*1 *1 *1)
- (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2))
- (-4 *4 (-1154 (-349 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-391))))
+ (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2))
+ (-4 *4 (-1155 (-350 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
- (-4 *3 (-391))))
+ (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-4 *3 (-392))))
((*1 *1 *1)
- (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-391))))
+ (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-392))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-1077 *3 *2)) (-4 *2 (-1154 *3)))))
+ (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1078 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-869 *3)) (-5 *1 (-1077 *4 *3))
- (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1078 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *1) (-4 *1 (-432)))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *1) (-4 *1 (-432)))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *1) (-4 *1 (-432)))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *1) (-4 *1 (-432)))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *1) (-4 *1 (-432)))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *1) (-4 *1 (-432)))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-329)))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-330)))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1142 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-349 (-484))))
- (-5 *2 (-2 (|:| -3489 (-1068 *4)) (|:| -3490 (-1068 *4))))
- (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))))
+ (-12 (-4 *4 (-38 (-350 (-485))))
+ (-5 *2 (-2 (|:| -3490 (-1069 *4)) (|:| -3491 (-1069 *4))))
+ (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-349 (-484))))
- (-5 *2 (-2 (|:| -3637 (-1068 *4)) (|:| -3633 (-1068 *4))))
- (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))))
+ (-12 (-4 *4 (-38 (-350 (-485))))
+ (-5 *2 (-2 (|:| -3638 (-1069 *4)) (|:| -3634 (-1069 *4))))
+ (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-312))
- (-4 *4 (-961)) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)))))
+ (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1069 *4))) (-4 *4 (-312))
+ (-4 *4 (-962)) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1068 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-349 (-484)))
- (-5 *1 (-1074 *4)))))
+ (-12 (-5 *2 (-1069 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-350 (-485)))
+ (-5 *1 (-1075 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4))
- (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961)))))
+ (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4))
+ (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3))
- (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)))))
+ (-12 (-5 *4 (-1 (-1069 *3))) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4))
- (-4 *4 (-961)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1154 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))))
+ (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4))
+ (-4 *4 (-962)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-961))
- (-5 *1 (-1074 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962))
+ (-5 *1 (-1075 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-871)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-872)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-961))
- (-5 *3 (-484)))))
+ (-12 (-5 *2 (-1069 (-485))) (-5 *1 (-1075 *4)) (-4 *4 (-962))
+ (-5 *3 (-485)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-961))
- (-5 *3 (-484)))))
+ (-12 (-5 *2 (-1069 (-485))) (-5 *1 (-1075 *4)) (-4 *4 (-962))
+ (-5 *3 (-485)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-312))
- (-14 *4 (-906 *2 *3))))
+ (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-312))
+ (-14 *4 (-907 *2 *3))))
((*1 *1 *1)
(|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496))))
((*1 *1 *1)
- (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
- ((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
- ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *1 *1) (|partial| -4 *1 (-663)))
+ ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
+ ((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
+ ((*1 *1 *1) (|partial| -4 *1 (-660))) ((*1 *1 *1) (|partial| -4 *1 (-664)))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4))
- (-4 *4 (-983 *5 *6 *7 *3))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4))
+ (-4 *4 (-984 *5 *6 *7 *3))))
((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312)))
- (-4 *2 (-1154 *3))))
+ (|partial| -12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312)))
+ (-4 *2 (-1155 *3))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))))
+ (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
+ (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))
- (-4 *2 (-495))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-495)))
+ (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))
+ (-4 *2 (-496))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-496)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)) (-4 *2 (-495))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-694)))
+ (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2)) (-4 *2 (-496))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-695)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-495))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
+ (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495))
- (-5 *1 (-882 *3 *4))))
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-496))
+ (-5 *1 (-883 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961))
- (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495))))
+ (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962))
+ (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
+ (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-962)) (-5 *1 (-1075 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85))
- (-5 *1 (-1068 *4)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1129)) (-5 *2 (-85))
+ (-5 *1 (-1069 *4)))))
(((*1 *2 *3 *1)
(-12
- (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694))))
- (-5 *1 (-1068 *4)) (-4 *4 (-1128)) (-5 *3 (-694)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1128)))))
-(((*1 *1) (-5 *1 (-514)))
- ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-768))))
- ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-768))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072)) (-5 *4 (-772)) (-5 *2 (-1184)) (-5 *1 (-768))))
+ (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2596 (-695)) (|:| |period| (-695))))
+ (-5 *1 (-1069 *4)) (-4 *4 (-1129)) (-5 *3 (-695)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-1069 *3))) (-5 *1 (-1069 *3)) (-4 *3 (-1129)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1069 *2)) (-4 *2 (-1129)))))
+(((*1 *1) (-5 *1 (-515)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-769))))
+ ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-769))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073)) (-5 *4 (-773)) (-5 *2 (-1185)) (-5 *1 (-769))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1068 *4)) (-4 *4 (-1013))
- (-4 *4 (-1128)))))
+ (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-1069 *4)) (-4 *4 (-1014))
+ (-4 *4 (-1129)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-773)) (-5 *1 (-1069 *3)) (-4 *3 (-1014)) (-4 *3 (-1129)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1069 *3)) (-4 *3 (-1014)) (-4 *3 (-1129)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1178 (-583 (-484)))) (-5 *1 (-419))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1179 (-584 (-485)))) (-5 *1 (-420))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-537 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2))
- (-4 *2 (-1171 *4))))
+ (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2))
+ (-4 *2 (-1172 *4))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-319) (-553 *3))) (-4 *5 (-1154 *4))
- (-4 *6 (-661 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1171 *6))))
+ (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-4 *5 (-1155 *4))
+ (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1172 *6))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-319) (-553 *3)))
- (-5 *1 (-480 *4 *2)) (-4 *2 (-1171 *4))))
+ (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3)))
+ (-5 *1 (-481 *4 *2)) (-4 *2 (-1172 *4))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120)))
- (-5 *1 (-1067 *4)))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120)))
+ (-5 *1 (-1068 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3))))
+ (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3))
- (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1155 *3))
+ (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2))
- (-4 *2 (-1171 *3))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2))
+ (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1068 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3))))
+ (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3))
- (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1155 *3))
+ (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2))
- (-4 *2 (-1171 *3))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2))
+ (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1068 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3))))
+ (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3))
- (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1155 *3))
+ (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2))
- (-4 *2 (-1171 *3))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2))
+ (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-463))))
- ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 (-1048))) (-5 *1 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1068 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-464))))
+ ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 (-1049))) (-5 *1 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
- ((*1 *1) (-4 *1 (-1065))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1065)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
+ ((*1 *1) (-4 *1 (-1066))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1066)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1061 *3)))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-1062 *3)))))
(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3))
- (-4 *3 (-977 *5 *6 *7))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3))
+ (-4 *3 (-978 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-391))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))))
+ (-12 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-977 *3 *4 *5))))
+ (-12 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-978 *3 *4 *5))))
((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-583 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3))
- (-4 *3 (-977 *5 *6 *7)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-584 (-1060 *5 *6 *7 *3))) (-5 *1 (-1060 *5 *6 *7 *3))
+ (-4 *3 (-978 *5 *6 *7)))))
(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8)))
- (-5 *1 (-940 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
+ (-5 *1 (-941 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8)))
- (-5 *1 (-1059 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1060 *5 *6 *7 *8)))
+ (-5 *1 (-1060 *5 *6 *7 *8)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-977 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8)))))
- (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-978 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8)))))
+ (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-977 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1059 *5 *6 *7 *8)))))
- (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *4 (-694))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1184))
- (-5 *1 (-981 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *4 (-694))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1184))
- (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-978 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1060 *5 *6 *7 *8)))))
+ (-5 *1 (-1060 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1600 *9)))) (-5 *4 (-695))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1185))
+ (-5 *1 (-982 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1600 *9)))) (-5 *4 (-695))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1185))
+ (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-583 *11))
- (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1599 *11))))))
- (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1599 *11))))
- (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9))
- (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756))
- (-5 *1 (-981 *7 *8 *9 *10 *11))))
+ (-2 (|:| |done| (-584 *11))
+ (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1600 *11))))))
+ (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1600 *11))))
+ (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9))
+ (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757))
+ (-5 *1 (-982 *7 *8 *9 *10 *11))))
((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-583 *11))
- (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1599 *11))))))
- (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1599 *11))))
- (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9))
- (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756))
- (-5 *1 (-1058 *7 *8 *9 *10 *11)))))
+ (-2 (|:| |done| (-584 *11))
+ (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1600 *11))))))
+ (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1600 *11))))
+ (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9))
+ (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757))
+ (-5 *1 (-1059 *7 *8 *9 *10 *11)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5))
+ (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5))
(-5 *2
- (-2 (|:| -2336 (-355 *4 (-349 *4) *5 *6)) (|:| |principalPart| *6)))))
+ (-2 (|:| -2337 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| |poly| *6) (|:| -3089 (-349 *6)) (|:| |special| (-349 *6))))
- (-5 *1 (-666 *5 *6)) (-5 *3 (-349 *6))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| |poly| *6) (|:| -3090 (-350 *6)) (|:| |special| (-350 *6))))
+ (-5 *1 (-667 *5 *6)) (-5 *3 (-350 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4))
- (-4 *3 (-1154 *4))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4))
+ (-4 *3 (-1155 *4))))
((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-694)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-807 *3 *5))
- (-4 *3 (-1154 *5))))
+ (|partial| -12 (-5 *4 (-695)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-808 *3 *5))
+ (-4 *3 (-1155 *5))))
((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
- (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-391)) (-4 *8 (-717))
- (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9))
+ (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718))
+ (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-977 *6 *7 *8))
+ (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-978 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-391)) (-4 *8 (-717))
- (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9))
+ (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718))
+ (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-1058 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-977 *6 *7 *8))
+ (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-978 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-977 *6 *7 *8))
+ (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-978 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-977 *6 *7 *8))
+ (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-978 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-977 *6 *7 *8))
+ (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-978 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))))
- (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
- (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
- (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-694)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-695)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
- (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
- (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-694)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-695)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117)))
- ((*1 *1 *1) (-4 *1 (-1057))))
-(((*1 *1 *1) (-4 *1 (-1057))))
+ ((*1 *1 *1) (-4 *1 (-1058))))
+(((*1 *1 *1) (-4 *1 (-1058))))
(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117)))
- ((*1 *1 *1) (-4 *1 (-1057))))
-(((*1 *1 *1) (-4 *1 (-1057))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-484)) (-5 *2 (-85)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1128))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6))))
+ ((*1 *1 *1) (-4 *1 (-1058))))
+(((*1 *1 *1) (-4 *1 (-1058))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-485)) (-5 *2 (-85)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1129))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1128))
- (-5 *1 (-585 *5 *2))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1129))
+ (-5 *1 (-586 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1013)) (-4 *5 (-1128))
- (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1129))
+ (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1128))
- (-5 *1 (-585 *5 *2))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1129))
+ (-5 *1 (-586 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013))
- (-4 *6 (-1128)) (-5 *1 (-585 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014))
+ (-4 *6 (-1129)) (-5 *1 (-586 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013))
- (-4 *2 (-1128)) (-5 *1 (-585 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-694)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-85)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-1145 (-484))))))
-(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014))
+ (-4 *2 (-1129)) (-5 *1 (-586 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-695)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-85)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-1146 (-485))))))
+(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-484)) (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-1014))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-484))))
+ (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-1014)) (-5 *2 (-485))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-323 *4)) (-4 *4 (-1128)) (-5 *2 (-484))))
- ((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)) (-5 *3 (-114))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)))))
-(((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) (-5 *2 (-485))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-468))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-485)) (-5 *3 (-114))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-485)))))
+(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48)))))
((*1 *2 *3 *1)
(-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3))))
- (-5 *1 (-94 *3)) (-4 *3 (-756))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1114)))
- (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-521 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-519 (-349 (-857 *3))))
- (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-525 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| -3089 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-4 *5 (-961))
- (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178 (-1178 *5))) (-4 *5 (-312)) (-4 *5 (-961))
- (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1057))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1057)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))))
+ (-5 *1 (-94 *3)) (-4 *3 (-757))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1115)))
+ (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-520 (-350 (-858 *3))))
+ (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| -3090 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-4 *5 (-962))
+ (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179 (-1179 *5))) (-4 *5 (-312)) (-4 *5 (-962))
+ (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1058))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1058)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694))
+ (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695))
(-4 *5 (-146))))
((*1 *1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))
((*1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-323 *3))
- (-4 *4 (-323 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961)))))
+ (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-324 *3))
+ (-4 *4 (-324 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1055 *3 *4)) (-14 *3 (-694)))))
+ (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1056 *3 *4)) (-14 *3 (-695)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
- (-4 *3 (-13 (-1013) (-34))))))
+ (|partial| -12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
+ (-4 *3 (-13 (-1014) (-34))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
- (-4 *3 (-13 (-1013) (-34))))))
+ (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
+ (-4 *3 (-13 (-1014) (-34))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
- (-4 *4 (-13 (-1013) (-34))))))
+ (-12 (-5 *2 (-584 *4)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *4 (-13 (-1014) (-34))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1054 *3 *4))
- (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))))
+ (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1055 *3 *4))
+ (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34)))
- (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5)))))
+ (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-1014) (-34)))
+ (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5)))))
(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1053 *5 *6)) (-5 *4 (-1 (-85) *6 *6))
- (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85))
- (-5 *1 (-1054 *5 *6)))))
+ (-12 (-5 *3 (-1054 *5 *6)) (-5 *4 (-1 (-85) *6 *6))
+ (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85))
+ (-5 *1 (-1055 *5 *6)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128))
- (-4 *2 (-1013))))
+ (-12 (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129))
+ (-4 *2 (-1014))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *3))
- (-4 *3 (-1128))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *3))
+ (-4 *3 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1129))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
- (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))))
+ (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-193 *3))
- (-4 *3 (-1013))))
- ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-193 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-193 *3))
+ (-4 *3 (-1014))))
+ ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-193 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129))))
((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))
+ (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
- (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))))
+ (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))))
(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1053 *4 *5))) (-5 *3 (-1 (-85) *5 *5))
- (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34)))
- (-5 *1 (-1054 *4 *5))))
+ (-12 (-5 *2 (-584 (-1054 *4 *5))) (-5 *3 (-1 (-85) *5 *5))
+ (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34)))
+ (-5 *1 (-1055 *4 *5))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-1053 *3 *4))) (-4 *3 (-13 (-1013) (-34)))
- (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))))
+ (-12 (-5 *2 (-584 (-1054 *3 *4))) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85))
+ (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
- (-4 *4 (-13 (-1013) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-876))))
- ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-902))))
- ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *4 (-13 (-1014) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-768))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-877))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-903))))
+ ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1129))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *2 *3))
- (-4 *3 (-13 (-1013) (-34))))))
+ (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1054 *2 *3))
+ (-4 *3 (-13 (-1014) (-34))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))
+ (|partial| -12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85))
+ (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
- (-4 *4 (-13 (-1013) (-34))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *4 (-13 (-1014) (-34))))))
(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86)))
- ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-483)))
- ((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961))))
+ ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-484)))
+ ((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-962))))
((*1 *1 *1)
- (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
- (-4 *3 (-13 (-1013) (-34))))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
+ (-4 *3 (-13 (-1014) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
- (-4 *3 (-13 (-1013) (-34))))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
+ (-4 *3 (-13 (-1014) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34)))
- (-4 *2 (-13 (-1013) (-34))))))
+ (-12 (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *2 (-13 (-1014) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
- (-4 *4 (-13 (-1013) (-34))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
+ (-4 *4 (-13 (-1014) (-34))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
- (-4 *3 (-13 (-1013) (-34))))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
+ (-4 *3 (-13 (-1014) (-34))))))
(((*1 *2 *1 *1 *3 *4)
(-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6))
- (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85))
- (-5 *1 (-1053 *5 *6)))))
+ (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85))
+ (-5 *1 (-1054 *5 *6)))))
(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85))
- (-5 *1 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))))))
+ (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85))
+ (-5 *1 (-1054 *4 *5)) (-4 *4 (-13 (-1014) (-34))))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-1052))))
+ ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-1052))))
+ ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1052))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1052))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1052))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1052))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-1052))) ((*1 *1 *1 *1) (-4 *1 (-1052))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1052))))
+ ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-1053))) ((*1 *1 *1 *1) (-4 *1 (-1053))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-1052))))
+ ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-1053))))
(((*1 *1 *1 *1) (-5 *1 (-179)))
((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953))))
- ((*1 *1 *1 *1) (-4 *1 (-1052))))
-(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973))))
- ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-714)))
- ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-973))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-973))))
- ((*1 *1 *1) (-4 *1 (-1052))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1072)) (-5 *4 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051))))
- ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-1094))) (-5 *1 (-1049)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-961)) (-4 *1 (-1047 *3))))
- ((*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
+(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-974))))
+ ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-715)))
+ ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-974))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-974))))
+ ((*1 *1 *1) (-4 *1 (-1053))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-1052))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1185)) (-5 *1 (-1052)))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-1052))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1185)) (-5 *1 (-1052)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073)) (-5 *4 (-773)) (-5 *2 (-1185)) (-5 *1 (-1052))))
+ ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-1052))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1185)) (-5 *1 (-1052)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-584 (-1095))) (-5 *1 (-1050)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-962)) (-4 *1 (-1048 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-962)))))
(((*1 *2)
- (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5)))
- (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
+ (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-694)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-694)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1048 *3)))))
+(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1048 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1047 *4)) (-4 *4 (-961))
- (-5 *2 (-694)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3))))
+ (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-962))
+ (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1048 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3))))
+ (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1048 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3))))
+ (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1048 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
+ (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3))))))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3))))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961))
- (-4 *1 (-1047 *4))))
+ (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962))
+ (-4 *1 (-1048 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1047 *3))))
+ (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1048 *3))))
((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4))
- (-4 *4 (-961))))
+ (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4))
+ (-4 *4 (-962))))
((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4))
- (-4 *4 (-961))))
+ (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4))
+ (-4 *4 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145))
- (-4 *1 (-1047 *5)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145))
+ (-4 *1 (-1048 *5)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145))
- (-4 *1 (-1047 *5)) (-4 *5 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))))
+ (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145))
+ (-4 *1 (-1048 *5)) (-4 *5 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694))))))))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961))
- (-5 *2 (-583 (-583 (-583 (-854 *3))))))))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962))
+ (-5 *2 (-584 (-584 (-584 (-855 *3))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145))))))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-962))
(-5 *2
- (-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694))
- (|:| |constructs| (-694)))))))
+ (-2 (|:| -3850 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695))
+ (|:| |constructs| (-695)))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3731 (-1084 *6)) (|:| -2401 (-484)))))
- (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3732 (-1085 *6)) (|:| -2402 (-485)))))
+ (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-962)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2))
- (-4 *2 (-13 (-538 (-484) *4) (-317 *4) (-10 -7 (-6 -3995))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2))
+ (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-10 -7 (-6 -3996))))))
((*1 *2 *2)
- (-12 (-4 *3 (-756)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2))
- (-4 *2 (-13 (-538 (-484) *3) (-317 *3) (-10 -7 (-6 -3995)))))))
+ (-12 (-4 *3 (-757)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2))
+ (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-10 -7 (-6 -3996)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2))
- (-4 *2 (-13 (-538 (-484) *4) (-317 *4) (-10 -7 (-6 -3995))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2))
+ (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-10 -7 (-6 -3996))))))
((*1 *2 *2)
- (-12 (-4 *3 (-756)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2))
- (-4 *2 (-13 (-538 (-484) *3) (-317 *3) (-10 -7 (-6 -3995)))))))
+ (-12 (-4 *3 (-757)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2))
+ (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-10 -7 (-6 -3996)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 *4)) (-4 *4 (-961)) (-4 *2 (-1154 *4))
- (-5 *1 (-383 *4 *2))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-962)) (-4 *2 (-1155 *4))
+ (-5 *1 (-384 *4 *2))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-349 (-1084 (-265 *5)))) (-5 *3 (-1178 (-265 *5)))
- (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1043 *5)))))
+ (-12 (-5 *2 (-350 (-1085 (-265 *5)))) (-5 *3 (-1179 (-265 *5)))
+ (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1044 *5)))))
(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-349 (-1084 (-265 *3)))) (-4 *3 (-495)) (-5 *1 (-1043 *3)))))
+ (-12 (-5 *2 (-350 (-1085 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1044 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-249 (-349 (-857 *5)))) (-5 *4 (-1089))
+ (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1090))
(-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-1079 (-583 (-265 *5)) (-583 (-249 (-265 *5)))))
- (-5 *1 (-1042 *5))))
+ (-5 *2 (-1080 (-584 (-265 *5)) (-584 (-249 (-265 *5)))))
+ (-5 *1 (-1043 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-1079 (-583 (-265 *5)) (-583 (-249 (-265 *5)))))
- (-5 *1 (-1042 *5)))))
+ (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120)))
+ (-5 *2 (-1080 (-584 (-265 *5)) (-584 (-249 (-265 *5)))))
+ (-5 *1 (-1043 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-583 (-265 *5))) (-5 *1 (-1042 *5))))
+ (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120)))
+ (-5 *2 (-584 (-265 *5))) (-5 *1 (-1043 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089)))
- (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-265 *5))))
- (-5 *1 (-1042 *5)))))
+ (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1090)))
+ (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-265 *5))))
+ (-5 *1 (-1043 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1042 *5))))
+ (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120)))
+ (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1043 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1042 *4))))
+ (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-13 (-258) (-120)))
+ (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1043 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-249 (-349 (-857 *5)))) (-5 *4 (-1089))
- (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5))))
- (-5 *1 (-1042 *5))))
+ (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1090))
+ (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5))))
+ (-5 *1 (-1043 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-249 (-349 (-857 *4)))) (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1042 *4))))
+ (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120)))
+ (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1043 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089)))
- (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5)))))
- (-5 *1 (-1042 *5))))
+ (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1090)))
+ (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5)))))
+ (-5 *1 (-1043 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-349 (-857 *4)))) (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1042 *4))))
+ (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120)))
+ (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1043 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-249 (-349 (-857 *5))))) (-5 *4 (-583 (-1089)))
- (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5)))))
- (-5 *1 (-1042 *5))))
+ (-12 (-5 *3 (-584 (-249 (-350 (-858 *5))))) (-5 *4 (-584 (-1090)))
+ (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5)))))
+ (-5 *1 (-1043 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-249 (-349 (-857 *4))))) (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1042 *4)))))
+ (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-4 *4 (-13 (-258) (-120)))
+ (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1043 *4)))))
(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))))
+ (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *2 (-584 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))))
+ (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *2 (-584 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))))
+ (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *2 (-584 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))))
+ (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *2 (-584 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
+ (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
(-5 *2
- (-2 (|:| |solns| (-583 *5))
- (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1041 *3 *5)) (-4 *3 (-1154 *5)))))
+ (-2 (|:| |solns| (-584 *5))
+ (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1042 *3 *5)) (-4 *3 (-1155 *5)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-323 *4) (-10 -7 (-6 -3995))))
- (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))) (-5 *1 (-609 *4 *5 *2 *3))
- (-4 *3 (-627 *4 *5 *2))))
+ (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-10 -7 (-6 -3996))))
+ (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))) (-5 *1 (-610 *4 *5 *2 *3))
+ (-4 *3 (-628 *4 *5 *2))))
((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1178 *4)) (-5 *3 (-630 *4)) (-4 *4 (-312))
- (-5 *1 (-610 *4))))
+ (|partial| -12 (-5 *2 (-1179 *4)) (-5 *3 (-631 *4)) (-4 *4 (-312))
+ (-5 *1 (-611 *4))))
((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312))
- (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2))))
+ (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312))
+ (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484)))))))
- (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1068 *7))) (-4 *6 (-756))
- (-4 *7 (-861 *5 (-469 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1068 *7) *7))
- (-5 *1 (-1039 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1069 *7))) (-4 *6 (-757))
+ (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1069 *7) *7))
+ (-5 *1 (-1040 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-258)) (-4 *6 (-323 *5)) (-4 *4 (-323 *5))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4))))
- (-5 *1 (-1037 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))))
+ (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4))))
+ (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-258)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
+ (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
(-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))))
+ (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-258)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-258)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3))
- (-4 *3 (-627 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))
+ (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3))
+ (-4 *3 (-628 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))
((*1 *2 *2)
- (-12 (-4 *3 (-258)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3))))
((*1 *1 *2)
- (-12 (-4 *2 (-961)) (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2))
+ (-12 (-4 *2 (-962)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2))
(-4 *5 (-196 *3 *2)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
+ (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
+ (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1036 *3 *4 *5 *6))
+ (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1037 *3 *4 *5 *6))
(-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4))
+ (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4))
(-4 *2 (-196 *3 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319))))
+ (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320))))
((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312))))
- ((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1178 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (-4 *2 (-961)))))
+ (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (-4 *2 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 *2)) (-4 *4 (-1154 *2))
- (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))))
- (-5 *1 (-438 *2 *4 *5)) (-4 *5 (-352 *2 *4))))
+ (-12 (-5 *3 (-631 *2)) (-4 *4 (-1155 *2))
+ (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))))
+ (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (-4 *2 (-961)))))
+ (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (-4 *2 (-962)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-312))
- (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))
+ (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312))
+ (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2))
- (|has| *2 (-6 (-3996 "*"))) (-4 *2 (-961))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))
+ (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-962))))
((*1 *2 *3)
- (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-146))
- (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))
+ (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146))
+ (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (|has| *2 (-6 (-3996 "*"))) (-4 *2 (-961)))))
+ (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-962)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2))
- (|has| *2 (-6 (-3996 "*"))) (-4 *2 (-961))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))
+ (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-962))))
((*1 *2 *3)
- (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-146))
- (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))
+ (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146))
+ (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (|has| *2 (-6 (-3996 "*"))) (-4 *2 (-961)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-962)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1129)) (-5 *2 (-695)))))
(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))
- ((*1 *1 *1 *1) (-5 *1 (-1033))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-1029)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-380))))
- ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-749))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1094))) (-5 *3 (-1094)) (-5 *1 (-1028))))
- ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-622))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-883))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-985))))
- ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1028)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-622))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1028)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-391)) (-4 *4 (-740)) (-14 *5 (-1089))
- (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))))
+ ((*1 *1 *1 *1) (-5 *1 (-1034))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-381))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-750))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1095))) (-5 *3 (-1095)) (-5 *1 (-1029))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1030)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-623))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-884))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-986))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1029)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-623))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1095))) (-5 *1 (-1029)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1090))
+ (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-391)) (-4 *4 (-740)) (-14 *5 (-1089))
- (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))))
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1090))
+ (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484))
- (-5 *1 (-1027 *4 *5)))))
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-485))
+ (-5 *1 (-1028 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484))
- (-5 *1 (-1027 *4 *5)))))
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-485))
+ (-5 *1 (-1028 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 *4))
- (-5 *1 (-1027 *4 *5)))))
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-584 *4))
+ (-5 *1 (-1028 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 (-1147 *5 *4)))
- (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))))
+ (-12 (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-584 (-1148 *5 *4)))
+ (-5 *1 (-1028 *4 *5)) (-5 *3 (-1148 *5 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 (-1147 *5 *4)))
- (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-484)) (-5 *1 (-1021))))
+ (-12 (-4 *4 (-741)) (-14 *5 (-1090)) (-5 *2 (-584 (-1148 *5 *4)))
+ (-5 *1 (-1028 *4 *5)) (-5 *3 (-1148 *5 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1023 *3)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1022)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1179 (-485))) (-5 *3 (-485)) (-5 *1 (-1022))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-583 (-484))) (-5 *4 (-484))
- (-5 *1 (-1021)))))
+ (-12 (-5 *2 (-1179 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485))
+ (-5 *1 (-1022)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-583 (-484))) (-5 *3 (-583 (-830))) (-5 *4 (-85))
- (-5 *1 (-1021)))))
+ (-12 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-85))
+ (-5 *1 (-1022)))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-630 (-484))) (-5 *3 (-583 (-484))) (-5 *1 (-1021)))))
+ (-12 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-484))) (-5 *2 (-630 (-484)))
- (-5 *1 (-1021)))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485)))
+ (-5 *1 (-1022)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-1021)))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-583 (-484))) (-5 *3 (-630 (-484))) (-5 *1 (-1021)))))
+ (-12 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021)))))
+ (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4))))
- (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4))
- (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4))
+ (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4))))
- (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4))
- (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4))
+ (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4))))
- (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4))
- (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4))
+ (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4))))
- (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4))))
- (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4))))
- (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4))))
- (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *5 (-85))
- (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-391))
- (-4 *7 (-717)) (-4 *4 (-756))
- (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1599 *9))))
- (-5 *1 (-1019 *6 *7 *4 *8 *9)))))
+ (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1600 *9)))) (-5 *5 (-85))
+ (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392))
+ (-4 *7 (-718)) (-4 *4 (-757))
+ (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1600 *9))))
+ (-5 *1 (-1020 *6 *7 *4 *8 *9)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))
- (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))
+ (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-985 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1020 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-985 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1020 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *9 (-977 *6 *7 *8))
- (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *4) (|:| |ineq| (-583 *9))))
- (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9))))
+ (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *9 (-978 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3267 (-584 *9)) (|:| -1600 *4) (|:| |ineq| (-584 *9))))
+ (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9))))
((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *9 (-977 *6 *7 *8))
- (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *4) (|:| |ineq| (-583 *9))))
- (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9))
- (-4 *4 (-983 *6 *7 *8 *9)))))
+ (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *9 (-978 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3267 (-584 *9)) (|:| -1600 *4) (|:| |ineq| (-584 *9))))
+ (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9))
+ (-4 *4 (-984 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9))
- (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8))
+ (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9))
+ (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8))
(-5 *2
- (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *10) (|:| |ineq| (-583 *9)))))
- (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))
+ (-584 (-2 (|:| -3267 (-584 *9)) (|:| -1600 *10) (|:| |ineq| (-584 *9)))))
+ (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9))
- (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8))
+ (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9))
+ (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8))
(-5 *2
- (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *10) (|:| |ineq| (-583 *9)))))
- (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
+ (-584 (-2 (|:| -3267 (-584 *9)) (|:| -1600 *10) (|:| |ineq| (-584 *9)))))
+ (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1599 *7))))
- (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1600 *7))))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1599 *7))))
- (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1600 *7))))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8)))
- (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1600 *8)))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8)))
- (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1600 *8)))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *1 (-901 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *1 (-902 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *1 (-1018 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85))
- (-5 *1 (-901 *5 *6 *7 *8 *3))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85))
+ (-5 *1 (-902 *5 *6 *7 *8 *3))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-391))
- (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85))
- (-5 *1 (-1018 *5 *6 *7 *8 *3)))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85))
+ (-5 *1 (-1019 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3))
- (-4 *3 (-983 *4 *5 *6 *7))))
+ (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3))
+ (-4 *3 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3))
- (-4 *3 (-983 *4 *5 *6 *7)))))
+ (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3))
+ (-4 *3 (-984 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *1 (-901 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *1 (-902 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *1 (-1018 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *2 (-1184)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *2 (-1184)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
- (-4 *8 (-983 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
+ (-4 *8 (-984 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-987))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))
- ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-950 (-484)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))
+ ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| *4))))
- (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3860 (-1090)) (|:| |entry| *4))))
+ (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))
((*1 *2 *1)
- (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-4 *7 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2))))
+ (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-830)) (-4 *1 (-346))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-346))))
+ (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-347))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-347))))
((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
- (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
+ (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014))
+ (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
- (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
+ (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014))
+ (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+ (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-613))))
+ (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-614))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831)))))
(((*1 *2)
- (-12 (-5 *2 (-1178 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-1179 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-4 *3 (-1013))
+ (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-4 *3 (-72))
(-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-816 *4))))
+ (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-817 *4))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1072)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
- ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
- ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1034)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1073)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-443 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7))
- (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7))
+ (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-363 *3)) (-4 *3 (-1013))
- (-5 *1 (-509 *3 *4))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-106))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-111))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-127))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-135))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-617))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-932))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-978))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-1008)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-902))))
+ (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1014))
+ (-5 *1 (-510 *3 *4))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-127))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-135))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-618))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-933))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-979))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-1009)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1129)) (-5 *2 (-485)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-903))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1089)) (-4 *4 (-1128)) (-5 *1 (-971 *3 *4))
- (-4 *3 (-1006 *4))))
+ (-12 (-5 *2 (-1090)) (-4 *4 (-1129)) (-5 *1 (-972 *3 *4))
+ (-4 *3 (-1007 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1089)) (-5 *3 (-1001 *4)) (-4 *4 (-1128)) (-5 *1 (-1004 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-1002 *4)) (-4 *4 (-1129)) (-5 *1 (-1005 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-1004)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1178 *3))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1179 *3))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1178 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1179 *4))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1154 *4)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-631 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1154 *4)) (-5 *2 (-1178 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-1179 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1154 *4)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-631 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3))
- (-5 *2 (-1178 *3))))
+ (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3))
+ (-5 *2 (-1179 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-360 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-1178 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-312))
- (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-1179 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312))
+ (-14 *4 (-584 (-1090)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1178 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312))
- (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-1179 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-312))
+ (-14 *4 (-584 (-1090)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-312))
- (-5 *2 (-1178 *5)) (-5 *1 (-998 *5)))))
+ (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-312))
+ (-5 *2 (-1179 *5)) (-5 *1 (-999 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146))
- (-5 *2 (-1178 (-630 *4)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146))
+ (-5 *2 (-1179 (-631 *4)))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 (-630 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1089))) (-4 *5 (-312))
- (-5 *2 (-1178 (-630 (-349 (-857 *5))))) (-5 *1 (-998 *5))
- (-5 *4 (-630 (-349 (-857 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1089))) (-4 *5 (-312)) (-5 *2 (-1178 (-630 (-857 *5))))
- (-5 *1 (-998 *5)) (-5 *4 (-630 (-857 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-5 *2 (-1178 (-630 *4)))
- (-5 *1 (-998 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-997)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-149))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-997)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997)))))
-(((*1 *1) (-5 *1 (-997))))
-(((*1 *1) (-5 *1 (-997))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1179 (-631 *4))) (-5 *1 (-360 *3 *4))
+ (-4 *3 (-361 *4))))
+ ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 (-631 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-1090))) (-4 *5 (-312))
+ (-5 *2 (-1179 (-631 (-350 (-858 *5))))) (-5 *1 (-999 *5))
+ (-5 *4 (-631 (-350 (-858 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-1090))) (-4 *5 (-312)) (-5 *2 (-1179 (-631 (-858 *5))))
+ (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-5 *2 (-1179 (-631 *4)))
+ (-5 *1 (-999 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-998)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-149))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-998)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-998)))))
+(((*1 *1) (-5 *1 (-998))))
+(((*1 *1) (-5 *1 (-998))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-997 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))))
-(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105)))))
-(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-996 *3)) (-4 *3 (-105)))))
-(((*1 *1) (-5 *1 (-994))))
+ (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))))
+(((*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-105)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-997 *3)) (-4 *3 (-105)))))
+(((*1 *1) (-5 *1 (-995))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3))
- (-4 *3 (-1020 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3))
+ (-4 *3 (-1021 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5))))))
- (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089)))))
+ (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5))))))
+ (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4))))))
- (-5 *1 (-990 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1089)))))
+ (-5 *2 (-584 (-2 (|:| -1747 (-1085 *4)) (|:| -3225 (-584 (-858 *4))))))
+ (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1090)))))
((*1 *2 *3 *4 *4)
(-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5))))))
- (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))))))
+ (-5 *2 (-584 (-2 (|:| -1747 (-1085 *5)) (|:| -3225 (-584 (-858 *5))))))
+ (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1090))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-987 *3 *4 *5))) (-4 *3 (-1013))
- (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
- (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-989 *3 *4 *5)))))
+ (-12 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014))
+ (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
+ (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
- (-5 *2 (-583 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5))
- (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))))))
+ (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
+ (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-1013))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2))
- (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4))))))
+ (-12 (-5 *3 (-584 (-1090))) (-4 *4 (-1014))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2))
+ (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))
((*1 *1 *2 *2)
- (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
- (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))))))
+ (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
+ (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1128))
- (-5 *1 (-801 *4 *5))))
+ (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1014)) (-4 *5 (-1129))
+ (-5 *1 (-802 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1013))
- (-4 *5 (-1128)) (-5 *1 (-801 *4 *5))))
+ (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1014))
+ (-4 *5 (-1129)) (-5 *1 (-802 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1089))) (-5 *4 (-1 (-85) (-583 *6)))
- (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-801 *5 *6))))
+ (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1090))) (-5 *4 (-1 (-85) (-584 *6)))
+ (-4 *5 (-1014)) (-4 *6 (-1129)) (-5 *1 (-802 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1128))
- (-5 *2 (-265 (-484))) (-5 *1 (-848 *5))))
+ (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1129))
+ (-5 *2 (-265 (-485))) (-5 *1 (-849 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1089)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1128))
- (-5 *2 (-265 (-484))) (-5 *1 (-848 *5))))
+ (-12 (-5 *3 (-1090)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1129))
+ (-5 *2 (-265 (-485))) (-5 *1 (-849 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1128)) (-4 *4 (-1013))
- (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-363 *4))))
+ (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1129)) (-4 *4 (-1014))
+ (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1128)) (-4 *4 (-1013))
- (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-363 *4))))
+ (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1129)) (-4 *4 (-1014))
+ (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-1 (-85) (-583 *6)))
- (-4 *6 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1013))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2)))
- (-5 *2 (-800 *3)) (-5 *1 (-987 *3 *4 *5))
- (-4 *5 (-13 (-363 *4) (-796 *3) (-553 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
- (-5 *2 (-583 (-1089))) (-5 *1 (-987 *3 *4 *5))
- (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-263))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-883))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-907))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-948))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-985)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4))))
- (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4))))
- (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-1 (-85) (-584 *6)))
+ (-4 *6 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2)))
+ (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-797 *3) (-554 *2))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
+ (-5 *2 (-584 (-1090))) (-5 *1 (-988 *3 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-263))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-884))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-908))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-949))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-986)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-85)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4))))
- (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4))))
- (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4))))
- (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
+ (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *5 (-85))
- (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-391))
- (-4 *7 (-717)) (-4 *4 (-756))
- (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1599 *9))))
- (-5 *1 (-984 *6 *7 *4 *8 *9)))))
+ (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1600 *9)))) (-5 *5 (-85))
+ (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392))
+ (-4 *7 (-718)) (-4 *4 (-757))
+ (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1600 *9))))
+ (-5 *1 (-985 *6 *7 *4 *8 *9)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4))))
- (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1600 *4))))
+ (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *1))))
- (-4 *1 (-983 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *1))))
+ (-4 *1 (-984 *4 *5 *6 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))))
(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-495)) (-4 *2 (-961))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496))))
((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *1))))
- (-4 *1 (-983 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *1))))
+ (-4 *1 (-984 *4 *5 *6 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7))
- (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7))
+ (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
- (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
+ (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))
((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4))
+ (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4))
(-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4))
+ (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4))
(-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4))
+ (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4))
(-5 *2 (-85)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-950 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-363 *3))))
+ (-12 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-364 *3))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1084 *4)) (-5 *1 (-138 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1085 *4)) (-5 *1 (-138 *3 *4))
(-4 *3 (-139 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-254))))
- ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1084 *3))))
- ((*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1154 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-857 (-349 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
- ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-349 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
- ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-583 *1))
- (-4 *1 (-980 *4 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084 *2)) (-5 *4 (-1089)) (-4 *2 (-363 *5)) (-5 *1 (-32 *5 *2))
- (-4 *5 (-495))))
+ ((*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-254))))
+ ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3))))
+ ((*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1155 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
+ ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1085 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-584 *1))
+ (-4 *1 (-981 *4 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-496))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085 *2)) (-5 *4 (-1090)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2))
+ (-4 *5 (-496))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-830)) (-4 *1 (-925))))
+ (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-831)) (-4 *1 (-926))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-830)) (-5 *4 (-772))
- (-4 *1 (-925))))
+ (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-831)) (-5 *4 (-773))
+ (-4 *1 (-926))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-312)))
- (-4 *1 (-980 *4 *2)) (-4 *2 (-1154 *4)))))
+ (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-312)))
+ (-4 *1 (-981 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-349 (-484))) (-5 *1 (-937 *3))
- (-4 *3 (-13 (-755) (-312) (-933)))))
+ (-12 (-5 *2 (-350 (-485))) (-5 *1 (-938 *3))
+ (-4 *3 (-13 (-756) (-312) (-934)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))
+ (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1154 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-127))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-978)))))
+ (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1155 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-127))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1049))) (-5 *1 (-979)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757))))
((*1 *2 *1)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))))
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-694)))))
-(((*1 *2 *1) (-12 (-5 *2 (-422)) (-5 *1 (-172))))
- ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-422)) (-5 *1 (-617))))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172))))
+ ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-618))))
((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-978 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))
- ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1089)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1090)))))
((*1 *2 *1)
- (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1089)))))
- ((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961))))
+ (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1090)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962))))
((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1089))) (-4 *5 (-196 (-3956 *3) (-694)))
+ (-12 (-14 *3 (-584 (-1090))) (-4 *5 (-196 (-3957 *3) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5))
- (-2 (|:| -2400 *4) (|:| -2401 *5))))
- (-4 *2 (-146)) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756))
- (-4 *7 (-861 *2 *5 (-773 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72))))
- ((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961))))
+ (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5))
+ (-2 (|:| -2401 *4) (|:| -2402 *5))))
+ (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757))
+ (-4 *7 (-862 *2 *5 (-774 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72))))
+ ((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))))
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-383 *4 *3)) (-4 *3 (-1154 *4))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-978 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-978 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *2 (-85)))))
+ (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -2902 *1)))
- (-4 *1 (-977 *4 *5 *3))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-695)) (|:| -2903 *1)))
+ (-4 *1 (-978 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -2902 *1)))
- (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-695)) (|:| -2903 *1)))
+ (-4 *1 (-978 *3 *4 *5)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -3953 *3) (|:| |gap| (-694)) (|:| -1972 (-704 *3))
- (|:| -2902 (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-961))))
+ (-2 (|:| -3954 *3) (|:| |gap| (-695)) (|:| -1973 (-705 *3))
+ (|:| -2903 (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-962))))
((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1)))
- (-4 *1 (-977 *4 *5 *3))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2903 *1)))
+ (-4 *1 (-978 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1)))
- (-4 *1 (-977 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2903 *1)))
+ (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *2 *1 *1)
(-12
- (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3480 (-694))))
- (-5 *1 (-704 *3)) (-4 *3 (-961))))
+ (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3481 (-695))))
+ (-5 *1 (-705 *3)) (-4 *3 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3480 (-694))))
- (-4 *1 (-977 *3 *4 *5)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1154 *5))
- (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6))
- (-14 *7 (-830))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3481 (-695))))
+ (-4 *1 (-978 *3 *4 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5))
+ (-5 *2 (-1085 (-1085 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6))
+ (-14 *7 (-831))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1128))))
+ (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1129))))
((*1 *1 *2)
(|partial| OR
- (-12 (-5 *2 (-857 *3))
- (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-2560 (-4 *3 (-38 (-484))))
- (-4 *5 (-553 (-1089))))
- (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 *3))
- (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-349 (-484)))))
- (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089))))
- (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 *3))
- (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-349 (-484))))
- (-4 *5 (-553 (-1089))))
- (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-2561 (-4 *3 (-38 (-485))))
+ (-4 *5 (-554 (-1090))))
+ (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2561 (-4 *3 (-484))) (-2561 (-4 *3 (-38 (-350 (-485)))))
+ (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1090))))
+ (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2561 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485))))
+ (-4 *5 (-554 (-1090))))
+ (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
(|partial| OR
- (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
- (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484)))
- (-4 *5 (-553 (-1089))))
- (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485)))
+ (-4 *5 (-554 (-1090))))
+ (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128))))
+ (|partial| -12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1129))))
((*1 *1 *2)
(OR
- (-12 (-5 *2 (-857 *3))
- (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-2560 (-4 *3 (-38 (-484))))
- (-4 *5 (-553 (-1089))))
- (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 *3))
- (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-349 (-484)))))
- (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089))))
- (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 *3))
- (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-349 (-484))))
- (-4 *5 (-553 (-1089))))
- (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-2561 (-4 *3 (-38 (-485))))
+ (-4 *5 (-554 (-1090))))
+ (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2561 (-4 *3 (-484))) (-2561 (-4 *3 (-38 (-350 (-485)))))
+ (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1090))))
+ (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2561 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485))))
+ (-4 *5 (-554 (-1090))))
+ (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
(OR
- (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
- (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484)))
- (-4 *5 (-553 (-1089))))
- (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
- (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485)))
+ (-4 *5 (-554 (-1090))))
+ (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090)))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
- (-12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5))
- (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1090))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))
+ (-2 (|:| -3145 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-978 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef1| (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef2| (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef2| (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3144 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3145 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))))
+ (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *3 (-495)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *3 (-496)))))
(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *3 (-495)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *3 (-496)))))
(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-495)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-391))))
- ((*1 *1 *1 *1) (-4 *1 (-391)))
- ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-425 *2)) (-4 *2 (-1154 (-484)))))
- ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-694)))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-496)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392))))
+ ((*1 *1 *1 *1) (-4 *1 (-392)))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-485)))))
+ ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-695)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2))
- (-4 *2 (-861 *5 *3 *4))))
+ (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2))
+ (-4 *2 (-862 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1085 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1084 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258))
- (-5 *2 (-1084 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-830)))
+ (-12 (-5 *3 (-584 (-1085 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258))
+ (-5 *2 (-1085 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-831)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-391)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3))))
+ (-12 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-391)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-392)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-391)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-392)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-391)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-392)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-391)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-392)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-391)))))
-(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975))))
- ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-975)))))
-(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-392)))))
+(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-976))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-976)))))
+(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5))
+ (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5))
(-4 *3 (-196 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-695))))
((*1 *2)
- (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-310 *3)) (-4 *3 (-1013))))
- ((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-1013)) (-5 *2 (-694))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-310 *3)) (-4 *3 (-1014))))
+ ((*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-695))))
((*1 *2)
- (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-367 *3 *4)) (-4 *3 (-368 *4))))
+ (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23))
+ (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23))
(-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5))
- (-4 *3 (-661 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))
+ (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5))
+ (-4 *3 (-662 *4 *5))))
+ ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-347 *4) *4)) (-4 *4 (-495)) (-5 *2 (-347 *4))
- (-5 *1 (-361 *4))))
- ((*1 *1 *1) (-5 *1 (-836)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
- ((*1 *1 *1) (-5 *1 (-838)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838))))
+ (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-496)) (-5 *2 (-348 *4))
+ (-5 *1 (-362 *4))))
+ ((*1 *1 *1) (-5 *1 (-837)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
+ ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))
- (-5 *4 (-349 (-484))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))
+ (-5 *4 (-350 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *2 *2)
(|partial| -12
- (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))
- (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484)))))
+ (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))
- (-5 *4 (-349 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1154 *4))))
+ (-12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))
+ (-5 *4 (-350 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *2 *2)
(|partial| -12
- (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))
- (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484))))))
+ (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1155 (-350 (-485))))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-755) (-312))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3))
- (-4 *3 (-1154 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48))))
+ (-12 (-4 *4 (-13 (-756) (-312))) (-5 *2 (-85)) (-5 *1 (-975 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48))))
+ (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48))))
((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1154 (-142 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1155 (-142 *2)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319))))
+ (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320))))
((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312))))
- ((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146))))
((*1 *2 *1)
- (-12 (-4 *4 (-1154 *2)) (-4 *2 (-904 *3)) (-5 *1 (-355 *3 *2 *4 *5))
- (-4 *3 (-258)) (-4 *5 (-13 (-352 *2 *4) (-950 *2)))))
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-905 *3)) (-5 *1 (-356 *3 *2 *4 *5))
+ (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-951 *2)))))
((*1 *2 *1)
- (-12 (-4 *4 (-1154 *2)) (-4 *2 (-904 *3)) (-5 *1 (-357 *3 *2 *4 *5 *6))
- (-4 *3 (-258)) (-4 *5 (-352 *2 *4)) (-14 *6 (-1178 *5))))
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-905 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6))
+ (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1179 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-4 *5 (-961))
- (-4 *2 (-13 (-346) (-950 *5) (-312) (-1114) (-239))) (-5 *1 (-382 *5 *3 *2))
- (-4 *3 (-1154 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-434)))) (-5 *1 (-434))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-434))) (-5 *1 (-434))))
+ (-12 (-5 *4 (-831)) (-4 *5 (-962))
+ (-4 *2 (-13 (-347) (-951 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2))
+ (-4 *3 (-1155 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-435))) (-5 *1 (-435))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1084 (-434))) (-5 *3 (-583 (-550 (-434)))) (-5 *1 (-434))))
+ (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1084 (-434))) (-5 *3 (-550 (-434))) (-5 *1 (-434))))
+ (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1178 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1154 *4))
- (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1154 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))
- ((*1 *1 *1) (-4 *1 (-973))))
-(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483))))
- ((*1 *1 *1) (-4 *1 (-973))))
-(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483))))
- ((*1 *1 *1) (-4 *1 (-973))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1155 *4))
+ (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))
+ ((*1 *1 *1) (-4 *1 (-974))))
+(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484))))
+ ((*1 *1 *1) (-4 *1 (-974))))
+(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484))))
+ ((*1 *1 *1) (-4 *1 (-974))))
(((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))
- ((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))
- ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258))))
- ((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484)))))
-(((*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-77))))
- ((*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-426))))
- ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258))))
- ((*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))
- ((*1 *1 *1) (-4 *1 (-973))))
-(((*1 *1 *1) (-4 *1 (-973))))
+ ((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))
+ ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258))))
+ ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-485)))))
+(((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77))))
+ ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427))))
+ ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258))))
+ ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))
+ ((*1 *1 *1) (-4 *1 (-974))))
+(((*1 *1 *1) (-4 *1 (-974))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5))
+ (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5))
(-4 *3 (-196 *4 *5))))
((*1 *2)
- (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-482 *3)) (-4 *3 (-483))))
- ((*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694))))
+ (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484))))
+ ((*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4))))
((*1 *2)
- (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925))))
- ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-972 *3)) (-4 *3 (-973)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-85)))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926))))
+ ((*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-971)) (-5 *2 (-85)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694))
- (-14 *4 (-694)))))
+ (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695))
+ (-14 *4 (-695)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-961))
- (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))))
+ (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962))
+ (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772))))
+ (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
+ (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773))))
((*1 *2 *1)
- (-12 (-5 *2 (-1055 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830))
+ (-12 (-5 *2 (-1056 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831))
(-4 *4 (-312))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7))
+ (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7))
(-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-484))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-485))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-484))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-485))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-484))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-485))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-484))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-485))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2))
+ (-4 *5 (-324 *2)) (-4 *2 (-1129))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128))))
+ (-12 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1129))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
- (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
+ (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-323 *4))
- (-4 *2 (-323 *4))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1129)) (-4 *5 (-324 *4))
+ (-4 *2 (-324 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961))
+ (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962))
(-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-323 *4))
- (-4 *2 (-323 *4))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1129)) (-4 *5 (-324 *4))
+ (-4 *2 (-324 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961))
+ (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962))
(-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-904 *4))
- (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2))
- (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4))
+ (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2))
+ (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7))))
((*1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)) (-4 *2 (-258))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2)) (-4 *2 (-258))))
((*1 *2 *2)
- (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))
+ (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4))
+ (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4))
(-4 *6 (-196 *2 *4)) (-4 *4 (-258)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2)
+ (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2)
(-4 *5 (-146))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
- ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-830))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
+ ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-831))))
((*1 *2)
- (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-830))))
+ (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-831))))
((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694))
- (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695))
+ (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995))))
- (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-694))
- (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996))))
+ (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-695))
+ (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-5 *2 (-694))
- (-5 *1 (-610 *5))))
+ (-12 (-5 *3 (-631 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-695))
+ (-5 *1 (-611 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695))))
((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694))
- (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695))
+ (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695))))
((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -3995)) (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-583 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (|has| *6 (-6 -3996)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *3)
- (-12 (|has| *9 (-6 -3995)) (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-4 *7 (-904 *4)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)) (-5 *2 (-583 *6))
- (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6))
- (-4 *10 (-627 *7 *8 *9))))
+ (-12 (|has| *9 (-6 -3996)) (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-4 *7 (-905 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-584 *6))
+ (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6))
+ (-4 *10 (-628 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-583 *5))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-583 *7)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1089)) (-4 *5 (-312))
- (-5 *1 (-833 *4 *5))))
+ (-12 (-5 *2 (-1148 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1090)) (-4 *5 (-312))
+ (-5 *1 (-834 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *5)) (-4 *5 (-312)) (-5 *2 (-1084 *5)) (-5 *1 (-833 *4 *5))
- (-14 *4 (-1089))))
+ (-12 (-5 *3 (-584 *5)) (-4 *5 (-312)) (-5 *2 (-1085 *5)) (-5 *1 (-834 *4 *5))
+ (-14 *4 (-1090))))
((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-312)) (-5 *2 (-349 (-857 *6)))
- (-5 *1 (-962 *5 *6)) (-14 *5 (-1089)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-312)) (-5 *2 (-350 (-858 *6)))
+ (-5 *1 (-963 *5 *6)) (-14 *5 (-1090)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-960)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
(((*1 *1 *1 *1) (-4 *1 (-116)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959))
- (-5 *3 (-484)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4))))
- ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329))))
- ((*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-959)))))
-(((*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-258)) (-5 *2 (-349 (-347 (-857 *4))))
- (-5 *1 (-955 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960))
+ (-5 *3 (-485)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))
+ ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
+(((*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(((*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-858 *4))))
+ (-5 *1 (-956 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1089)) (-14 *5 *3)
+ (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3)
(-5 *1 (-270 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-329)) (-5 *1 (-953)))))
-(((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953)))))
-(((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953)))))
-(((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-330)) (-5 *1 (-954)))))
+(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))))
+(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))))
+(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1084 (-349 (-1084 *2)))) (-5 *4 (-550 *2))
- (-4 *2 (-13 (-363 *5) (-27) (-1114)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013))))
+ (-12 (-5 *3 (-1085 (-350 (-1085 *2)))) (-5 *4 (-551 *2))
+ (-4 *2 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *3 (-756))))
+ (-12 (-5 *2 (-1085 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *3 (-757))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717))
- (-4 *3 (-756))))
+ (-12 (-5 *2 (-1085 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718))
+ (-4 *3 (-757))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-1084 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961))
+ (-12 (-5 *3 (-350 (-1085 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962))
(-4 *2
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))
- (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4))))
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))
+ (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-1084 (-349 (-857 *5))))) (-5 *4 (-1089))
- (-5 *2 (-349 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-495)))))
+ (-12 (-5 *3 (-350 (-1085 (-350 (-858 *5))))) (-5 *4 (-1090))
+ (-5 *2 (-350 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-550 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1013)) (-4 *4 (-495))
- (-5 *2 (-349 (-1084 *1)))))
+ (-12 (-5 *3 (-551 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-496))
+ (-5 *2 (-350 (-1085 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *2 (-1084 (-349 (-1084 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1084 *3))
- (-4 *7 (-1013))))
+ (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *2 (-1085 (-350 (-1085 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1085 *3))
+ (-4 *7 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175 *5)) (-14 *5 (-1089)) (-4 *6 (-961))
- (-5 *2 (-1147 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6))))
+ (-12 (-5 *4 (-1176 *5)) (-14 *5 (-1090)) (-4 *6 (-962))
+ (-5 *2 (-1148 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-1084 *3))))
+ (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-1085 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1084 *1))
- (-4 *1 (-861 *4 *5 *3))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1085 *1))
+ (-4 *1 (-862 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4))
- (-5 *2 (-349 (-1084 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4))
+ (-5 *2 (-350 (-1085 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1084 *3))
+ (-12 (-5 *2 (-1085 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))
- (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961))
- (-5 *1 (-862 *5 *4 *6 *7 *3))))
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))
+ (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962))
+ (-5 *1 (-863 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-349 (-1084 (-349 (-857 *5)))))
- (-5 *1 (-952 *5)) (-5 *3 (-349 (-857 *5))))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-496)) (-5 *2 (-350 (-1085 (-350 (-858 *5)))))
+ (-5 *1 (-953 *5)) (-5 *3 (-350 (-858 *5))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *2 (-756))))
+ (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *2 (-757))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2))
- (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2))
+ (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *6)) (-15 -2998 (*6 $)) (-15 -2997 (*6 $)))))))
+ (-10 -8 (-15 -3946 ($ *6)) (-15 -2999 (*6 $)) (-15 -2998 (*6 $)))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-1089))
- (-5 *1 (-952 *4)))))
+ (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1090))
+ (-5 *1 (-953 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-272 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-1089)))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *3 (-1085 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-272 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1090)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-583 *5))))
+ (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-584 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5))
- (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5))
+ (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756))
- (-5 *2 (-583 *5))))
+ (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757))
+ (-5 *2 (-584 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-1089)))
- (-5 *1 (-952 *4)))))
+ (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1090)))
+ (-5 *1 (-953 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089)))
- (-4 *6 (-13 (-495) (-950 *5))) (-4 *5 (-495))
- (-5 *2 (-583 (-583 (-249 (-349 (-857 *6)))))) (-5 *1 (-951 *5 *6)))))
+ (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1090)))
+ (-4 *6 (-13 (-496) (-951 *5))) (-4 *5 (-496))
+ (-5 *2 (-584 (-584 (-249 (-350 (-858 *6)))))) (-5 *1 (-952 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-363 *5) (-27) (-1114)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *2 (-1084 (-349 (-1084 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1084 *6))
- (-4 *7 (-1013))))
- ((*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961))))
- ((*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3))))
+ (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *2 (-1085 (-350 (-1085 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1085 *6))
+ (-4 *7 (-1014))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962))))
+ ((*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1084 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694)))
- (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-258)) (-4 *9 (-717))
- (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1084 *5)))
- (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1084 *5))))
+ (|partial| -12 (-5 *4 (-1085 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695)))
+ (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-258)) (-4 *9 (-718))
+ (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1085 *5)))
+ (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1085 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-312))
- (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2)))))
+ (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-312))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *1 (-945 *2))
- (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
+ (-12 (-5 *3 (-831)) (-5 *1 (-946 *2))
+ (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $))))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-830)) (-5 *1 (-944 *2))
- (-4 *2 (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $))))))))
+ (-12 (-5 *3 (-831)) (-5 *1 (-945 *2))
+ (-4 *2 (-13 (-1014) (-10 -8 (-15 -3839 ($ $ $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1178 *5))) (-5 *4 (-484)) (-5 *2 (-1178 *5))
- (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961)))))
+ (-12 (-5 *3 (-584 (-1179 *5))) (-5 *4 (-485)) (-5 *2 (-1179 *5))
+ (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-312)) (-4 *6 (-319))
- (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6))
- (-5 *3 (-583 (-630 *6)))))
+ (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-320))
+ (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6))
+ (-5 *3 (-584 (-631 *6)))))
((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-4 *4 (-319)) (-4 *4 (-961))
- (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4)))))
+ (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-962))
+ (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961))
- (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962))
+ (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961))
- (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))))
+ (-12 (-5 *4 (-831)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962))
+ (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-4 *5 (-312)) (-4 *5 (-961))
- (-5 *2 (-85)) (-5 *1 (-943 *5))))
+ (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-962))
+ (-5 *2 (-85)) (-5 *1 (-944 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-85))
- (-5 *1 (-943 *4)))))
+ (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-85))
+ (-5 *1 (-944 *4)))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-630 *6))
- (-5 *1 (-943 *6)) (-4 *6 (-312)) (-4 *6 (-961))))
+ (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-631 *6))
+ (-5 *1 (-944 *6)) (-4 *6 (-312)) (-4 *6 (-962))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4))
- (-4 *4 (-312)) (-4 *4 (-961))))
+ (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4))
+ (-4 *4 (-312)) (-4 *4 (-962))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-5 *2 (-630 *5))
- (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-961)))))
+ (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5))
+ (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1178 *5)) (-4 *5 (-258))
- (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)))))
+ (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1179 *5)) (-4 *5 (-258))
+ (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-258)) (-4 *5 (-961))
- (-5 *2 (-1178 (-1178 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1178 *5)))))
+ (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-258)) (-4 *5 (-962))
+ (-5 *2 (-1179 (-1179 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1179 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961))
- (-5 *1 (-943 *4)))))
+ (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962))
+ (-5 *1 (-944 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 (-1178 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4))
- (-5 *1 (-943 *4)))))
+ (-12 (-5 *3 (-1179 (-1179 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4))
+ (-5 *1 (-944 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-813 (-484))) (-5 *4 (-484)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5))
- (-4 *5 (-961))))
+ (-12 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5))
+ (-4 *5 (-962))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-942 *4))
- (-4 *4 (-961))))
+ (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4))
+ (-4 *4 (-962))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-813 (-484)))) (-5 *4 (-484)) (-5 *2 (-583 (-630 *4)))
- (-5 *1 (-942 *5)) (-4 *5 (-961))))
+ (-12 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4)))
+ (-5 *1 (-943 *5)) (-4 *5 (-962))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-484)))) (-5 *2 (-583 (-630 (-484))))
- (-5 *1 (-942 *4)) (-4 *4 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3))))
+ (-12 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485))))
+ (-5 *1 (-943 *4)) (-4 *4 (-962)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))))
+ (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4))))
+ (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961))
- (-5 *1 (-942 *4)))))
+ (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962))
+ (-5 *1 (-943 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4))
- (-4 *4 (-961)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4))
+ (-4 *4 (-962)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3996 "*")))
- (-4 *4 (-961)) (-5 *1 (-942 *4))))
+ (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3997 "*")))
+ (-4 *4 (-962)) (-5 *1 (-943 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3996 "*")))
- (-4 *4 (-961)) (-5 *1 (-942 *4)))))
+ (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3997 "*")))
+ (-4 *4 (-962)) (-5 *1 (-943 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484)))))
- (-5 *1 (-941)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))))
-(((*1 *2 *2) (-12 (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))))
+ (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485)))))
+ (-5 *1 (-942)))))
+(((*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))))
+(((*1 *2 *2) (-12 (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-630 (-349 (-857 (-484)))))
- (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))))
+ (|partial| -12 (-5 *3 (-631 (-350 (-858 (-485)))))
+ (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-265 (-484))))
- (-5 *1 (-941)))))
+ (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-265 (-485))))
+ (-5 *1 (-942)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484)))))
- (-5 *1 (-941)) (-5 *3 (-265 (-484))))))
+ (-12 (-5 *4 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485)))))
+ (-5 *1 (-942)) (-5 *3 (-265 (-485))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 (-349 (-857 (-484)))))
+ (-12 (-5 *3 (-631 (-350 (-858 (-485)))))
(-5 *2
- (-583
- (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484))
- (|:| |radvect| (-583 (-630 (-265 (-484))))))))
- (-5 *1 (-941)))))
+ (-584
+ (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485))
+ (|:| |radvect| (-584 (-631 (-265 (-485))))))))
+ (-5 *1 (-942)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1128)))))
-(((*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3266 *3) (|:| -2513 (-583 *5))))
- (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5)))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1129)))))
+(((*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3267 *3) (|:| -2514 (-584 *5))))
+ (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-974 (-937 *4) (-1084 (-937 *4)))) (-5 *3 (-772))
- (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-312) (-933))))))
+ (-12 (-5 *2 (-975 (-938 *4) (-1085 (-938 *4)))) (-5 *3 (-773))
+ (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-312) (-934))))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-974 (-937 *3) (-1084 (-937 *3)))) (-5 *1 (-937 *3))
- (-4 *3 (-13 (-755) (-312) (-933))))))
+ (|partial| -12 (-5 *2 (-975 (-938 *3) (-1085 (-938 *3)))) (-5 *1 (-938 *3))
+ (-4 *3 (-13 (-756) (-312) (-934))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))
- (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484)))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485)))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))
- (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484)))
- (-5 *4 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485)))
+ (-5 *4 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))
- (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-349 (-484)))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485))) (-5 *4 (-350 (-485)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5))))
- (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484)))
- (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5)))))
+ (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *5) (|:| -3138 *5))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 (-485)))
+ (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5)))))
((*1 *2 *3)
- (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484))))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1155 (-350 (-485))))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484))))
- (-5 *4 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1155 (-350 (-485))))
+ (-5 *4 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *4) (|:| -3137 *4))))
- (-5 *1 (-935 *3)) (-4 *3 (-1154 *4))))
+ (-12 (-5 *4 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *4) (|:| -3138 *4))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5))))
- (-5 *1 (-935 *3)) (-4 *3 (-1154 *5))
- (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5))))))
+ (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *5) (|:| -3138 *5))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1155 *5))
+ (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))
- (-5 *2 (-583 (-349 (-484)))) (-5 *1 (-934 *4)) (-4 *4 (-1154 (-484))))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))
+ (-5 *2 (-584 (-350 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1155 (-485))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))
- (-5 *2 (-349 (-484))) (-5 *1 (-934 *4)) (-4 *4 (-1154 (-484))))))
+ (-12 (-5 *3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))
+ (-5 *2 (-350 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1155 (-485))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1178 *6)) (-5 *4 (-1178 (-484))) (-5 *5 (-484)) (-4 *6 (-1013))
- (-5 *2 (-1 *6)) (-5 *1 (-930 *6)))))
+ (-12 (-5 *3 (-1179 *6)) (-5 *4 (-1179 (-485))) (-5 *5 (-485)) (-4 *6 (-1014))
+ (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3401 *4) (|:| -1521 (-484))))) (-4 *4 (-1013))
- (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3402 *4) (|:| -1522 (-485))))) (-4 *4 (-1014))
+ (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4))
- (-5 *2 (-583 (-349 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-349 *5)))))
+ (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-584 (-350 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5)))))
(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-312) (-120) (-950 (-484))))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485))))
(-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |h| *6) (|:| |c1| (-349 *6))
- (|:| |c2| (-349 *6)) (|:| -3093 *6)))
- (-5 *1 (-929 *5 *6)) (-5 *3 (-349 *6)))))
+ (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6))
+ (|:| |c2| (-350 *6)) (|:| -3094 *6)))
+ (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6)))))
(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1154 *6))
- (-4 *6 (-13 (-312) (-120) (-950 *4))) (-5 *4 (-484))
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1155 *6))
+ (-4 *6 (-13 (-312) (-120) (-951 *4))) (-5 *4 (-485))
(-5 *2
(-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85))))
- (|:| -3266
+ (|:| -3267
(-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
(|:| |beta| *3)))))
- (-5 *1 (-928 *6 *3)))))
+ (-5 *1 (-929 *6 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4))
- (-5 *2 (-2 (|:| |ans| (-349 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5))
- (-5 *3 (-349 *5)))))
+ (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5))
+ (-5 *3 (-350 *5)))))
(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-312) (-120) (-950 (-484))))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485))))
(-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |c| (-349 *6)) (|:| -3093 *6)))
- (-5 *1 (-928 *5 *6)) (-5 *3 (-349 *6)))))
+ (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3094 *6)))
+ (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6)))))
(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1089))
+ (|partial| -12 (-5 *5 (-1090))
(-5 *6
(-1
(-3
(-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
"failed")
- *4 (-583 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1114) (-27) (-363 *8)))
- (-4 *8 (-13 (-391) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484))
- (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4)))))
+ *4 (-584 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1115) (-27) (-364 *8)))
+ (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485))
+ (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4)))))
(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1089))
+ (-12 (-5 *5 (-1090))
(-5 *6
(-1
(-3
(-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
"failed")
- *4 (-583 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1114) (-27) (-363 *8)))
- (-4 *8 (-13 (-391) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85))))
- (-5 *1 (-926 *8 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))
- ((*1 *1 *1) (-4 *1 (-915))) ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-925))))
- ((*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-925))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830))))
- ((*1 *1 *1) (-4 *1 (-925))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-925)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-925)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))))
+ *4 (-584 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1115) (-27) (-364 *8)))
+ (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85))))
+ (-5 *1 (-927 *8 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))
+ ((*1 *1 *1) (-4 *1 (-916))) ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-926))))
+ ((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-926))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831))))
+ ((*1 *1 *1) (-4 *1 (-926))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-926)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-926)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-5 *2 (-584 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-5 *2 (-485)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-4 *3 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-924 *3)) (-4 *3 (-1129)) (-4 *3 (-1014)) (-5 *2 (-85)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3995)) (-4 *1 (-923 *3))
- (-4 *3 (-1128)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-923 *2)) (-4 *2 (-1128)))))
+ (-12 (-5 *2 (-584 *1)) (|has| *1 (-6 -3996)) (-4 *1 (-924 *3))
+ (-4 *3 (-1129)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-924 *2)) (-4 *2 (-1129)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483))
- (-5 *2 (-349 (-484)))))
+ (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484))
+ (-5 *2 (-350 (-485)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-347 *3)) (-4 *3 (-483))
- (-4 *3 (-495))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-349 (-484)))))
+ (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484))
+ (-4 *3 (-496))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-350 (-485)))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483))
- (-5 *2 (-349 (-484)))))
+ (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484))
+ (-5 *2 (-350 (-485)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483))
- (-4 *3 (-1013))))
+ (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484))
+ (-4 *3 (-1014))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483))
- (-4 *3 (-1013))))
+ (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484))
+ (-4 *3 (-1014))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483))
- (-5 *2 (-349 (-484)))))
+ (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484))
+ (-5 *2 (-350 (-485)))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))))
+ (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495))))
- ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496))))
+ ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-349 (-484)))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-350 (-485)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484)))))
+ (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))
((*1 *2 *1)
- (-12 (-5 *2 (-349 (-484))) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495))))
- ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-349 (-484)))))
+ (-12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496))))
+ ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-350 (-485)))))
((*1 *2 *1)
- (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484)))))
+ (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))
((*1 *2 *1)
- (-12 (-5 *2 (-349 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-5 *2 (-349 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484)))))
- ((*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))))
-(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-919)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))
- ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))))
+ (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))))
+(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-920)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))
+ ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-918)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
+ (-12 (-5 *3 (-350 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-919)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 *5)) (-4 *5 (-495))
- (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *5) (|:| |radicand| (-583 *5))))
- (-5 *1 (-271 *5)) (-5 *4 (-694))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-484)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-913 *3)))))
+ (-12 (-5 *3 (-348 *5)) (-4 *5 (-496))
+ (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *5) (|:| |radicand| (-584 *5))))
+ (-5 *1 (-271 *5)) (-5 *4 (-695))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-485)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3)))))
(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
- ((*1 *1 *1 *1) (-4 *1 (-412)))
- ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793))))
- ((*1 *1 *1) (-5 *1 (-884)))
- ((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))))
+ ((*1 *1 *1 *1) (-4 *1 (-413)))
+ ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794))))
+ ((*1 *1 *1) (-5 *1 (-885)))
+ ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1129)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1055 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312))
- (-5 *1 (-906 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *2 (-1056 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312))
+ (-5 *1 (-907 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1039 (-485) (-551 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6))
- (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4)))))
+ (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6))
+ (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-550 *1)))
- (-4 *1 (-363 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-434)))) (-5 *1 (-434))))
+ (-12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1039 *3 (-551 *1)))
+ (-4 *1 (-364 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1039 (-485) (-551 (-435)))) (-5 *1 (-435))))
((*1 *2 *1)
- (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-663) *3))))
+ (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-664) *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-663) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-664) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1039 (-485) (-551 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-904 *2)) (-4 *4 (-1154 *3)) (-4 *2 (-258))
- (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-13 (-352 *3 *4) (-950 *3)))))
+ (-12 (-4 *3 (-905 *2)) (-4 *4 (-1155 *3)) (-4 *2 (-258))
+ (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-550 *1)))
- (-4 *1 (-363 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-434)))) (-5 *1 (-434))))
+ (-12 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1039 *3 (-551 *1)))
+ (-4 *1 (-364 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1039 (-485) (-551 (-435)))) (-5 *1 (-435))))
((*1 *2 *1)
- (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4))
- (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4))
+ (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4))
- (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))))
-(((*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-961))))
- ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))))
-(((*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-495))))
- ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))))
+ (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4))
+ (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
+(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-962))))
+ ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
+(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-496))))
+ ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))
- ((*1 *1) (-4 *1 (-319)))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))
+ ((*1 *1) (-4 *1 (-320)))
((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299))))
- ((*1 *1 *1) (-4 *1 (-483))) ((*1 *1) (-4 *1 (-483)))
- ((*1 *1 *1) (-5 *1 (-694)))
- ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1179 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))
+ ((*1 *1 *1) (-4 *1 (-484))) ((*1 *1) (-4 *1 (-484)))
+ ((*1 *1 *1) (-5 *1 (-695)))
+ ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013))))
- ((*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-483)) (-4 *2 (-495)))))
+ (-12 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))
+ ((*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-899 (-349 (-484)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-349 (-484)))))
- (-14 *3 (-583 (-1089))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4)))))
+ (-900 (-350 (-485)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-350 (-485)))))
+ (-14 *3 (-584 (-1090))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-391)) (-4 *5 (-756))
- (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757))
+ (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))))
+ (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718))
+ (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6))
+ (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-391))
- (-4 *4 (-756)) (-4 *5 (-717)))))
+ (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392))
+ (-4 *4 (-757)) (-4 *5 (-718)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *4 *3)))))
+ (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *4 *3)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1154 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-898 *4 *2 *3 *5))
- (-4 *4 (-299)) (-4 *5 (-661 *2 *3)))))
+ (-12 (-4 *3 (-1155 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-899 *4 *2 *3 *5))
+ (-4 *4 (-299)) (-4 *5 (-662 *2 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)))))
- (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2))
- (-4 *2 (-861 (-349 (-857 *5)) *4 *3))))
+ (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)))))
+ (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2))
+ (-4 *2 (-862 (-350 (-858 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3971 ((-1089) $))
- (-15 -3830 ((-3 $ #1="failed") (-1089))))))
- (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3))))
+ (-13 (-757)
+ (-10 -8 (-15 -3972 ((-1090) $))
+ (-15 -3831 ((-3 $ #1="failed") (-1090))))))
+ (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *6))
+ (-12 (-5 *3 (-584 *6))
(-4 *6
- (-13 (-756)
- (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089))))))
- (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2))
- (-4 *2 (-861 (-857 *4) *5 *6)))))
+ (-13 (-757)
+ (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090))))))
+ (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2))
+ (-4 *2 (-862 (-858 *4) *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)))))
- (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2))
- (-4 *2 (-861 (-349 (-857 *5)) *4 *3))))
+ (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)))))
+ (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2))
+ (-4 *2 (-862 (-350 (-858 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3971 ((-1089) $))
- (-15 -3830 ((-3 $ #1="failed") (-1089))))))
- (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3))))
+ (-13 (-757)
+ (-10 -8 (-15 -3972 ((-1090) $))
+ (-15 -3831 ((-3 $ #1="failed") (-1090))))))
+ (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *6))
+ (-12 (-5 *3 (-584 *6))
(-4 *6
- (-13 (-756)
- (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089))))))
- (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2))
- (-4 *2 (-861 (-857 *4) *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
+ (-13 (-757)
+ (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090))))))
+ (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2))
+ (-4 *2 (-862 (-858 *4) *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-783))))
- ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130))))
- ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783))))
- ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130))))
- ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-784))))
+ ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130))))
+ ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784))))
+ ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130))))
+ ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-312))
- (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1178 *5))))) (-5 *1 (-891 *5))
- (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)))))
+ (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1179 *5))))) (-5 *1 (-892 *5))
+ (-5 *3 (-631 *5)) (-5 *4 (-1179 *5)))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312))
- (-5 *1 (-891 *5)))))
+ (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312))
+ (-5 *1 (-892 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *2))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312))
- (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6))))
- (-5 *1 (-891 *6)) (-5 *3 (-630 *6)))))
+ (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6))))
+ (-5 *1 (-892 *6)) (-5 *3 (-631 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
- (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
+ (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
- (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
+ (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
- (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
+ (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391))
- (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392))
+ (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-391)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
+ (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8))
- (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *1 (-890 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8))
+ (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *1 (-891 *5 *6 *7 *8)))))
(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717))
- (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718))
+ (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-415 *4 *5 *6 *7)) (|:| -3323 (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (|partial| -12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3324 (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495))
- (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
- (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+ (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496))
+ (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
+ (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495))
- (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
- (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+ (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496))
+ (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
+ (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495))
- (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
- (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+ (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496))
+ (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
+ (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-977 *5 *6 *7))
- (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85))
- (-5 *1 (-890 *5 *6 *7 *8)))))
+ (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7))
+ (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85))
+ (-5 *1 (-891 *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7))
- (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7))
+ (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
+ (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
- (-4 *5 (-977 *3 *4 *2)))))
+ (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-4 *5 (-978 *3 *4 *2)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
- (-4 *5 (-977 *3 *4 *2)))))
+ (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-4 *5 (-978 *3 *4 *2)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
- (-4 *5 (-977 *3 *4 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-4 *5 (-978 *3 *4 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-757))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1128))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3130 *1) (|:| |upper| *1)))
- (-4 *1 (-889 *4 *5 *3 *6)))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3131 *1) (|:| |upper| *1)))
+ (-4 *1 (-890 *4 *5 *3 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495))
+ (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495))
+ (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496))
(-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179)))))
- ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))))
-(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179)))))
- ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))))
-(((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))
- ((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3956 *3) (-694)))
+ (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))))
+(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))))
+(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
+ ((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3957 *3) (-695)))
(-14 *7
- (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6))
- (-2 (|:| -2400 *5) (|:| -2401 *6))))
- (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-400 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756))
- (-4 *8 (-861 *4 *6 (-773 *3)))))
+ (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6))
+ (-2 (|:| -2401 *5) (|:| -2402 *6))))
+ (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757))
+ (-4 *8 (-862 *4 *6 (-774 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961))))
+ (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962))))
((*1 *1 *1)
- (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))
+ (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830))
- (-4 *2 (-312)) (-14 *5 (-906 *4 *2))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831))
+ (-4 *2 (-312)) (-14 *5 (-907 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3956 *4) (-694)))
+ (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3957 *4) (-695)))
(-14 *7
- (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6))
- (-2 (|:| -2400 *5) (|:| -2401 *6))))
- (-14 *4 (-583 (-1089))) (-4 *2 (-146)) (-5 *1 (-400 *4 *2 *5 *6 *7 *8))
- (-4 *8 (-861 *2 *6 (-773 *4)))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759))))
+ (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6))
+ (-2 (|:| -2401 *5) (|:| -2402 *6))))
+ (-14 *4 (-584 (-1090))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8))
+ (-4 *8 (-862 *2 *6 (-774 *4)))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1154 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663))))
+ (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1155 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5))
- (-4 *4 (-961)) (-4 *5 (-756))))
+ (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5))
+ (-4 *4 (-962)) (-4 *5 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6))
- (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))))
+ (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6))
+ (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *2 (-756))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *2 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6))
- (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756))))
+ (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6))
+ (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
+ (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756))
+ (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757))
(-5 *2 (-85)))))
(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))
- ((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))
- ((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1) (-4 *1 (-779 *2)))
+ ((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164))))
+ ((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1) (-4 *1 (-780 *2)))
((*1 *1 *1)
- (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))))
-(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128))
- (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1068 (-884))) (-5 *1 (-884)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884)))))
-(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884)))))
+ (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
+(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129))
+ (-5 *2 (-584 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1069 (-885))) (-5 *1 (-885)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))))
+(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *4 (-496))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))))
+ (-12 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *2 (-495)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1154 *2)))))
+ (-12 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1155 *2)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-258))))
+ (-12 (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-258))))
((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1)))
- (-4 *1 (-335 *3))))
+ (|partial| -12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1)))
+ (-4 *1 (-336 *3))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1972 (-694)) (|:| -2902 (-694)))) (-5 *1 (-694))))
+ (-12 (-5 *2 (-2 (|:| -1973 (-695)) (|:| -2903 (-695)))) (-5 *1 (-695))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *4 (-495))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2876 *4))) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-392)) (-4 *4 (-496))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2877 *4))) (-5 *1 (-883 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *4 (-495))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2876 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-392)) (-4 *4 (-496))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2877 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-495)) (-4 *2 (-391)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3144 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3145 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3144 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3145 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3144 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3145 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495))
+ (-12 (-4 *4 (-496))
(-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-495))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3))
- (-4 *3 (-1154 *5)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-496))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-495))
+ (-12 (-5 *4 (-695)) (-4 *5 (-496))
(-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))))
+ (-5 *1 (-883 *5 *3)) (-4 *3 (-1155 *5)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1154 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-495))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3))
- (-4 *3 (-1154 *5)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-496))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-495))
+ (-12 (-5 *4 (-695)) (-4 *5 (-496))
(-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))))
+ (-5 *1 (-883 *5 *3)) (-4 *3 (-1155 *5)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1154 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3755 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3756 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-495))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-496))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *1)
- (-12 (-4 *1 (-346)) (-2560 (|has| *1 (-6 -3985)))
- (-2560 (|has| *1 (-6 -3977)))))
- ((*1 *2 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-756))))
- ((*1 *1) (-4 *1 (-752))) ((*1 *1 *1 *1) (-4 *1 (-759)))
- ((*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3986)))
+ (-2561 (|has| *1 (-6 -3978)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757))))
+ ((*1 *1) (-4 *1 (-753))) ((*1 *1 *1 *1) (-4 *1 (-760)))
+ ((*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-757))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))))
-(((*1 *1) (-4 *1 (-880))))
-(((*1 *1) (-4 *1 (-880))))
-(((*1 *1 *1 *1) (-4 *1 (-880))))
-(((*1 *1 *1 *1) (-4 *1 (-880))))
-(((*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1089))) (-5 *1 (-168 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1089))) (-5 *1 (-577 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5))
- (-4 *3 (-1013)) (-4 *5 (-608 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-877 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-878 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
- (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
- (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
- (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
- (-4 *3 (-1013)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-696))) (-5 *1 (-86))))
- ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-696)) (-5 *1 (-86))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-876)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-772))))
- ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-874)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-483)))))
-(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))))
-(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
+(((*1 *1) (-4 *1 (-881))))
+(((*1 *1) (-4 *1 (-881))))
+(((*1 *1 *1 *1) (-4 *1 (-881))))
+(((*1 *1 *1 *1) (-4 *1 (-881))))
+(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1090))) (-5 *1 (-168 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1090))) (-5 *1 (-578 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5))
+ (-4 *3 (-1014)) (-4 *5 (-609 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
+ (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
+ (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
+ (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
+ (-4 *3 (-1014)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-86))))
+ ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-697)) (-5 *1 (-86))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-773))))
+ ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-875)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484)))))
+(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))))
+(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))))
(((*1 *1) (-4 *1 (-299)))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *5)) (-4 *5 (-363 *4)) (-4 *4 (-13 (-495) (-120)))
+ (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-496) (-120)))
(-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1084 *5)))
- (|:| |prim| (-1084 *5))))
- (-5 *1 (-374 *4 *5))))
+ (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1085 *5)))
+ (|:| |prim| (-1085 *5))))
+ (-5 *1 (-375 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-495) (-120)))
+ (-12 (-4 *4 (-13 (-496) (-120)))
(-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1084 *3)) (|:| |pol2| (-1084 *3))
- (|:| |prim| (-1084 *3))))
- (-5 *1 (-374 *4 *3)) (-4 *3 (-27)) (-4 *3 (-363 *4))))
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1085 *3)) (|:| |pol2| (-1085 *3))
+ (|:| |prim| (-1085 *3))))
+ (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4))))
((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-857 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-312) (-120)))
+ (-12 (-5 *3 (-858 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-312) (-120)))
(-5 *2
- (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 *5))))
- (-5 *1 (-872 *5))))
+ (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1085 *5))))
+ (-5 *1 (-873 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089)))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1090)))
(-4 *5 (-13 (-312) (-120)))
(-5 *2
- (-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 *5)))
- (|:| |prim| (-1084 *5))))
- (-5 *1 (-872 *5))))
+ (-2 (|:| -3954 (-584 (-485))) (|:| |poly| (-584 (-1085 *5)))
+ (|:| |prim| (-1085 *5))))
+ (-5 *1 (-873 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-5 *5 (-1089))
+ (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1090))) (-5 *5 (-1090))
(-4 *6 (-13 (-312) (-120)))
(-5 *2
- (-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 *6)))
- (|:| |prim| (-1084 *6))))
- (-5 *1 (-872 *6)))))
+ (-2 (|:| -3954 (-584 (-485))) (|:| |poly| (-584 (-1085 *6)))
+ (|:| |prim| (-1085 *6))))
+ (-5 *1 (-873 *6)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1089)) (-5 *1 (-519 *2)) (-4 *2 (-950 *3)) (-4 *2 (-312))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312))))
+ (-12 (-5 *3 (-1090)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-312))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-568 *4 *2))
- (-4 *2 (-13 (-363 *4) (-915) (-1114)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2))
+ (-4 *2 (-13 (-364 *4) (-916) (-1115)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-363 *4) (-915) (-1114))) (-4 *4 (-495))
- (-5 *1 (-568 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1089))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-871)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-830)) (-4 *5 (-495)) (-5 *2 (-630 *5))
- (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-865)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *3 (-861 *7 *5 *6))
- (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| (-583 *3))))
- (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694))
+ (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1115))) (-4 *4 (-496))
+ (-5 *1 (-569 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-872)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5))
+ (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-866)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *3) (|:| |radicand| (-584 *3))))
+ (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695))
(-4 *8
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *3)) (-15 -2998 (*3 $)) (-15 -2997 (*3 $))))))))
+ (-10 -8 (-15 -3946 ($ *3)) (-15 -2999 (*3 $)) (-15 -2998 (*3 $))))))))
(((*1 *2 *3 *4)
- (-12 (-4 *7 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495))
- (-4 *8 (-861 *7 *5 *6))
- (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| *3)))
- (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694))
+ (-12 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496))
+ (-4 *8 (-862 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *3) (|:| |radicand| *3)))
+ (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $))))))))
+ (-10 -8 (-15 -3946 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-484))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495))
- (-4 *8 (-861 *7 *5 *6))
- (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *9) (|:| |radicand| *9)))
- (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694))
+ (-12 (-5 *3 (-350 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496))
+ (-4 *8 (-862 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *9) (|:| |radicand| *9)))
+ (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695))
(-4 *9
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $))))))))
+ (-10 -8 (-15 -3946 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-495)) (-4 *7 (-861 *3 *5 *6))
- (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *8) (|:| |radicand| *8)))
- (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694))
+ (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *8) (|:| |radicand| *8)))
+ (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695))
(-4 *8
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))))
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1013))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2401 (-484)))) (-4 *1 (-363 *3))))
+ (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1014))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2402 (-485)))) (-4 *1 (-364 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-800 *3))))
- (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-801 *3))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
- (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2401 (-484))))
- (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
+ (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2402 (-485))))
+ (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))))
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-961)) (-4 *4 (-1013))
- (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *4))))
+ (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-962)) (-4 *4 (-1014))
+ (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1013))
- (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *4))))
+ (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1014))
+ (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013))
- (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *3))))
+ (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014))
+ (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-694))))
- (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-695))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-694))))))
+ (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-695))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
- (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-484))))
- (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
+ (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-485))))
+ (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))))
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-583 *1))
- (-4 *1 (-363 *3))))
+ (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1))
+ (-4 *1 (-364 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-861 *3 *4 *5))))
+ (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-862 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
- (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
+ (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))))
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-583 *1))
- (-4 *1 (-363 *3))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-584 *1))
+ (-4 *1 (-364 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-861 *3 *4 *5))))
+ (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-862 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
- (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
+ (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))))
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-334 *3 *4))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-335 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961))
- (-4 *4 (-663))))
+ (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-664))))
((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-861 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
- ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-862 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
+ ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 (-694)))))
+ (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 (-695)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-694)))))
+ (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-695)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-694)))))
+ (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-695)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-862 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-391))))
+ (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1154 (-484))) (-5 *2 (-583 (-484)))
- (-5 *1 (-425 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-391))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-1155 (-485))) (-5 *2 (-584 (-485)))
+ (-5 *1 (-426 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
- (-4 *3 (-391)))))
+ (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-4 *3 (-392)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-484)) (-4 *5 (-755)) (-4 *5 (-312))
- (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1154 *5)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-312))
+ (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1155 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-312)) (-5 *2 (-694))
- (-5 *1 (-856 *4 *5)) (-4 *5 (-1154 *4)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-312)) (-5 *2 (-695))
+ (-5 *1 (-857 *4 *5)) (-4 *5 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-312)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *2 (-312)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3))
- (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3))
- (-4 *3 (-1154 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5))
- (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1089))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961))
- (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-420 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961))
- (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-420 *4 *5))
- (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1089))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-420 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961))
- (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961))
- (-5 *2 (-420 *4 *5)) (-5 *1 (-855 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))
- ((*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-484)) (-5 *1 (-853)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))
- ((*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-165)) (-5 *3 (-484))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146))))
- ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))
- ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))
- ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))))
-(((*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))
- ((*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5))
+ (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1090))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-962))
+ (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-962))
+ (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5))
+ (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1090))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-962))
+ (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-962))
+ (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085 (-485))) (-5 *2 (-485)) (-5 *1 (-854)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-165)) (-5 *3 (-485))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
+(((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6)))
- (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1013))
- (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8))
- (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8)))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6)))
+ (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014))
+ (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8))
+ (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6))
- (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146)))
+ (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-139 *6))
+ (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146)))
(-5 *1 (-152 *5 *6 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4))
- (-4 *4 (-1013))))
+ (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4))
+ (-4 *4 (-1014))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013))
- (-4 *6 (-13 (-1013) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6))))
+ (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014))
+ (-4 *6 (-13 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013))
- (-4 *3 (-13 (-363 *6) (-553 *4) (-796 *5) (-950 (-550 $))))
- (-5 *4 (-800 *5)) (-4 *6 (-13 (-495) (-796 *5))) (-5 *1 (-843 *5 *6 *3))))
+ (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014))
+ (-4 *3 (-13 (-364 *6) (-554 *4) (-797 *5) (-951 (-551 $))))
+ (-5 *4 (-801 *5)) (-4 *6 (-13 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 (-484) *3)) (-5 *4 (-800 (-484))) (-4 *3 (-483))
- (-5 *1 (-844 *3))))
+ (-12 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484))
+ (-5 *1 (-845 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1013))
- (-4 *6 (-13 (-1013) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5))
- (-5 *1 (-845 *5 *6))))
+ (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014))
+ (-4 *6 (-13 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5))
+ (-5 *1 (-846 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013))
- (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3))))
+ (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014))
+ (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3))))
((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756))
- (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1013))
- (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717))
- (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3))))
+ (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757))
+ (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014))
+ (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718))
+ (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013))
- (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5))
- (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5)))
- (-5 *1 (-847 *5 *6 *7 *8 *3))))
+ (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014))
+ (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5)))
+ (-5 *1 (-848 *5 *6 *7 *8 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-904 *6))
- (-4 *6 (-13 (-495) (-796 *5) (-553 *4))) (-5 *4 (-800 *5))
- (-5 *1 (-850 *5 *6 *3))))
+ (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6))
+ (-4 *6 (-13 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5))
+ (-5 *1 (-851 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-800 *5))
- (-4 *5 (-1013)) (-5 *1 (-851 *5))))
+ (-12 (-5 *2 (-799 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-801 *5))
+ (-4 *5 (-1014)) (-5 *1 (-852 *5))))
((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9)))
- (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1013))
- (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9))
- (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-950 *5))) (-4 *5 (-796 *4))
- (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))
- ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))
- ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1089)) (-5 *4 (-446)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))
+ (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9)))
+ (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014))
+ (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9))
+ (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1014) (-951 *5))) (-4 *5 (-797 *4))
+ (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1090)) (-5 *4 (-447)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-446)) (-4 *4 (-1013)) (-5 *1 (-841 *4 *2)) (-4 *2 (-363 *4)))))
+ (-12 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-364 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1001 (-179))))
- (-5 *1 (-839)))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1002 (-179))))
+ (-5 *1 (-840)))))
(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179)))
- (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179)))
+ (-5 *1 (-837))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179)))
- (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179)))
+ (-5 *1 (-837))))
((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179)))
- (-5 *1 (-838))))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179)))
+ (-5 *1 (-839))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179)))
- (-5 *1 (-838)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179)))
+ (-5 *1 (-839)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179)))
- (-5 *1 (-836))))
+ (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179)))
+ (-5 *1 (-837))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179)))
- (-5 *1 (-836))))
+ (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179)))
+ (-5 *1 (-837))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3))
- (-4 *3 (-553 (-473)))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3))
+ (-4 *3 (-554 (-474)))))
((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3))
- (-4 *3 (-553 (-473)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3))
+ (-4 *3 (-554 (-474)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839))))
((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839))))
((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3))
- (-4 *3 (-553 (-473)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406))))
- ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406))))
- ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406))))
- ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406))))
- ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406))))
- ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406))))
- ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-85))
- (-5 *1 (-835 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-85))
- (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1089))))
- (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4)))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3))
+ (-4 *3 (-554 (-474)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
+ ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
+ ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
+ ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-85))
+ (-5 *1 (-836 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-85))
+ (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1090))))
+ (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))))
(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))
- (-5 *4 (-630 *12)) (-5 *5 (-583 (-349 (-857 *9)))) (-5 *6 (-583 (-583 *12)))
- (-5 *7 (-694)) (-5 *8 (-484)) (-4 *9 (-13 (-258) (-120)))
- (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1089))))
- (-4 *11 (-717))
- (-5 *2
- (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12))
- (|:| |wcond| (-583 (-857 *9)))
+ (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))
+ (-5 *4 (-631 *12)) (-5 *5 (-584 (-350 (-858 *9)))) (-5 *6 (-584 (-584 *12)))
+ (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120)))
+ (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1090))))
+ (-4 *11 (-718))
+ (-5 *2
+ (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12))
+ (|:| |wcond| (-584 (-858 *9)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *9))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *9)))))))))
- (-5 *1 (-835 *9 *10 *11 *12)))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *9))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *9)))))))))
+ (-5 *1 (-836 *9 *10 *11 *12)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5))
- (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089))))
- (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089))))
- (-4 *7 (-717))
- (-5 *2
- (-583
- (-2 (|:| |det| *8) (|:| |rows| (-583 (-484)))
- (|:| |cols| (-583 (-484))))))
- (-5 *1 (-835 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089))))
- (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5))
+ (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090))))
+ (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090))))
+ (-4 *7 (-718))
+ (-5 *2
+ (-584
+ (-2 (|:| |det| *8) (|:| |rows| (-584 (-485)))
+ (|:| |cols| (-584 (-485))))))
+ (-5 *1 (-836 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090))))
+ (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089))))
- (-4 *6 (-717)) (-5 *2 (-583 (-583 (-484)))) (-5 *1 (-835 *4 *5 *6 *7))
- (-5 *3 (-484)) (-4 *7 (-861 *4 *6 *5)))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090))))
+ (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7))
+ (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4))
- (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1089))))
- (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4))
+ (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1090))))
+ (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-583
- (-2 (|:| -3108 (-694))
+ (-584
+ (-2 (|:| -3109 (-695))
(|:| |eqns|
- (-583
- (-2 (|:| |det| *7) (|:| |rows| (-583 (-484)))
- (|:| |cols| (-583 (-484))))))
- (|:| |fgb| (-583 *7)))))
- (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-694))
- (-5 *1 (-835 *4 *5 *6 *7)))))
+ (-584
+ (-2 (|:| |det| *7) (|:| |rows| (-584 (-485)))
+ (|:| |cols| (-584 (-485))))))
+ (|:| |fgb| (-584 *7)))))
+ (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-695))
+ (-5 *1 (-836 *4 *5 *6 *7)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-583
- (-2 (|:| -3108 (-694))
+ (-584
+ (-2 (|:| -3109 (-695))
(|:| |eqns|
- (-583
- (-2 (|:| |det| *7) (|:| |rows| (-583 (-484)))
- (|:| |cols| (-583 (-484))))))
- (|:| |fgb| (-583 *7)))))
- (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-694))
- (-5 *1 (-835 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089))))
- (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3))
- (-4 *3 (-861 *4 *6 *5)))))
+ (-584
+ (-2 (|:| |det| *7) (|:| |rows| (-584 (-485)))
+ (|:| |cols| (-584 (-485))))))
+ (|:| |fgb| (-584 *7)))))
+ (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718)) (-5 *2 (-695))
+ (-5 *1 (-836 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090))))
+ (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3))
+ (-4 *3 (-862 *4 *6 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |mat| (-630 (-349 (-857 *4)))) (|:| |vec| (-583 (-349 (-857 *4))))
- (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))
- (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089))))
- (-4 *6 (-717))
- (-5 *2
- (-2 (|:| |partsol| (-1178 (-349 (-857 *4))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *4)))))))
- (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))))
+ (-2 (|:| |mat| (-631 (-350 (-858 *4)))) (|:| |vec| (-584 (-350 (-858 *4))))
+ (|:| -3109 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))
+ (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090))))
+ (-4 *6 (-718))
+ (-5 *2
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *4))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *4)))))))
+ (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
(((*1 *2 *2 *3)
(-12
(-5 *2
- (-2 (|:| |partsol| (-1178 (-349 (-857 *4))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *4)))))))
- (-5 *3 (-583 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-861 *4 *6 *5))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717))
- (-5 *1 (-835 *4 *5 *6 *7)))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *4))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *4)))))))
+ (-5 *3 (-584 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-862 *4 *6 *5))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718))
+ (-5 *1 (-836 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120)))
- (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717))
+ (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120)))
+ (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718))
(-5 *2
- (-583
- (-2 (|:| -3108 (-694))
+ (-584
+ (-2 (|:| -3109 (-695))
(|:| |eqns|
- (-583
- (-2 (|:| |det| *8) (|:| |rows| (-583 (-484)))
- (|:| |cols| (-583 (-484))))))
- (|:| |fgb| (-583 *8)))))
- (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694)))))
+ (-584
+ (-2 (|:| |det| *8) (|:| |rows| (-584 (-485)))
+ (|:| |cols| (-584 (-485))))))
+ (|:| |fgb| (-584 *8)))))
+ (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089))))
- (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5))
- (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7))))
- (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-861 *4 *6 *5))
- (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1089))))
- (-4 *6 (-717)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717))
- (-5 *2 (-583 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7))
- (-4 *7 (-861 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089))))
- (-4 *6 (-717)) (-5 *2 (-349 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3))
- (-4 *3 (-861 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717))
- (-5 *2 (-630 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717))
- (-5 *2 (-583 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090))))
+ (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5))
+ (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7))))
+ (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-862 *4 *6 *5))
+ (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1090))))
+ (-4 *6 (-718)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-1090))) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718))
+ (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))
+ (-4 *7 (-862 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1090))))
+ (-4 *6 (-718)) (-5 *2 (-350 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3))
+ (-4 *3 (-862 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718))
+ (-5 *2 (-631 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718))
+ (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-349 (-857 *8)))) (-5 *5 (-694))
- (-5 *6 (-1072)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-861 *8 *10 *9))
- (-4 *9 (-13 (-756) (-553 (-1089)))) (-4 *10 (-717))
+ (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-350 (-858 *8)))) (-5 *5 (-695))
+ (-5 *6 (-1073)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-862 *8 *10 *9))
+ (-4 *9 (-13 (-757) (-554 (-1090)))) (-4 *10 (-718))
(-5 *2
(-2
(|:| |rgl|
- (-583
- (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11))
- (|:| |wcond| (-583 (-857 *8)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11))
+ (|:| |wcond| (-584 (-858 *8)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *8))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *8))))))))))
- (|:| |rgsz| (-484))))
- (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-484)))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *8))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *8))))))))))
+ (|:| |rgsz| (-485))))
+ (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
- (|:| |wcond| (-583 (-857 *4)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7))
+ (|:| |wcond| (-584 (-858 *4)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *4))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *4))))))))))
- (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *4))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *4))))))))))
+ (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
(((*1 *2 *3 *4)
(-12
(-5 *3
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-857 *5)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
+ (|:| |wcond| (-584 (-858 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *5))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *5))))))))))
- (-5 *4 (-1072)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-861 *5 *7 *6))
- (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-484))
- (-5 *1 (-835 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120)))
- (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717))
- (-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-857 *5)))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *5))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *5))))))))))
+ (-5 *4 (-1073)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-862 *5 *7 *6))
+ (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718)) (-5 *2 (-485))
+ (-5 *1 (-836 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120)))
+ (-4 *6 (-13 (-757) (-554 (-1090)))) (-4 *7 (-718))
+ (-5 *2
+ (-584
+ (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
+ (|:| |wcond| (-584 (-858 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *5))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *5))))))))))
- (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *5))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *5))))))))))
+ (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1089))) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089))))
- (-4 *7 (-717))
+ (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1090))) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090))))
+ (-4 *7 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-857 *5)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
+ (|:| |wcond| (-584 (-858 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *5))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *5))))))))))
- (-5 *1 (-835 *5 *6 *7 *8))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *5))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *5))))))))))
+ (-5 *1 (-836 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717))
+ (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1090)))) (-4 *6 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
- (|:| |wcond| (-583 (-857 *4)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7))
+ (|:| |wcond| (-584 (-858 *4)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *4))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *4))))))))))
- (-5 *1 (-835 *4 *5 *6 *7))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *4))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *4))))))))))
+ (-5 *1 (-836 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7))
- (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089))))
- (-4 *8 (-717))
+ (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7))
+ (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1090))))
+ (-4 *8 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
- (|:| |wcond| (-583 (-857 *6)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9))
+ (|:| |wcond| (-584 (-858 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *6))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *6))))))))))
- (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *6))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *6))))))))))
+ (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1089))) (-5 *5 (-830))
- (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
- (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717))
+ (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1090))) (-5 *5 (-831))
+ (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
+ (-4 *7 (-13 (-757) (-554 (-1090)))) (-4 *8 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
- (|:| |wcond| (-583 (-857 *6)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9))
+ (|:| |wcond| (-584 (-858 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *6))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *6))))))))))
- (-5 *1 (-835 *6 *7 *8 *9))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *6))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *6))))))))))
+ (-5 *1 (-836 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089))))
- (-4 *7 (-717))
+ (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090))))
+ (-4 *7 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-857 *5)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
+ (|:| |wcond| (-584 (-858 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1178 (-349 (-857 *5))))
- (|:| -2012 (-583 (-1178 (-349 (-857 *5))))))))))
- (-5 *1 (-835 *5 *6 *7 *8))))
+ (-2 (|:| |partsol| (-1179 (-350 (-858 *5))))
+ (|:| -2013 (-584 (-1179 (-350 (-858 *5))))))))))
+ (-5 *1 (-836 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1072))
- (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
- (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484))
- (-5 *1 (-835 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1073))
+ (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
+ (-4 *7 (-13 (-757) (-554 (-1090)))) (-4 *8 (-718)) (-5 *2 (-485))
+ (-5 *1 (-836 *6 *7 *8 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1089))) (-5 *5 (-1072))
- (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
- (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484))
- (-5 *1 (-835 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-5 *4 (-1072)) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089))))
- (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1090))) (-5 *5 (-1073))
+ (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
+ (-4 *7 (-13 (-757) (-554 (-1090)))) (-4 *8 (-718)) (-5 *2 (-485))
+ (-5 *1 (-836 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 *8)) (-5 *4 (-1073)) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1090))))
+ (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1072))
- (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120)))
- (-4 *8 (-13 (-756) (-553 (-1089)))) (-4 *9 (-717)) (-5 *2 (-484))
- (-5 *1 (-835 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1073))
+ (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120)))
+ (-4 *8 (-13 (-757) (-554 (-1090)))) (-4 *9 (-718)) (-5 *2 (-485))
+ (-5 *1 (-836 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1089))) (-5 *5 (-830)) (-5 *6 (-1072))
- (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120)))
- (-4 *8 (-13 (-756) (-553 (-1089)))) (-4 *9 (-717)) (-5 *2 (-484))
- (-5 *1 (-835 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1090))) (-5 *5 (-831)) (-5 *6 (-1073))
+ (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120)))
+ (-4 *8 (-13 (-757) (-554 (-1090)))) (-4 *9 (-718)) (-5 *2 (-485))
+ (-5 *1 (-836 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1072)) (-4 *9 (-861 *6 *8 *7))
- (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089))))
- (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1073)) (-4 *9 (-862 *6 *8 *7))
+ (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1090))))
+ (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-4 *2 (-1154 *4))
- (-5 *1 (-834 *4 *2)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-4 *2 (-1155 *4))
+ (-5 *1 (-835 *4 *2)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3953 (-583 *1)) (|:| -2409 *1)))
- (-5 *3 (-583 *1)))))
+ (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3954 (-584 *1)) (|:| -2410 *1)))
+ (-5 *3 (-584 *1)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1)))))
+ (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1089))) (-4 *4 (-391))
- (-5 *1 (-829 *4)))))
+ (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1090))) (-4 *4 (-392))
+ (-5 *1 (-830 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1089))) (-4 *4 (-391))
- (-5 *1 (-829 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+ (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1090))) (-4 *4 (-392))
+ (-5 *1 (-830 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2))
- (-4 *2 (-861 *5 *3 *4))))
+ (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2))
+ (-4 *2 (-862 *5 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1085 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-347 *2)) (-4 *2 (-258)) (-5 *1 (-825 *2))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-826 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-51)) (-5 *1 (-826 *5))))
+ (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120)))
+ (-5 *2 (-51)) (-5 *1 (-827 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-347 (-857 *6))) (-5 *5 (-1089)) (-5 *3 (-857 *6))
- (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))))
-(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1154 (-349 (-484)))) (-5 *1 (-824 *3 *2))
- (-4 *2 (-1154 (-349 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3))
- (-4 *3 (-1154 (-349 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))))
- (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *5))
- (-4 *5 (-1154 (-349 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1154 (-349 (-484))))
- (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-824 *3 *4))
- (-4 *4 (-1154 (-349 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3))
- (-4 *3 (-1154 (-349 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-484)) (-4 *4 (-1154 (-349 *3))) (-5 *2 (-830))
- (-5 *1 (-824 *4 *5)) (-4 *5 (-1154 (-349 *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4))
- (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7))
- (-4 *4 (-13 (-495) (-950 (-484))))
- (-5 *2 (-2 (|:| -3771 (-694)) (|:| -2383 *8)))
- (-5 *1 (-822 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6))
- (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4)))
- (-4 *6 (-291 (-349 (-484)) *4 *5))
- (-5 *2 (-2 (|:| -3771 (-694)) (|:| -2383 *6))) (-5 *1 (-823 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1154 *5))
- (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7))
- (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85))
- (-5 *1 (-822 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-349 (-484))))
- (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-85))
- (-5 *1 (-823 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-391))))
+ (-12 (-5 *4 (-348 (-858 *6))) (-5 *5 (-1090)) (-5 *3 (-858 *6))
+ (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1085 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))))
+(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1155 (-350 (-485)))) (-5 *1 (-825 *3 *2))
+ (-4 *2 (-1155 (-350 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3))
+ (-4 *3 (-1155 (-350 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))))
+ (-4 *4 (-1155 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5))
+ (-4 *5 (-1155 (-350 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1155 (-350 (-485))))
+ (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4))
+ (-4 *4 (-1155 (-350 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3))
+ (-4 *3 (-1155 (-350 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-485)) (-4 *4 (-1155 (-350 *3))) (-5 *2 (-831))
+ (-5 *1 (-825 *4 *5)) (-4 *5 (-1155 (-350 *4))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
+ (-4 *4 (-13 (-496) (-951 (-485))))
+ (-5 *2 (-2 (|:| -3772 (-695)) (|:| -2384 *8)))
+ (-5 *1 (-823 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6))
+ (-4 *4 (-1155 (-350 (-485)))) (-4 *5 (-1155 (-350 *4)))
+ (-4 *6 (-291 (-350 (-485)) *4 *5))
+ (-5 *2 (-2 (|:| -3772 (-695)) (|:| -2384 *6))) (-5 *1 (-824 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5))
+ (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
+ (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85))
+ (-5 *1 (-823 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-485))))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-85))
+ (-5 *1 (-824 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-392))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *5 (-821)) (-5 *1 (-396 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-821)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-347 (-1084 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1084 *1))
- (-4 *4 (-391)) (-4 *4 (-495)) (-4 *4 (-1013))))
- ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-347 (-1084 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1084 *1))
- (-4 *4 (-391)) (-4 *4 (-495)) (-4 *4 (-1013))))
- ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1)))))
-(((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1)))))
+ (-12 (-5 *2 (-1085 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-822)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1))
+ (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014))))
+ ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1))
+ (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014))))
+ ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))))
+(((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-139 *4))
- (-4 *4 (-483)) (-5 *1 (-122 *4 *5))))
+ (|partial| -12 (-5 *2 (-584 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-139 *4))
+ (-4 *4 (-484)) (-5 *1 (-122 *4 *5))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-1154 *4))
+ (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-1155 *4))
(-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1084 (-484)))) (-5 *3 (-1084 (-484)))
- (-5 *1 (-508))))
+ (|partial| -12 (-5 *2 (-584 (-1085 (-485)))) (-5 *3 (-1085 (-485)))
+ (-5 *1 (-509))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1084 *1))) (-5 *3 (-1084 *1)) (-4 *1 (-821)))))
+ (|partial| -12 (-5 *2 (-584 (-1085 *1))) (-5 *3 (-1085 *1)) (-4 *1 (-822)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-299)) (-5 *2 (-1178 *1))))
+ (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-299)) (-5 *2 (-1179 *1))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821))
- (-5 *2 (-1178 *1)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118))))
+ (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822))
+ (-5 *2 (-1179 *1)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118))))
((*1 *1 *1) (-4 *1 (-299)))
- ((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717))
- (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-347 (-1084 *8))) (-5 *1 (-818 *5 *6 *7 *8))
- (-5 *4 (-1084 *8))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718))
+ (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-348 (-1085 *8))) (-5 *1 (-819 *5 *6 *7 *8))
+ (-5 *4 (-1085 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5)))
- (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5)))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5)))
+ (-5 *1 (-820 *4 *5)) (-5 *3 (-1085 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-396 *3 *4 *2 *5))
- (-4 *5 (-861 *2 *3 *4))))
+ (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5))
+ (-4 *5 (-862 *2 *3 *4))))
((*1 *2)
- (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1154 *2)))))
+ (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6))
- (-5 *2 (-347 (-1084 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1084 *7))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6))
+ (-5 *2 (-348 (-1085 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1085 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5)))
- (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5)))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5)))
+ (-5 *1 (-820 *4 *5)) (-5 *3 (-1085 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6))
- (-5 *2 (-347 (-1084 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1084 *7))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6))
+ (-5 *2 (-348 (-1085 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1085 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5)))
- (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5)))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5)))
+ (-5 *1 (-820 *4 *5)) (-5 *3 (-1085 *5)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1084 *7))) (-5 *3 (-1084 *7))
- (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *1 (-818 *4 *5 *6 *7))))
+ (|partial| -12 (-5 *2 (-584 (-1085 *7))) (-5 *3 (-1085 *7))
+ (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *1 (-819 *4 *5 *6 *7))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1084 *5))) (-5 *3 (-1084 *5))
- (-4 *5 (-1154 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5)))))
+ (|partial| -12 (-5 *2 (-584 (-1085 *5))) (-5 *3 (-1085 *5))
+ (-4 *5 (-1155 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-583 (-1084 *7))) (-5 *3 (-1084 *7))
- (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756))
- (-5 *1 (-818 *5 *6 *4 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) ((*1 *1) (-4 *1 (-483)))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3))))
+ (|partial| -12 (-5 *2 (-584 (-1085 *7))) (-5 *3 (-1085 *7))
+ (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757))
+ (-5 *1 (-819 *5 *6 *4 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6))
+ (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) ((*1 *1) (-4 *1 (-484)))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-583 *4))) (-5 *1 (-816 *4))
- (-5 *3 (-583 *4))))
+ (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4))
+ (-5 *3 (-584 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-816 *4))
- (-5 *3 (-1009 *4))))
- ((*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+ (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4))
+ (-5 *3 (-1010 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694)))
- (-5 *1 (-816 *4)))))
+ (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695)))
+ (-5 *1 (-817 *4)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694)))
- (-5 *1 (-816 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695)))
+ (-5 *1 (-817 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-816 *4)) (-4 *4 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-815 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-4 *1 (-815 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1055 *4 *2)) (-14 *4 (-830))
- (-4 *2 (-13 (-961) (-10 -7 (-6 (-3996 "*"))))) (-5 *1 (-814 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3))))
- (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1009 *3)) (-5 *1 (-813 *3)) (-4 *3 (-319)) (-4 *3 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-485)) (-5 *2 (-1185)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1056 *4 *2)) (-14 *4 (-831))
+ (-4 *2 (-13 (-962) (-10 -7 (-6 (-3997 "*"))))) (-5 *1 (-815 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3))))
+ (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-320)) (-4 *3 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128))))
- ((*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129))))
+ ((*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4))
- (-4 *4 (-1013))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4))
+ (-4 *4 (-1014))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1154 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1155 *4)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-312)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1154 *3)))))
-(((*1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-4 *1 (-663)))
- ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
- ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013))
- (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4))))
- (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1089)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1128))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1089)))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5))
- (-4 *5 (-1128)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ (|partial| -12 (-4 *3 (-312)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1155 *3)))))
+(((*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-4 *1 (-660))) ((*1 *1) (-4 *1 (-664)))
+ ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
+ ((*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014))
+ (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4))))
+ (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1129))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1090)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5))
+ (-4 *5 (-1129)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1129)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-85))
- (-5 *1 (-798 *4 *5)) (-4 *5 (-1013))))
+ (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-85))
+ (-5 *1 (-799 *4 *5)) (-4 *5 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3))
- (-4 *3 (-1128))))
+ (-12 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3))
+ (-4 *3 (-1129))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1128))
- (-5 *2 (-85)) (-5 *1 (-801 *5 *6)))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1129))
+ (-5 *2 (-85)) (-5 *1 (-802 *5 *6)))))
(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))))
+ ((*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 (-800 *3)))))
- (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ (|partial| -12 (-5 *2 (-2 (|:| -2514 (-86)) (|:| |arg| (-584 (-801 *3)))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1014))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4))
- (-4 *4 (-1013)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3))))
- (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4))
+ (-4 *4 (-1014)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1089)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-583 (-1089))) (|:| |pred| (-51))))
- (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-2 (|:| |var| (-584 (-1090))) (|:| |pred| (-51))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+ (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013))
- (-4 *5 (-608 *4))))
+ (-12 (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014))
+ (-4 *5 (-609 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
(((*1 *1)
- (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013))
- (-4 *4 (-608 *3))))
- ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+ (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014))
+ (-4 *4 (-609 *3))))
+ ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-4 *2 (-1013))
- (-5 *1 (-798 *4 *2)))))
+ (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014))
+ (-5 *1 (-799 *4 *2)))))
(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))))
(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))))
(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6)))
- (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5)))))
+ (-12 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6)))
+ (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 *3))) (-5 *1 (-797 *5 *3 *4))
- (-4 *3 (-950 (-1089))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5)))))
+ (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 *3))) (-5 *1 (-798 *5 *3 *4))
+ (-4 *3 (-951 (-1090))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 (-857 *3)))) (-5 *1 (-797 *5 *3 *4))
- (-4 *3 (-961)) (-2560 (-4 *3 (-950 (-1089)))) (-4 *3 (-796 *5))
- (-4 *4 (-553 (-800 *5)))))
+ (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 (-858 *3)))) (-5 *1 (-798 *5 *3 *4))
+ (-4 *3 (-962)) (-2561 (-4 *3 (-951 (-1090)))) (-4 *3 (-797 *5))
+ (-4 *4 (-554 (-801 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4))
- (-2560 (-4 *3 (-950 (-1089)))) (-2560 (-4 *3 (-961))) (-4 *3 (-796 *5))
- (-4 *4 (-553 (-800 *5))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1089)) (-5 *2 (-85))))
+ (-12 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4))
+ (-2561 (-4 *3 (-951 (-1090)))) (-2561 (-4 *3 (-962))) (-4 *3 (-797 *5))
+ (-4 *4 (-554 (-801 *5))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85))))
((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1089)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5))
- (-4 *4 (-553 (-800 *5)))))
+ (-12 (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5))
+ (-4 *4 (-554 (-801 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1013)) (-5 *2 (-85))
- (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5))))))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-85))
+ (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6)))))
+ (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5))
- (-4 *3 (-1013)) (-4 *5 (-608 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-484)))))
+ (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5))
+ (-4 *3 (-1014)) (-4 *5 (-609 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484)))))
+ (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))))
+ (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *3 (-583 (-484))) (-5 *1 (-793)))))
+ (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1068 (-583 (-830)))) (-5 *1 (-793)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-1094))) (-5 *1 (-790)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-199)) (-5 *3 (-1072))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-199))))
- ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484))))
- ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-349 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3))))
- ((*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-689 *3)) (-4 *3 (-346))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-780 *3)) (-14 *3 (-484))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-484)) (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-781 *3 *4))
- (-4 *4 (-779 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-345 *3)) (-4 *3 (-346))))
- ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-345 *3)) (-4 *3 (-346))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346))))
- ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830))))
- ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1068 (-484))))))
+ (-12 (-5 *2 (-1069 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 (-584 (-831)))) (-5 *1 (-794)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-584 (-1095))) (-5 *1 (-791)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *2 *3) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-199)) (-5 *3 (-1073))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-1073))) (-5 *1 (-199))))
+ ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485))))
+ ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3))))
+ ((*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-347))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-781 *3)) (-14 *3 (-485))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-485)) (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-782 *3 *4))
+ (-4 *4 (-780 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347))))
+ ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3986)) (-4 *1 (-347))))
+ ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831))))
+ ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1069 (-485))))))
(((*1 *2 *1)
(-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1154 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-4 *4 (-1155 *3)) (-14 *5 (-1 *4 *4 *2))
(-14 *6 (-1 (-3 *2 "failed") *2 *2))
(-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146))
+ (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146))
(-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
(-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961))))
+ ((*1 *2) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146))
+ (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146))
(-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
(-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))))
-(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))))
-(((*1 *1 *1) (-4 *1 (-779 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *3 (-484)) (-4 *1 (-779 *4)))))
+ ((*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))))
+(((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))))
+(((*1 *1 *1) (-4 *1 (-780 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1085 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4)))))
(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-349 *6))
- (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-350 *6))
+ (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5))))
((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-312))
- (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-349 (-1147 *6 *5)))
- (-5 *1 (-777 *5 *6 *7))))
+ (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312))
+ (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5)))
+ (-5 *1 (-778 *5 *6 *7))))
((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-312))
- (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-349 (-1147 *6 *5)))
- (-5 *1 (-777 *5 *6 *7)))))
+ (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312))
+ (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5)))
+ (-5 *1 (-778 *5 *6 *7)))))
(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-148 *6))
- (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128))
- (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-380))) (-5 *1 (-774)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-772)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114)))))
- ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
- ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1128)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-694))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239)))
- (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))
- ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
- ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254))))
- ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-148 *6))
+ (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-584 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129))
+ (-5 *2 (-584 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-381))) (-5 *1 (-775)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-773)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-773)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-773)))))
+(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115)))))
+ ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
+ ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1129)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-695))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))
+ ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
+ ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
+(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
+(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773)))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254))))
+ ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254))))
((*1 *1 *1) (-4 *1 (-254)))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3))))
- (-5 *1 (-739 *3)) (-4 *3 (-756))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-694)))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-694)))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-771))))
- ((*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-771)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-488))) (-5 *3 (-488)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1137))) (-5 *3 (-1137)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1184)) (-5 *1 (-768)))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3))))
+ (-5 *1 (-740 *3)) (-4 *3 (-757))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-695)))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-695)))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1138))) (-5 *3 (-1138)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1185)) (-5 *1 (-769)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-349 (-484))))
+ (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-350 (-485))))
(-4 *2 (-146)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))
- ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1)))
- (-4 *1 (-761 *3))))
+ (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1)))
+ (-4 *1 (-762 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3))
- (-4 *3 (-761 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3))
+ (-4 *3 (-762 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3)))
- (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3)))
+ (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1)))
- (-4 *1 (-761 *3))))
+ (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1)))
+ (-4 *1 (-762 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3))
- (-4 *3 (-761 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3))
+ (-4 *3 (-762 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1)))
- (-4 *1 (-761 *3))))
+ (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1)))
+ (-4 *1 (-762 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3))
- (-4 *3 (-761 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3))
+ (-4 *3 (-762 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1)))
- (-4 *1 (-761 *3))))
+ (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1)))
+ (-4 *1 (-762 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3))
- (-4 *3 (-761 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3))
+ (-4 *3 (-762 *5)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-360 *3)) (-4 *3 (-146))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3))
- (-4 *3 (-761 *2)))))
+ (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3))
+ (-4 *3 (-762 *2)))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2))
- (-4 *2 (-761 *5)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+ (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2))
+ (-4 *2 (-762 *5)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
+ (|partial| -12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+ (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *3 (-961))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1)))
- (-4 *1 (-761 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+ (-12 (-4 *3 (-312)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1)))
+ (-4 *1 (-762 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+ (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *3 (-961))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1)))
- (-4 *1 (-761 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+ (-12 (-4 *3 (-312)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1)))
+ (-4 *1 (-762 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
(((*1 *1)
- (-12 (-4 *1 (-346)) (-2560 (|has| *1 (-6 -3985)))
- (-2560 (|has| *1 (-6 -3977)))))
- ((*1 *2 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756)))) ((*1 *1) (-4 *1 (-752)))
- ((*1 *1 *1 *1) (-4 *1 (-759))))
+ (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3986)))
+ (-2561 (|has| *1 (-6 -3978)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757)))) ((*1 *1) (-4 *1 (-753)))
+ ((*1 *1 *1 *1) (-4 *1 (-760))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5))
- (-14 *4 (-694)))))
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5))
+ (-14 *4 (-695)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5))
- (-14 *4 (-694)))))
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5))
+ (-14 *4 (-695)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5))
- (-14 *4 (-694)))))
-(((*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472))))
- ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))))
-(((*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472))))
- ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))))
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5))
+ (-14 *4 (-695)))))
+(((*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473))))
+ ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))))
+(((*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473))))
+ ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-167 (-441))) (-5 *1 (-748)))))
-(((*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-55)))))
-(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3))
- (-4 *3 (-627 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-167 (-442))) (-5 *1 (-749)))))
+(((*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-55)))))
+(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3))
+ (-4 *3 (-628 *4 *5 *6))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
((*1 *1 *1)
- (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961))))
- ((*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962))))
+ ((*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2))
- (-4 *2 (-1013))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2))
+ (-4 *2 (-1014))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1013))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014))
(-5 *1 (-87 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4))
- (-4 *4 (-1013))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4))
+ (-4 *4 (-1014))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961))
- (-5 *1 (-651 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962))
+ (-5 *1 (-652 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961))
- (-5 *1 (-651 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962))
+ (-5 *1 (-652 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961)))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-310 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4))
- (-4 *4 (-590 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-743 (-484))) (-5 *1 (-472))))
- ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3)))))
-(((*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756)))))
+ (-12 (-5 *3 (-310 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4))
+ (-4 *4 (-591 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-744 (-485))) (-5 *1 (-473))))
+ ((*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))))
+(((*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-1178 *4))
- (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4)))))
+ (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-1179 *4))
+ (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5))
- (-4 *5 (-600 *4))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5))
+ (-4 *5 (-601 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-630 *5))
- (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-631 *5))
+ (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-495))
- (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-693 *5))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1090))) (-4 *5 (-496))
+ (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495))
- (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-693 *4))))
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496))
+ (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *7))
+ (-12 (-5 *3 (-631 *7))
(-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2012 (-583 *6))) *7 *6))
- (-4 *6 (-312)) (-4 *7 (-600 *6))
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2013 (-584 *6))) *7 *6))
+ (-4 *6 (-312)) (-4 *7 (-601 *6))
(-5 *2
- (-2 (|:| |particular| (-3 (-1178 *6) "failed"))
- (|:| -2012 (-583 (-1178 *6)))))
- (-5 *1 (-733 *6 *7)) (-5 *4 (-1178 *6)))))
+ (-2 (|:| |particular| (-3 (-1179 *6) "failed"))
+ (|:| -2013 (-584 (-1179 *6)))))
+ (-5 *1 (-734 *6 *7)) (-5 *4 (-1179 *6)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-312))
(-5 *2
- (-2 (|:| A (-630 *5))
+ (-2 (|:| A (-631 *5))
(|:| |eqs|
- (-583
- (-2 (|:| C (-630 *5)) (|:| |g| (-1178 *5)) (|:| -3266 *6)
+ (-584
+ (-2 (|:| C (-631 *5)) (|:| |g| (-1179 *5)) (|:| -3267 *6)
(|:| |rh| *5))))))
- (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1178 *5))
- (-4 *6 (-600 *5))))
+ (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1179 *5))
+ (-4 *6 (-601 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-600 *5))
- (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1178 *5))))
- (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1178 *5)))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-601 *5))
+ (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1179 *5))))
+ (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1179 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *6 (-1154 *5)) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6))))
+ (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *6 (-1155 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-349 *7))) (-5 *4 (-1 (-583 *6) *7))
- (-5 *5 (-1 (-347 *7) *7))
- (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *7 (-1154 *6)) (-5 *2 (-583 (-349 *7))) (-5 *1 (-732 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *6 (-1154 *5)) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6))))
+ (-12 (-5 *3 (-598 (-350 *7))) (-5 *4 (-1 (-584 *6) *7))
+ (-5 *5 (-1 (-348 *7) *7))
+ (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *7 (-1155 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *6 (-1155 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-598 *7 (-349 *7))) (-5 *4 (-1 (-583 *6) *7))
- (-5 *5 (-1 (-347 *7) *7))
- (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *7 (-1154 *6)) (-5 *2 (-583 (-349 *7))) (-5 *1 (-732 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-349 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-583 (-349 *5))) (-5 *1 (-732 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-598 *5 (-349 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-583 (-349 *5))) (-5 *1 (-732 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5))
- (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 *3))))
- (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-349 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *6 (-1154 *5))
- (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 (-598 *6 (-349 *6))))))
- (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-349 *6))))))
+ (-12 (-5 *3 (-599 *7 (-350 *7))) (-5 *4 (-1 (-584 *6) *7))
+ (-5 *5 (-1 (-348 *7) *7))
+ (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *7 (-1155 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-599 *5 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1155 *5))
+ (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3267 *3))))
+ (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *6 (-1155 *5))
+ (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3267 (-599 *6 (-350 *6))))))
+ (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-583 *7) *7 (-1084 *7))) (-5 *5 (-1 (-347 *7) *7))
- (-4 *7 (-1154 *6)) (-4 *6 (-13 (-312) (-120) (-950 (-349 (-484)))))
- (-5 *2 (-583 (-2 (|:| |frac| (-349 *7)) (|:| -3266 *3))))
- (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-349 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-583 (-2 (|:| |frac| (-349 *6)) (|:| -3266 (-598 *6 (-349 *6))))))
- (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-349 *6))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *7 (-1154 *5)) (-4 *4 (-661 *5 *7))
- (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1178 *5))))
- (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2))
- (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-598 *2 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2))
- (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4))))
- (-5 *1 (-730 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-349 *6))) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-2 (|:| -2012 (-583 (-349 *6))) (|:| |mat| (-630 *5))))
- (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-349 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4))))
- (-5 *1 (-730 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 *6 (-349 *6))) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-2 (|:| -2012 (-583 (-349 *6))) (|:| |mat| (-630 *5))))
- (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-349 *6))))))
+ (-12 (-5 *4 (-1 (-584 *7) *7 (-1085 *7))) (-5 *5 (-1 (-348 *7) *7))
+ (-4 *7 (-1155 *6)) (-4 *6 (-13 (-312) (-120) (-951 (-350 (-485)))))
+ (-5 *2 (-584 (-2 (|:| |frac| (-350 *7)) (|:| -3267 *3))))
+ (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-350 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-584 (-2 (|:| |frac| (-350 *6)) (|:| -3267 (-599 *6 (-350 *6))))))
+ (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-312)) (-4 *7 (-1155 *5)) (-4 *4 (-662 *5 *7))
+ (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1179 *5))))
+ (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-731 *4 *2))
+ (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-599 *2 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-731 *4 *2))
+ (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4))))
+ (-5 *1 (-731 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-350 *6))) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5))))
+ (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4))))
+ (-5 *1 (-731 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 *6 (-350 *6))) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5))))
+ (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-1154 *4))
- (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-349 *3)))))
+ (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-1155 *4))
+ (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-350 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-349 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484)))))
- (-4 *5 (-1154 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5))
- (-4 *6 (-600 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5))
- (-5 *2 (-583 (-2 (|:| -3951 *5) (|:| -3266 *3)))) (-5 *1 (-729 *5 *6 *3 *7))
- (-4 *3 (-600 *6)) (-4 *7 (-600 (-349 *6))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4))
- (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3266 *5))))
- (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-349 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *3 *5))
- (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2))
- (-4 *5 (-600 (-349 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1154 *4)) (-5 *1 (-728 *4 *2 *3 *5))
- (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2))
- (-4 *5 (-600 (-349 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1154 *4)) (-5 *1 (-728 *4 *2 *5 *3))
- (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-600 *2))
- (-4 *3 (-600 (-349 *2))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4))
- (-5 *2 (-583 (-2 (|:| -3772 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *3 *6))
- (-4 *3 (-600 *5)) (-4 *6 (-600 (-349 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *4 (-1154 *5))
- (-5 *2 (-583 (-2 (|:| -3772 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *3 *6))
- (-4 *3 (-600 *4)) (-4 *6 (-600 (-349 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4))
- (-5 *2 (-583 (-2 (|:| -3772 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *6 *3))
- (-4 *6 (-600 *5)) (-4 *3 (-600 (-349 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *4 (-1154 *5))
- (-5 *2 (-583 (-2 (|:| -3772 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *6 *3))
- (-4 *6 (-600 *4)) (-4 *3 (-600 (-349 *4))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-349 *2)) (-4 *2 (-1154 *5))
- (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484)))))
- (-4 *3 (-600 *2)) (-4 *6 (-600 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-349 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-728 *5 *2 *3 *6))
- (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2))
- (-4 *6 (-600 (-349 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-291 *5 *6 *7))
- (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6)))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4))))
- (-5 *1 (-727 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1114) (-871))))))
+ (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485)))))
+ (-4 *5 (-1155 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5))
+ (-4 *6 (-601 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1155 *5))
+ (-5 *2 (-584 (-2 (|:| -3952 *5) (|:| -3267 *3)))) (-5 *1 (-730 *5 *6 *3 *7))
+ (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1155 *4))
+ (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3267 *5))))
+ (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2 *3 *5))
+ (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2))
+ (-4 *5 (-601 (-350 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1155 *4)) (-5 *1 (-729 *4 *2 *3 *5))
+ (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2))
+ (-4 *5 (-601 (-350 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1155 *4)) (-5 *1 (-729 *4 *2 *5 *3))
+ (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-601 *2))
+ (-4 *3 (-601 (-350 *2))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1155 *4))
+ (-5 *2 (-584 (-2 (|:| -3773 *5) (|:| -3227 *5)))) (-5 *1 (-729 *4 *5 *3 *6))
+ (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1155 *5))
+ (-5 *2 (-584 (-2 (|:| -3773 *4) (|:| -3227 *4)))) (-5 *1 (-729 *5 *4 *3 *6))
+ (-4 *3 (-601 *4)) (-4 *6 (-601 (-350 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1155 *4))
+ (-5 *2 (-584 (-2 (|:| -3773 *5) (|:| -3227 *5)))) (-5 *1 (-729 *4 *5 *6 *3))
+ (-4 *6 (-601 *5)) (-4 *3 (-601 (-350 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1155 *5))
+ (-5 *2 (-584 (-2 (|:| -3773 *4) (|:| -3227 *4)))) (-5 *1 (-729 *5 *4 *6 *3))
+ (-4 *6 (-601 *4)) (-4 *3 (-601 (-350 *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1155 *5))
+ (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485)))))
+ (-4 *3 (-601 *2)) (-4 *6 (-601 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-350 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-729 *5 *2 *3 *6))
+ (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2))
+ (-4 *6 (-601 (-350 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-291 *5 *6 *7))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6)))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4))))
+ (-5 *1 (-728 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1115) (-872))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-871))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-872))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1089)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
- (-4 *4 (-13 (-29 *6) (-1114) (-871)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4))))
- (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
+ (-12 (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
+ (-4 *4 (-13 (-29 *6) (-1115) (-872)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4))))
+ (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
(((*1 *1 *1) (-4 *1 (-201)))
((*1 *1 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2))
+ (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2))
(-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1128)))
- (-12 (-5 *1 (-249 *2)) (-4 *2 (-412)) (-4 *2 (-1128)))))
- ((*1 *1 *1) (-4 *1 (-412)))
- ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3))))
+ (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129)))
+ (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129)))))
+ ((*1 *1 *1) (-4 *1 (-413)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
-(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114)))))
- ((*1 *1 *1 *1) (-4 *1 (-717))))
+ ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
+(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115)))))
+ ((*1 *1 *1 *1) (-4 *1 (-718))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
+ (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484))
+ (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-484)))))
+ (-5 *1 (-712)) (-5 *5 (-485)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
+ (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484))
+ (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-484)))))
+ (-5 *1 (-712)) (-5 *5 (-485)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
+ (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484))
+ (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-484)))))
+ (-5 *1 (-712)) (-5 *5 (-485)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
+ (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484))
+ (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-484)))))
+ (-5 *1 (-712)) (-5 *5 (-485)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
+ (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484))
+ (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-484)))))
+ (-5 *1 (-712)) (-5 *5 (-485)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
+ (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484))
+ (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-484)))))
+ (-5 *1 (-712)) (-5 *5 (-485)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
+ (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484))
+ (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-484)))))
+ (-5 *1 (-712)) (-5 *5 (-485)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
+ (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484))
+ (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-484)))))
+ (-5 *1 (-712)) (-5 *5 (-485)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
+ (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484))
+ (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-485))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-484)))))
+ (-5 *1 (-712)) (-5 *5 (-485)))))
(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329)))
- (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))))
+ (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330)))
+ (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))))
(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-484))
- (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))))
- (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329)))
- (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710))))
+ (-12 (-5 *4 (-485))
+ (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))))
+ (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330)))
+ (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711))))
((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-484))
- (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))))
- (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329)))
- (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))))
+ (-12 (-5 *4 (-485))
+ (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))))
+ (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330)))
+ (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))))
(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329)))
- (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))))
+ (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330)))
+ (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329)))
- (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710))))
+ (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330)))
+ (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711))))
((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329)))
- (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-329)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-329)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-830)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1072)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-830)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1072)) (-5 *1 (-709)))))
+ (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330)))
+ (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-711)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-831)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1073)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-831)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1073)) (-5 *1 (-710)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-349 (-857 (-142 *4)))) (-4 *4 (-495))
- (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496))
+ (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-349 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756))
- (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757))
+ (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756))
- (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757))
+ (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495))
- (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329)))
- (-5 *1 (-708 *5)))))
+ (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496))
+ (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330)))
+ (-5 *1 (-709 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2))
- (-5 *2 (-329)) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2))
+ (-5 *2 (-330)) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961))
- (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962))
+ (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2))
- (-5 *2 (-329)) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2))
+ (-5 *2 (-330)) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495))
- (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496))
+ (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756))
- (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757))
+ (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
- (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))))
+ (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
+ (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-142 (-329))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-329)))))
+ (-12 (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-5 *2 (-142 (-329))) (-5 *1 (-708 *3))
- (-4 *3 (-553 (-329)))))
+ (-12 (-5 *4 (-831)) (-5 *2 (-142 (-330))) (-5 *1 (-709 *3))
+ (-4 *3 (-554 (-330)))))
((*1 *2 *3)
- (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-349 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329)))
- (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756))
- (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757))
+ (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
- (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-329)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2))))
+ (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
+ (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-5 *2 (-329)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2))))
+ (-12 (-5 *4 (-831)) (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-329))
- (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330))
+ (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2))
- (-5 *2 (-329)) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2))
+ (-5 *2 (-330)) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-329))
- (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330))
+ (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2))
- (-5 *2 (-329)) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2))
+ (-5 *2 (-330)) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2))
- (-5 *2 (-329)) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2))
+ (-5 *2 (-330)) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
- (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))))
+ (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
+ (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-349 (-484))))
+ (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485))))
(-4 *2 (-146)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-349 (-484))))
+ (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485))))
(-4 *2 (-146)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-495))
- (-4 *3 (-961)))))
+ (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496))
+ (-4 *3 (-962)))))
(((*1 *2 *1 *1)
(-12
- (-5 *2 (-2 (|:| -3755 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))))
+ (-5 *2 (-2 (|:| -3756 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3))
- (-4 *3 (-495)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3))
+ (-4 *3 (-496)) (-4 *3 (-962)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3))
- (-4 *3 (-495)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3))
+ (-4 *3 (-496)) (-4 *3 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-349 (-484))))
+ (-12 (-5 *3 (-631 (-350 (-485))))
(-5 *2
- (-583
- (-2 (|:| |outval| *4) (|:| |outmult| (-484))
- (|:| |outvect| (-583 (-630 *4))))))
- (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))))
+ (-584
+ (-2 (|:| |outval| *4) (|:| |outmult| (-485))
+ (|:| |outvect| (-584 (-631 *4))))))
+ (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4))
- (-4 *4 (-13 (-312) (-755))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))
+ (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4))
+ (-4 *4 (-13 (-312) (-756))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-146)) (-4 *2 (-1154 *4)) (-5 *1 (-151 *4 *2 *3))
- (-4 *3 (-661 *4 *2))))
+ (-12 (-4 *4 (-146)) (-4 *2 (-1155 *4)) (-5 *1 (-151 *4 *2 *3))
+ (-4 *3 (-662 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-349 (-857 *5)))) (-5 *4 (-1089)) (-5 *2 (-857 *5))
- (-5 *1 (-248 *5)) (-4 *5 (-391))))
+ (-12 (-5 *3 (-631 (-350 (-858 *5)))) (-5 *4 (-1090)) (-5 *2 (-858 *5))
+ (-5 *1 (-248 *5)) (-4 *5 (-392))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 (-349 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-248 *4))
- (-4 *4 (-391))))
- ((*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3))))
+ (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-248 *4))
+ (-4 *4 (-392))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-857 (-142 (-349 (-484)))))
- (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755)))))
+ (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-858 (-142 (-350 (-485)))))
+ (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *4 (-1089))
- (-5 *2 (-857 (-142 (-349 (-484))))) (-5 *1 (-688 *5))
- (-4 *5 (-13 (-312) (-755)))))
+ (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *4 (-1090))
+ (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *5))
+ (-4 *5 (-13 (-312) (-756)))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-857 (-349 (-484))))
- (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755)))))
+ (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-858 (-350 (-485))))
+ (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *4 (-1089))
- (-5 *2 (-857 (-349 (-484)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-312) (-755))))))
+ (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *4 (-1090))
+ (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-312) (-756))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-583 (-694)))
- (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *6)) (-4 *7 (-861 *6 *4 *5)))))
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-584 (-695)))
+ (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *6)) (-4 *7 (-862 *6 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1154 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-258))
- (-4 *10 (-861 *9 *7 *8))
+ (-12 (-4 *6 (-1155 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-258))
+ (-4 *10 (-862 *9 *7 *8))
(-5 *2
- (-2 (|:| |deter| (-583 (-1084 *10)))
- (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10))))
- (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1084 *10)) (-5 *4 (-583 *6))
- (-5 *5 (-583 *10)))))
+ (-2 (|:| |deter| (-584 (-1085 *10)))
+ (|:| |dterm| (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10))))
+ (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1085 *10)) (-5 *4 (-584 *6))
+ (-5 *5 (-584 *10)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-583 *3))
- (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-830)))))
+ (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-584 *3))
+ (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-831)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4))))
- (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1072)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1184)) (-5 *1 (-699 *6 *7 *8 *4 *5))
- (-4 *5 (-983 *6 *7 *8 *4)))))
+ (-12 (-5 *3 (-1073)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1185)) (-5 *1 (-700 *6 *7 *8 *4 *5))
+ (-4 *5 (-984 *6 *7 *8 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 *3)))))
+ (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484))))
- (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4)))))
- ((*1 *1 *1) (-5 *1 (-329)))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485))))
+ (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4)))))
+ ((*1 *1 *1) (-5 *1 (-330)))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4))))
- (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-977 *4 *5 *6))
- (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-329))))
- ((*1 *1 *1 *1) (-4 *1 (-483)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
- ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-430)) (-5 *4 (-865)) (-5 *2 (-632 (-471))) (-5 *1 (-471))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-865)) (-4 *3 (-1013)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-142 (-349 (-484)))))
- (-5 *2
- (-583
- (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484))
- (|:| |outvect| (-583 (-630 (-142 *4)))))))
- (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-583 (-142 *4)))
- (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-685))))
-(((*1 *1 *1 *1) (-4 *1 (-412))) ((*1 *1 *1 *1) (-4 *1 (-685))))
-(((*1 *1 *1 *1) (-4 *1 (-685))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6))
+ (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330))))
+ ((*1 *1 *1 *1) (-4 *1 (-484)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
+ ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-695)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 (-142 (-350 (-485)))))
+ (-5 *2
+ (-584
+ (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485))
+ (|:| |outvect| (-584 (-631 (-142 *4)))))))
+ (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-142 *4)))
+ (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-686))))
+(((*1 *1 *1 *1) (-4 *1 (-413))) ((*1 *1 *1 *1) (-4 *1 (-686))))
+(((*1 *1 *1 *1) (-4 *1 (-686))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1084 *6)) (-5 *3 (-484)) (-4 *6 (-258)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))))
+ (-12 (-5 *2 (-1085 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756))
- (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-258)) (-5 *2 (-583 (-694)))
- (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694)))))
+ (-12 (-5 *3 (-1085 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757))
+ (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-258)) (-5 *2 (-584 (-695)))
+ (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-484)) (-5 *4 (-347 *2)) (-4 *2 (-861 *7 *5 *6))
- (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-258)))))
+ (-12 (-5 *3 (-485)) (-5 *4 (-348 *2)) (-4 *2 (-862 *7 *5 *6))
+ (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-258)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8)))
- (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717))
+ (-12 (-5 *3 (-1085 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8)))
+ (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718))
(-5 *2
- (-2 (|:| |upol| (-1084 *8)) (|:| |Lval| (-583 *8))
- (|:| |Lfact| (-583 (-2 (|:| -3731 (-1084 *8)) (|:| -2401 (-484)))))
+ (-2 (|:| |upol| (-1085 *8)) (|:| |Lval| (-584 *8))
+ (|:| |Lfact| (-584 (-2 (|:| -3732 (-1085 *8)) (|:| -2402 (-485)))))
(|:| |ctpol| *8)))
- (-5 *1 (-681 *6 *7 *8 *9)))))
+ (-5 *1 (-682 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258))
- (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7))
+ (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258))
+ (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7))
(-5 *2
(-2 (|:| |unitPart| *9)
- (|:| |suPart| (-583 (-2 (|:| -3731 (-1084 *9)) (|:| -2401 (-484)))))))
- (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1084 *9)))))
+ (|:| |suPart| (-584 (-2 (|:| -3732 (-1085 *9)) (|:| -2402 (-485)))))))
+ (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1085 *9)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-484)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-258))
- (-4 *9 (-861 *8 *6 *7))
- (-5 *2 (-2 (|:| -2004 (-1084 *9)) (|:| |polval| (-1084 *8))))
- (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1084 *9)) (-5 *4 (-1084 *8)))))
+ (-12 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-258))
+ (-4 *9 (-862 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2005 (-1085 *9)) (|:| |polval| (-1085 *8))))
+ (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1085 *9)) (-5 *4 (-1085 *8)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3))
- (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
+ (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3))
+ (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3731 (-1084 *6)) (|:| -2401 (-484)))))
- (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484))
- (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3732 (-1085 *6)) (|:| -2402 (-485)))))
+ (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485))
+ (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3))
- (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-677)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-675 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013))))
- ((*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))))
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3))
+ (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-678)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014))))
+ ((*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))))
(((*1 *2 *3 *4)
- (-12 (-4 *6 (-495)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2))
- (-5 *3 (-349 (-857 *6))) (-4 *5 (-717))
- (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))))))
+ (-12 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2))
+ (-5 *3 (-350 (-858 *6))) (-4 *5 (-718))
+ (-4 *4 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084 (-857 *6))) (-4 *6 (-495))
- (-4 *2 (-861 (-349 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2))
- (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))))))
+ (-12 (-5 *3 (-1085 (-858 *6))) (-4 *6 (-496))
+ (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2))
+ (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084 *2)) (-4 *2 (-861 (-349 (-857 *6)) *5 *4))
- (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717))
- (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *6 (-495)))))
+ (-12 (-5 *3 (-1085 *2)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4))
+ (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718))
+ (-4 *4 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *6 (-496)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)))))
- (-4 *6 (-495)) (-5 *2 (-2 (|:| -2483 (-857 *6)) (|:| -2058 (-857 *6))))
- (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-349 (-857 *6)) *4 *5)))))
+ (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3972 ((-1090) $)))))
+ (-4 *6 (-496)) (-5 *2 (-2 (|:| -2484 (-858 *6)) (|:| -2059 (-858 *6))))
+ (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484))
- (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485))
+ (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
(-5 *1 (-109 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717))
- (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))))
+ (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718))
+ (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1154 *5))
- (-5 *1 (-666 *5 *2)) (-4 *5 (-312)))))
+ (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1155 *5))
+ (-5 *1 (-667 *5 *2)) (-4 *5 (-312)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| -3089 (-347 *3)) (|:| |special| (-347 *3))))
- (-5 *1 (-666 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| -3090 (-348 *3)) (|:| |special| (-348 *3))))
+ (-5 *1 (-667 *5 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1090)))))
((*1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1089)))))
- ((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1090)))))
+ ((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-4 *2 (-291 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *2 (-291 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-146))))
- ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1154 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312))
- (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1154 *5)) (-5 *2 (-630 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
- ((*1 *1 *1) (|partial| -4 *1 (-659))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
- ((*1 *1 *1) (|partial| -4 *1 (-659))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))))
+ ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312))
+ (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1155 *5)) (-5 *2 (-631 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496))))
+ ((*1 *1 *1) (|partial| -4 *1 (-660))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496))))
+ ((*1 *1 *1) (|partial| -4 *1 (-660))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))))
(((*1 *1 *1 *1)
(|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312))
- (-14 *4 (-1089)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484))))
- ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-347 *3)) (-4 *3 (-495))))
+ (-12 (-5 *2 (-1160 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312))
+ (-14 *4 (-1090)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485))))
+ ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496))))
((*1 *2 *1)
- (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756))
+ (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757))
(-14 *4
- (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *2))
- (-2 (|:| -2400 *3) (|:| -2401 *2)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-319))))
- ((*1 *2 *1) (-12 (-4 *2 (-759)) (-5 *1 (-453 *3 *2)) (-4 *3 (-72))))
+ (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *2))
+ (-2 (|:| -2401 *3) (|:| -2402 *2)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-320))))
+ ((*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-72))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1179 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))
((*1 *2 *1)
- (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013))
+ (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014))
(-14 *4
- (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3))
- (-2 (|:| -2400 *2) (|:| -2401 *3)))))))
-(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1154 *3)))))
+ (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3))
+ (-2 (|:| -2401 *2) (|:| -2402 *3)))))))
+(((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-5 *2 (-1178 *3)) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1154 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-1179 *3)) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1178 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1154 *3)))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-5 *2 (-1178 *3)) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1154 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-1179 *3)) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1154 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1154 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-299)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1154 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))))
+ (-12 (-4 *2 (-299)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1073)) (-5 *1 (-648)))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1073)) (-5 *1 (-648)))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1073)) (-5 *1 (-648)))))
(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-583 (-1084 *13))) (-5 *3 (-1084 *13))
- (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13))
- (-5 *7 (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *13)))))
- (-5 *8 (-583 (-694))) (-5 *9 (-1178 (-583 (-1084 *10)))) (-4 *12 (-756))
- (-4 *10 (-258)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717))
- (-5 *1 (-644 *11 *12 *10 *13)))))
+ (|partial| -12 (-5 *2 (-584 (-1085 *13))) (-5 *3 (-1085 *13))
+ (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13))
+ (-5 *7 (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| *13)))))
+ (-5 *8 (-584 (-695))) (-5 *9 (-1179 (-584 (-1085 *10)))) (-4 *12 (-757))
+ (-4 *10 (-258)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718))
+ (-5 *1 (-645 *11 *12 *10 *13)))))
(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1084 *9))) (-5 *6 (-583 *9))
- (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-258))
- (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1084 *12)))
- (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1084 *12)))))
+ (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1085 *9))) (-5 *6 (-584 *9))
+ (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-258))
+ (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1085 *12)))
+ (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1085 *12)))))
(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-583 (-1084 *11))) (-5 *3 (-1084 *11))
- (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694)))
- (-5 *7 (-1178 (-583 (-1084 *8)))) (-4 *10 (-756)) (-4 *8 (-258))
- (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11)))))
+ (|partial| -12 (-5 *2 (-584 (-1085 *11))) (-5 *3 (-1085 *11))
+ (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695)))
+ (-5 *7 (-1179 (-584 (-1085 *8)))) (-4 *10 (-757)) (-4 *8 (-258))
+ (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7))
- (-4 *3 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128))))
+ (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7))
+ (-4 *3 (-554 (-474))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6))
- (-4 *3 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
+ (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6))
+ (-4 *3 (-554 (-474))) (-4 *5 (-1129)) (-4 *6 (-1129)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6))
- (-4 *4 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6))
+ (-4 *4 (-554 (-474))) (-4 *5 (-1129)) (-4 *6 (-1129)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4))
- (-4 *3 (-1128)) (-4 *4 (-1128)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-1089)) (-5 *1 (-473))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473)))))
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4))
+ (-4 *3 (-1129)) (-4 *4 (-1129)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1090))) (-5 *3 (-1090)) (-5 *1 (-474))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473)))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473)))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-583 (-1089))) (-5 *2 (-1089)) (-5 *1 (-641 *3))
- (-4 *3 (-553 (-473))))))
+ (-12 (-5 *4 (-584 (-1090))) (-5 *2 (-1090)) (-5 *1 (-642 *3))
+ (-4 *3 (-554 (-474))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3))
- (-4 *3 (-553 (-473)))))
+ (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3))
+ (-4 *3 (-554 (-474)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3))
- (-4 *3 (-553 (-473))))))
+ (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3))
+ (-4 *3 (-554 (-474))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7))
- (-4 *4 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7))
+ (-4 *4 (-554 (-474))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-629 *3 *4 *5 *6))
- (-4 *6 (-627 *3 *4 *5))))
+ (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-630 *3 *4 *5 *6))
+ (-4 *6 (-628 *3 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-638 *3))
+ (-12 (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-639 *3))
(-4 *3 (-258)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))))
(((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-1 (-179) (-179) (-179)))
(-5 *4 (-1 (-179) (-179) (-179) (-179)))
- (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636)))))
+ (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637)))))
(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
- (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636)))))
+ (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
+ (-5 *6 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-637)))))
(((*1 *2 *3 *4 *5 *5 *6)
(-12 (-5 *3 (-1 (-179) (-179) (-179)))
(-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined"))
- (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179)))
- (-5 *1 (-636)))))
+ (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1047 (-179)))
+ (-5 *1 (-637)))))
(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
(-12 (-5 *3 (-1 (-179) (-179) (-179)))
(-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined"))
- (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179)))
- (-5 *1 (-636))))
+ (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1047 (-179)))
+ (-5 *1 (-637))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-637))))
((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179)))
- (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636)))))
+ (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179)))
+ (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637)))))
(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4))))
((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3)))))
+ (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *5)))) (-4 *5 (-1154 *4))
- (-4 *4 (-299)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5))))
+ (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2576 *5)))) (-4 *5 (-1155 *4))
+ (-4 *4 (-299)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-2 (|:| -3731 *5) (|:| -3947 (-484))))) (-5 *4 (-484))
- (-4 *5 (-1154 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5)))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3732 *5) (|:| -3948 (-485))))) (-5 *4 (-485))
+ (-4 *5 (-1155 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-484)) (-5 *2 (-583 (-2 (|:| -3731 *3) (|:| -3947 *4))))
- (-5 *1 (-635 *3)) (-4 *3 (-1154 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013))))
- ((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1013)))))
+ (-12 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3732 *3) (|:| -3948 *4))))
+ (-5 *1 (-636 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-1014))))
+ ((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1014)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-634 *3)) (-4 *3 (-1013))
- (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1945 (-694))))))))
-(((*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))))
-(((*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))))
+ (-12 (-4 *1 (-635 *3)) (-4 *3 (-1014))
+ (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1946 (-695))))))))
+(((*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
+(((*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))
- ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))
+ ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3))
- (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))))
+ (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3))
+ (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))))
(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3))
- (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))))
+ (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3))
+ (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))))
+ (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)))))
(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)))))
(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1013)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1013)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6)))))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-624 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-625 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5))
- (-5 *1 (-624 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5))
+ (-5 *1 (-625 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1013))
- (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014))
+ (-4 *3 (-1014)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1013))
- (-5 *1 (-619 *2))))
- ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1013)) (-5 *1 (-623 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1013))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-484)) (-5 *2 (-583 *5))
- (-5 *1 (-623 *5)) (-4 *5 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1129))) (-5 *3 (-1129)) (-5 *1 (-622)))))
+ (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014))
+ (-5 *1 (-620 *2))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5))
+ (-5 *1 (-624 *5)) (-4 *5 (-1014)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1130))) (-5 *3 (-1130)) (-5 *1 (-623)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-4 *2 (-1013)) (-5 *1 (-621 *5 *6 *2)))))
-(((*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(((*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
-(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
+(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1129)) (-5 *2 (-695)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))))
+ (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756))
- (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757))
+ (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5)))
- (-5 *1 (-614 *5)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5)))
+ (-5 *1 (-615 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756))
- (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757))
+ (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718))
(-5 *2
- (-2 (|:| |particular| (-3 (-1178 (-349 *8)) "failed"))
- (|:| -2012 (-583 (-1178 (-349 *8))))))
- (-5 *1 (-611 *5 *6 *7 *8)))))
+ (-2 (|:| |particular| (-3 (-1179 (-350 *8)) "failed"))
+ (|:| -2013 (-584 (-1179 (-350 *8))))))
+ (-5 *1 (-612 *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995))))
- (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-85))
- (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996))))
+ (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-85))
+ (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-5 *2 (-85))
- (-5 *1 (-610 *5)))))
+ (-12 (-5 *3 (-631 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-85))
+ (-5 *1 (-611 *5)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1084 *4))) (-5 *3 (-1084 *4)) (-4 *4 (-821))
- (-5 *1 (-605 *4)))))
-(((*1 *1 *1) (-4 *1 (-604))))
-(((*1 *1 *1 *1) (-4 *1 (-604))))
-(((*1 *1 *1 *1) (-4 *1 (-604))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312))))
+ (|partial| -12 (-5 *2 (-584 (-1085 *4))) (-5 *3 (-1085 *4)) (-4 *4 (-822))
+ (-5 *1 (-606 *4)))))
+(((*1 *1 *1) (-4 *1 (-605))))
+(((*1 *1 *1 *1) (-4 *1 (-605))))
+(((*1 *1 *1 *1) (-4 *1 (-605))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2))
- (-4 *2 (-600 *4)))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2))
+ (-4 *2 (-601 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-312))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-312))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-602 *5 *2))
- (-4 *2 (-600 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-603 *5 *2))
+ (-4 *2 (-601 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2))
- (-4 *2 (-600 *4)))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2))
+ (-4 *2 (-601 *4)))))
(((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *5 (-1154 *4)) (-5 *2 (-583 (-597 (-349 *5)))) (-5 *1 (-601 *4 *5))
- (-5 *3 (-597 (-349 *5))))))
-(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-593 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-593 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4))))
- (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))))
+ (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *5 (-1155 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5))
+ (-5 *3 (-598 (-350 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1129)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 *4))))
+ (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))) (-4 *3 (-1013))
- (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-310 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 *4)))) (-4 *3 (-1014))
+ (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1014))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-335 *4)) (-4 *4 (-1013)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-336 *4)) (-4 *4 (-1014)) (-5 *2 (-695))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1013))
+ (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014))
(-14 *5 *2))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-335 *2)) (-4 *2 (-1013))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1014))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23))
+ (-12 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23))
(-14 *5 *4))))
-(((*1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128))))
- ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-323 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-324 *2)) (-4 *2 (-1129))))
((*1 *1 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *2 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23))
+ (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23))
(-14 *5 *4))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-310 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1014))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-335 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-336 *3)) (-4 *3 (-1014))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5))
- (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5))
+ (-4 *3 (-1014)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-310 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-310 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1014))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23))
(-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1013)))))
-(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1128)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1014)))))
+(((*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1129)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4))
- (-14 *4 (-583 (-1089))))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-582 *3 *4))
+ (-14 *4 (-584 (-1090))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961))
- (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1178 *4))))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962))
+ (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1179 *4))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *1)) (-5 *4 (-1178 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1178 *5))))))
+ (-12 (-5 *3 (-631 *1)) (-5 *4 (-1179 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1179 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))))
+ (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-579 *3 *4))
- (-14 *4 (-583 (-1089))))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4))
+ (-14 *4 (-584 (-1090))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 *5)))
- (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-1178 *5)) (-5 *1 (-578 *5 *4))))
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 *5)))
+ (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1179 *5)) (-5 *1 (-579 *5 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 *5)))
- (-2560 (-4 *5 (-312))) (-4 *5 (-495)) (-5 *2 (-1178 (-349 *5)))
- (-5 *1 (-578 *5 *4)))))
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-962) (-581 *5)))
+ (-2561 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1179 (-350 *5)))
+ (-5 *1 (-579 *5 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-961) (-580 *4)))
- (-4 *4 (-495)) (-5 *2 (-1178 *4)) (-5 *1 (-578 *4 *5)))))
+ (|partial| -12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-962) (-581 *4)))
+ (-4 *4 (-496)) (-5 *2 (-1179 *4)) (-5 *1 (-579 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495))
- (-5 *2 (-85)) (-5 *1 (-578 *4 *5)))))
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496))
+ (-5 *2 (-85)) (-5 *1 (-579 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-750 *3))) (-4 *3 (-13 (-27) (-1114) (-363 *5)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484))))
+ (-12 (-5 *4 (-249 (-751 *3))) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
(-5 *2
- (-3 (-750 *3)
- (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed"))
- (|:| |rightHandLimit| (-3 (-750 *3) #1#)))
+ (-3 (-751 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed"))
+ (|:| |rightHandLimit| (-3 (-751 *3) #1#)))
"failed"))
- (-5 *1 (-575 *5 *3))))
+ (-5 *1 (-576 *5 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1072))
- (-4 *3 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-750 *3))
- (-5 *1 (-575 *6 *3))))
+ (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1073))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3))
+ (-5 *1 (-576 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-750 (-857 *5)))) (-4 *5 (-391))
+ (-12 (-5 *4 (-249 (-751 (-858 *5)))) (-4 *5 (-392))
(-5 *2
- (-3 (-750 (-349 (-857 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 *5))) #2="failed"))
- (|:| |rightHandLimit| (-3 (-750 (-349 (-857 *5))) #2#)))
+ (-3 (-751 (-350 (-858 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 *5))) #2="failed"))
+ (|:| |rightHandLimit| (-3 (-751 (-350 (-858 *5))) #2#)))
#3="failed"))
- (-5 *1 (-576 *5)) (-5 *3 (-349 (-857 *5)))))
+ (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-391))
+ (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392))
(-5 *2
- (-3 (-750 *3)
- (-2 (|:| |leftHandLimit| (-3 (-750 *3) #2#))
- (|:| |rightHandLimit| (-3 (-750 *3) #2#)))
+ (-3 (-751 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-751 *3) #2#))
+ (|:| |rightHandLimit| (-3 (-751 *3) #2#)))
#3#))
- (-5 *1 (-576 *5))))
+ (-5 *1 (-577 *5))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-249 (-349 (-857 *6)))) (-5 *5 (-1072))
- (-5 *3 (-349 (-857 *6))) (-4 *6 (-391)) (-5 *2 (-750 *3))
- (-5 *1 (-576 *6)))))
+ (|partial| -12 (-5 *4 (-249 (-350 (-858 *6)))) (-5 *5 (-1073))
+ (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3))
+ (-5 *1 (-577 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-249 (-743 *3)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-743 *3))
- (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))
+ (|partial| -12 (-5 *4 (-249 (-744 *3)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3))
+ (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-743 (-857 *5)))) (-4 *5 (-391))
- (-5 *2 (-743 (-349 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-349 (-857 *5)))))
+ (-12 (-5 *4 (-249 (-744 (-858 *5)))) (-4 *5 (-392))
+ (-5 *2 (-744 (-350 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-391))
- (-5 *2 (-743 *3)) (-5 *1 (-576 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-571)))))
-(((*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1) (-5 *1 (-571))))
+ (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392))
+ (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-572)))))
+(((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1) (-5 *1 (-572))))
(((*1 *2 *3)
- (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-391))
- (-5 *2 (-420 *4 *5)) (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1090))) (-4 *5 (-392))
+ (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1089)))
- (-4 *5 (-391)) (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1090)))
+ (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-583 (-420 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1089)))
- (-4 *5 (-391)) (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1090)))
+ (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-391))
- (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1089))) (-5 *1 (-570 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-392))
+ (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1090))) (-5 *1 (-571 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221)))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221)))
(-5 *1 (-222))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-420 *5 *6))) (-5 *3 (-420 *5 *6)) (-14 *5 (-583 (-1089)))
- (-4 *6 (-391)) (-5 *2 (-1178 *6)) (-5 *1 (-570 *5 *6)))))
+ (-12 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-584 (-1090)))
+ (-4 *6 (-392)) (-5 *2 (-1179 *6)) (-5 *1 (-571 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-420 *3 *4))) (-14 *3 (-583 (-1089))) (-4 *4 (-391))
- (-5 *1 (-570 *3 *4)))))
+ (-12 (-5 *2 (-584 (-421 *3 *4))) (-14 *3 (-584 (-1090))) (-4 *4 (-392))
+ (-5 *1 (-571 *3 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-583 (-420 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1089)))
- (-5 *2 (-420 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-391))))
+ (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1090)))
+ (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-420 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1089)))
- (-5 *2 (-420 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-391)))))
+ (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1090)))
+ (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-420 *4 *5))) (-14 *4 (-583 (-1089))) (-4 *5 (-391))
- (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1090))) (-4 *5 (-392))
+ (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-583 (-1089))) (-4 *5 (-391))
- (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-484)))))
- (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5))))))
+ (-12 (-14 *4 (-584 (-1090))) (-4 *5 (-392))
+ (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-485)))))
+ (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-420 *4 *5))) (-14 *4 (-583 (-1089))) (-4 *5 (-391))
- (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-484)))))
- (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1090))) (-4 *5 (-392))
+ (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-485)))))
+ (-5 *1 (-571 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-363 *3) (-915) (-1114)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-916) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-363 *3) (-915) (-1114)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-916) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-363 *3) (-915) (-1114)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-916) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-363 *3) (-915) (-1114)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-916) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-363 *3) (-915) (-1114)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-916) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-363 *3) (-915) (-1114)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-916) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-363 *4))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-364 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5))
- (-4 *5 (-363 *4))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5))
+ (-4 *5 (-364 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5))
- (-4 *5 (-13 (-363 *4) (-915)))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-916)))))
((*1 *2 *3)
(-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))
((*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-362 *4 *5))
- (-4 *4 (-363 *5))))
+ (-12 (-5 *3 (-86)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5))
+ (-4 *4 (-364 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-373 *4 *5))
- (-4 *5 (-363 *4))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5))
+ (-4 *5 (-364 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5))
- (-4 *5 (-13 (-363 *4) (-915) (-1114))))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-916) (-1115))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391))
- (-14 *6 (-583 (-1089)))
- (-5 *2 (-583 (-1059 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6)))))
- (-5 *1 (-567 *5 *6)))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-584 (-1090)))
+ (-5 *2 (-584 (-1060 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6)))))
+ (-5 *1 (-568 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391))
- (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-584 (-1090))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-391)) (-5 *1 (-309 *3 *4))
- (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4))
+ (-14 *4 (-584 (-1090)))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-386 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-1073)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-1073)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7))))
((*1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-391))
- (-14 *4 (-583 (-1089))) (-5 *1 (-567 *3 *4)))))
+ (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392))
+ (-14 *4 (-584 (-1090))) (-5 *1 (-568 *3 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-391)) (-5 *1 (-309 *3 *4))
- (-14 *4 (-583 (-1089)))))
+ (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4))
+ (-14 *4 (-584 (-1090)))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-391))
- (-14 *4 (-583 (-1089))) (-5 *1 (-567 *3 *4)))))
+ (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392))
+ (-14 *4 (-584 (-1090))) (-5 *1 (-568 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-391)) (-5 *2 (-85))
- (-5 *1 (-309 *4 *5)) (-14 *5 (-583 (-1089)))))
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-85))
+ (-5 *1 (-309 *4 *5)) (-14 *5 (-584 (-1090)))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-391))
- (-14 *5 (-583 (-1089))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5)))))
+ (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392))
+ (-14 *5 (-584 (-1090))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5)))
- (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-349 (-484)))))
- (-14 *6 (-830)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5)))
+ (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-350 (-485)))))
+ (-14 *6 (-831)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4))))
- (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))))
+ (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4))))
+ (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-583 (-249 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))))
+ (-12 (-5 *2 (-584 (-249 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))))
(((*1 *2 *3 *4 *5 *6 *7 *6)
(|partial| -12
(-5 *5
(-2 (|:| |contp| *3)
- (|:| -1778 (-583 (-2 (|:| |irr| *10) (|:| -2395 (-484)))))))
- (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-258))
- (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717))
+ (|:| -1779 (-584 (-2 (|:| |irr| *10) (|:| -2396 (-485)))))))
+ (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-258))
+ (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718))
(-5 *2
- (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-583 (-1084 *3)))))
- (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1084 *3))))))
+ (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-584 (-1085 *3)))))
+ (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1085 *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-258)) (-4 *6 (-756))
- (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8))
- (-4 *8 (-861 *3 *7 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
- (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6))
- (-4 *2 (-1020 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2)))))
+ (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-258)) (-4 *6 (-757))
+ (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8))
+ (-4 *8 (-862 *3 *7 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
+ (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6))
+ (-4 *2 (-1021 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
- (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1114) (-871) (-29 *4))))))
-(((*1 *1) (-5 *1 (-556))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1115) (-872) (-29 *4))))))
+(((*1 *1) (-5 *1 (-557))))
(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484)))))
- (-4 *5 (-1154 *4)) (-5 *2 (-1084 (-349 *5))) (-5 *1 (-554 *4 *5))
- (-5 *3 (-349 *5))))
+ (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485)))))
+ (-4 *5 (-1155 *4)) (-5 *2 (-1085 (-350 *5))) (-5 *1 (-555 *4 *5))
+ (-5 *3 (-350 *5))))
((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484)))))
- (-5 *2 (-1084 (-349 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-349 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1013)) (-4 *2 (-1013))
- (-5 *1 (-551 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
-(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1114))))
- ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254))))
+ (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485)))))
+ (-5 *2 (-1085 (-350 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-350 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014))
+ (-5 *1 (-552 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1115))))
+ ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254))))
((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
- ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1013))
- (-5 *1 (-550 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014))
+ (-5 *1 (-551 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))))
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-545))))
+ (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-546))))
(((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-545))))
(((*1 *1) (-5 *1 (-545))))
(((*1 *1) (-5 *1 (-544))))
(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
(((*1 *1) (-5 *1 (-543))))
(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-542))))
-(((*1 *1) (-5 *1 (-542))))
-(((*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-282))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-539)))))
+(((*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-540)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-583 *4)))))
+ (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1129)) (-5 *2 (-584 *4)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1129)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-583 *3)))))
+ (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1129)) (-5 *2 (-584 *3)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -3994)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1013))
- (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+ (-12 (|has| *1 (-6 -3995)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1014))
+ (-4 *3 (-1129)) (-4 *3 (-1014)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-756)))))
+ (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1014)) (-4 *2 (-757)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-756)))))
+ (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1014)) (-4 *2 (-757)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1013))
- (-4 *2 (-1128)))))
+ (-12 (|has| *1 (-6 -3996)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1014))
+ (-4 *2 (-1129)))))
(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1128)) (-5 *2 (-1184)))))
+ (-12 (|has| *1 (-6 -3996)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1129)) (-5 *2 (-1185)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1089)))
- (-4 *2 (-13 (-363 (-142 *5)) (-915) (-1114))) (-4 *5 (-495))
- (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-363 *5) (-915) (-1114))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3))
- (-4 *5 (-13 (-363 *4) (-915) (-1114)))
- (-4 *3 (-13 (-363 (-142 *4)) (-915) (-1114))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *2 (-13 (-363 (-142 *4)) (-915) (-1114)))
- (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-363 *4) (-915) (-1114))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-4 *2 (-13 (-363 *4) (-915) (-1114)))
- (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-363 (-142 *4)) (-915) (-1114))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-363 *4) (-915) (-1114))) (-4 *4 (-495))
- (-4 *2 (-13 (-363 (-142 *4)) (-915) (-1114))) (-5 *1 (-535 *4 *5 *2)))))
-(((*1 *1) (-5 *1 (-532))))
-(((*1 *1) (-5 *1 (-532))))
-(((*1 *1) (-5 *1 (-532))))
-(((*1 *1) (-5 *1 (-532))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-532))) (-5 *1 (-532)))))
+ (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1090)))
+ (-4 *2 (-13 (-364 (-142 *5)) (-916) (-1115))) (-4 *5 (-496))
+ (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-916) (-1115))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3))
+ (-4 *5 (-13 (-364 *4) (-916) (-1115)))
+ (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1115))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1115)))
+ (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-916) (-1115))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 *4) (-916) (-1115)))
+ (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1115))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1115))) (-4 *4 (-496))
+ (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1115))) (-5 *1 (-536 *4 *5 *2)))))
+(((*1 *1) (-5 *1 (-533))))
+(((*1 *1) (-5 *1 (-533))))
+(((*1 *1) (-5 *1 (-533))))
+(((*1 *1) (-5 *1 (-533))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-533))) (-5 *1 (-533)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-939 (-750 (-484))))
- (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-961))
- (-5 *1 (-530 *4)))))
+ (-12 (-5 *2 (-940 (-751 (-485))))
+ (-5 *3 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962))
+ (-5 *1 (-531 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3))
- (-4 *3 (-961)))))
+ (-12 (-5 *2 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3))
+ (-4 *3 (-962)))))
(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *6))))
- (-5 *4 (-939 (-750 (-484)))) (-5 *5 (-1089)) (-5 *7 (-349 (-484)))
- (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-530 *6)))))
+ (-12 (-5 *3 (-1069 (-2 (|:| |k| (-485)) (|:| |c| *6))))
+ (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1090)) (-5 *7 (-350 (-485)))
+ (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-349 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-961)))))
+ (-12 (-5 *2 (-350 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-1020 *5 *6 *7 *8))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3)))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-484))) (-5 *2 (-630 (-484)))
- (-5 *1 (-526))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485)))
+ (-5 *1 (-527))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-484))))
- (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-526)))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485))))
+ (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
- (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1115) (-29 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-120))
- (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *5))
- (-5 *1 (-525 *5)))))
+ (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1090)) (-4 *5 (-120))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *5))
+ (-5 *1 (-526 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-521 *4 *2))
- (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484))))))
+ (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1115))) (-5 *1 (-522 *4 *2))
+ (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))))
((*1 *2 *3)
- (-12 (-5 *3 (-519 (-349 (-857 *4))))
- (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *4))
- (-5 *1 (-525 *4)))))
+ (-12 (-5 *3 (-520 (-350 (-858 *4))))
+ (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *4))
+ (-5 *1 (-526 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-524 *4)) (-4 *4 (-299)))))
-(((*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483)))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299)))))
+(((*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483))))
+ (|partial| -12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2694 *3) (|:| -2401 (-694)))) (-5 *1 (-523 *3))
- (-4 *3 (-483)))))
+ (-12 (-5 *2 (-2 (|:| -2695 *3) (|:| -2402 (-695)))) (-5 *1 (-524 *3))
+ (-4 *3 (-484)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
(((*1 *1 *2 *3 *4)
(-12
(-5 *3
- (-583
- (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 *2))
- (|:| |logand| (-1084 *2)))))
- (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312))
- (-5 *1 (-519 *2)))))
-(((*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))))
+ (-584
+ (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1085 *2))
+ (|:| |logand| (-1085 *2)))))
+ (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312))
+ (-5 *1 (-520 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-583
- (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 *3))
- (|:| |logand| (-1084 *3)))))
- (-5 *1 (-519 *3)) (-4 *3 (-312)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-519 *3)) (-4 *3 (-312)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-312)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-518)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-515)))))
-(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515)))))
-(((*1 *2 *3) (-12 (-5 *3 (-430)) (-5 *2 (-632 (-515))) (-5 *1 (-515)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-473) (-583 (-473))))) (-5 *1 (-86))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-583 (-473)))) (-5 *1 (-86))))
- ((*1 *1) (-5 *1 (-514))))
-(((*1 *1) (-5 *1 (-514))))
-(((*1 *1) (-5 *1 (-514))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-513))))
- ((*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-513)))))
+ (-584
+ (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1085 *3))
+ (|:| |logand| (-1085 *3)))))
+ (-5 *1 (-520 *3)) (-4 *3 (-312)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-520 *3)) (-4 *3 (-312)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-519)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516)))))
+(((*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-86))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-86))))
+ ((*1 *1) (-5 *1 (-515))))
+(((*1 *1) (-5 *1 (-515))))
+(((*1 *1) (-5 *1 (-515))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-514))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-514)))))
(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1089))
- (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-511 *4 *2))
- (-4 *2 (-13 (-1114) (-871) (-1052) (-29 *4))))))
+ (|partial| -12 (-5 *3 (-1090))
+ (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2))
+ (-4 *2 (-13 (-1115) (-872) (-1053) (-29 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
(-5 *2
- (-2 (|:| |ir| (-519 (-349 *6))) (|:| |specpart| (-349 *6))
+ (-2 (|:| |ir| (-520 (-350 *6))) (|:| |specpart| (-350 *6))
(|:| |polypart| *6)))
- (-5 *1 (-510 *5 *6)) (-5 *3 (-349 *6)))))
+ (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-562 *4 *5))
- (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85))) (-484) *4))
- (-4 *4 (-312)) (-4 *5 (-1154 *4)) (-5 *1 (-510 *4 *5)))))
+ (|partial| -12 (-5 *2 (-563 *4 *5))
+ (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85))) (-485) *4))
+ (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *1 (-511 *4 *5)))))
(((*1 *2 *2 *3 *4)
(|partial| -12
- (-5 *3 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-312)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1154 *4)))))
+ (-5 *3 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-349 *7))) (-4 *7 (-1154 *6))
- (-5 *3 (-349 *7)) (-4 *6 (-312))
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-350 *7))) (-4 *7 (-1155 *6))
+ (-5 *3 (-350 *7)) (-4 *6 (-312))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-510 *6 *7)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-511 *6 *7)))))
(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| -2136 (-349 *6)) (|:| |coeff| (-349 *6))))
- (-5 *1 (-510 *5 *6)) (-5 *3 (-349 *6)))))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| -2137 (-350 *6)) (|:| |coeff| (-350 *6))))
+ (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))))
(((*1 *2 *3 *4 *5 *6)
(|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3137 *7) (|:| |sol?| (-85))) (-484) *7))
- (-5 *6 (-583 (-349 *8))) (-4 *7 (-312)) (-4 *8 (-1154 *7)) (-5 *3 (-349 *8))
+ (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3138 *7) (|:| |sol?| (-85))) (-485) *7))
+ (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8))
(-5 *2
(-2
(|:| |answer|
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
(|:| |a0| *7)))
- (-5 *1 (-510 *7 *8)))))
+ (-5 *1 (-511 *7 *8)))))
(((*1 *2 *3 *4 *5 *6)
(|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-3 (-2 (|:| -2136 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-583 (-349 *8))) (-4 *7 (-312)) (-4 *8 (-1154 *7)) (-5 *3 (-349 *8))
+ (-5 *5 (-1 (-3 (-2 (|:| -2137 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8))
(-5 *2
(-2
(|:| |answer|
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
(|:| |a0| *7)))
- (-5 *1 (-510 *7 *8)))))
+ (-5 *1 (-511 *7 *8)))))
(((*1 *2 *3 *4 *5 *3)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6))
- (-4 *6 (-312)) (-4 *7 (-1154 *6))
+ (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-485) *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
(-5 *2
- (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6))
- (-2 (|:| -2136 (-349 *7)) (|:| |coeff| (-349 *7))) "failed"))
- (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))))
+ (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6))
+ (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed"))
+ (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5 *3)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-312)) (-4 *7 (-1154 *6))
+ (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
(-5 *2
- (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6))
- (-2 (|:| -2136 (-349 *7)) (|:| |coeff| (-349 *7))) "failed"))
- (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))))
+ (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6))
+ (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed"))
+ (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-484) *6 *6))
- (-4 *6 (-312)) (-4 *7 (-1154 *6))
- (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6)))
- (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-485) *6 *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
+ (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6)))
+ (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6))
- (-4 *6 (-312)) (-4 *7 (-1154 *6))
- (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6)))
- (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))))
+ (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-485) *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
+ (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6)))
+ (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-312)) (-4 *7 (-1154 *6))
- (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6)))
- (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))))
+ (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
+ (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6)))
+ (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-519 *3) *3 (-1089)))
+ (-12 (-5 *5 (-1 (-520 *3) *3 (-1090)))
(-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1089)))
- (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-363 *7))
- (-5 *4 (-1089)) (-4 *7 (-553 (-800 (-484)))) (-4 *7 (-391))
- (-4 *7 (-796 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3))
- (-5 *1 (-509 *7 *3)))))
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1090)))
+ (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-364 *7))
+ (-5 *4 (-1090)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392))
+ (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3))
+ (-5 *1 (-510 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-391)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2))
- (-4 *2 (-239)) (-4 *2 (-363 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2))
+ (-4 *2 (-239)) (-4 *2 (-364 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2))
- (-4 *2 (-363 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2))
+ (-4 *2 (-364 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-1089)) (-4 *6 (-363 *5)) (-4 *5 (-1013))
- (-5 *2 (-583 (-550 *6))) (-5 *1 (-509 *5 *6)))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-1090)) (-4 *6 (-364 *5)) (-4 *5 (-1014))
+ (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1089)) (-5 *2 (-550 *6))
- (-4 *6 (-363 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6)))))
+ (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1090)) (-5 *2 (-551 *6))
+ (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1013)) (-5 *2 (-550 *5))
- (-5 *1 (-509 *4 *5)) (-4 *5 (-363 *4)))))
+ (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5))
+ (-5 *1 (-510 *4 *5)) (-4 *5 (-364 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1089)) (-4 *5 (-363 *4))
- (-4 *4 (-1013)) (-5 *1 (-509 *4 *5)))))
+ (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1090)) (-4 *5 (-364 *4))
+ (-4 *4 (-1014)) (-5 *1 (-510 *4 *5)))))
(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-120)))
- (-5 *2 (-2 (|:| -2136 (-349 (-857 *5))) (|:| |coeff| (-349 (-857 *5)))))
- (-5 *1 (-506 *5)) (-5 *3 (-349 (-857 *5))))))
+ (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485)) (-120)))
+ (-5 *2 (-2 (|:| -2137 (-350 (-858 *5))) (|:| |coeff| (-350 (-858 *5)))))
+ (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 (-349 (-857 *6))))
- (-5 *3 (-349 (-857 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-120)))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-584 (-350 (-858 *6))))
+ (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-120)))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-506 *6)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-507 *6)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-349 (-857 *4))) (-5 *3 (-1089))
- (-4 *4 (-13 (-495) (-950 (-484)) (-120))) (-5 *1 (-506 *4)))))
+ (|partial| -12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1090))
+ (-4 *4 (-13 (-496) (-951 (-485)) (-120))) (-5 *1 (-507 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-519 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5)))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-120)))
- (-5 *2 (-519 (-349 (-857 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-349 (-857 *5))))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485)) (-120)))
+ (-5 *2 (-520 (-350 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))))
+ (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-583 (-349 *6))) (-5 *3 (-349 *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-312) (-120) (-950 (-484))))
+ (|partial| -12 (-5 *4 (-584 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-951 (-485))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-504 *5 *6)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-505 *5 *6)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4))
- (-5 *2 (-2 (|:| -2136 (-349 *5)) (|:| |coeff| (-349 *5))))
- (-5 *1 (-504 *4 *5)) (-5 *3 (-349 *5)))))
+ (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| -2137 (-350 *5)) (|:| |coeff| (-350 *5))))
+ (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3))
- (-4 *3 (-13 (-312) (-120) (-950 (-484)))) (-5 *1 (-504 *3 *4)))))
+ (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3))
+ (-4 *3 (-13 (-312) (-120) (-951 (-485)))) (-5 *1 (-505 *3 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-553 (-800 (-484))))
- (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3))
- (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))
+ (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-554 (-801 (-485))))
+ (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3))
+ (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-750 *2)) (-4 *2 (-1052))
- (-4 *2 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-553 (-800 (-484))))
- (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484))))
- (-5 *1 (-503 *5 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-553 (-800 (-484))))
- (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3))
- (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484))))
- (-5 *2 (-2 (|:| -2338 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-363 *5))))))
+ (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-751 *2)) (-4 *2 (-1053))
+ (-4 *2 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-554 (-801 (-485))))
+ (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485))))
+ (-5 *1 (-504 *5 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-554 (-801 (-485))))
+ (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3))
+ (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485))))
+ (-5 *2 (-2 (|:| -2339 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-550 *4)) (-5 *6 (-1089)) (-4 *4 (-13 (-363 *7) (-27) (-1114)))
- (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4))))
- (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))))
+ (-12 (-5 *5 (-551 *4)) (-5 *6 (-1090)) (-4 *4 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4))))
+ (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))))
(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089)))
- (-4 *2 (-13 (-363 *5) (-27) (-1114)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013)))))
+ (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090)))
+ (-4 *2 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014)))))
(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3))
- (-4 *3 (-13 (-363 *6) (-27) (-1114)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014)))))
(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *5) (-27) (-1114)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6))
- (-4 *6 (-1013)))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6))
+ (-4 *6 (-1014)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *5) (-27) (-1114)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3))
- (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312))
- (-4 *7 (-1154 (-349 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2135 *3)))
- (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312))
- (-5 *2
- (-2 (|:| |answer| (-349 *6)) (|:| -2135 (-349 *6))
- (|:| |specpart| (-349 *6)) (|:| |polypart| *6)))
- (-5 *1 (-501 *5 *6)) (-5 *3 (-349 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-694)) (-5 *1 (-499)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
-(((*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258))))
+ (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3))
+ (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
+ (-4 *7 (-1155 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2136 *3)))
+ (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2
+ (-2 (|:| |answer| (-350 *6)) (|:| -2136 (-350 *6))
+ (|:| |specpart| (-350 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-502 *5 *6)) (-5 *3 (-350 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
+(((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
+(((*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-258))
+ (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-258))
(-5 *1 (-153 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *8))
+ (-12 (-5 *3 (-584 *8))
(-5 *4
- (-583
- (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-630 *7)))))
- (-5 *5 (-694)) (-4 *8 (-1154 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-299))
- (-5 *2
- (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7))))
- (-5 *1 (-437 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+ (-584
+ (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-631 *7)))))
+ (-5 *5 (-695)) (-4 *8 (-1155 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-299))
+ (-5 *2
+ (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))
+ (-5 *1 (-438 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-550 *4)) (-5 *6 (-1084 *4))
- (-4 *4 (-13 (-363 *7) (-27) (-1114)))
- (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4))))
- (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013))))
+ (-12 (-5 *5 (-551 *4)) (-5 *6 (-1085 *4))
+ (-4 *4 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4))))
+ (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014))))
((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-550 *4)) (-5 *6 (-349 (-1084 *4)))
- (-4 *4 (-13 (-363 *7) (-27) (-1114)))
- (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4))))
- (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))))
+ (-12 (-5 *5 (-551 *4)) (-5 *6 (-350 (-1085 *4)))
+ (-4 *4 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4))))
+ (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))))
(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-550 *2))
- (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1089))) (-5 *5 (-1084 *2))
- (-4 *2 (-13 (-363 *6) (-27) (-1114)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013))))
+ (|partial| -12 (-5 *3 (-551 *2))
+ (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1090))) (-5 *5 (-1085 *2))
+ (-4 *2 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014))))
((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1089)))
- (-5 *5 (-349 (-1084 *2))) (-4 *2 (-13 (-363 *6) (-27) (-1114)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))))
+ (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1090)))
+ (-5 *5 (-350 (-1085 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))))
(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1084 *3))
- (-4 *3 (-13 (-363 *7) (-27) (-1114)))
- (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1085 *3))
+ (-4 *3 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014))))
((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-349 (-1084 *3)))
- (-4 *3 (-13 (-363 *7) (-27) (-1114)))
- (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-350 (-1085 *3)))
+ (-4 *3 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))))
(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1084 *3))
- (-4 *3 (-13 (-363 *6) (-27) (-1114)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7))
- (-4 *7 (-1013))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1085 *3))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7))
+ (-4 *7 (-1014))))
((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-349 (-1084 *3)))
- (-4 *3 (-13 (-363 *6) (-27) (-1114)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484))))
- (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7))
- (-4 *7 (-1013)))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1085 *3)))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7))
+ (-4 *7 (-1014)))))
(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-550 *3)) (-5 *5 (-1084 *3))
- (-4 *3 (-13 (-363 *6) (-27) (-1114)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3))
- (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013))))
+ (-12 (-5 *4 (-551 *3)) (-5 *5 (-1085 *3))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3))
+ (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014))))
((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-550 *3)) (-5 *5 (-349 (-1084 *3)))
- (-4 *3 (-13 (-363 *6) (-27) (-1114)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3))
- (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483)))))
-(((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))))
+ (-12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1085 *3)))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3))
+ (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))))
(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3))
- (-4 *3 (-13 (-27) (-1114) (-363 *7)))
- (-4 *7 (-13 (-391) (-120) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-391) (-120) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-363 *5))))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-392) (-120) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1089))
- (-4 *4 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-496 *4 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 *4))))))
+ (|partial| -12 (-5 *3 (-1090))
+ (-4 *4 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 *3))
- (-4 *3 (-13 (-27) (-1114) (-363 *6)))
- (-4 *6 (-13 (-391) (-120) (-950 (-484)) (-580 (-484))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-584 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-120) (-951 (-485)) (-581 (-485))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-496 *6 *3)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-497 *6 *3)))))
(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1089))
- (-4 *5 (-13 (-391) (-120) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-363 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1771 *1) (|:| -3981 *1) (|:| |associate| *1)))
- (-4 *1 (-495)))))
-(((*1 *1 *1) (-4 *1 (-495))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))))
+ (|partial| -12 (-5 *4 (-1090))
+ (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1772 *1) (|:| -3982 *1) (|:| |associate| *1)))
+ (-4 *1 (-496)))))
+(((*1 *1 *1) (-4 *1 (-496))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-349 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114)))))
- ((*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))))
-(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))))
+ (-12 (-5 *2 (-350 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1115)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115))))))
+(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1115))))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))))
+ (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1154 *5))
- (-4 *5 (-13 (-27) (-363 *4))) (-4 *4 (-13 (-495) (-950 (-484))))
- (-4 *7 (-1154 (-349 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2))
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485))))
+ (-4 *7 (-1155 (-350 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2))
(-4 *2 (-291 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-363 *5)))
- (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1154 (-349 *7)))
- (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5)))
+ (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1155 (-350 *7)))
+ (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-363 *5)))
- (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1154 (-349 *7)))
- (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5)))
+ (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1155 (-350 *7)))
+ (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1084 *3) (-1084 *3)))
- (-4 *3 (-13 (-27) (-363 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3))
- (-5 *1 (-490 *6 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))))
-(((*1 *1 *1 *1) (-4 *1 (-483))))
-(((*1 *1 *1 *1) (-4 *1 (-483))))
-(((*1 *1 *1) (-4 *1 (-483))))
-(((*1 *1 *1) (-4 *1 (-483))))
-(((*1 *1 *1) (-4 *1 (-483))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
-(((*1 *1 *1 *1) (-4 *1 (-483))))
+ (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1085 *3) (-1085 *3)))
+ (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3))
+ (-5 *1 (-491 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))))
+(((*1 *1 *1 *1) (-4 *1 (-484))))
+(((*1 *1 *1 *1) (-4 *1 (-484))))
+(((*1 *1 *1) (-4 *1 (-484))))
+(((*1 *1 *1) (-4 *1 (-484))))
+(((*1 *1 *1) (-4 *1 (-484))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
+(((*1 *1 *1 *1) (-4 *1 (-484))))
(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-484) #1="failed") *5)) (-4 *5 (-961))
- (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1154 *5))))
+ (|partial| -12 (-5 *4 (-1 (-3 (-485) #1="failed") *5)) (-4 *5 (-962))
+ (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1155 *5))))
((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484))
- (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4))))
+ (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485))
+ (-5 *1 (-482 *4 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484))
- (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-394 *3 *2)) (-4 *2 (-1154 *3))))
- ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-399 *3 *2)) (-4 *2 (-1154 *3))))
+ (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485))
+ (-5 *1 (-482 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694)))
- (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1154 *3)))))
+ (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695)))
+ (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6))
- (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-478 *4 *2 *5 *6))
+ (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6))
- (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-478 *4 *2 *5 *6))
+ (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1089))) (-4 *6 (-312))
- (-5 *2 (-583 (-249 (-857 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-391))
- (-4 *7 (-13 (-312) (-755))))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1090))) (-4 *6 (-312))
+ (-5 *2 (-584 (-249 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *7 (-13 (-312) (-756))))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-4 *6 (-391))
- (-5 *2 (-583 (-583 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-312))
- (-4 *5 (-13 (-312) (-755))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084 *5)) (-4 *5 (-391)) (-5 *2 (-583 *6))
- (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 *5)) (-4 *5 (-391)) (-5 *2 (-583 *6))
- (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))))
-(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473))))
- ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1128)))))
-(((*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-77))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-473))) (-5 *1 (-473)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-473)))))
-(((*1 *1 *1) (-5 *1 (-473))))
-(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-473))) (-5 *2 (-1089)) (-5 *1 (-473)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-583 (-473))) (-5 *1 (-473)))))
+ (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1090))) (-4 *6 (-392))
+ (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312))
+ (-4 *5 (-13 (-312) (-756))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6))
+ (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6))
+ (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))))
+(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474))))
+ ((*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1090)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1129)))))
+(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-474))) (-5 *1 (-474)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1090))) (-5 *1 (-474)))))
+(((*1 *1 *1) (-5 *1 (-474))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-474)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-474)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-474))) (-5 *2 (-1090)) (-5 *1 (-474)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-584 (-474))) (-5 *1 (-474)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-347 (-1084 *6)) (-1084 *6)))
+ (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-348 (-1085 *6)) (-1085 *6)))
(-4 *6 (-312))
(-5 *2
- (-583
- (-2 (|:| |outval| *7) (|:| |outmult| (-484))
- (|:| |outvect| (-583 (-630 *7))))))
- (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-755))))))
+ (-584
+ (-2 (|:| |outval| *7) (|:| |outmult| (-485))
+ (|:| |outvect| (-584 (-631 *7))))))
+ (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-756))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084 *5)) (-4 *5 (-312)) (-5 *2 (-583 *6))
- (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))))
+ (-12 (-5 *3 (-1085 *5)) (-4 *5 (-312)) (-5 *2 (-584 *6))
+ (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *2 (-1084 *4))
- (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-755))))))
+ (-12 (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *2 (-1085 *4))
+ (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-756))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))))
(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-467))))
- ((*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-467)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-468))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-468)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-830)) (-4 *4 (-319)) (-4 *4 (-312)) (-5 *2 (-1084 *1))
+ (-12 (-5 *3 (-831)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1085 *1))
(-4 *1 (-280 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1084 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1154 *3))))
+ (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1155 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))))
-(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-467 *4)))))
+(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312))))
((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1179 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1178 *4)) (-4 *4 (-360 *3)) (-4 *3 (-258)) (-4 *3 (-495))
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-496))
(-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-4 *4 (-312)) (-5 *2 (-1178 *1)) (-4 *1 (-280 *4))))
- ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1178 *1)) (-4 *1 (-280 *3))))
+ (-12 (-5 *3 (-831)) (-4 *4 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *4))))
+ ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *3))))
((*1 *2)
- (-12 (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *1))
- (-4 *1 (-352 *3 *4))))
+ (-12 (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *1))
+ (-4 *1 (-353 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6))
- (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4)))))
+ (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6))
+ (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6))
- (-5 *1 (-357 *3 *4 *5 *6 *7)) (-4 *6 (-352 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-360 *3))))
+ (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6))
+ (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-361 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1178 (-1178 *4))) (-5 *1 (-466 *4))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-467 *4))
(-4 *4 (-299)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-466 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-830))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-831))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-830)) (-5 *1 (-466 *4)))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-831)) (-5 *1 (-467 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1033)) (-4 *4 (-299)) (-5 *1 (-466 *4)))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1034)) (-4 *4 (-299)) (-5 *1 (-467 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1178 *4)) (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-466 *4)))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-467 *4)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1178 *5)) (-5 *3 (-694)) (-5 *4 (-1033)) (-4 *5 (-299))
- (-5 *1 (-466 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033))))))
- (-4 *4 (-299)) (-5 *2 (-1184)) (-5 *1 (-466 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-101))))))
-(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-488))))))
-(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1137))))))
-(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-485))))))
-(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1134))))))
-(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-486))))))
-(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1135))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-694)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-463)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-462)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-278 *3))))
+ (-12 (-5 *2 (-1179 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-299))
+ (-5 *1 (-467 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-695)) (-5 *2 (-1085 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-467 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034))))))
+ (-4 *4 (-299)) (-5 *2 (-1185)) (-5 *1 (-467 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-101))))))
+(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-489))))))
+(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1138))))))
+(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-486))))))
+(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1135))))))
+(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-487))))))
+(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1136))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-464)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1130))) (-5 *1 (-463)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-459)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-459)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-278 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-457 *3 *4)) (-14 *4 (-484)))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-278 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-458 *3 *4)) (-14 *4 (-485)))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-278 *3)) (-4 *3 (-1129))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-278 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-485)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1129))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-484)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1128))))
+ (-12 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1129)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1129))))
((*1 *2 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-485)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-454 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))))
(((*1 *1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72))
- (-5 *1 (-450 *4 *5)) (-4 *5 (-759)))))
-(((*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))))
-(((*1 *1) (-5 *1 (-446))))
+ (-5 *1 (-451 *4 *5)) (-4 *5 (-760)))))
+(((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))))
+(((*1 *1) (-5 *1 (-447))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694))
+ (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695))
(-4 *5 (-146))))
((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694))
+ (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695))
(-4 *5 (-146))))
((*1 *2 *2 *3)
(-12
(-5 *2
- (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484)))))
- (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1089))) (-14 *5 (-694))
- (-5 *1 (-444 *4 *5)))))
+ (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))
+ (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1090))) (-14 *5 (-695))
+ (-5 *1 (-445 *4 *5)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-583 (-1089))) (-14 *5 (-694))
+ (-12 (-14 *4 (-584 (-1090))) (-14 *5 (-695))
(-5 *2
- (-583
- (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))))
- (-5 *1 (-444 *4 *5))
+ (-584
+ (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))))
+ (-5 *1 (-445 *4 *5))
(-5 *3
- (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))))))
+ (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))))))
(((*1 *2 *2)
(-12
(-5 *2
- (-443 (-349 (-484)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-349 (-484)))))
- (-14 *3 (-583 (-1089))) (-14 *4 (-694)) (-5 *1 (-444 *3 *4)))))
+ (-444 (-350 (-485)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-350 (-485)))))
+ (-14 *3 (-584 (-1090))) (-14 *4 (-695)) (-5 *1 (-445 *3 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484)))))
- (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))))
+ (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))
+ (-14 *4 (-584 (-1090))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484)))))
- (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))))
+ (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))
+ (-14 *4 (-584 (-1090))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717))
- (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718))
+ (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2))
- (-4 *2 (-861 *3 *4 *5))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2))
+ (-4 *2 (-862 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4)))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718))
(-5 *2
- (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4))
- (|:| |genIdeal| (-443 *4 *5 *6 *7))))
- (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))))
+ (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4))
+ (|:| |genIdeal| (-444 *4 *5 *6 *7))))
+ (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3))
- (|:| |genIdeal| (-443 *3 *4 *5 *6))))
- (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *6 (-861 *3 *4 *5)))))
+ (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3))
+ (|:| |genIdeal| (-444 *3 *4 *5 *6))))
+ (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))
+ (-4 *6 (-862 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4)))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5))
- (-5 *2 (-355 *4 (-349 *4) *5 *6))))
+ (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5))
+ (-5 *2 (-356 *4 (-350 *4) *5 *6))))
((*1 *1 *2)
- (-12 (-5 *2 (-1178 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4)))
- (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-258))
- (-5 *1 (-355 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1179 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4)))
+ (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-258))
+ (-5 *1 (-356 *3 *4 *5 *6))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717))
- (-5 *1 (-443 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6))))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718))
+ (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6))))
((*1 *1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2))
- (-4 *2 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2))
+ (-4 *2 (-862 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1089)))
- (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *2 (-1079 (-583 (-857 *4)) (-583 (-249 (-857 *4)))))
- (-5 *1 (-443 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1090)))
+ (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *2 (-1080 (-584 (-858 *4)) (-584 (-249 (-858 *4)))))
+ (-5 *1 (-444 *4 *5 *6 *7)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-167 *4))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1185)) (-5 *1 (-167 *4))
(-4 *4
- (-13 (-756)
- (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $))
- (-15 -1963 (*2 $)))))))
+ (-13 (-757)
+ (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $))
+ (-15 -1964 (*2 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3))
+ (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $))
- (-15 -1963 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-441)))))
+ (-13 (-757)
+ (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $))
+ (-15 -1964 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-442)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1154 *5))
- (-5 *2 (-1084 (-1084 *7))) (-5 *1 (-440 *5 *6 *4 *7)) (-4 *4 (-1154 *6)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1155 *5))
+ (-5 *2 (-1085 (-1085 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1155 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1084 *8)))
- (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1154 *5)) (-5 *2 (-630 *6))
- (-5 *1 (-440 *5 *6 *7 *8)) (-4 *7 (-1154 *6)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1085 *8)))
+ (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1155 *5)) (-5 *2 (-631 *6))
+ (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1155 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1084 *7))
- (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1154 *5)) (-5 *1 (-440 *5 *2 *6 *7))
- (-4 *6 (-1154 *2)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1085 *7))
+ (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1155 *5)) (-5 *1 (-441 *5 *2 *6 *7))
+ (-4 *6 (-1155 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1084 *7)) (-4 *5 (-961)) (-4 *7 (-961))
- (-4 *2 (-1154 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1154 *2))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1085 *7)) (-4 *5 (-962)) (-4 *7 (-962))
+ (-4 *2 (-1155 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1155 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1154 *5))
- (-5 *2 (-1084 *7)) (-5 *1 (-440 *5 *4 *6 *7)) (-4 *6 (-1154 *4)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1155 *5))
+ (-5 *2 (-1085 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1155 *4)))))
(((*1 *2 *2 *2)
(-12
(-5 *2
- (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3))
- (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
+ (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3))
+ (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))))
- (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
+ (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))))
- (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4))))
+ (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))))
- (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
+ (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-694)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))))
- (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
+ (-12 (-5 *2 (-695)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-630 *2)) (-5 *4 (-484))
- (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *5 (-1154 *2))
- (-5 *1 (-438 *2 *5 *6)) (-4 *6 (-352 *2 *5)))))
+ (-12 (-5 *3 (-631 *2)) (-5 *4 (-485))
+ (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *5 (-1155 *2))
+ (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-630 *2)) (-5 *4 (-694))
- (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *5 (-1154 *2))
- (-5 *1 (-438 *2 *5 *6)) (-4 *6 (-352 *2 *5)))))
+ (-12 (-5 *3 (-631 *2)) (-5 *4 (-695))
+ (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *5 (-1155 *2))
+ (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-299)) (-4 *6 (-1154 *5))
+ (-12 (-5 *4 (-695)) (-4 *5 (-299)) (-4 *6 (-1155 *5))
(-5 *2
- (-583
- (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-630 *6)))))
- (-5 *1 (-437 *5 *6 *7))
+ (-584
+ (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-631 *6)))))
+ (-5 *1 (-438 *5 *6 *7))
(-5 *3
- (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6))))
- (-4 *7 (-1154 *6)))))
+ (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))
+ (-4 *7 (-1155 *6)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-583
+ (-584
(-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-484)))))
- (-5 *1 (-347 *3)) (-4 *3 (-495))))
+ (|:| |xpnt| (-485)))))
+ (-5 *1 (-348 *3)) (-4 *3 (-496))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-694)) (-4 *3 (-299)) (-4 *5 (-1154 *3))
- (-5 *2 (-583 (-1084 *3))) (-5 *1 (-437 *3 *5 *6)) (-4 *6 (-1154 *5)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-434)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-430)))))
+ (-12 (-5 *4 (-695)) (-4 *3 (-299)) (-4 *5 (-1155 *3))
+ (-5 *2 (-584 (-1085 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1155 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-431)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129))
+ (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3995)) (-4 *1 (-428 *3))
- (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *3))
+ (-4 *3 (-1129)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4))
- (-4 *4 (-1128)) (-5 *2 (-85)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4))
+ (-4 *4 (-1129)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4))
- (-4 *4 (-1128)) (-5 *2 (-85)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4))
+ (-4 *4 (-1129)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-695))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-695))))
((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-4 *3 (-1013))
- (-5 *2 (-694))))
+ (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-4 *3 (-72))
+ (-5 *2 (-695))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4))
- (-4 *4 (-1128)) (-5 *2 (-694)))))
-(((*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-426)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-484))) (-5 *2 (-484)) (-5 *1 (-425 *4))
- (-4 *4 (-1154 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-425 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-425 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-425 *2)) (-4 *2 (-1154 (-484))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-423 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-785))) (-5 *1 (-422)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-446))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-422)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4))
+ (-4 *4 (-1129)) (-5 *2 (-695)))))
+(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4))
+ (-4 *4 (-1155 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1155 (-485))) (-5 *1 (-426 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1155 (-485))) (-5 *1 (-426 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-485))))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-447))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-423)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1089)))
- (-4 *4 (-961))))
+ (-12 (-5 *2 (-584 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1090)))
+ (-4 *4 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-484))) (-14 *3 (-583 (-1089))) (-5 *1 (-393 *3 *4 *5))
- (-4 *4 (-961)) (-4 *5 (-196 (-3956 *3) (-694)))))
+ (-12 (-5 *2 (-584 (-485))) (-14 *3 (-584 (-1090))) (-5 *1 (-394 *3 *4 *5))
+ (-4 *4 (-962)) (-4 *5 (-196 (-3957 *3) (-695)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-484))) (-5 *1 (-420 *3 *4)) (-14 *3 (-583 (-1089)))
- (-4 *4 (-961)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-419)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-419)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1089))) (-4 *6 (-391))
- (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-484)))))
- (-5 *1 (-410 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-391)))))
+ (-12 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-14 *3 (-584 (-1090)))
+ (-4 *4 (-962)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-420)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-420)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1090))) (-4 *6 (-392))
+ (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-485)))))
+ (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-420 *4 *5))) (-5 *3 (-583 (-773 *4)))
- (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *1 (-410 *4 *5 *6))
- (-4 *6 (-391)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1089))) (-4 *6 (-391))
- (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-410 *5 *6 *7))
- (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-391)))))
-(((*1 *1) (-5 *1 (-407))))
+ (|partial| -12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4)))
+ (-14 *4 (-584 (-1090))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6))
+ (-4 *6 (-392)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1090))) (-4 *6 (-392))
+ (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7))
+ (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))))
+(((*1 *1) (-5 *1 (-408))))
(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783)))
- (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-407))))
+ (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784)))
+ (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-408))))
((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783)))
- (-5 *4 (-583 (-830))) (-5 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407))))
- ((*1 *1 *1) (-5 *1 (-407))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221))))
+ (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784)))
+ (-5 *4 (-584 (-831))) (-5 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408))))
+ ((*1 *1 *1) (-5 *1 (-408))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-407))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-407)))))
+ (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))))
(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1184))
- (-5 *1 (-407))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-407))))
+ (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1185))
+ (-5 *1 (-408))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1185)) (-5 *1 (-408))))
((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830))
- (-5 *2 (-1184)) (-5 *1 (-407)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-407)))))
+ (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831))
+ (-5 *2 (-1185)) (-5 *1 (-408)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1185)) (-5 *1 (-408)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783)))
- (-5 *1 (-407)))))
+ (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784)))
+ (-5 *1 (-408)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179)))
- (-5 *1 (-407)))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179)))
+ (-5 *1 (-408)))))
(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
- ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406))))
- ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406))))
- ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406))))
- ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1178 (-1178 (-484)))) (-5 *1 (-405)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-831)) (-5 *2 (-1179 (-1179 (-485)))) (-5 *1 (-406)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1178 (-1178 (-484)))) (-5 *3 (-830)) (-5 *1 (-405)))))
+ (-12 (-5 *2 (-1179 (-1179 (-485)))) (-5 *3 (-831)) (-5 *1 (-406)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-495))
- (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-401 *5 *3 *6 *7 *2))
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496))
+ (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2))
(-4 *2
- (-13 (-950 (-349 (-484))) (-312)
- (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))))
+ (-13 (-951 (-350 (-485))) (-312)
+ (-10 -8 (-15 -3946 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146))
+ (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146))
(-14 *6
- (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *2))
- (-2 (|:| -2400 *5) (|:| -2401 *2))))
- (-4 *2 (-196 (-3956 *3) (-694))) (-5 *1 (-400 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3))))))
+ (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *2))
+ (-2 (|:| -2401 *5) (|:| -2402 *2))))
+ (-4 *2 (-196 (-3957 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3956 *3) (-694)))
+ (-12 (-14 *3 (-584 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3957 *3) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5))
- (-2 (|:| -2400 *2) (|:| -2401 *5))))
- (-4 *2 (-756)) (-5 *1 (-400 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-861 *4 *5 (-773 *3))))))
+ (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5))
+ (-2 (|:| -2401 *2) (|:| -2402 *5))))
+ (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-862 *4 *5 (-774 *3))))))
(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-583 (-1089))) (-4 *2 (-146)) (-4 *4 (-196 (-3956 *5) (-694)))
+ (-12 (-14 *5 (-584 (-1090))) (-4 *2 (-146)) (-4 *4 (-196 (-3957 *5) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *4))
- (-2 (|:| -2400 *3) (|:| -2401 *4))))
- (-5 *1 (-400 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756))
- (-4 *7 (-861 *2 *4 (-773 *5))))))
+ (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *4))
+ (-2 (|:| -2401 *3) (|:| -2402 *4))))
+ (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757))
+ (-4 *7 (-862 *2 *4 (-774 *5))))))
(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-583 (-1089))) (-4 *2 (-146)) (-4 *3 (-196 (-3956 *4) (-694)))
+ (-12 (-14 *4 (-584 (-1090))) (-4 *2 (-146)) (-4 *3 (-196 (-3957 *4) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *3))
- (-2 (|:| -2400 *5) (|:| -2401 *3))))
- (-5 *1 (-400 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756))
- (-4 *7 (-861 *2 *3 (-773 *4))))))
+ (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *3))
+ (-2 (|:| -2401 *5) (|:| -2402 *3))))
+ (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757))
+ (-4 *7 (-862 *2 *3 (-774 *4))))))
(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1154 *4)) (-4 *4 (-258))
- (-5 *1 (-399 *4 *3)))))
+ (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1155 *4)) (-4 *4 (-258))
+ (-5 *1 (-400 *4 *3)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-830)) (-4 *5 (-258)) (-4 *3 (-1154 *5))
- (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-399 *5 *3))
- (-5 *4 (-583 *3)))))
+ (-12 (-5 *6 (-831)) (-4 *5 (-258)) (-4 *3 (-1155 *5))
+ (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3))
+ (-5 *4 (-584 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *5)) (-4 *5 (-1154 *3)) (-4 *3 (-258)) (-5 *2 (-85))
- (-5 *1 (-394 *3 *5)))))
+ (-12 (-5 *4 (-584 *5)) (-4 *5 (-1155 *3)) (-4 *3 (-258)) (-5 *2 (-85))
+ (-5 *1 (-395 *3 *5)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1178 (-583 *3))) (-4 *4 (-258)) (-5 *2 (-583 *3))
- (-5 *1 (-394 *4 *3)) (-4 *3 (-1154 *4)))))
+ (|partial| -12 (-5 *5 (-1179 (-584 *3))) (-4 *4 (-258)) (-5 *2 (-584 *3))
+ (-5 *1 (-395 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-694)) (-4 *4 (-258)) (-4 *6 (-1154 *4))
- (-5 *2 (-1178 (-583 *6))) (-5 *1 (-394 *4 *6)) (-5 *5 (-583 *6)))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *4 (-258)) (-4 *6 (-1155 *4))
+ (-5 *2 (-1179 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-258)) (-5 *2 (-694))
- (-5 *1 (-394 *5 *3)))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-258)) (-5 *2 (-695))
+ (-5 *1 (-395 *5 *3)))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3))))
+ (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3))))
((*1 *2)
(|partial| -12
(-5 *2
- (-2 (|:| |particular| (-392 *3 *4 *5 *6))
- (|:| -2012 (-583 (-392 *3 *4 *5 *6)))))
- (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830))
- (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))))
+ (-2 (|:| |particular| (-393 *3 *4 *5 *6))
+ (|:| -2013 (-584 (-393 *3 *4 *5 *6)))))
+ (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831))
+ (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3))))
+ (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3))))
((*1 *2)
(|partial| -12
(-5 *2
- (-2 (|:| |particular| (-392 *3 *4 *5 *6))
- (|:| -2012 (-583 (-392 *3 *4 *5 *6)))))
- (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830))
- (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))))
+ (-2 (|:| |particular| (-393 *3 *4 *5 *6))
+ (|:| -2013 (-584 (-393 *3 *4 *5 *6)))))
+ (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831))
+ (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178 (-1089))) (-5 *3 (-1178 (-392 *4 *5 *6 *7)))
- (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830))
- (-14 *6 (-583 (-1089))) (-14 *7 (-1178 (-630 *4)))))
+ (-12 (-5 *2 (-1179 (-1090))) (-5 *3 (-1179 (-393 *4 *5 *6 *7)))
+ (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831))
+ (-14 *6 (-584 (-1090))) (-14 *7 (-1179 (-631 *4)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1089)) (-5 *3 (-1178 (-392 *4 *5 *6 *7)))
- (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2))
- (-14 *7 (-1178 (-630 *4)))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-1179 (-393 *4 *5 *6 *7)))
+ (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2))
+ (-14 *7 (-1179 (-631 *4)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1178 (-392 *3 *4 *5 *6))) (-5 *1 (-392 *3 *4 *5 *6))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3)))))
+ (-12 (-5 *2 (-1179 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1178 (-1089))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146))
- (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3)))))
+ (-12 (-5 *2 (-1179 (-1090))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146))
+ (-14 *4 (-831)) (-14 *5 (-584 (-1090))) (-14 *6 (-1179 (-631 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1089)) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146))
- (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1178 (-630 *3)))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146))
+ (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1179 (-631 *3)))))
((*1 *1)
- (-12 (-5 *1 (-392 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830))
- (-14 *4 (-583 (-1089))) (-14 *5 (-1178 (-630 *2))))))
+ (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831))
+ (-14 *4 (-584 (-1090))) (-14 *5 (-1179 (-631 *2))))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-857 *4))) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-858 *4))) (-5 *1 (-360 *3 *4))
+ (-4 *3 (-361 *4))))
((*1 *2)
- (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-4 *3 (-312))
- (-5 *2 (-1084 (-857 *3)))))
+ (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312))
+ (-5 *2 (-1085 (-858 *3)))))
((*1 *2)
- (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6))
- (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-1085 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6))
- (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-1085 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-857 *4))) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-858 *4))) (-5 *1 (-360 *3 *4))
+ (-4 *3 (-361 *4))))
((*1 *2)
- (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-4 *3 (-312))
- (-5 *2 (-1084 (-857 *3)))))
+ (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312))
+ (-5 *2 (-1085 (-858 *3)))))
((*1 *2)
- (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6))
- (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-1085 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6))
- (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-1085 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2)
- (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2)
- (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3))))))
+ (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146))
- (-5 *2 (-583 (-857 *4)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146))
+ (-5 *2 (-584 (-858 *4)))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3)))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-360 *3 *4))
+ (-4 *3 (-361 *4))))
+ ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3)))))
((*1 *2)
- (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))
- (-14 *6 (-1178 (-630 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1178 (-392 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4)))
- (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-830))
- (-14 *6 (-583 (-1089))) (-14 *7 (-1178 (-630 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-391))))
- ((*1 *1 *1 *1) (-4 *1 (-391))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694))
- (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1090)))
+ (-14 *6 (-1179 (-631 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4)))
+ (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-831))
+ (-14 *6 (-584 (-1090))) (-14 *7 (-1179 (-631 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392))))
+ ((*1 *1 *1 *1) (-4 *1 (-392))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695))
+ (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2004 *4))) (-5 *5 (-694))
- (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2005 *4))) (-5 *5 (-695))
+ (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
(-5 *2
(-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
- (-5 *1 (-389 *6 *7 *8 *4)))))
+ (-5 *1 (-390 *6 *7 *8 *4)))))
(((*1 *2 *3 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7)
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7)
(|:| |polj| *7)))
- (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756))
- (-5 *2 (-85)) (-5 *1 (-389 *4 *5 *6 *7)))))
+ (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757))
+ (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-484)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))))
+ (-12 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-484))
+ (-12 (-5 *2 (-485))
(-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4)
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4)
(|:| |polj| *4)))
- (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-756))
- (-5 *1 (-389 *5 *6 *7 *4)))))
+ (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757))
+ (-5 *1 (-390 *5 *6 *7 *4)))))
(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-484))
+ (-12 (-5 *2 (-485))
(-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4)
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4)
(|:| |polj| *4)))
- (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-756))
- (-5 *1 (-389 *5 *6 *7 *4)))))
+ (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757))
+ (-5 *1 (-390 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1184))
- (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1185))
+ (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-484))
- (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485))
+ (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
(-12
(-5 *2
- (-583
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6)
+ (-584
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *5 (-756))
- (-5 *1 (-389 *3 *4 *5 *6)))))
+ (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757))
+ (-5 *1 (-390 *3 *4 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2)
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2)
(|:| |polj| *2)))
- (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-389 *4 *5 *6 *2))
- (-4 *4 (-391)) (-4 *6 (-756)))))
+ (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2))
+ (-4 *4 (-392)) (-4 *6 (-757)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 *3)))) (-5 *4 (-694))
- (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *1 (-389 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 *3)))) (-5 *4 (-695))
+ (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *1 (-390 *5 *6 *7 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *2))
- (-4 *2 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2))
+ (-4 *2 (-862 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717))
- (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-389 *5 *6 *7 *3)))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718))
+ (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-390 *5 *6 *7 *3)))))
(((*1 *2 *3 *2)
(-12
(-5 *2
- (-583
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6)
+ (-584
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-391)) (-4 *5 (-756))
- (-5 *1 (-389 *4 *3 *5 *6)))))
+ (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757))
+ (-5 *1 (-390 *4 *3 *5 *6)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-583
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6)
+ (-584
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *5 (-756))
- (-5 *1 (-389 *3 *4 *5 *6)))))
+ (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757))
+ (-5 *1 (-390 *3 *4 *5 *6)))))
(((*1 *2 *3 *2)
(-12
(-5 *2
- (-583
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3)
+ (-584
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3)
(|:| |polj| *3))))
- (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756))
- (-5 *1 (-389 *4 *5 *6 *3)))))
+ (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757))
+ (-5 *1 (-390 *4 *5 *6 *3)))))
(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-389 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))))
+ (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-391)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-389 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))))
+ (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7)
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7)
(|:| |polj| *7)))
- (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756))
- (-5 *2 (-85)) (-5 *1 (-389 *4 *5 *6 *7)))))
+ (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757))
+ (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7))
- (-5 *3 (-583 *7))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7))
+ (-5 *3 (-584 *7))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8))
- (-5 *3 (-583 *8))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8))
+ (-5 *3 (-584 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7))
- (-5 *3 (-583 *7))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7))
+ (-5 *3 (-584 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8))
- (-5 *3 (-583 *8)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8))
+ (-5 *3 (-584 *8)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7))
- (-5 *3 (-583 *7))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7))
+ (-5 *3 (-584 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8))
- (-5 *3 (-583 *8)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8))
+ (-5 *3 (-584 *8)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-1073)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-1073)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-385)) (-5 *3 (-484)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-484)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-484)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-384 *3)) (-4 *3 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-385 *3)) (-4 *3 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))))
+(((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-484)) (-5 *1 (-384 *2)) (-4 *2 (-961)))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-961))
- (-5 *2 (-583 *6)) (-5 *1 (-383 *5 *6)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-348 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-962))
+ (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-830)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-485)))))
((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-381 *2))
- (-4 *2 (-1154 (-484)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2))
+ (-4 *2 (-1155 (-485)))))
((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-381 *2))
- (-4 *2 (-1154 (-484)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2))
+ (-4 *2 (-1155 (-485)))))
((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694))
- (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695))
+ (-5 *1 (-382 *2)) (-4 *2 (-1155 (-485)))))
((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694))
- (-5 *6 (-85)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695))
+ (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-485)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-347 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-383 *5 *2))
- (-4 *5 (-961)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-348 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-384 *5 *2))
+ (-4 *5 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3731 *4) (|:| -3947 (-484)))))
- (-4 *4 (-1154 (-484))) (-5 *2 (-675 (-694))) (-5 *1 (-381 *4))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3732 *4) (|:| -3948 (-485)))))
+ (-4 *4 (-1155 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-347 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-961))
- (-5 *2 (-675 (-694))) (-5 *1 (-383 *4 *5)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3)))))
+ (-12 (-5 *3 (-348 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-962))
+ (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239)))
- (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239)))
- (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *5 *3 *6))
- (-4 *3 (-1154 *5)) (-4 *6 (-13 (-346) (-950 *5) (-312) (-1114) (-239)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6))
+ (-4 *3 (-1155 *5)) (-4 *6 (-13 (-347) (-951 *5) (-312) (-1115) (-239)))))
((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4))
- (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239))))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4))
+ (-4 *5 (-13 (-347) (-951 *4) (-312) (-1115) (-239))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4))
- (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239))))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4))
+ (-4 *5 (-13 (-347) (-951 *4) (-312) (-1115) (-239))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239)))
- (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-4 *5 (-961))
- (-4 *2 (-13 (-346) (-950 *5) (-312) (-1114) (-239))) (-5 *1 (-382 *5 *3 *2))
- (-4 *3 (-1154 *5)))))
+ (-12 (-5 *4 (-831)) (-4 *5 (-962))
+ (-4 *2 (-13 (-347) (-951 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4))
- (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239))))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4))
+ (-4 *5 (-13 (-347) (-951 *4) (-312) (-1115) (-239))))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-694))) (-5 *6 (-694))
- (-5 *2
- (-2 (|:| |contp| (-484))
- (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484)))))))
- (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2578 (-484)) (|:| -1778 (-583 *3)))) (-5 *1 (-381 *3))
- (-4 *3 (-1154 (-484))))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-347 *3)) (-4 *3 (-495))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3731 *4) (|:| -3947 (-484)))))
- (-4 *4 (-1154 (-484))) (-5 *2 (-694)) (-5 *1 (-381 *4)))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))))
+ (-12 (-5 *4 (-85)) (-5 *5 (-1010 (-695))) (-5 *6 (-695))
+ (-5 *2
+ (-2 (|:| |contp| (-485))
+ (|:| -1779 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485)))))))
+ (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2579 (-485)) (|:| -1779 (-584 *3)))) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-485))))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-348 *3)) (-4 *3 (-496))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-2 (|:| -3732 *4) (|:| -3948 (-485)))))
+ (-4 *4 (-1155 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-485))))))
(((*1 *1 *2 *3)
(-12
(-5 *3
- (-583
+ (-584
(-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-484)))))
- (-4 *2 (-495)) (-5 *1 (-347 *2))))
+ (|:| |xpnt| (-485)))))
+ (-4 *2 (-496)) (-5 *1 (-348 *2))))
((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |contp| (-484))
- (|:| -1778 (-583 (-2 (|:| |irr| *4) (|:| -2395 (-484)))))))
- (-4 *4 (-1154 (-484))) (-5 *2 (-347 *4)) (-5 *1 (-381 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 "void"))) (-5 *1 (-378)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-484)))) (-5 *1 (-378)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-378)))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-495) (-950 (-484))))
- (-4 *5 (-363 *4)) (-5 *2 (-347 (-1084 (-48)))) (-5 *1 (-377 *4 *5 *3))
- (-4 *3 (-1154 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4))
- (-5 *2
- (-3 (|:| |overq| (-1084 (-349 (-484)))) (|:| |overan| (-1084 (-48)))
- (|:| -2639 (-85))))
- (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4))
- (-5 *2 (-347 (-1084 (-349 (-484))))) (-5 *1 (-377 *4 *5 *3))
- (-4 *3 (-1154 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-347 *3))
- (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))))
+ (-2 (|:| |contp| (-485))
+ (|:| -1779 (-584 (-2 (|:| |irr| *4) (|:| -2396 (-485)))))))
+ (-4 *4 (-1155 (-485))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 "void"))) (-5 *1 (-379)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-379)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))))
+(((*1 *1) (-5 *1 (-379))))
+(((*1 *1) (-5 *1 (-379))))
+(((*1 *1) (-5 *1 (-379))))
+(((*1 *1) (-5 *1 (-379))))
+(((*1 *1) (-5 *1 (-379))))
+(((*1 *1) (-5 *1 (-379))))
+(((*1 *1) (-5 *1 (-379))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-496) (-951 (-485))))
+ (-4 *5 (-364 *4)) (-5 *2 (-348 (-1085 (-48)))) (-5 *1 (-378 *4 *5 *3))
+ (-4 *3 (-1155 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1085 (-350 (-485)))) (|:| |overan| (-1085 (-48)))
+ (|:| -2640 (-85))))
+ (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4))
+ (-5 *2 (-348 (-1085 (-350 (-485))))) (-5 *1 (-378 *4 *5 *3))
+ (-4 *3 (-1155 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3))
+ (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
(((*1 *2)
- (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *2 (-1184)) (-5 *1 (-375 *3 *4))
- (-4 *4 (-363 *3)))))
+ (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *2 (-1185)) (-5 *1 (-376 *3 *4))
+ (-4 *4 (-364 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 (-484)))
- (-5 *1 (-375 *4 *3)) (-4 *3 (-363 *4))))
+ (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-485)))
+ (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-550 *3)) (-4 *3 (-363 *5)) (-4 *5 (-13 (-495) (-950 (-484))))
- (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-375 *5 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))))
+ (-12 (-5 *4 (-551 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-496) (-951 (-485))))
+ (-5 *2 (-1085 (-350 (-485)))) (-5 *1 (-376 *5 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-371 *3 *2)) (-4 *3 (-13 (-146) (-38 (-349 (-484)))))
- (-4 *2 (-13 (-756) (-21))))))
+ (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485)))))
+ (-4 *2 (-13 (-757) (-21))))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-371 *3 *2)) (-4 *3 (-13 (-146) (-38 (-349 (-484)))))
- (-4 *2 (-13 (-756) (-21))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-519 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))))
-(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-319)))))
-(((*1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-319)) (-4 *2 (-1013)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *1 (-365 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-363 *3)))
- (-14 *4 (-1089)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-4 *2 (-13 (-27) (-1114) (-363 *3) (-10 -8 (-15 -3945 ($ *4)))))
- (-4 *4 (-755))
+ (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485)))))
+ (-4 *2 (-13 (-757) (-21))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))))
+(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-320)))))
+(((*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1014)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1115) (-364 *3)))
+ (-14 *4 (-1090)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3) (-10 -8 (-15 -3946 ($ *4)))))
+ (-4 *4 (-756))
(-4 *5
- (-13 (-1157 *2 *4) (-312) (-1114)
- (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $)))))
- (-5 *1 (-366 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1089)))))
+ (-13 (-1158 *2 *4) (-312) (-1115)
+ (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $)))))
+ (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1090)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-85)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-4 *3 (-13 (-27) (-1114) (-363 *6) (-10 -8 (-15 -3945 ($ *7)))))
- (-4 *7 (-755))
+ (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3946 ($ *7)))))
+ (-4 *7 (-756))
(-4 *8
- (-13 (-1157 *3 *7) (-312) (-1114)
- (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $)))))
+ (-13 (-1158 *3 *7) (-312) (-1115)
+ (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $)))))
(-5 *2
(-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))))
- (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-896 *8))
- (-14 *10 (-1089)))))
+ (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))))
+ (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-897 *8))
+ (-14 *10 (-1090)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-85)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-4 *3 (-13 (-27) (-1114) (-363 *6) (-10 -8 (-15 -3945 ($ *7)))))
- (-4 *7 (-755))
+ (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3946 ($ *7)))))
+ (-4 *7 (-756))
(-4 *8
- (-13 (-1157 *3 *7) (-312) (-1114)
- (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $)))))
+ (-13 (-1158 *3 *7) (-312) (-1115)
+ (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $)))))
(-5 *2
(-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))))
- (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-896 *8))
- (-14 *10 (-1089)))))
+ (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))))
+ (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-897 *8))
+ (-14 *10 (-1090)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
(-5 *2
(-3 (|:| |%expansion| (-264 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))))
- (-5 *1 (-365 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))
- (-14 *6 (-1089)) (-14 *7 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))
- ((*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)))))
+ (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))))
+ (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-14 *6 (-1090)) (-14 *7 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1089)) (-5 *3 (-583 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1013))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-584 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013))
- (-5 *2 (-2 (|:| -3953 (-484)) (|:| |var| (-550 *1)))) (-4 *1 (-363 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-495)) (-5 *1 (-361 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014))
+ (-5 *2 (-2 (|:| -3954 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-364 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-5 *1 (-362 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133))
- (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1154 (-349 *3)))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134))
+ (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146))
- (-4 *1 (-321 *4 *5)) (-4 *5 (-1154 *4))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146))
+ (-4 *1 (-322 *4 *5)) (-4 *5 (-1155 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-352 *3 *4))
- (-4 *4 (-1154 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-360 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146))))
- ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2))))
- ((*1 *2) (-12 (-4 *1 (-360 *2)) (-4 *2 (-146)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146))))
- ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2))))
- ((*1 *2) (-12 (-4 *1 (-360 *2)) (-4 *2 (-146)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4))
+ (-4 *4 (-1155 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146))))
+ ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2))))
+ ((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146))))
+ ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2))))
+ ((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4))
+ (-4 *3 (-361 *4))))
+ ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4))
+ (-4 *3 (-361 *4))))
+ ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-355 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-258))
- (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *6 (-352 *4 *5))
- (-14 *7 (-1178 *6)) (-5 *1 (-357 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-258))
+ (-4 *4 (-905 *3)) (-4 *5 (-1155 *4)) (-4 *6 (-353 *4 *5))
+ (-14 *7 (-1179 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7))))
((*1 *1 *2)
- (-12 (-5 *2 (-1178 *6)) (-4 *6 (-352 *4 *5)) (-4 *4 (-904 *3))
- (-4 *5 (-1154 *4)) (-4 *3 (-258)) (-5 *1 (-357 *3 *4 *5 *6 *7))
+ (-12 (-5 *2 (-1179 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-905 *3))
+ (-4 *5 (-1155 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7))
(-14 *7 *2))))
(((*1 *1 *1)
- (-12 (-4 *2 (-258)) (-4 *3 (-904 *2)) (-4 *4 (-1154 *3))
- (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-13 (-352 *3 *4) (-950 *3))))))
+ (-12 (-4 *2 (-258)) (-4 *3 (-905 *2)) (-4 *4 (-1155 *3))
+ (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-1178 *2)) (-4 *5 (-258)) (-4 *6 (-904 *5))
- (-4 *2 (-13 (-352 *6 *7) (-950 *6))) (-5 *1 (-355 *5 *6 *7 *2))
- (-4 *7 (-1154 *6)))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-1179 *2)) (-4 *5 (-258)) (-4 *6 (-905 *5))
+ (-4 *2 (-13 (-353 *6 *7) (-951 *6))) (-5 *1 (-356 *5 *6 *7 *2))
+ (-4 *7 (-1155 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1154 *4)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-631 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4))
- (-5 *1 (-351 *3 *4 *5)) (-4 *3 (-352 *4 *5))))
+ (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-631 *4))
+ (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5))))
((*1 *2)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3))
- (-5 *2 (-630 *3)))))
+ (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3))
+ (-5 *2 (-631 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1154 *4)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-631 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3))
- (-5 *2 (-630 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))))
+ (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3))
+ (-5 *2 (-631 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 (-484))))) (-5 *1 (-310 *3))
- (-4 *3 (-1013))))
+ (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 (-485))))) (-5 *1 (-310 *3))
+ (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-4 *1 (-335 *3)) (-4 *3 (-1013))
- (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 (-694)))))))
+ (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014))
+ (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3943 (-695)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| -3731 *3) (|:| -2401 (-484))))) (-5 *1 (-347 *3))
- (-4 *3 (-495)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-347 *3)) (-4 *3 (-495)))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3732 *3) (|:| -2402 (-485))))) (-5 *1 (-348 *3))
+ (-4 *3 (-496)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-347 *4)) (-4 *4 (-495)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))))
+ (-12 (-5 *3 (-485)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-348 *4)) (-4 *4 (-496)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-484)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-347 *2)) (-4 *2 (-495)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-221))))
- ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495)))))
-(((*1 *1 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495)))))
-(((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346))))
- ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346))))
- ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-484)) (|has| *1 (-6 -3985)) (-4 *1 (-346)) (-5 *2 (-830)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-484)) (|has| *1 (-6 -3985)) (-4 *1 (-346)) (-5 *2 (-830)))))
-(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-694))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-344)) (-5 *2 (-694)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-694))))
- ((*1 *1 *1) (-4 *1 (-344))))
+ (-12 (-5 *3 (-485)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-348 *2)) (-4 *2 (-496)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-221))))
+ ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))))
+(((*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))))
+(((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3986)) (-4 *1 (-347))))
+ ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3986)) (-4 *1 (-347))))
+ ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-485)) (|has| *1 (-6 -3986)) (-4 *1 (-347)) (-5 *2 (-831)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-485)) (|has| *1 (-6 -3986)) (-4 *1 (-347)) (-5 *2 (-831)))))
+(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-695))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-695)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-695))))
+ ((*1 *1 *1) (-4 *1 (-345))))
(((*1 *1 *2)
- (-12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120)))
- (-5 *1 (-341 *3 *4)))))
+ (-12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120)))
+ (-5 *1 (-342 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1154 *3)) (-5 *1 (-341 *3 *2)) (-4 *3 (-13 (-312) (-120))))))
+ (-12 (-4 *2 (-1155 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))))
(((*1 *2 *1)
(-12 (-4 *3 (-13 (-312) (-120)))
- (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3772 *4) (|:| |num| *4))))
- (-5 *1 (-341 *3 *4)) (-4 *4 (-1154 *3)))))
+ (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3773 *4) (|:| |num| *4))))
+ (-5 *1 (-342 *3 *4)) (-4 *4 (-1155 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694))
+ (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695))
(-4 *5 (-146)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694))
+ (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695))
(-4 *5 (-146)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-338)))))
-(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072)))))
-(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072)))))
-(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339)))))
+(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-335 *3)))))
+ (-12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-336 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013))
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014))
(-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-349 (-857 (-484))))) (-5 *4 (-583 (-1089)))
- (-5 *2 (-583 (-583 *5))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-755) (-312)))))
+ (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *4 (-584 (-1090)))
+ (-5 *2 (-584 (-584 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-756) (-312)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-331 *4))
- (-4 *4 (-13 (-755) (-312))))))
+ (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-332 *4))
+ (-4 *4 (-13 (-756) (-312))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 (-142 (-484))))) (-5 *2 (-583 (-142 *4)))
- (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755)))))
+ (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-142 *4)))
+ (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-349 (-857 (-142 (-484)))))) (-5 *4 (-583 (-1089)))
- (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-330 *5))
- (-4 *5 (-13 (-312) (-755))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-349 (-857 (-142 (-484))))))
- (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-330 *4))
- (-4 *4 (-13 (-312) (-755)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-249 (-349 (-857 (-142 (-484)))))))
- (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-330 *4))
- (-4 *4 (-13 (-312) (-755)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 (-857 (-142 (-484)))))
- (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-330 *4))
- (-4 *4 (-13 (-312) (-755)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-249 (-349 (-857 (-142 (-484))))))
- (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-330 *4))
- (-4 *4 (-13 (-312) (-755))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-329)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-179))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-179))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-329))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-329)))))
-(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-329)))
- ((*1 *1) (-5 *1 (-329))))
-(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-329)))
- ((*1 *1) (-5 *1 (-329))))
-(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-329))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329))))
- ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329))))
- ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329))))
- ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))))
+ (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *4 (-584 (-1090)))
+ (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-331 *5))
+ (-4 *5 (-13 (-312) (-756))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485))))))
+ (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4))
+ (-4 *4 (-13 (-312) (-756)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-249 (-350 (-858 (-142 (-485)))))))
+ (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4))
+ (-4 *4 (-13 (-312) (-756)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-350 (-858 (-142 (-485)))))
+ (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4))
+ (-4 *4 (-13 (-312) (-756)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-249 (-350 (-858 (-142 (-485))))))
+ (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4))
+ (-4 *4 (-13 (-312) (-756))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-330)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))))
+(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330)))
+ ((*1 *1) (-5 *1 (-330))))
+(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330)))
+ ((*1 *1) (-5 *1 (-330))))
+(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-330))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-330))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-330))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-330))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1185)) (-5 *1 (-330)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2))
- (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2))
+ (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2))
- (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2))
+ (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2))
- (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2))
+ (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-325 *3 *4)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-756)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-757)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-323 *4)) (-4 *4 (-1128))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129))
(-5 *2 (-85)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-484)) (|has| *1 (-6 -3995)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-485)) (|has| *1 (-6 -3996)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -3995)) (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756))))
+ (-12 (|has| *1 (-6 -3996)) (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-757))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3995)) (-4 *1 (-323 *3))
- (-4 *3 (-1128)))))
-(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-316 *3)))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3996)) (-4 *1 (-324 *3))
+ (-4 *3 (-1129)))))
+(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-316 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))))
(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))))
(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))))
(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))))
(((*1 *2)
(-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))
((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))))
@@ -11995,1176 +11995,1176 @@
(-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))
((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1178 *4))) (-5 *1 (-315 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1179 *4))) (-5 *1 (-315 *3 *4))
(-4 *3 (-316 *4))))
((*1 *2)
- (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495))
- (-5 *2 (-583 (-1178 *3))))))
+ (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496))
+ (-5 *2 (-584 (-1179 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))))
+ (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1085 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))))
+ (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1085 *3)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1072)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013))))
- ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+ (-12 (-5 *3 (-1073)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014))))
+ ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1072)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-1073)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
(((*1 *1 *1) (-4 *1 (-147)))
- ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1072)))))
-(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+ (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299))
(-4 *2
- (-13 (-344)
- (-10 -7 (-15 -3945 (*2 *4)) (-15 -2010 ((-830) *2))
- (-15 -2012 ((-1178 *2) (-830))) (-15 -3927 (*2 *2)))))
+ (-13 (-345)
+ (-10 -7 (-15 -3946 (*2 *4)) (-15 -2011 ((-831) *2))
+ (-15 -2013 ((-1179 *2) (-831))) (-15 -3928 (*2 *2)))))
(-5 *1 (-306 *2 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-869 (-1084 *4))) (-5 *1 (-305 *4))
- (-5 *3 (-1084 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-870 (-1085 *4))) (-5 *1 (-305 *4))
+ (-5 *3 (-1085 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 (-817 *3)) (|:| -2400 (-1033))))))
- (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))
+ (-12 (-5 *2 (-1179 (-584 (-2 (|:| -3402 (-818 *3)) (|:| -2401 (-1034))))))
+ (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))
((*1 *2)
- (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033))))))
- (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1084 *3) *2))))
+ (-12 (-5 *2 (-1179 (-584 (-2 (|:| -3402 *3) (|:| -2401 (-1034))))))
+ (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) *2))))
((*1 *2)
- (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033))))))
- (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-1179 (-584 (-2 (|:| -3402 *3) (|:| -2401 (-1034))))))
+ (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
(((*1 *2)
- (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830))))
+ (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831))))
((*1 *2)
- (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299))
+ (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299))
(-14 *4
- (-3 (-1084 *3) (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033)))))))))
+ (-3 (-1085 *3) (-1179 (-584 (-2 (|:| -3402 *3) (|:| -2401 (-1034)))))))))
((*1 *2)
- (-12 (-5 *2 (-630 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-631 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033))))))
- (-4 *4 (-299)) (-5 *2 (-694)) (-5 *1 (-296 *4))))
+ (-12 (-5 *3 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034))))))
+ (-4 *4 (-299)) (-5 *2 (-695)) (-5 *1 (-296 *4))))
((*1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))
((*1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299))
+ (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299))
(-14 *4
- (-3 (-1084 *3) (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033)))))))))
+ (-3 (-1085 *3) (-1179 (-584 (-2 (|:| -3402 *3) (|:| -2401 (-1034)))))))))
((*1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
(((*1 *2)
(-12 (-4 *1 (-299))
- (-5 *2 (-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))))))
-(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-484)) (-5 *2 (-1101 (-830) (-694))))))
+ (-5 *2 (-584 (-2 (|:| -3732 (-485)) (|:| -2402 (-485))))))))
+(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1102 (-831) (-695))))))
(((*1 *1) (-4 *1 (-299))))
(((*1 *2)
(-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830))
+ (-12 (-5 *3 (-831))
(-5 *2
- (-3 (-1084 *4) (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))))
+ (-3 (-1085 *4) (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034)))))))
(-5 *1 (-296 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-830))
- (-5 *2 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033))))))
+ (|partial| -12 (-5 *3 (-831))
+ (-5 *2 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034))))))
(-5 *1 (-296 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033))))))
- (-4 *4 (-299)) (-5 *2 (-630 *4)) (-5 *1 (-296 *4)))))
+ (-12 (-5 *3 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034))))))
+ (-4 *4 (-299)) (-5 *2 (-631 *4)) (-5 *1 (-296 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299))
- (-5 *2 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033))))))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299))
+ (-5 *2 (-1179 (-584 (-2 (|:| -3402 *4) (|:| -2401 (-1034))))))
(-5 *1 (-296 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-869 (-1033)))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-870 (-1034)))
(-5 *1 (-296 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-293 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830))))
+ (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831))))
((*1 *2)
- (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299))
- (-14 *4 (-1084 *3))))
+ (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299))
+ (-14 *4 (-1085 *3))))
((*1 *2)
- (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299))
+ (-14 *4 (-831)))))
(((*1 *2)
- (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5)))
- (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
+ (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-695)))))
(((*1 *2)
- (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5)))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
(-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1133)) (-4 *5 (-1154 *3)) (-4 *6 (-1154 (-349 *5)))
+ (-12 (-4 *3 (-1134)) (-4 *5 (-1155 *3)) (-4 *6 (-1155 (-350 *5)))
(-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4))
- (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4))
- (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4))
- (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4)))
- (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)))))
+ (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4))
- (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133))
- (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))))
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133))
- (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))))
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133))
- (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))))
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-631 (-350 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-631 (-350 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-631 (-350 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-631 (-350 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4)))
- (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4)))
- (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133))
- (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1154 (-349 *3))))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134))
+ (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1133))
- (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5)))
- (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5))))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134))
+ (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
+ (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1114) (-915)))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-916)))))
((*1 *2)
- (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-349 *2))) (-4 *2 (-1154 *4))
+ (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4))
(-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5))))
((*1 *2)
- (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1133))
- (-4 *4 (-1154 (-349 *2))) (-4 *2 (-1154 *3)))))
+ (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134))
+ (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))))
(((*1 *2)
- (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-349 *2))) (-4 *2 (-1154 *4))
+ (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4))
(-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5))))
((*1 *2)
- (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1133))
- (-4 *4 (-1154 (-349 *2))) (-4 *2 (-1154 *3)))))
+ (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134))
+ (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-1133))
- (-4 *6 (-1154 (-349 *5)))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-1134))
+ (-4 *6 (-1155 (-350 *5)))
(-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
(-4 *1 (-291 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *5 (-1133)) (-4 *6 (-1154 *5))
- (-4 *7 (-1154 (-349 *6))) (-5 *2 (-583 (-857 *5)))
+ (-12 (-5 *3 (-1090)) (-4 *5 (-1134)) (-4 *6 (-1155 *5))
+ (-4 *7 (-1155 (-350 *6))) (-5 *2 (-584 (-858 *5)))
(-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1133))
- (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-4 *4 (-312))
- (-5 *2 (-583 (-857 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134))
+ (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *4 (-312))
+ (-5 *2 (-584 (-858 *4))))))
(((*1 *2)
- (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5)))
- (-5 *2 (-583 (-583 *4))) (-5 *1 (-290 *3 *4 *5 *6))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
+ (-5 *2 (-584 (-584 *4))) (-5 *1 (-290 *3 *4 *5 *6))
(-4 *3 (-291 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-4 *3 (-319)) (-5 *2 (-583 (-583 *3))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-584 (-584 *3))))))
(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-312)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3)))
+ (-12 (-4 *4 (-312)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3)))
(-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))
((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-484)) (-4 *2 (-312)) (-4 *4 (-1154 *2))
- (-4 *5 (-1154 (-349 *4))) (-4 *1 (-286 *2 *4 *5 *6))
+ (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1155 *2))
+ (-4 *5 (-1155 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6))
(-4 *6 (-291 *2 *4 *5))))
((*1 *1 *2 *2)
- (-12 (-4 *2 (-312)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3)))
+ (-12 (-4 *2 (-312)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3)))
(-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4)))
+ (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
(-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-355 *4 (-349 *4) *5 *6)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312))
+ (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312))
(-4 *1 (-286 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3))
- (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4)))
- (-5 *2 (-1178 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4)))
- (-5 *2 (-1178 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
(((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1094) (-694)))) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-756)))))
-(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1095) (-695)))) (-5 *1 (-282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-757)))))
+(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1084 *3)) (-4 *3 (-319)) (-4 *1 (-280 *3)) (-4 *3 (-312)))))
+ (-12 (-5 *2 (-1085 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3)))))
+ (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319))
- (-5 *2 (-1084 *3))))
+ (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320))
+ (-5 *2 (-1085 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3)))))
+ (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))
+ (-12 (-5 *2 (-695)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
(-4 *3 (-146)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-484)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104)))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-104)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-716)))))
+ (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)) (-4 *3 (-717)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-484)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961))
- (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5)))))
+ (-12 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962))
+ (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1084 *7)) (-5 *3 (-484)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-272 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1085 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-272 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-1084 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))))
+ (-12 (-5 *3 (-1085 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-1085 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-961)) (-5 *2 (-1084 *6)) (-5 *1 (-272 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1085 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-962)) (-5 *2 (-1085 *6)) (-5 *1 (-272 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756))
- (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1084 *8))
+ (-12 (-5 *3 (-1085 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757))
+ (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1085 *8))
(-5 *1 (-272 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-349 (-484))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312))
- (-14 *4 (-1089)) (-14 *5 *3))))
+ (-12 (-5 *2 (-350 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312))
+ (-14 *4 (-1090)) (-14 *5 *3))))
(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
- (-5 *6 (-484)) (-5 *2 (-1124 (-838))) (-5 *1 (-269))))
+ (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
+ (-5 *6 (-485)) (-5 *2 (-1125 (-839))) (-5 *1 (-269))))
((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
- (-5 *6 (-484)) (-5 *7 (-1072)) (-5 *2 (-1124 (-838))) (-5 *1 (-269))))
+ (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
+ (-5 *6 (-485)) (-5 *7 (-1073)) (-5 *2 (-1125 (-839))) (-5 *1 (-269))))
((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
- (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1124 (-838))) (-5 *1 (-269))))
+ (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
+ (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1125 (-839))) (-5 *1 (-269))))
((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
- (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1072)) (-5 *2 (-1124 (-838)))
+ (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
+ (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1073)) (-5 *2 (-1125 (-839)))
(-5 *1 (-269)))))
(((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179)))))
(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-363 *5))
- (-4 *5 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))
+ (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5))
+ (-4 *5 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))
((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-363 *6))
- (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7))))
+ (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-364 *6))
+ (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7))
- (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7))
+ (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51))
(-5 *1 (-268 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-583 (-249 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *8))
- (-5 *6 (-583 *8)) (-4 *8 (-363 *7)) (-4 *7 (-13 (-495) (-553 (-473))))
+ (-12 (-5 *3 (-584 (-249 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *8))
+ (-5 *6 (-584 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474))))
(-5 *2 (-51)) (-5 *1 (-268 *7 *8))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7))
- (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7))
+ (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51))
(-5 *1 (-268 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-249 *8)))
- (-4 *8 (-363 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-495) (-553 (-473))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-249 *8)))
+ (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-554 (-474))))
(-5 *2 (-51)) (-5 *1 (-268 *7 *8))))
((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-363 *6))
- (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5))))
+ (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6))
+ (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-363 *6))
- (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3))))
+ (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6))
+ (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-363 *6))
- (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3))))
+ (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6))
+ (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-583 *3)) (-4 *3 (-363 *7))
- (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))))
+ (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-584 *3)) (-4 *3 (-364 *7))
+ (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-484)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-694)))))
+(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-695)))))
(((*1 *2 *1 *1 *1)
(|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
(-4 *1 (-258))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1)))
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1)))
(-4 *1 (-258)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-258)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1128))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-258)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1129))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-254))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *1))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-254))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *1))) (-4 *1 (-254))))
((*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))))
(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-4 *1 (-254))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-254)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-583 (-86))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1089)) (-5 *2 (-85))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-254)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-584 (-86))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85))))
((*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-550 *5)) (-4 *5 (-363 *4)) (-4 *4 (-950 (-484))) (-4 *4 (-495))
- (-5 *2 (-1084 *5)) (-5 *1 (-32 *4 *5))))
+ (-12 (-5 *3 (-551 *5)) (-4 *5 (-364 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496))
+ (-5 *2 (-1085 *5)) (-5 *1 (-32 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-254)) (-5 *2 (-1084 *1)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-262)) (-5 *1 (-252))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252))))
+ (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-254)) (-5 *2 (-1085 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-262)) (-5 *1 (-252))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1072))) (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252)))))
+ (-12 (-5 *4 (-584 (-1073))) (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-961)) (-4 *4 (-1154 *3)) (-5 *1 (-137 *3 *4 *2))
- (-4 *2 (-1154 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1128)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-1155 *3)) (-5 *1 (-137 *3 *4 *2))
+ (-4 *2 (-1155 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1129)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-495))
- (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-584 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496))
+ (-4 *3 (-1129)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-391))
+ (-12 (-4 *4 (-392))
(-5 *2
- (-583
- (-2 (|:| |eigval| (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4))))
- (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 *4))))))))
- (-5 *1 (-248 *4)) (-5 *3 (-630 (-349 (-857 *4)))))))
+ (-584
+ (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1080 (-1090) (-858 *4))))
+ (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 *4))))))))
+ (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-391))
+ (-12 (-4 *4 (-392))
(-5 *2
- (-583
- (-2 (|:| |eigval| (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4))))
- (|:| |geneigvec| (-583 (-630 (-349 (-857 *4))))))))
- (-5 *1 (-248 *4)) (-5 *3 (-630 (-349 (-857 *4)))))))
+ (-584
+ (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1080 (-1090) (-858 *4))))
+ (|:| |geneigvec| (-584 (-631 (-350 (-858 *4))))))))
+ (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-349 (-857 *6)) (-1079 (-1089) (-857 *6)))) (-5 *5 (-694))
- (-4 *6 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *6))))) (-5 *1 (-248 *6))
- (-5 *4 (-630 (-349 (-857 *6))))))
+ (-12 (-5 *3 (-3 (-350 (-858 *6)) (-1080 (-1090) (-858 *6)))) (-5 *5 (-695))
+ (-4 *6 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *6))))) (-5 *1 (-248 *6))
+ (-5 *4 (-631 (-350 (-858 *6))))))
((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |eigval| (-3 (-349 (-857 *5)) (-1079 (-1089) (-857 *5))))
- (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4))))
- (-4 *5 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *5))))) (-5 *1 (-248 *5))
- (-5 *4 (-630 (-349 (-857 *5)))))))
+ (-2 (|:| |eigval| (-3 (-350 (-858 *5)) (-1080 (-1090) (-858 *5))))
+ (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4))))
+ (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5))
+ (-5 *4 (-631 (-350 (-858 *5)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-349 (-857 *5)) (-1079 (-1089) (-857 *5)))) (-4 *5 (-391))
- (-5 *2 (-583 (-630 (-349 (-857 *5))))) (-5 *1 (-248 *5))
- (-5 *4 (-630 (-349 (-857 *5)))))))
+ (-12 (-5 *3 (-3 (-350 (-858 *5)) (-1080 (-1090) (-858 *5)))) (-4 *5 (-392))
+ (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5))
+ (-5 *4 (-631 (-350 (-858 *5)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 (-349 (-857 *4)))) (-4 *4 (-391))
- (-5 *2 (-583 (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4)))))
+ (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-4 *4 (-392))
+ (-5 *2 (-584 (-3 (-350 (-858 *4)) (-1080 (-1090) (-858 *4)))))
(-5 *1 (-248 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-997))) (-5 *1 (-247)))))
-(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-1015))) (-5 *1 (-247)))))
-(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-247)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-583 (-876))) (-5 *1 (-247)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-998))) (-5 *1 (-247)))))
+(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-247)))))
+(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-247)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-247)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-247)))))
(((*1 *1) (-5 *1 (-247))))
(((*1 *1) (-5 *1 (-247))))
(((*1 *1) (-5 *1 (-247))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2))))
+ (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2))
+ (-4 *5 (-324 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -3995)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013))
- (-4 *2 (-1128)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-312)) (-5 *2 (-583 (-1068 *4))) (-5 *1 (-240 *4 *5))
- (-5 *3 (-1068 *4)) (-4 *5 (-1171 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))))
+ (-12 (|has| *1 (-6 -3996)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014))
+ (-4 *2 (-1129)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-312)) (-5 *2 (-584 (-1069 *4))) (-5 *1 (-240 *4 *5))
+ (-5 *3 (-1069 *4)) (-4 *5 (-1172 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-193 *3))
- (-4 *3 (-1013))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))))
+ (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-193 *3))
+ (-4 *3 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-247)) (-5 *1 (-235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235)))))
+ (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235)))))
(((*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-234)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-234)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1016)) (-5 *1 (-234)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-349 (-484))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484))))
- (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))))
+ (-12 (-5 *3 (-350 (-485))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485))))
+ (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4)))
- (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)))))
+ (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4)))
+ (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)))))
(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1089))
- (-4 *2 (-13 (-27) (-1114) (-363 *5)))
- (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *5 *2)))))
+ (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1090))
+ (-4 *2 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *5 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-363 *3)))))
+ (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484))))
- (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485))))
+ (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485))))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3))))
- (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))))
+ (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3))))
+ (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3))
- (-4 *3 (-13 (-363 *4) (-915))))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3))
+ (-4 *3 (-13 (-364 *4) (-916))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85)))))
- (-4 *2 (-13 (-363 *4) (-915))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2)))))
+ (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85)))))
+ (-4 *2 (-13 (-364 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))))
+ (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))))
+ (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))))
-(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4))
- (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717))
- (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86))))
+ (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))))
+(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4))
+ (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718))
+ (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
- (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
+ (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *2 (-51))
+ (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1090)) (-5 *2 (-51))
(-5 *1 (-221))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *1 (-223 *2))
- (-4 *2 (-1128)))))
-(((*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-329)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+ (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1090)) (-5 *1 (-223 *2))
+ (-4 *2 (-1129)))))
+(((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
(((*1 *1) (-5 *1 (-117)))
- ((*1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-221))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-221))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-836))
+ (-12 (-5 *3 (-837))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
(-5 *1 (-126))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-836)) (-5 *4 (-349 (-484)))
+ (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485)))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
(-5 *1 (-126))))
((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
- (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179))))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
+ (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179))))))
((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
- (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
+ (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221))))
- ((*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221))))
- ((*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221)))))
+(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))))
+(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))))
(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349 (-484))))) (-5 *1 (-221))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-350 (-485))))) (-5 *1 (-221))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *2 (-85)) (-5 *1 (-221)))))
+ (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1090)) (-5 *2 (-85)) (-5 *1 (-221)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1181))
- (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013)))))
+ (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1182))
+ (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1181)) (-5 *1 (-215 *3))
- (-4 *3 (-13 (-553 (-473)) (-1013)))))
+ (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1182)) (-5 *1 (-215 *3))
+ (-4 *3 (-13 (-554 (-474)) (-1014)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-787 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *6))))
+ (-12 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1182)) (-5 *1 (-215 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-787 *5)) (-5 *4 (-1004 (-329)))
- (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *5))))
+ (-12 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-330)))
+ (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1182)) (-5 *1 (-215 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6))))
+ (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-329)))
- (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5))))
+ (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330)))
+ (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182))
- (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013)))))
+ (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183))
+ (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1182)) (-5 *1 (-215 *3))
- (-4 *3 (-13 (-553 (-473)) (-1013)))))
+ (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3))
+ (-4 *3 (-13 (-554 (-474)) (-1014)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6))))
+ (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-329)))
- (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5))))
+ (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330)))
+ (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221)))
- (-5 *2 (-1181)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221)))
+ (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1181))
+ (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1182))
(-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1181))
+ (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1182))
(-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182))
+ (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183))
(-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183))
(-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183))
(-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *2 (-1182)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329)))
- (-5 *2 (-1182)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330)))
+ (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-249 *7)) (-5 *4 (-1089)) (-5 *5 (-583 (-221)))
- (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-756) (-950 (-484)))) (-5 *2 (-1181))
+ (-12 (-5 *3 (-249 *7)) (-5 *4 (-1090)) (-5 *5 (-584 (-221)))
+ (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-757) (-951 (-485)))) (-5 *2 (-1182))
(-5 *1 (-217 *6 *7))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1181)) (-5 *1 (-220))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1182)) (-5 *1 (-220))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1181))
+ (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1182))
(-5 *1 (-220))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1181)) (-5 *1 (-220))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1182)) (-5 *1 (-220))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1181))
+ (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1182))
(-5 *1 (-220))))
- ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1182)) (-5 *1 (-220))))
+ ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1183)) (-5 *1 (-220))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1182))
+ (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1183))
(-5 *1 (-220)))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))))
-(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))))
+(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179)))
- (-5 *2 (-1182)) (-5 *1 (-218)))))
+ (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179)))
+ (-5 *2 (-1183)) (-5 *1 (-218)))))
(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179)))
- (-5 *5 (-85)) (-5 *2 (-1182)) (-5 *1 (-218)))))
+ (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179)))
+ (-5 *5 (-85)) (-5 *2 (-1183)) (-5 *1 (-218)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179)))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179)))
(-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179)))
+ (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1047 (-179)))
(-5 *1 (-215 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-329)))
- (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179)))
+ (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330)))
+ (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1047 (-179)))
(-5 *1 (-215 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179)))
- (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013)))))
+ (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179)))
+ (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3))
- (-4 *3 (-13 (-553 (-473)) (-1013)))))
+ (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *3))
+ (-4 *3 (-13 (-554 (-474)) (-1014)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179)))
+ (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1047 (-179)))
(-5 *1 (-215 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-329)))
- (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179)))
+ (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330)))
+ (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1047 (-179)))
(-5 *1 (-215 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329)))
- (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329)))
- (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329)))
- (-5 *2 (-1046 (-179))) (-5 *1 (-216)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-214 *3))))
- ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4)))))
+ (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-176 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-4 *1 (-214 *3))))
+ ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
- (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694)))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
+ (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695)))))
((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717))
+ (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718))
(-4 *2 (-228 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756))
- (-4 *4 (-228 *3)) (-4 *5 (-717)))))
+ (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757))
+ (-4 *4 (-228 *3)) (-4 *5 (-718)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756))
- (-4 *4 (-228 *3)) (-4 *5 (-717)))))
+ (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757))
+ (-4 *4 (-228 *3)) (-4 *5 (-718)))))
(((*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))
((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160))))
((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))))
(((*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))))
(((*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-207)))))
(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-694))
- (-4 *3 (-13 (-663) (-319) (-10 -7 (-15 ** (*3 *3 (-484))))))
+ (|partial| -12 (-5 *2 (-695))
+ (-4 *3 (-13 (-664) (-320) (-10 -7 (-15 ** (*3 *3 (-485))))))
(-5 *1 (-204 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-199))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-484)) (-5 *1 (-199)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-199))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1184)) (-5 *1 (-199)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))))
-(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-199)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1128)) (-4 *1 (-196 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-249 (-857 (-484))))
- (-5 *2
- (-2 (|:| |varOrder| (-583 (-1089)))
- (|:| |inhom| (-3 (-583 (-1178 (-694))) "failed"))
- (|:| |hom| (-583 (-1178 (-694))))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-485)) (-5 *1 (-199))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-485)) (-5 *1 (-199)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-199))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-1073))) (-5 *2 (-1185)) (-5 *1 (-199)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-485)) (-5 *1 (-199)))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-199)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1129)) (-4 *1 (-196 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-249 (-858 (-485))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-584 (-1090)))
+ (|:| |inhom| (-3 (-584 (-1179 (-695))) "failed"))
+ (|:| |hom| (-584 (-1179 (-695))))))
(-5 *1 (-194)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3))))
- ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013)))))
-(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))))
-(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))))
-(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))))
-(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-193 *3))))
+ ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1014)))))
+(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
+(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
+(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
+(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179)))))
(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1089))
- (-5 *5 (-750 *7)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-178 *6 *7))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1090))
+ (-5 *5 (-751 *7)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-4 *7 (-13 (-1115) (-29 *6))) (-5 *1 (-178 *6 *7))))
((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1084 *6)) (-5 *4 (-750 *6))
- (-4 *6 (-13 (-1114) (-29 *5)))
- (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *5 *6)))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1085 *6)) (-5 *4 (-751 *6))
+ (-4 *6 (-13 (-1115) (-29 *5)))
+ (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *5 *6)))))
(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85))
- (-4 *4 (-13 (-1114) (-29 *6)))
- (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *6 *4)))))
+ (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85))
+ (-4 *4 (-13 (-1115) (-29 *6)))
+ (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *6 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484))))
- (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1089)))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1115) (-29 *4))))))
+(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1090)))))
((*1 *1 *1)
- (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756)))
- (-14 *3 (-583 (-1089))))))
+ (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757)))
+ (-14 *3 (-584 (-1090))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1089)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1090)))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1089))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1090))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4))
- (-14 *4 (-583 (-1089))))))
+ (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4))
+ (-14 *4 (-584 (-1090))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756)))
- (-14 *3 (-583 (-1089))))))
+ (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757)))
+ (-14 *3 (-584 (-1090))))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1089)) (-5 *6 (-85))
- (-4 *7 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
- (-4 *3 (-13 (-1114) (-871) (-29 *7)))
+ (-12 (-5 *4 (-1090)) (-5 *6 (-85))
+ (-4 *7 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-4 *3 (-13 (-1115) (-872) (-29 *7)))
(-5 *2
- (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| "failed")
+ (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| "failed")
(|:| |pole| "potentialPole")))
- (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-171)))))
+ (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *3))))
- (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2576 *3))))
+ (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-85)) (-4 *5 (-299))
(-5 *2
(-2 (|:| |cont| *5)
- (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484)))))))
- (-5 *1 (-170 *5 *3)) (-4 *3 (-1154 *5)))))
+ (|:| -1779 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485)))))))
+ (-5 *1 (-170 *5 *3)) (-4 *3 (-1155 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1154 (-349 *2)))
- (-4 *2 (-1154 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6)))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1155 (-350 *2)))
+ (-4 *2 (-1155 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6)))))
(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *2 (-347 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))))
+ (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1014)))))
+(((*1 *2 *3) (-12 (-5 *2 (-348 (-1085 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))))
+(((*1 *2 *3) (-12 (-5 *2 (-584 (-1085 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-484))) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
+ (-12 (-5 *3 (-584 (-485))) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1091 (-349 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1178 (-630 *4))) (-4 *4 (-146))
- (-5 *2 (-1178 (-630 (-857 *4)))) (-5 *1 (-163 *4)))))
+ (-12 (-5 *3 (-1092 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1092 (-350 (-485)))) (-5 *1 (-164)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-631 *4))) (-4 *4 (-146))
+ (-5 *2 (-1179 (-631 (-858 *4)))) (-5 *1 (-163 *4)))))
(((*1 *1) (-5 *1 (-161))))
(((*1 *1) (-5 *1 (-161))))
(((*1 *1) (-5 *1 (-161))))
(((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111))))
((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))))
-(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85))))))
-(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
-(((*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-157))) (-5 *1 (-157)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85))))))
+(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775))))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1095))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
+(((*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-157))) (-5 *1 (-157)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1128)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4)))))
+ (-12 (-4 *4 (-1129)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))))
+ (|partial| -12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-755)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1778 (-347 *3)))) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1154 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-312) (-756)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -1779 (-348 *3)))) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1155 (-142 *4))))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1154 (-142 *2))))))
+ (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1155 (-142 *2))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-755)))
- (-4 *3 (-1154 *2)))))
+ (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-756)))
+ (-4 *3 (-1155 *2)))))
(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1154 (-142 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1155 (-142 *2)))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1154 (-142 *2))))))
+ (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1155 (-142 *2))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-1154 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2))
+ (-4 *2 (-1155 (-142 *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))
+ (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1154 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1155 (-142 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-1154 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2))
+ (-4 *2 (-1155 (-142 *3))))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-755)))
- (-5 *2 (-583 (-2 (|:| -1778 (-583 *3)) (|:| -1595 *5))))
- (-5 *1 (-155 *5 *3)) (-4 *3 (-1154 (-142 *5)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-756)))
+ (-5 *2 (-584 (-2 (|:| -1779 (-584 *3)) (|:| -1596 *5))))
+ (-5 *1 (-155 *5 *3)) (-4 *3 (-1155 (-142 *5)))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-312) (-755)))
- (-5 *2 (-583 (-2 (|:| -1778 (-583 *3)) (|:| -1595 *4))))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-312) (-756)))
+ (-5 *2 (-584 (-2 (|:| -1779 (-584 *3)) (|:| -1596 *4))))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4))
- (-4 *3 (-1154 (-142 (-484)))) (-4 *4 (-13 (-312) (-755)))))
+ (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4))
+ (-4 *3 (-1155 (-142 (-485)))) (-4 *4 (-13 (-312) (-756)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4)))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))
+ (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4)))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4)))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
+ (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4)))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1114) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1114) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1114) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1114) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1114) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1114) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1114) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-916))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1115) (-916)))
(-5 *1 (-150 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149)))))
(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1068 (-349 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1068 (-349 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1048)) (-5 *3 (-247)) (-5 *1 (-141)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1048)) (-5 *2 (-632 (-235))) (-5 *1 (-141)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-247)) (-5 *1 (-141)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-633 (-235))) (-5 *1 (-141)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141)))))
(((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1114))
+ (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-974)) (-4 *3 (-1115))
(-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
(((*1 *1 *1 *1) (-5 *1 (-134)))
- ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134)))))
-(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134)))))
+(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090))))
((*1 *1 *1) (-4 *1 (-133))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1004 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495))
+ (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496))
(-5 *1 (-131 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
(((*1 *1 *1 *1) (-4 *1 (-116)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2)))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2)))))
(((*1 *1 *1) (-4 *1 (-116)))
- ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
+ ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-495)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-496)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-495)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-496)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-495)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-496)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-495)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-496)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-495)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-496)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-495)))))
-(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-496)))))
+(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))))
(((*1 *1) (-5 *1 (-130))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130)))))
(((*1 *2 *3 *4 *4 *4 *4)
(-12 (-5 *4 (-179))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1001 *4))
- (|:| |yValues| (-1001 *4))))
- (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4)))))))
+ (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4))
+ (|:| |yValues| (-1002 *4))))
+ (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-836))
+ (-12 (-5 *3 (-837))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
(-5 *1 (-126))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-836)) (-5 *4 (-349 (-484)))
+ (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485)))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
(-5 *1 (-126)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312))
- (-14 *5 (-906 *3 *4)))))
+ (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312))
+ (-14 *5 (-907 *3 *4)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))))
+ (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128))
- (-4 *2 (-1013)))))
+ (-12 (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129))
+ (-4 *2 (-1014)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-349 *5))
- (|:| |c2| (-349 *5)) (|:| |deg| (-694))))
- (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5))))))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5))
+ (|:| |c2| (-350 *5)) (|:| |deg| (-695))))
+ (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1154 *2)) (-4 *2 (-1133)) (-5 *1 (-121 *2 *4 *3))
- (-4 *3 (-1154 (-349 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-349 *6)) (-4 *5 (-1133)) (-4 *6 (-1154 *5))
- (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| *6)))
- (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1154 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 *4))
- (-5 *2 (-2 (|:| |radicand| (-349 *5)) (|:| |deg| (-694))))
- (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4))
- (-5 *2 (-2 (|:| -3953 (-349 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3))
- (-4 *3 (-1154 (-349 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-117))))
- ((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117)))))
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-1134)) (-5 *1 (-121 *2 *4 *3))
+ (-4 *3 (-1155 (-350 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-350 *6)) (-4 *5 (-1134)) (-4 *6 (-1155 *5))
+ (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3954 *3) (|:| |radicand| *6)))
+ (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1155 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-695))))
+ (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| -3954 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3))
+ (-4 *3 (-1155 (-350 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-117))))
+ ((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117)))))
(((*1 *1) (-5 *1 (-117))))
(((*1 *1) (-5 *1 (-117))))
(((*1 *1) (-5 *1 (-117))))
@@ -13180,997 +13180,997 @@
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-114)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-114)))))
(((*1 *1) (-5 *1 (-114))))
(((*1 *1) (-5 *1 (-114))))
(((*1 *1) (-5 *1 (-114))))
(((*1 *1) (-5 *1 (-114))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484))
- (-14 *4 (-694)) (-4 *5 (-146)))))
+ (-12 (-5 *2 (-584 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485))
+ (-14 *4 (-695)) (-4 *5 (-146)))))
(((*1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))))
(((*1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484))
- (-14 *4 (-694)) (-4 *5 (-146)))))
+ (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485))
+ (-14 *4 (-695)) (-4 *5 (-146)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484))
- (-14 *4 (-694)))))
-(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107)))))
+ (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485))
+ (-14 *4 (-695)))))
+(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1184)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1185)))))
(((*1 *1 *1 *1) (|partial| -4 *1 (-104))))
(((*1 *1) (-5 *1 (-103))))
(((*1 *1) (-5 *1 (-103))))
(((*1 *1) (-5 *1 (-103))))
-(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
-(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
+(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1014)))))
(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))))
(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))
- ((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-950 (-349 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3))
- (-4 *3 (-1154 *4)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-485))))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-92 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-92 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-312) (-951 (-350 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1014)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1013))
+ (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014))
(-5 *1 (-87 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4))))
- (-5 *1 (-87 *4)) (-4 *4 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1072) (-696))) (-5 *1 (-86)))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4))))
+ (-5 *1 (-87 *4)) (-4 *4 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1073) (-697))) (-5 *1 (-86)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-85)) (-5 *1 (-86)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-86)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-696)) (-5 *1 (-86))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-696)) (-5 *1 (-86)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1072) (-696))) (-5 *1 (-86)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-79 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-78)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-76 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-3996 "*"))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2))
- (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2))
- (-4 *4 (-627 *2 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-85)) (-5 *1 (-86)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-86)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-86))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-697)) (-5 *1 (-86)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1073) (-697))) (-5 *1 (-86)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-79 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-78)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-4 *1 (-76 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-3997 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2))
+ (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2))
+ (-4 *4 (-628 *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-3996 "*"))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2))
- (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2))
- (-4 *4 (-627 *2 *5 *6)))))
+ (-12 (|has| *2 (-6 (-3997 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2))
+ (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2))
+ (-4 *4 (-628 *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
- (-4 *3 (-1154 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
+ (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
- (-4 *3 (-1154 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
+ (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013)))))
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1014)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2))))
+ (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-391) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-70 *4 *3))
- (-4 *3 (-1154 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-13 (-391) (-120)))
- (-5 *2 (-347 *3)) (-5 *1 (-70 *5 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-69 *3))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *5 (-495))
- (-5 *2
- (-2 (|:| |minor| (-583 (-830))) (|:| -3266 *3)
- (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3))))
- (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-61 *4 *5))
- (-5 *3 (-630 *4)) (-4 *5 (-600 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-495))
- (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1178 (-583 (-830))))))
- (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-58 *3)))))
+ (-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3))
+ (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-13 (-392) (-120)))
+ (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-69 *3))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-62 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-312)) (-4 *5 (-496))
+ (-5 *2
+ (-2 (|:| |minor| (-584 (-831))) (|:| -3267 *3)
+ (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3))))
+ (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-496)) (-5 *2 (-1179 (-631 *4))) (-5 *1 (-61 *4 *5))
+ (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-496))
+ (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1179 (-584 (-831))))))
+ (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1129)) (-5 *1 (-58 *3)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-323 *4))
- (-4 *5 (-323 *4)))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-324 *4))
+ (-4 *5 (-324 *4)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-323 *4))
- (-4 *3 (-323 *4)))))
+ (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1129)) (-4 *5 (-324 *4))
+ (-4 *3 (-324 *4)))))
(((*1 *1) (-5 *1 (-55))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-1013))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))))
+ (-12 (-5 *3 (-584 (-1090))) (-4 *4 (-1014))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-583 (-987 *4 *5 *2))) (-4 *4 (-1013))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4))))
- (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2))))
+ (-12 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4))))
+ (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-583 (-987 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1013))
- (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5))))
- (-4 *2 (-13 (-363 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-696)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51)))))
+ (-12 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014))
+ (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5))))
+ (-4 *2 (-13 (-364 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))))
+ (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))))
+ (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-391) (-950 (-484))))
- (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-363 *5))
+ (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485))))
+ (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *5 (-550 $)) $))
- (-15 -2997 ((-1038 *5 (-550 $)) $))
- (-15 -3945 ($ (-1038 *5 (-550 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *5 (-551 $)) $))
+ (-15 -2998 ((-1039 *5 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *5 (-551 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
- (-4 *2 (-363 *3))
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
+ (-4 *2 (-364 *3))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $))
- (-15 -2997 ((-1038 *3 (-550 $)) $))
- (-15 -3945 ($ (-1038 *3 (-550 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $))
+ (-15 -2998 ((-1039 *3 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *3 (-551 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
- (-4 *2 (-363 *3))
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
+ (-4 *2 (-364 *3))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $))
- (-15 -2997 ((-1038 *3 (-550 $)) $))
- (-15 -3945 ($ (-1038 *3 (-550 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $))
+ (-15 -2998 ((-1039 *3 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *3 (-551 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
- (-4 *2 (-363 *3))
+ (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
+ (-4 *2 (-364 *3))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $))
- (-15 -2997 ((-1038 *3 (-550 $)) $))
- (-15 -3945 ($ (-1038 *3 (-550 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $))
+ (-15 -2998 ((-1039 *3 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *3 (-551 $))))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-495)) (-5 *2 (-1084 *3)) (-5 *1 (-41 *4 *3))
+ (-12 (-4 *4 (-496)) (-5 *2 (-1085 *3)) (-5 *1 (-41 *4 *3))
(-4 *3
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $))
- (-15 -2997 ((-1038 *4 (-550 $)) $))
- (-15 -3945 ($ (-1038 *4 (-550 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *4 (-551 $)) $))
+ (-15 -2998 ((-1039 *4 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *4 (-551 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $))
- (-15 -2997 ((-1038 *3 (-550 $)) $))
- (-15 -3945 ($ (-1038 *3 (-550 $)))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $))
+ (-15 -2998 ((-1039 *3 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *3 (-551 $)))))))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $))
- (-15 -2997 ((-1038 *3 (-550 $)) $))
- (-15 -3945 ($ (-1038 *3 (-550 $)))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $))
+ (-15 -2998 ((-1039 *3 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *3 (-551 $)))))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2))
+ (-12 (-5 *3 (-584 *2))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $))
- (-15 -2997 ((-1038 *4 (-550 $)) $))
- (-15 -3945 ($ (-1038 *4 (-550 $)))))))
- (-4 *4 (-495)) (-5 *1 (-41 *4 *2))))
+ (-10 -8 (-15 -2999 ((-1039 *4 (-551 $)) $))
+ (-15 -2998 ((-1039 *4 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *4 (-551 $)))))))
+ (-4 *4 (-496)) (-5 *1 (-41 *4 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-550 *2)))
+ (-12 (-5 *3 (-584 (-551 *2)))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $))
- (-15 -2997 ((-1038 *4 (-550 $)) $))
- (-15 -3945 ($ (-1038 *4 (-550 $)))))))
- (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))))
+ (-10 -8 (-15 -2999 ((-1039 *4 (-551 $)) $))
+ (-15 -2998 ((-1039 *4 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *4 (-551 $)))))))
+ (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $))
- (-15 -2997 ((-1038 *3 (-550 $)) $))
- (-15 -3945 ($ (-1038 *3 (-550 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-551 $)) $))
+ (-15 -2998 ((-1039 *3 (-551 $)) $))
+ (-15 -3946 ($ (-1039 *3 (-551 $))))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-4 *5 (-1154 *4)) (-5 *2 (-1184))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1154 (-349 *5))) (-14 *7 *6))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *2 (-1185))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1155 (-350 *5))) (-14 *7 *6))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-5 *2 (-632 (-2 (|:| -3859 *3) (|:| |entry| *4)))))))
+ (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-5 *2 (-633 (-2 (|:| -3860 *3) (|:| |entry| *4)))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-484)) (-4 *2 (-363 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4))
- (-4 *3 (-495)))))
+ (-12 (-5 *4 (-485)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4))
+ (-4 *3 (-496)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *5)) (-4 *5 (-363 *4)) (-4 *4 (-495)) (-5 *2 (-772))
+ (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-496)) (-5 *2 (-773))
(-5 *1 (-32 *4 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1084 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495))
+ (-12 (-5 *3 (-1085 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496))
(-5 *1 (-32 *4 *2)))))
(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-857 (-484))) (-5 *3 (-1089)) (-5 *4 (-1001 (-349 (-484))))
+ (-12 (-5 *2 (-858 (-485))) (-5 *3 (-1090)) (-5 *4 (-1002 (-350 (-485))))
(-5 *1 (-30)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-496))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))))
-((-1213 . 631406) (-1214 . 631010) (-1215 . 630708) (-1216 . 630312)
- (-1217 . 630191) (-1218 . 630089) (-1219 . 629976) (-1220 . 629860)
- (-1221 . 629807) (-1222 . 629673) (-1223 . 629598) (-1224 . 629442)
- (-1225 . 629214) (-1226 . 628250) (-1227 . 628003) (-1228 . 627719)
- (-1229 . 627435) (-1230 . 627151) (-1231 . 626832) (-1232 . 626740)
- (-1233 . 626648) (-1234 . 626556) (-1235 . 626464) (-1236 . 626372)
- (-1237 . 626280) (-1238 . 626185) (-1239 . 626090) (-1240 . 625998)
- (-1241 . 625906) (-1242 . 625814) (-1243 . 625722) (-1244 . 625630)
- (-1245 . 625528) (-1246 . 625426) (-1247 . 625324) (-1248 . 625232)
- (-1249 . 625181) (-1250 . 625129) (-1251 . 625059) (-1252 . 624639)
- (-1253 . 624445) (-1254 . 624418) (-1255 . 624295) (-1256 . 624172)
- (-1257 . 624028) (-1258 . 623858) (-1259 . 623734) (-1260 . 623495)
- (-1261 . 623422) (-1262 . 623197) (-1263 . 622951) (-1264 . 622898)
- (-1265 . 622720) (-1266 . 622551) (-1267 . 622475) (-1268 . 622402)
- (-1269 . 622249) (-1270 . 622096) (-1271 . 621912) (-1272 . 621731)
- (-1273 . 621676) (-1274 . 621621) (-1275 . 621548) (-1276 . 621472)
- (-1277 . 621395) (-1278 . 621327) (-1279 . 621184) (-1280 . 621077)
- (-1281 . 621009) (-1282 . 620939) (-1283 . 620869) (-1284 . 620819)
- (-1285 . 620769) (-1286 . 620719) (-1287 . 620598) (-1288 . 620282)
- (-1289 . 620213) (-1290 . 620134) (-1291 . 620015) (-1292 . 619935)
- (-1293 . 619855) (-1294 . 619702) (-1295 . 619553) (-1296 . 619477)
- (-1297 . 619420) (-1298 . 619348) (-1299 . 619285) (-1300 . 619222)
- (-1301 . 619161) (-1302 . 619089) (-1303 . 618973) (-1304 . 618921)
- (-1305 . 618866) (-1306 . 618814) (-1307 . 618762) (-1308 . 618734)
- (-1309 . 618706) (-1310 . 618678) (-1311 . 618634) (-1312 . 618563)
- (-1313 . 618512) (-1314 . 618464) (-1315 . 618413) (-1316 . 618361)
- (-1317 . 618245) (-1318 . 618129) (-1319 . 618037) (-1320 . 617945)
- (-1321 . 617822) (-1322 . 617756) (-1323 . 617690) (-1324 . 617631)
- (-1325 . 617603) (-1326 . 617575) (-1327 . 617547) (-1328 . 617519)
- (-1329 . 617409) (-1330 . 617358) (-1331 . 617307) (-1332 . 617256)
- (-1333 . 617205) (-1334 . 617154) (-1335 . 617103) (-1336 . 617075)
- (-1337 . 617047) (-1338 . 617019) (-1339 . 616991) (-1340 . 616963)
- (-1341 . 616935) (-1342 . 616907) (-1343 . 616879) (-1344 . 616851)
- (-1345 . 616748) (-1346 . 616696) (-1347 . 616530) (-1348 . 616346)
- (-1349 . 616135) (-1350 . 616020) (-1351 . 615787) (-1352 . 615688)
- (-1353 . 615595) (-1354 . 615480) (-1355 . 615082) (-1356 . 614864)
- (-1357 . 614815) (-1358 . 614787) (-1359 . 614711) (-1360 . 614612)
- (-1361 . 614513) (-1362 . 614414) (-1363 . 614315) (-1364 . 614216)
- (-1365 . 614117) (-1366 . 613959) (-1367 . 613883) (-1368 . 613716)
- (-1369 . 613658) (-1370 . 613600) (-1371 . 613291) (-1372 . 613037)
- (-1373 . 612953) (-1374 . 612821) (-1375 . 612763) (-1376 . 612711)
- (-1377 . 612629) (-1378 . 612554) (-1379 . 612483) (-1380 . 612429)
- (-1381 . 612378) (-1382 . 612304) (-1383 . 612230) (-1384 . 612149)
- (-1385 . 612068) (-1386 . 612013) (-1387 . 611939) (-1388 . 611865)
- (-1389 . 611791) (-1390 . 611714) (-1391 . 611660) (-1392 . 611602)
- (-1393 . 611503) (-1394 . 611404) (-1395 . 611305) (-1396 . 611206)
- (-1397 . 611107) (-1398 . 611008) (-1399 . 610909) (-1400 . 610795)
- (-1401 . 610681) (-1402 . 610567) (-1403 . 610453) (-1404 . 610339)
- (-1405 . 610225) (-1406 . 610108) (-1407 . 610032) (-1408 . 609956)
- (-1409 . 609569) (-1410 . 609224) (-1411 . 609122) (-1412 . 608861)
- (-1413 . 608759) (-1414 . 608554) (-1415 . 608441) (-1416 . 608339)
- (-1417 . 608182) (-1418 . 608093) (-1419 . 607999) (-1420 . 607919)
- (-1421 . 607845) (-1422 . 607767) (-1423 . 607708) (-1424 . 607650)
- (-1425 . 607548) (-7 . 607520) (-8 . 607492) (-9 . 607464) (-1429 . 607345)
- (-1430 . 607263) (-1431 . 607181) (-1432 . 607099) (-1433 . 607017)
- (-1434 . 606935) (-1435 . 606841) (-1436 . 606771) (-1437 . 606701)
- (-1438 . 606610) (-1439 . 606516) (-1440 . 606434) (-1441 . 606352)
- (-1442 . 606254) (-1443 . 606094) (-1444 . 605896) (-1445 . 605760)
- (-1446 . 605660) (-1447 . 605560) (-1448 . 605467) (-1449 . 605408)
- (-1450 . 605075) (-1451 . 604975) (-1452 . 604857) (-1453 . 604645)
- (-1454 . 604466) (-1455 . 604308) (-1456 . 604105) (-1457 . 603687)
- (-1458 . 603636) (-1459 . 603527) (-1460 . 603412) (-1461 . 603343)
- (-1462 . 603274) (-1463 . 603205) (-1464 . 603139) (-1465 . 603014)
- (-1466 . 602797) (-1467 . 602719) (-1468 . 602669) (-1469 . 602598)
- (-1470 . 602455) (-1471 . 602314) (-1472 . 602233) (-1473 . 602152)
- (-1474 . 602096) (-1475 . 602040) (-1476 . 601967) (-1477 . 601827)
- (-1478 . 601774) (-1479 . 601715) (-1480 . 601656) (-1481 . 601501)
- (-1482 . 601449) (-1483 . 601332) (-1484 . 601215) (-1485 . 601098)
- (-1486 . 600967) (-1487 . 600688) (-1488 . 600553) (-1489 . 600497)
- (-1490 . 600441) (-1491 . 600382) (-1492 . 600323) (-1493 . 600267)
- (-1494 . 600211) (-1495 . 600014) (-1496 . 597672) (-1497 . 597545)
- (-1498 . 597400) (-1499 . 597272) (-1500 . 597220) (-1501 . 597168)
- (-1502 . 597116) (-1503 . 593078) (-1504 . 592984) (-1505 . 592845)
- (-1506 . 592636) (-1507 . 592534) (-1508 . 592432) (-1509 . 591517)
- (-1510 . 591441) (-1511 . 591312) (-1512 . 591187) (-1513 . 591110)
- (-1514 . 591033) (-1515 . 590906) (-1516 . 590779) (-1517 . 590613)
- (-1518 . 590486) (-1519 . 590359) (-1520 . 590142) (-1521 . 589708)
- (-1522 . 589344) (-1523 . 589292) (-1524 . 589233) (-1525 . 589145)
- (-1526 . 589057) (-1527 . 588966) (-1528 . 588875) (-1529 . 588784)
- (-1530 . 588693) (-1531 . 588602) (-1532 . 588511) (-1533 . 588420)
- (-1534 . 588329) (-1535 . 588238) (-1536 . 588147) (-1537 . 588056)
- (-1538 . 587965) (-1539 . 587874) (-1540 . 587783) (-1541 . 587692)
- (-1542 . 587601) (-1543 . 587510) (-1544 . 587419) (-1545 . 587328)
- (-1546 . 587237) (-1547 . 587146) (-1548 . 587055) (-1549 . 586964)
- (-1550 . 586873) (-1551 . 586782) (-1552 . 586691) (-1553 . 586529)
- (-1554 . 586421) (-1555 . 586178) (-1556 . 585891) (-1557 . 585696)
- (-1558 . 585540) (-1559 . 585380) (-1560 . 585329) (-1561 . 585267)
- (-1562 . 585216) (-1563 . 585153) (-1564 . 585100) (-1565 . 585048)
- (-1566 . 584996) (-1567 . 584944) (-1568 . 584854) (-1569 . 584667)
- (-1570 . 584513) (-1571 . 584433) (-1572 . 584353) (-1573 . 584273)
- (-1574 . 584143) (-1575 . 583911) (-1576 . 583883) (-1577 . 583855)
- (-1578 . 583827) (-1579 . 583747) (-1580 . 583670) (-1581 . 583593)
- (-1582 . 583512) (-1583 . 583453) (-1584 . 583295) (-1585 . 583102)
- (-1586 . 582617) (-1587 . 582375) (-1588 . 582113) (-1589 . 582012)
- (-1590 . 581931) (-1591 . 581850) (-1592 . 581780) (-1593 . 581710)
- (-1594 . 581552) (-1595 . 581248) (-1596 . 581020) (-1597 . 580898)
- (-1598 . 580840) (-1599 . 580778) (-1600 . 580716) (-1601 . 580651)
- (-1602 . 580589) (-1603 . 580310) (-1604 . 580242) (-1605 . 580032)
- (-1606 . 579980) (-1607 . 579926) (-1608 . 579835) (-1609 . 579748)
- (-1610 . 578001) (-1611 . 577922) (-1612 . 577177) (-1613 . 577060)
- (-1614 . 576854) (-1615 . 576693) (-1616 . 576532) (-1617 . 576372)
- (-1618 . 576234) (-1619 . 576140) (-1620 . 576042) (-1621 . 575948)
- (-1622 . 575834) (-1623 . 575752) (-1624 . 575655) (-1625 . 575459)
- (-1626 . 575368) (-1627 . 575274) (-1628 . 575207) (-1629 . 575138)
- (-1630 . 575086) (-1631 . 575027) (-1632 . 574953) (-1633 . 574901)
- (-1634 . 574744) (-1635 . 574587) (-1636 . 574435) (-1637 . 573677)
- (-1638 . 573366) (-1639 . 573014) (-1640 . 572797) (-1641 . 572534)
- (-1642 . 572159) (-1643 . 571975) (-1644 . 571841) (-1645 . 571675)
- (-1646 . 571509) (-1647 . 571375) (-1648 . 571241) (-1649 . 571107)
- (-1650 . 570973) (-1651 . 570842) (-1652 . 570711) (-1653 . 570580)
- (-1654 . 570200) (-1655 . 570074) (-1656 . 569946) (-1657 . 569696)
- (-1658 . 569573) (-1659 . 569323) (-1660 . 569200) (-1661 . 568950)
- (-1662 . 568827) (-1663 . 568544) (-1664 . 568273) (-1665 . 568000)
- (-1666 . 567702) (-1667 . 567600) (-1668 . 567455) (-1669 . 567314)
- (-1670 . 567163) (-1671 . 567002) (-1672 . 566914) (-1673 . 566886)
- (-1674 . 566804) (-1675 . 566707) (-1676 . 566239) (-1677 . 565888)
- (-1678 . 565455) (-1679 . 565316) (-1680 . 565246) (-1681 . 565176)
- (-1682 . 565106) (-1683 . 565015) (-1684 . 564924) (-1685 . 564833)
- (-1686 . 564742) (-1687 . 564651) (-1688 . 564565) (-1689 . 564479)
- (-1690 . 564393) (-1691 . 564307) (-1692 . 564221) (-1693 . 564147)
- (-1694 . 564042) (-1695 . 563816) (-1696 . 563738) (-1697 . 563663)
- (-1698 . 563570) (-1699 . 563466) (-1700 . 563370) (-1701 . 563201)
- (-1702 . 563124) (-1703 . 563047) (-1704 . 562956) (-1705 . 562865)
- (-1706 . 562665) (-1707 . 562512) (-1708 . 562359) (-1709 . 562206)
- (-1710 . 562053) (-1711 . 561900) (-1712 . 561747) (-1713 . 561681)
- (-1714 . 561528) (-1715 . 561375) (-1716 . 561222) (-1717 . 561069)
- (-1718 . 560916) (-1719 . 560763) (-1720 . 560610) (-1721 . 560457)
- (-1722 . 560383) (-1723 . 560309) (-1724 . 560254) (-1725 . 560199)
- (-1726 . 560144) (-1727 . 560089) (-1728 . 560018) (-1729 . 559814)
- (-1730 . 559713) (-1731 . 559525) (-1732 . 559432) (-1733 . 559296)
- (-1734 . 559160) (-1735 . 559024) (-1736 . 558956) (-1737 . 558840)
- (-1738 . 558724) (-1739 . 558608) (-1740 . 558555) (-1741 . 558470)
- (-1742 . 558385) (-1743 . 558077) (-1744 . 558022) (-1745 . 557370)
- (-1746 . 557055) (-1747 . 556771) (-1748 . 556653) (-1749 . 556534)
- (-1750 . 556475) (-1751 . 556416) (-1752 . 556365) (-1753 . 556314)
- (-1754 . 556263) (-1755 . 556210) (-1756 . 556157) (-1757 . 556098)
- (-1758 . 555985) (-1759 . 555872) (-1760 . 555705) (-1761 . 555613)
- (-1762 . 555500) (-1763 . 555416) (-1764 . 555301) (-1765 . 555210)
- (-1766 . 555119) (-1767 . 554998) (-1768 . 554811) (-1769 . 554759)
- (-1770 . 554704) (-1771 . 554517) (-1772 . 554394) (-1773 . 554321)
- (-1774 . 554248) (-1775 . 554128) (-1776 . 554055) (-1777 . 553982)
- (-1778 . 553642) (-1779 . 553569) (-1780 . 553349) (-1781 . 553016)
- (-1782 . 552833) (-1783 . 552690) (-1784 . 552330) (-1785 . 552162)
- (-1786 . 551994) (-1787 . 551738) (-1788 . 551482) (-1789 . 551287)
- (-1790 . 551092) (-1791 . 550498) (-1792 . 550422) (-1793 . 550283)
- (-1794 . 549876) (-1795 . 549749) (-1796 . 549592) (-1797 . 549275)
- (-1798 . 548795) (-1799 . 548315) (-1800 . 547813) (-1801 . 547745)
- (-1802 . 547674) (-1803 . 547603) (-1804 . 547431) (-1805 . 547312)
- (-1806 . 547193) (-1807 . 547117) (-1808 . 547041) (-1809 . 546768)
- (-1810 . 546654) (-1811 . 546603) (-1812 . 546552) (-1813 . 546501)
- (-1814 . 546450) (-1815 . 546399) (-1816 . 546258) (-1817 . 546085)
- (-1818 . 545854) (-1819 . 545668) (-1820 . 545640) (-1821 . 545612)
- (-1822 . 545584) (-1823 . 545556) (-1824 . 545528) (-1825 . 545500)
- (-1826 . 545472) (-1827 . 545421) (-1828 . 545355) (-1829 . 545265)
- (-1830 . 544894) (-1831 . 544743) (-1832 . 544592) (-1833 . 544387)
- (-1834 . 544265) (-1835 . 544191) (-1836 . 544114) (-1837 . 544040)
- (-1838 . 543963) (-1839 . 543886) (-1840 . 543812) (-1841 . 543735)
- (-1842 . 543502) (-1843 . 543349) (-1844 . 543054) (-1845 . 542901)
- (-1846 . 542579) (-1847 . 542441) (-1848 . 542303) (-1849 . 542223)
- (-1850 . 542143) (-1851 . 541879) (-1852 . 541148) (-1853 . 541012)
- (-1854 . 540922) (-1855 . 540787) (-1856 . 540720) (-1857 . 540652)
- (-1858 . 540565) (-1859 . 540478) (-1860 . 540311) (-1861 . 540237)
- (-1862 . 540093) (-1863 . 539633) (-1864 . 539254) (-1865 . 538492)
- (-1866 . 538348) (-1867 . 538204) (-1868 . 538042) (-1869 . 537805)
- (-1870 . 537665) (-1871 . 537519) (-1872 . 537280) (-1873 . 537044)
- (-1874 . 536805) (-1875 . 536613) (-1876 . 536490) (-1877 . 536286)
- (-1878 . 536063) (-1879 . 535824) (-1880 . 535683) (-1881 . 535545)
- (-1882 . 535406) (-1883 . 535153) (-1884 . 534897) (-1885 . 534740)
- (-1886 . 534586) (-1887 . 534346) (-1888 . 534061) (-1889 . 533923)
- (-1890 . 533836) (-1891 . 533170) (-1892 . 532994) (-1893 . 532812)
- (-1894 . 532636) (-1895 . 532454) (-1896 . 532275) (-1897 . 532096)
- (-1898 . 531909) (-1899 . 531527) (-1900 . 531348) (-1901 . 531169)
- (-1902 . 530982) (-1903 . 530600) (-1904 . 529607) (-1905 . 529223)
- (-1906 . 528839) (-1907 . 528721) (-1908 . 528564) (-1909 . 528422)
- (-1910 . 528305) (-1911 . 528123) (-1912 . 527999) (-1913 . 527710)
- (-1914 . 527421) (-1915 . 527138) (-1916 . 526855) (-1917 . 526577)
- (-1918 . 526489) (-1919 . 526404) (-1920 . 526307) (-1921 . 526210)
- (-1922 . 525990) (-1923 . 525890) (-1924 . 525787) (-1925 . 525709)
- (-1926 . 525384) (-1927 . 525092) (-1928 . 525019) (-1929 . 524634)
- (-1930 . 524606) (-1931 . 524407) (-1932 . 524233) (-1933 . 523992)
- (-1934 . 523937) (-1935 . 523862) (-1936 . 523494) (-1937 . 523379)
- (-1938 . 523302) (-1939 . 523229) (-1940 . 523148) (-1941 . 523067)
- (-1942 . 522986) (-1943 . 522885) (-1944 . 522826) (-1945 . 522402)
- (-1946 . 522185) (-1947 . 521968) (-1948 . 521741) (-1949 . 521688)
- (-1950 . 521634) (-1951 . 521302) (-1952 . 520978) (-1953 . 520790)
- (-1954 . 520599) (-1955 . 520435) (-1956 . 520100) (-1957 . 519933)
- (-1958 . 519692) (-1959 . 519368) (-1960 . 519178) (-1961 . 518963)
- (-1962 . 518792) (-1963 . 518370) (-1964 . 518143) (-1965 . 517872)
- (-1966 . 517735) (-1967 . 517594) (-1968 . 517117) (-1969 . 516994)
- (-1970 . 516758) (-1971 . 516504) (-1972 . 516254) (-1973 . 515961)
- (-1974 . 515821) (-1975 . 515681) (-1976 . 515541) (-1977 . 515352)
- (-1978 . 515163) (-1979 . 514988) (-1980 . 514714) (-1981 . 514279)
- (-1982 . 514251) (-1983 . 514179) (-1984 . 514046) (-1985 . 513971)
- (-1986 . 513812) (-1987 . 513649) (-1988 . 513488) (-1989 . 513321)
- (-1990 . 513268) (-1991 . 513215) (-1992 . 513086) (-1993 . 513026)
- (-1994 . 512973) (-1995 . 512903) (-1996 . 512843) (-1997 . 512784)
- (-1998 . 512724) (-1999 . 512665) (-2000 . 512605) (-2001 . 512546)
- (-2002 . 512487) (-2003 . 512345) (-2004 . 512250) (-2005 . 512159)
- (-2006 . 512043) (-2007 . 511949) (-2008 . 511851) (-2009 . 511757)
- (-2010 . 511616) (-2011 . 511354) (-2012 . 510498) (-2013 . 510342)
- (-2014 . 509973) (-2015 . 509917) (-2016 . 509866) (-2017 . 509763)
- (-2018 . 509678) (-2019 . 509590) (-2020 . 509444) (-2021 . 509295)
- (-2022 . 509005) (-2023 . 508927) (-2024 . 508852) (-2025 . 508799)
- (-2026 . 508746) (-2027 . 508715) (-2028 . 508652) (-2029 . 508534)
- (-2030 . 508445) (-2031 . 508325) (-2032 . 508030) (-2033 . 507836)
- (-2034 . 507648) (-2035 . 507503) (-2036 . 507358) (-2037 . 507072)
- (-2038 . 506630) (-2039 . 506596) (-2040 . 506559) (-2041 . 506522)
- (-2042 . 506485) (-2043 . 506448) (-2044 . 506417) (-2045 . 506386)
- (-2046 . 506355) (-2047 . 506321) (-2048 . 506287) (-2049 . 506233)
- (-2050 . 506057) (-2051 . 505823) (-2052 . 505589) (-2053 . 505360)
- (-2054 . 505308) (-2055 . 505253) (-2056 . 505184) (-2057 . 505096)
- (-2058 . 505027) (-2059 . 504955) (-2060 . 504725) (-2061 . 504674)
- (-2062 . 504620) (-2063 . 504589) (-2064 . 504483) (-2065 . 504258)
- (-2066 . 503948) (-2067 . 503774) (-2068 . 503592) (-2069 . 503321)
- (-2070 . 503248) (-2071 . 503183) (-2072 . 502707) (-2073 . 502145)
- (-2074 . 501419) (-2075 . 500858) (-2076 . 500230) (-2077 . 499651)
- (-2078 . 499577) (-2079 . 499525) (-2080 . 499473) (-2081 . 499399)
- (-2082 . 499344) (-2083 . 499292) (-2084 . 499240) (-2085 . 499188)
- (-2086 . 499118) (-2087 . 498670) (-2088 . 498464) (-2089 . 498215)
- (-2090 . 497881) (-2091 . 497627) (-2092 . 497325) (-2093 . 497122)
- (-2094 . 496833) (-2095 . 496285) (-2096 . 496148) (-2097 . 495946)
- (-2098 . 495666) (-2099 . 495581) (-2100 . 495248) (-2101 . 495107)
- (-2102 . 494816) (-2103 . 494596) (-2104 . 494470) (-2105 . 494345)
- (-2106 . 494198) (-2107 . 494054) (-2108 . 493938) (-2109 . 493807)
- (-2110 . 493435) (-2111 . 493175) (-2112 . 492905) (-2113 . 492665)
- (-2114 . 492335) (-2115 . 491995) (-2116 . 491587) (-2117 . 491169)
- (-2118 . 490972) (-2119 . 490697) (-2120 . 490529) (-2121 . 490333)
- (-2122 . 490111) (-2123 . 489956) (-2124 . 489771) (-2125 . 489668)
- (-2126 . 489640) (-2127 . 489612) (-2128 . 489438) (-2129 . 489364)
- (-2130 . 489303) (-2131 . 489250) (-2132 . 489181) (-2133 . 489112)
- (-2134 . 488993) (-2135 . 488815) (-2136 . 488760) (-2137 . 488514)
- (-2138 . 488441) (-2139 . 488371) (-2140 . 488301) (-2141 . 488212)
- (-2142 . 488022) (-2143 . 487949) (-2144 . 487880) (-2145 . 487815)
- (-2146 . 487760) (-2147 . 487669) (-2148 . 487378) (-2149 . 487052)
- (-2150 . 486978) (-2151 . 486656) (-2152 . 486451) (-2153 . 486366)
- (-2154 . 486281) (-2155 . 486196) (-2156 . 486111) (-2157 . 486026)
- (-2158 . 485941) (-2159 . 485856) (-2160 . 485771) (-2161 . 485686)
- (-2162 . 485601) (-2163 . 485516) (-2164 . 485431) (-2165 . 485346)
- (-2166 . 485261) (-2167 . 485176) (-2168 . 485091) (-2169 . 485006)
- (-2170 . 484921) (-2171 . 484836) (-2172 . 484751) (-2173 . 484666)
- (-2174 . 484581) (-2175 . 484496) (-2176 . 484411) (-2177 . 484326)
- (-2178 . 484241) (-2179 . 484139) (-2180 . 484051) (-2181 . 483843)
- (-2182 . 483785) (-2183 . 483730) (-2184 . 483643) (-2185 . 483532)
- (-2186 . 483446) (-2187 . 483300) (-2188 . 483238) (-2189 . 483210)
- (-2190 . 483182) (-2191 . 483154) (-2192 . 483126) (-2193 . 482957)
- (-2194 . 482806) (-2195 . 482655) (-2196 . 482483) (-2197 . 482275)
- (-2198 . 482151) (-2199 . 481943) (-2200 . 481851) (-2201 . 481759)
- (-2202 . 481624) (-2203 . 481529) (-2204 . 481435) (-2205 . 481340)
- (-2206 . 481216) (-2207 . 481188) (-2208 . 481160) (-2209 . 481132)
- (-2210 . 481104) (-2211 . 481076) (-2212 . 481048) (-2213 . 481020)
- (-2214 . 480992) (-2215 . 480964) (-2216 . 480936) (-2217 . 480908)
- (-2218 . 480880) (-2219 . 480852) (-2220 . 480824) (-2221 . 480796)
- (-2222 . 480768) (-2223 . 480715) (-2224 . 480687) (-2225 . 480659)
- (-2226 . 480581) (-2227 . 480528) (-2228 . 480475) (-2229 . 480422)
- (-2230 . 480344) (-2231 . 480254) (-2232 . 480159) (-2233 . 480065)
- (-2234 . 479983) (-2235 . 479677) (-2236 . 479481) (-2237 . 479386)
- (-2238 . 479278) (-2239 . 478867) (-2240 . 478839) (-2241 . 478675)
- (-2242 . 478598) (-2243 . 478411) (-2244 . 478232) (-2245 . 477808)
- (-2246 . 477656) (-2247 . 477476) (-2248 . 477303) (-2249 . 477043)
- (-2250 . 476791) (-2251 . 475980) (-2252 . 475813) (-2253 . 475595)
- (-2254 . 474771) (-2255 . 474640) (-2256 . 474509) (-2257 . 474378)
- (-2258 . 474247) (-2259 . 474116) (-2260 . 473985) (-2261 . 473790)
- (-2262 . 473596) (-2263 . 473453) (-2264 . 473138) (-2265 . 473023)
- (-2266 . 472683) (-2267 . 472523) (-2268 . 472384) (-2269 . 472245)
- (-2270 . 472116) (-2271 . 472031) (-2272 . 471979) (-2273 . 471499)
- (-2274 . 470237) (-2275 . 470110) (-2276 . 469968) (-2277 . 469632)
- (-2278 . 469527) (-2279 . 469278) (-2280 . 469046) (-2281 . 468941)
- (-2282 . 468866) (-2283 . 468791) (-2284 . 468716) (-2285 . 468657)
- (-2286 . 468587) (-2287 . 468534) (-2288 . 468472) (-2289 . 468402)
- (-2290 . 468039) (-2291 . 467752) (-2292 . 467642) (-2293 . 467455)
- (-2294 . 467362) (-2295 . 467269) (-2296 . 467182) (-2297 . 466962)
- (-2298 . 466743) (-2299 . 466325) (-2300 . 466053) (-2301 . 465910)
- (-2302 . 465817) (-2303 . 465674) (-2304 . 465522) (-2305 . 465368)
- (-2306 . 465298) (-2307 . 465091) (-2308 . 464914) (-2309 . 464705)
- (-2310 . 464528) (-2311 . 464494) (-2312 . 464460) (-2313 . 464429)
- (-2314 . 464311) (-2315 . 463998) (-2316 . 463720) (-2317 . 463599)
- (-2318 . 463472) (-2319 . 463387) (-2320 . 463314) (-2321 . 463225)
- (-2322 . 463154) (-2323 . 463098) (-2324 . 463042) (-2325 . 462986)
- (-2326 . 462916) (-2327 . 462846) (-2328 . 462776) (-2329 . 462678)
- (-2330 . 462600) (-2331 . 462522) (-2332 . 462379) (-2333 . 462300)
- (-2334 . 462228) (-2335 . 462025) (-2336 . 461969) (-2337 . 461781)
- (-2338 . 461682) (-2339 . 461564) (-2340 . 461443) (-2341 . 461300)
- (-2342 . 461157) (-2343 . 461017) (-2344 . 460877) (-2345 . 460734)
- (-2346 . 460608) (-2347 . 460479) (-2348 . 460356) (-2349 . 460233)
- (-2350 . 460128) (-2351 . 460023) (-2352 . 459921) (-2353 . 459771)
- (-2354 . 459618) (-2355 . 459465) (-2356 . 459321) (-2357 . 459167)
- (-2358 . 459091) (-2359 . 459012) (-2360 . 458859) (-2361 . 458780)
- (-2362 . 458701) (-2363 . 458622) (-2364 . 458520) (-2365 . 458461)
- (-2366 . 458399) (-2367 . 458282) (-2368 . 458156) (-2369 . 458079)
- (-2370 . 457947) (-2371 . 457641) (-2372 . 457458) (-2373 . 456913)
- (-2374 . 456693) (-2375 . 456519) (-2376 . 456349) (-2377 . 456276)
- (-2378 . 456200) (-2379 . 456121) (-2380 . 455824) (-2381 . 455662)
- (-2382 . 455428) (-2383 . 454986) (-2384 . 454856) (-2385 . 454716)
- (-2386 . 454407) (-2387 . 454105) (-2388 . 453789) (-2389 . 453383)
- (-2390 . 453315) (-2391 . 453247) (-2392 . 453179) (-2393 . 453085)
- (-2394 . 452978) (-2395 . 452871) (-2396 . 452770) (-2397 . 452669)
- (-2398 . 452568) (-2399 . 452491) (-2400 . 452098) (-2401 . 451681)
- (-2402 . 451054) (-2403 . 450990) (-2404 . 450871) (-2405 . 450752)
- (-2406 . 450644) (-2407 . 450536) (-2408 . 450380) (-2409 . 449780)
- (-2410 . 449497) (-2411 . 449418) (-2412 . 449364) (-2413 . 449196)
- (-2414 . 449074) (-2415 . 448678) (-2416 . 448442) (-2417 . 448241)
- (-2418 . 448033) (-2419 . 447840) (-2420 . 447573) (-2421 . 447394)
- (-2422 . 447325) (-2423 . 447249) (-2424 . 447108) (-2425 . 446905)
- (-2426 . 446761) (-2427 . 446511) (-2428 . 446203) (-2429 . 445847)
- (-2430 . 445688) (-2431 . 445482) (-2432 . 445322) (-2433 . 445249)
- (-2434 . 445215) (-2435 . 445150) (-2436 . 445113) (-2437 . 444976)
- (-2438 . 444738) (-2439 . 444668) (-2440 . 444482) (-2441 . 444233)
- (-2442 . 444077) (-2443 . 443554) (-2444 . 443357) (-2445 . 443145)
- (-2446 . 442983) (-2447 . 442584) (-2448 . 442417) (-2449 . 441342)
- (-2450 . 441219) (-2451 . 441002) (-2452 . 440872) (-2453 . 440742)
- (-2454 . 440585) (-2455 . 440482) (-2456 . 440424) (-2457 . 440366)
- (-2458 . 440260) (-2459 . 440154) (-2460 . 439238) (-2461 . 437111)
- (-2462 . 436297) (-2463 . 434494) (-2464 . 434426) (-2465 . 434358)
- (-2466 . 434290) (-2467 . 434222) (-2468 . 434154) (-2469 . 434076)
- (-2470 . 433720) (-2471 . 433538) (-2472 . 432999) (-2473 . 432823)
- (-2474 . 432602) (-2475 . 432381) (-2476 . 432160) (-2477 . 431942)
- (-2478 . 431724) (-2479 . 431506) (-2480 . 431288) (-2481 . 431070)
- (-2482 . 430852) (-2483 . 430751) (-2484 . 430018) (-2485 . 429963)
- (-2486 . 429908) (-2487 . 429853) (-2488 . 429798) (-2489 . 429648)
- (-2490 . 429400) (-2491 . 429239) (-2492 . 429059) (-2493 . 428772)
- (-2494 . 428386) (-2495 . 427514) (-2496 . 427174) (-2497 . 427006)
- (-2498 . 426784) (-2499 . 426534) (-2500 . 426186) (-2501 . 425176)
- (-2502 . 424865) (-2503 . 424653) (-2504 . 424089) (-2505 . 423576)
- (-2506 . 421820) (-2507 . 421348) (-2508 . 420749) (-2509 . 420499)
- (-2510 . 420365) (-2511 . 420153) (-2512 . 420077) (-2513 . 420001)
- (-2514 . 419894) (-2515 . 419712) (-2516 . 419547) (-2517 . 419369)
- (-2518 . 418788) (-2519 . 418627) (-2520 . 418054) (-2521 . 417984)
- (-2522 . 417909) (-2523 . 417837) (-2524 . 417699) (-2525 . 417512)
- (-2526 . 417405) (-2527 . 417298) (-2528 . 417183) (-2529 . 417068)
- (-2530 . 416953) (-2531 . 416675) (-2532 . 416525) (-2533 . 416382)
- (-2534 . 416309) (-2535 . 416224) (-2536 . 416151) (-2537 . 416078)
- (-2538 . 416005) (-2539 . 415862) (-2540 . 415712) (-2541 . 415538)
- (-2542 . 415388) (-2543 . 415238) (-2544 . 415112) (-2545 . 414726)
- (-2546 . 414442) (-2547 . 414158) (-2548 . 413749) (-2549 . 413465)
- (-2550 . 413392) (-2551 . 413245) (-2552 . 413139) (-2553 . 413065)
- (-2554 . 412995) (-2555 . 412916) (-2556 . 412839) (-2557 . 412762)
- (-2558 . 412613) (-2559 . 412510) (-2560 . 412452) (-2561 . 412388)
- (-2562 . 412324) (-2563 . 412227) (-2564 . 412130) (-2565 . 411970)
- (-2566 . 411884) (-2567 . 411798) (-2568 . 411713) (-2569 . 411654)
- (-2570 . 411595) (-2571 . 411536) (-2572 . 411477) (-2573 . 411307)
- (-2574 . 411219) (-2575 . 411122) (-2576 . 411088) (-2577 . 411057)
- (-2578 . 410973) (-2579 . 410917) (-2580 . 410855) (-2581 . 410821)
- (-2582 . 410787) (-2583 . 410753) (-2584 . 410719) (-2585 . 410685)
- (-2586 . 410651) (-2587 . 410617) (-2588 . 410583) (-2589 . 410549)
- (-2590 . 410437) (-2591 . 410403) (-2592 . 410352) (-2593 . 410318)
- (-2594 . 410221) (-2595 . 410159) (-2596 . 410068) (-2597 . 409977)
- (-2598 . 409922) (-2599 . 409870) (-2600 . 409818) (-2601 . 409766)
- (-2602 . 409714) (-2603 . 409291) (-2604 . 409125) (-2605 . 409072)
- (-2606 . 409003) (-2607 . 408950) (-2608 . 408648) (-2609 . 408492)
- (-2610 . 407971) (-2611 . 407830) (-2612 . 407796) (-2613 . 407741)
- (-2614 . 407031) (-2615 . 406716) (-2616 . 406212) (-2617 . 406134)
- (-2618 . 406082) (-2619 . 406030) (-2620 . 405846) (-2621 . 405794)
- (-2622 . 405742) (-2623 . 405666) (-2624 . 405604) (-2625 . 405386)
- (-2626 . 405319) (-2627 . 405225) (-2628 . 405131) (-2629 . 404948)
- (-2630 . 404866) (-2631 . 404744) (-2632 . 404598) (-2633 . 403947)
- (-2634 . 403245) (-2635 . 403141) (-2636 . 403040) (-2637 . 402939)
- (-2638 . 402828) (-2639 . 402660) (-2640 . 402456) (-2641 . 402363)
- (-2642 . 402286) (-2643 . 402230) (-2644 . 402160) (-2645 . 402040)
- (-2646 . 401939) (-2647 . 401842) (-2648 . 401762) (-2649 . 401682)
- (-2650 . 401605) (-2651 . 401535) (-2652 . 401465) (-2653 . 401395)
- (-2654 . 401325) (-2655 . 401255) (-2656 . 401185) (-2657 . 401092)
- (-2658 . 400964) (-2659 . 400722) (-2660 . 400552) (-2661 . 400183)
- (-2662 . 400014) (-2663 . 399898) (-2664 . 399402) (-2665 . 399021)
- (-2666 . 398775) (-2667 . 398683) (-2668 . 398586) (-2669 . 397924)
- (-2670 . 397811) (-2671 . 397737) (-2672 . 397645) (-2673 . 397455)
- (-2674 . 397265) (-2675 . 397194) (-2676 . 397123) (-2677 . 397042)
- (-2678 . 396961) (-2679 . 396836) (-2680 . 396703) (-2681 . 396622)
- (-2682 . 396548) (-2683 . 396383) (-2684 . 396226) (-2685 . 395998)
- (-2686 . 395850) (-2687 . 395746) (-2688 . 395642) (-2689 . 395557)
- (-2690 . 395189) (-2691 . 395108) (-2692 . 395021) (-2693 . 394940)
- (-2694 . 394744) (-2695 . 394524) (-2696 . 394337) (-2697 . 394015)
- (-2698 . 393722) (-2699 . 393429) (-2700 . 393119) (-2701 . 392802)
- (-2702 . 392650) (-2703 . 392462) (-2704 . 391989) (-2705 . 391907)
- (-2706 . 391691) (-2707 . 391475) (-2708 . 391216) (-2709 . 390795)
- (-2710 . 390282) (-2711 . 390152) (-2712 . 389878) (-2713 . 389699)
- (-2714 . 389584) (-2715 . 389480) (-2716 . 389425) (-2717 . 389348)
- (-2718 . 389278) (-2719 . 389205) (-2720 . 389150) (-2721 . 389077)
- (-2722 . 389022) (-2723 . 388667) (-2724 . 388259) (-2725 . 388106)
- (-2726 . 387953) (-2727 . 387872) (-2728 . 387719) (-2729 . 387566)
- (-2730 . 387431) (-2731 . 387296) (-2732 . 387161) (-2733 . 387026)
- (-2734 . 386891) (-2735 . 386756) (-2736 . 386700) (-2737 . 386547)
- (-2738 . 386436) (-2739 . 386325) (-2740 . 386240) (-2741 . 386130)
- (-2742 . 386027) (-2743 . 381876) (-2744 . 381428) (-2745 . 381001)
- (-2746 . 380384) (-2747 . 379783) (-2748 . 379565) (-2749 . 379387)
- (-2750 . 379128) (-2751 . 378717) (-2752 . 378423) (-2753 . 377980)
- (-2754 . 377802) (-2755 . 377409) (-2756 . 377016) (-2757 . 376831)
- (-2758 . 376624) (-2759 . 376404) (-2760 . 376098) (-2761 . 375899)
- (-2762 . 375270) (-2763 . 375113) (-2764 . 374724) (-2765 . 374673)
- (-2766 . 374624) (-2767 . 374573) (-2768 . 374525) (-2769 . 374473)
- (-2770 . 374327) (-2771 . 374275) (-2772 . 374129) (-2773 . 374077)
- (-2774 . 373931) (-2775 . 373880) (-2776 . 373505) (-2777 . 373454)
- (-2778 . 373405) (-2779 . 373354) (-2780 . 373306) (-2781 . 373254)
- (-2782 . 373205) (-2783 . 373153) (-2784 . 373104) (-2785 . 373052)
- (-2786 . 373003) (-2787 . 372937) (-2788 . 372819) (-2789 . 371657)
- (-2790 . 371240) (-2791 . 371132) (-2792 . 370890) (-2793 . 370740)
- (-2794 . 370590) (-2795 . 370429) (-2796 . 368222) (-2797 . 367961)
- (-2798 . 367807) (-2799 . 367661) (-2800 . 367515) (-2801 . 367296)
- (-2802 . 367164) (-2803 . 367089) (-2804 . 367014) (-2805 . 366879)
- (-2806 . 366750) (-2807 . 366621) (-2808 . 366495) (-2809 . 366369)
- (-2810 . 366243) (-2811 . 366117) (-2812 . 366014) (-2813 . 365914)
- (-2814 . 365820) (-2815 . 365690) (-2816 . 365539) (-2817 . 365163)
- (-2818 . 365049) (-2819 . 364808) (-2820 . 364350) (-2821 . 364040)
- (-2822 . 363473) (-2823 . 362904) (-2824 . 361894) (-2825 . 361352)
- (-2826 . 361039) (-2827 . 360701) (-2828 . 360370) (-2829 . 360050)
- (-2830 . 359997) (-2831 . 359870) (-2832 . 359368) (-2833 . 358225)
- (-2834 . 358170) (-2835 . 358115) (-2836 . 358039) (-2837 . 357920)
- (-2838 . 357845) (-2839 . 357770) (-2840 . 357692) (-2841 . 357469)
- (-2842 . 357410) (-2843 . 357351) (-2844 . 357248) (-2845 . 357145)
- (-2846 . 357042) (-2847 . 356939) (-2848 . 356858) (-2849 . 356784)
- (-2850 . 356569) (-2851 . 356335) (-2852 . 356301) (-2853 . 356267)
- (-2854 . 356239) (-2855 . 356211) (-2856 . 355994) (-2857 . 355716)
- (-2858 . 355566) (-2859 . 355436) (-2860 . 355306) (-2861 . 355206)
- (-2862 . 355029) (-2863 . 354869) (-2864 . 354769) (-2865 . 354592)
- (-2866 . 354432) (-2867 . 354273) (-2868 . 354134) (-2869 . 353984)
- (-2870 . 353854) (-2871 . 353724) (-2872 . 353577) (-2873 . 353450)
- (-2874 . 353347) (-2875 . 353240) (-2876 . 353143) (-2877 . 352978)
- (-2878 . 352830) (-2879 . 352415) (-2880 . 352315) (-2881 . 352212)
- (-2882 . 352124) (-2883 . 352044) (-2884 . 351894) (-2885 . 351764)
- (-2886 . 351712) (-2887 . 351639) (-2888 . 351564) (-2889 . 351406)
- (-2890 . 351294) (-2891 . 350982) (-2892 . 350805) (-2893 . 349207)
- (-2894 . 348579) (-2895 . 348519) (-2896 . 348401) (-2897 . 348283)
- (-2898 . 348139) (-2899 . 347987) (-2900 . 347828) (-2901 . 347669)
- (-2902 . 347463) (-2903 . 347276) (-2904 . 347124) (-2905 . 346969)
- (-2906 . 346814) (-2907 . 346662) (-2908 . 346525) (-2909 . 346102)
- (-2910 . 345976) (-2911 . 345850) (-2912 . 345724) (-2913 . 345584)
- (-2914 . 345443) (-2915 . 345302) (-2916 . 345158) (-2917 . 344410)
- (-2918 . 344252) (-2919 . 344066) (-2920 . 343911) (-2921 . 343673)
- (-2922 . 343428) (-2923 . 343183) (-2924 . 342973) (-2925 . 342836)
- (-2926 . 342626) (-2927 . 342489) (-2928 . 342279) (-2929 . 342142)
- (-2930 . 341932) (-2931 . 341629) (-2932 . 341485) (-2933 . 341344)
- (-2934 . 341121) (-2935 . 340980) (-2936 . 340758) (-2937 . 340561)
- (-2938 . 340405) (-2939 . 340078) (-2940 . 339919) (-2941 . 339760)
- (-2942 . 339601) (-2943 . 339430) (-2944 . 339259) (-2945 . 339085)
- (-2946 . 338733) (-2947 . 338610) (-2948 . 338448) (-2949 . 338375)
- (-2950 . 338302) (-2951 . 338229) (-2952 . 338156) (-2953 . 338083)
- (-2954 . 338010) (-2955 . 337887) (-2956 . 337714) (-2957 . 337591)
- (-2958 . 337505) (-2959 . 337439) (-2960 . 337373) (-2961 . 337307)
- (-2962 . 337241) (-2963 . 337175) (-2964 . 337109) (-2965 . 337043)
- (-2966 . 336977) (-2967 . 336911) (-2968 . 336845) (-2969 . 336779)
- (-2970 . 336713) (-2971 . 336647) (-2972 . 336581) (-2973 . 336515)
- (-2974 . 336449) (-2975 . 336383) (-2976 . 336317) (-2977 . 336251)
- (-2978 . 336185) (-2979 . 336119) (-2980 . 336053) (-2981 . 335987)
- (-2982 . 335921) (-2983 . 335855) (-2984 . 335789) (-2985 . 335142)
- (-2986 . 334495) (-2987 . 334367) (-2988 . 334244) (-2989 . 334121)
- (-2990 . 333980) (-2991 . 333826) (-2992 . 333682) (-2993 . 333507)
- (-2994 . 332897) (-2995 . 332773) (-2996 . 332649) (-2997 . 331971)
- (-2998 . 331274) (-2999 . 331173) (-3000 . 331117) (-3001 . 331061)
- (-3002 . 331005) (-3003 . 330949) (-3004 . 330890) (-3005 . 330826)
- (-3006 . 330718) (-3007 . 330610) (-3008 . 330502) (-3009 . 330223)
- (-3010 . 330149) (-3011 . 329923) (-3012 . 329842) (-3013 . 329764)
- (-3014 . 329686) (-3015 . 329608) (-3016 . 329529) (-3017 . 329451)
- (-3018 . 329358) (-3019 . 329259) (-3020 . 329191) (-3021 . 329142)
- (-3022 . 328451) (-3023 . 327811) (-3024 . 327020) (-3025 . 326939)
- (-3026 . 326835) (-3027 . 326744) (-3028 . 326653) (-3029 . 326579)
- (-3030 . 326505) (-3031 . 326431) (-3032 . 326376) (-3033 . 326321)
- (-3034 . 326255) (-3035 . 326189) (-3036 . 326127) (-3037 . 325852)
- (-3038 . 325360) (-3039 . 324902) (-3040 . 324649) (-3041 . 324461)
- (-3042 . 324120) (-3043 . 323824) (-3044 . 323656) (-3045 . 323525)
- (-3046 . 323385) (-3047 . 323230) (-3048 . 323061) (-3049 . 321675)
- (-3050 . 321542) (-3051 . 321401) (-3052 . 321172) (-3053 . 321113)
- (-3054 . 321057) (-3055 . 321001) (-3056 . 320736) (-3057 . 320524)
- (-3058 . 320385) (-3059 . 320278) (-3060 . 320161) (-3061 . 320095)
- (-3062 . 320022) (-3063 . 319908) (-3064 . 319655) (-3065 . 319555)
- (-3066 . 319361) (-3067 . 319053) (-3068 . 318587) (-3069 . 318482)
- (-3070 . 318376) (-3071 . 318227) (-3072 . 318087) (-3073 . 317675)
- (-3074 . 317431) (-3075 . 316773) (-3076 . 316620) (-3077 . 316506)
- (-3078 . 316396) (-3079 . 315576) (-3080 . 315382) (-3081 . 314356)
- (-3082 . 313908) (-3083 . 312519) (-3084 . 311668) (-3085 . 311619)
- (-3086 . 311570) (-3087 . 311521) (-3088 . 311454) (-3089 . 311379)
- (-3090 . 311189) (-3091 . 311117) (-3092 . 311042) (-3093 . 310970)
- (-3094 . 310853) (-3095 . 310802) (-3096 . 310723) (-3097 . 310644)
- (-3098 . 310565) (-3099 . 310514) (-3100 . 310270) (-3101 . 309968)
- (-3102 . 309886) (-3103 . 309804) (-3104 . 309743) (-3105 . 309354)
- (-3106 . 308482) (-3107 . 307909) (-3108 . 306674) (-3109 . 305867)
- (-3110 . 305617) (-3111 . 305367) (-3112 . 304942) (-3113 . 304698)
- (-3114 . 304454) (-3115 . 304210) (-3116 . 303966) (-3117 . 303722)
- (-3118 . 303478) (-3119 . 303236) (-3120 . 302994) (-3121 . 302752)
- (-3122 . 302510) (-3123 . 301932) (-3124 . 301816) (-3125 . 301762)
- (-3126 . 300920) (-3127 . 300889) (-3128 . 300544) (-3129 . 300318)
- (-3130 . 300219) (-3131 . 300120) (-3132 . 298354) (-3133 . 298242)
- (-3134 . 297192) (-3135 . 297100) (-3136 . 296178) (-3137 . 295845)
- (-3138 . 295512) (-3139 . 295409) (-3140 . 295298) (-3141 . 295187)
- (-3142 . 295076) (-3143 . 294965) (-3144 . 293878) (-3145 . 293758)
- (-3146 . 293623) (-3147 . 293491) (-3148 . 293359) (-3149 . 293065)
- (-3150 . 292771) (-3151 . 292426) (-3152 . 292200) (-3153 . 291974)
- (-3154 . 291863) (-3155 . 291752) (-3156 . 290290) (-3157 . 288586)
- (-3158 . 288277) (-3159 . 288125) (-3160 . 287602) (-3161 . 287273)
- (-3162 . 287080) (-3163 . 286887) (-3164 . 286694) (-3165 . 286501)
- (-3166 . 286388) (-3167 . 286265) (-3168 . 286151) (-3169 . 286037)
- (-3170 . 285944) (-3171 . 285851) (-3172 . 285741) (-3173 . 285540)
- (-3174 . 284396) (-3175 . 284303) (-3176 . 284189) (-3177 . 284096)
- (-3178 . 283849) (-3179 . 283738) (-3180 . 283524) (-3181 . 283406)
- (-3182 . 283109) (-3183 . 282381) (-3184 . 281805) (-3185 . 281327)
- (-3186 . 281083) (-3187 . 280839) (-3188 . 280496) (-3189 . 279890)
- (-3190 . 279447) (-3191 . 279292) (-3192 . 279148) (-3193 . 278828)
- (-3194 . 278673) (-3195 . 278533) (-3196 . 278393) (-3197 . 278253)
- (-3198 . 277978) (-3199 . 277759) (-3200 . 277240) (-3201 . 277028)
- (-3202 . 276816) (-3203 . 276436) (-3204 . 276262) (-3205 . 276053)
- (-3206 . 275745) (-3207 . 275553) (-3208 . 275380) (-3209 . 274244)
- (-3210 . 273879) (-3211 . 273679) (-3212 . 273479) (-3213 . 272643)
- (-3214 . 272615) (-3215 . 272547) (-3216 . 272477) (-3217 . 272313)
- (-3218 . 272285) (-3219 . 272257) (-3220 . 272203) (-3221 . 272053)
- (-3222 . 271994) (-3223 . 271301) (-3224 . 269916) (-3225 . 269855)
- (-3226 . 269531) (-3227 . 269459) (-3228 . 269402) (-3229 . 269345)
- (-3230 . 269288) (-3231 . 269231) (-3232 . 269156) (-3233 . 268566)
- (-3234 . 268206) (-3235 . 268132) (-3236 . 268072) (-3237 . 267954)
- (-3238 . 267011) (-3239 . 266884) (-3240 . 266671) (-3241 . 266597)
- (-3242 . 266543) (-3243 . 266489) (-3244 . 266380) (-3245 . 265981)
- (-3246 . 265873) (-3247 . 265770) (-3248 . 265609) (-3249 . 265508)
- (-3250 . 265410) (-3251 . 265272) (-3252 . 265134) (-3253 . 264996)
- (-3254 . 264734) (-3255 . 264525) (-3256 . 264387) (-3257 . 264096)
- (-3258 . 263944) (-3259 . 263669) (-3260 . 263449) (-3261 . 263297)
- (-3262 . 263145) (-3263 . 262993) (-3264 . 262841) (-3265 . 262689)
- (-3266 . 262482) (-3267 . 262095) (-3268 . 261764) (-3269 . 261425)
- (-3270 . 261078) (-3271 . 260739) (-3272 . 260400) (-3273 . 260019)
- (-3274 . 259638) (-3275 . 259257) (-3276 . 258892) (-3277 . 258174)
- (-3278 . 257827) (-3279 . 257382) (-3280 . 256957) (-3281 . 256346)
- (-3282 . 255754) (-3283 . 255367) (-3284 . 255036) (-3285 . 254649)
- (-3286 . 254318) (-3287 . 254098) (-3288 . 253577) (-3289 . 253364)
- (-3290 . 253151) (-3291 . 252938) (-3292 . 252760) (-3293 . 252547)
- (-3294 . 252369) (-3295 . 251987) (-3296 . 251809) (-3297 . 251599)
- (-3298 . 251509) (-3299 . 251419) (-3300 . 251328) (-3301 . 251216)
- (-3302 . 251126) (-3303 . 251019) (-3304 . 250830) (-3305 . 250774)
- (-3306 . 250693) (-3307 . 250612) (-3308 . 250531) (-3309 . 250454)
- (-3310 . 250319) (-3311 . 250184) (-3312 . 250060) (-3313 . 249939)
- (-3314 . 249821) (-3315 . 249685) (-3316 . 249552) (-3317 . 249433)
- (-3318 . 249175) (-3319 . 248890) (-3320 . 248818) (-3321 . 248722)
- (-3322 . 248581) (-3323 . 248524) (-3324 . 248467) (-3325 . 248407)
- (-3326 . 248012) (-3327 . 247490) (-3328 . 247213) (-3329 . 246793)
- (-3330 . 246681) (-3331 . 246243) (-3332 . 246013) (-3333 . 245810)
- (-3334 . 245628) (-3335 . 245498) (-3336 . 245292) (-3337 . 245085)
- (-3338 . 244895) (-3339 . 244330) (-3340 . 244074) (-3341 . 243783)
- (-3342 . 243489) (-3343 . 243192) (-3344 . 242892) (-3345 . 242762)
- (-3346 . 242629) (-3347 . 242493) (-3348 . 242354) (-3349 . 241137)
- (-3350 . 240829) (-3351 . 240465) (-3352 . 240368) (-3353 . 240128)
- (-3354 . 239835) (-3355 . 239542) (-3356 . 239283) (-3357 . 239109)
- (-3358 . 239031) (-3359 . 238944) (-3360 . 238844) (-3361 . 238750)
- (-3362 . 238669) (-3363 . 238599) (-3364 . 237808) (-3365 . 237738)
- (-3366 . 237410) (-3367 . 237340) (-3368 . 237012) (-3369 . 236942)
- (-3370 . 236497) (-3371 . 236427) (-3372 . 236323) (-3373 . 236249)
- (-3374 . 236175) (-3375 . 236104) (-3376 . 235762) (-3377 . 235634)
- (-3378 . 235557) (-3379 . 235326) (-3380 . 235183) (-3381 . 235040)
- (-3382 . 234701) (-3383 . 234371) (-3384 . 234158) (-3385 . 233903)
- (-3386 . 233553) (-3387 . 233328) (-3388 . 233103) (-3389 . 232878)
- (-3390 . 232653) (-3391 . 232440) (-3392 . 232227) (-3393 . 232077)
- (-3394 . 231896) (-3395 . 231791) (-3396 . 231669) (-3397 . 231561)
- (-3398 . 231453) (-3399 . 231128) (-3400 . 230864) (-3401 . 230553)
- (-3402 . 230251) (-3403 . 229942) (-3404 . 229213) (-3405 . 228624)
- (-3406 . 228449) (-3407 . 228305) (-3408 . 228150) (-3409 . 228027)
- (-3410 . 227922) (-3411 . 227807) (-3412 . 227712) (-3413 . 227231)
- (-3414 . 227121) (-3415 . 227011) (-3416 . 226901) (-3417 . 225829)
- (-3418 . 225318) (-3419 . 225251) (-3420 . 225178) (-3421 . 224305)
- (-3422 . 224232) (-3423 . 224177) (-3424 . 224122) (-3425 . 224090)
- (-3426 . 224004) (-3427 . 223972) (-3428 . 223886) (-3429 . 223466)
- (-3430 . 223046) (-3431 . 222494) (-3432 . 221390) (-3433 . 219680)
- (-3434 . 218130) (-3435 . 217338) (-3436 . 216838) (-3437 . 216352)
- (-3438 . 215950) (-3439 . 215300) (-3440 . 215225) (-3441 . 215134)
- (-3442 . 215063) (-3443 . 214992) (-3444 . 214936) (-3445 . 214816)
- (-3446 . 214762) (-3447 . 214701) (-3448 . 214647) (-3449 . 214544)
- (-3450 . 214104) (-3451 . 213664) (-3452 . 213224) (-3453 . 212702)
- (-3454 . 212541) (-3455 . 212380) (-3456 . 212069) (-3457 . 211983)
- (-3458 . 211893) (-3459 . 211535) (-3460 . 211418) (-3461 . 211337)
- (-3462 . 211179) (-3463 . 211066) (-3464 . 210991) (-3465 . 210145)
- (-3466 . 208963) (-3467 . 208864) (-3468 . 208765) (-3469 . 208436)
- (-3470 . 208358) (-3471 . 208283) (-3472 . 208177) (-3473 . 208021)
- (-3474 . 207914) (-3475 . 207779) (-3476 . 207644) (-3477 . 207522)
- (-3478 . 207427) (-3479 . 207279) (-3480 . 207184) (-3481 . 207029)
- (-3482 . 206874) (-3483 . 206322) (-3484 . 205770) (-3485 . 205155)
- (-3486 . 204603) (-3487 . 204051) (-3488 . 203499) (-3489 . 202946)
- (-3490 . 202393) (-3491 . 201840) (-3492 . 201287) (-3493 . 200734)
- (-3494 . 200181) (-3495 . 199629) (-3496 . 199077) (-3497 . 198525)
- (-3498 . 197973) (-3499 . 197421) (-3500 . 196869) (-3501 . 196765)
- (-3502 . 196180) (-3503 . 196075) (-3504 . 196000) (-3505 . 195858)
- (-3506 . 195766) (-3507 . 195675) (-3508 . 195583) (-3509 . 195488)
- (-3510 . 195383) (-3511 . 195260) (-3512 . 195138) (-3513 . 194774)
- (-3514 . 194652) (-3515 . 194554) (-3516 . 194193) (-3517 . 193664)
- (-3518 . 193589) (-3519 . 193514) (-3520 . 193422) (-3521 . 193241)
- (-3522 . 193146) (-3523 . 193071) (-3524 . 192980) (-3525 . 192889)
- (-3526 . 192730) (-3527 . 192181) (-3528 . 191632) (-3529 . 188925)
- (-3530 . 188753) (-3531 . 187343) (-3532 . 186783) (-3533 . 186668)
- (-3534 . 186296) (-3535 . 186233) (-3536 . 186170) (-3537 . 186107)
- (-3538 . 185829) (-3539 . 185562) (-3540 . 185510) (-3541 . 184869)
- (-3542 . 184818) (-3543 . 184630) (-3544 . 184557) (-3545 . 184477)
- (-3546 . 184364) (-3547 . 184174) (-3548 . 183810) (-3549 . 183538)
- (-3550 . 183487) (-3551 . 183436) (-3552 . 183366) (-3553 . 183247)
- (-3554 . 183218) (-3555 . 183114) (-3556 . 182992) (-3557 . 182938)
- (-3558 . 182761) (-3559 . 182700) (-3560 . 182519) (-3561 . 182458)
- (-3562 . 182386) (-3563 . 181911) (-3564 . 181537) (-3565 . 178005)
- (-3566 . 177953) (-3567 . 177825) (-3568 . 177675) (-3569 . 177623)
- (-3570 . 177482) (-3571 . 175424) (-3572 . 167781) (-3573 . 167630)
- (-3574 . 167560) (-3575 . 167509) (-3576 . 167459) (-3577 . 167408)
- (-3578 . 167357) (-3579 . 167161) (-3580 . 167019) (-3581 . 166905)
- (-3582 . 166784) (-3583 . 166666) (-3584 . 166554) (-3585 . 166436)
- (-3586 . 166331) (-3587 . 166250) (-3588 . 166146) (-3589 . 165212)
- (-3590 . 164992) (-3591 . 164755) (-3592 . 164673) (-3593 . 164329)
- (-3594 . 163190) (-3595 . 163116) (-3596 . 163021) (-3597 . 162947)
- (-3598 . 162743) (-3599 . 162652) (-3600 . 162536) (-3601 . 162423)
- (-3602 . 162332) (-3603 . 162241) (-3604 . 162152) (-3605 . 162063)
- (-3606 . 161974) (-3607 . 161886) (-3608 . 161398) (-3609 . 161334)
- (-3610 . 161270) (-3611 . 161206) (-3612 . 161145) (-3613 . 160405)
- (-3614 . 160344) (-3615 . 160283) (-3616 . 159657) (-3617 . 159605)
- (-3618 . 159477) (-3619 . 159413) (-3620 . 159359) (-3621 . 159250)
- (-3622 . 157953) (-3623 . 157872) (-3624 . 157783) (-3625 . 157725)
- (-3626 . 157585) (-3627 . 157500) (-3628 . 157426) (-3629 . 157341)
- (-3630 . 157284) (-3631 . 157068) (-3632 . 156929) (-3633 . 156322)
- (-3634 . 155768) (-3635 . 155214) (-3636 . 154660) (-3637 . 154053)
- (-3638 . 153499) (-3639 . 152939) (-3640 . 152379) (-3641 . 152117)
- (-3642 . 151678) (-3643 . 151345) (-3644 . 151006) (-3645 . 150701)
- (-3646 . 150568) (-3647 . 150435) (-3648 . 150047) (-3649 . 149954)
- (-3650 . 149861) (-3651 . 149768) (-3652 . 149675) (-3653 . 149582)
- (-3654 . 149489) (-3655 . 149396) (-3656 . 149303) (-3657 . 149210)
- (-3658 . 149117) (-3659 . 149024) (-3660 . 148931) (-3661 . 148838)
- (-3662 . 148745) (-3663 . 148652) (-3664 . 148559) (-3665 . 148466)
- (-3666 . 148373) (-3667 . 148280) (-3668 . 148187) (-3669 . 148094)
- (-3670 . 148001) (-3671 . 147908) (-3672 . 147815) (-3673 . 147722)
- (-3674 . 147537) (-3675 . 147227) (-3676 . 145599) (-3677 . 145445)
- (-3678 . 145308) (-3679 . 145166) (-3680 . 144964) (-3681 . 143037)
- (-3682 . 142910) (-3683 . 142786) (-3684 . 142659) (-3685 . 142438)
- (-3686 . 142217) (-3687 . 142090) (-3688 . 141889) (-3689 . 141713)
- (-3690 . 141196) (-3691 . 140679) (-3692 . 140402) (-3693 . 139993)
- (-3694 . 139476) (-3695 . 139292) (-3696 . 139150) (-3697 . 138655)
- (-3698 . 138024) (-3699 . 137968) (-3700 . 137874) (-3701 . 137755)
- (-3702 . 137685) (-3703 . 137612) (-3704 . 137382) (-3705 . 136763)
- (-3706 . 136333) (-3707 . 136251) (-3708 . 136109) (-3709 . 135635)
- (-3710 . 135513) (-3711 . 135391) (-3712 . 135251) (-3713 . 135064)
- (-3714 . 134948) (-3715 . 134668) (-3716 . 134600) (-3717 . 134402)
- (-3718 . 134222) (-3719 . 134067) (-3720 . 133960) (-3721 . 133909)
- (-3722 . 133532) (-3723 . 133004) (-3724 . 132782) (-3725 . 132560)
- (-3726 . 132321) (-3727 . 132231) (-3728 . 130489) (-3729 . 129907)
- (-3730 . 129829) (-3731 . 124369) (-3732 . 123579) (-3733 . 123202)
- (-3734 . 123131) (-3735 . 122866) (-3736 . 122691) (-3737 . 122206)
- (-3738 . 121784) (-3739 . 121344) (-3740 . 120481) (-3741 . 120357)
- (-3742 . 120230) (-3743 . 120121) (-3744 . 119969) (-3745 . 119855)
- (-3746 . 119716) (-3747 . 119635) (-3748 . 119554) (-3749 . 119450)
- (-3750 . 119032) (-3751 . 118611) (-3752 . 118537) (-3753 . 118274)
- (-3754 . 118010) (-3755 . 117631) (-3756 . 116932) (-3757 . 115889)
- (-3758 . 115830) (-3759 . 115756) (-3760 . 115682) (-3761 . 115560)
- (-3762 . 115310) (-3763 . 115224) (-3764 . 115149) (-3765 . 115074)
- (-3766 . 114979) (-3767 . 111204) (-3768 . 110034) (-3769 . 109374)
- (-3770 . 109190) (-3771 . 106985) (-3772 . 106660) (-3773 . 106178)
- (-3774 . 105737) (-3775 . 105502) (-3776 . 105257) (-3777 . 105167)
- (-3778 . 103732) (-3779 . 103654) (-3780 . 103549) (-3781 . 102073)
- (-3782 . 101668) (-3783 . 101267) (-3784 . 101165) (-3785 . 101083)
- (-3786 . 100925) (-3787 . 99771) (-3788 . 99689) (-3789 . 99610)
- (-3790 . 99255) (-3791 . 99198) (-3792 . 99126) (-3793 . 99069)
- (-3794 . 99012) (-3795 . 98882) (-3796 . 98680) (-3797 . 98312)
- (-3798 . 97891) (-3799 . 94081) (-3800 . 93479) (-3801 . 93012)
- (-3802 . 92799) (-3803 . 92586) (-3804 . 92420) (-3805 . 92207)
- (-3806 . 92041) (-3807 . 91875) (-3808 . 91709) (-3809 . 91543)
- (-3810 . 91273) (-3811 . 85859) (** . 82906) (-3813 . 82490) (-3814 . 82249)
- (-3815 . 82193) (-3816 . 81701) (-3817 . 78893) (-3818 . 78743)
- (-3819 . 78579) (-3820 . 78415) (-3821 . 78319) (-3822 . 78201)
- (-3823 . 78077) (-3824 . 77934) (-3825 . 77763) (-3826 . 77637)
- (-3827 . 77493) (-3828 . 77341) (-3829 . 77182) (-3830 . 76669)
- (-3831 . 76580) (-3832 . 75915) (-3833 . 75723) (-3834 . 75628)
- (-3835 . 75320) (-3836 . 74148) (-3837 . 73942) (-3838 . 72767)
- (-3839 . 72692) (-3840 . 71511) (-3841 . 67930) (-3842 . 67566)
- (-3843 . 67289) (-3844 . 67197) (-3845 . 67104) (-3846 . 66827)
- (-3847 . 66734) (-3848 . 66641) (-3849 . 66548) (-3850 . 66164)
- (-3851 . 66093) (-3852 . 66001) (-3853 . 65843) (-3854 . 65489)
- (-3855 . 65331) (-3856 . 65223) (-3857 . 65194) (-3858 . 65127)
- (-3859 . 64973) (-3860 . 64815) (-3861 . 64421) (-3862 . 64346)
- (-3863 . 64240) (-3864 . 64168) (-3865 . 64090) (-3866 . 64017)
- (-3867 . 63944) (-3868 . 63871) (-3869 . 63799) (-3870 . 63727)
- (-3871 . 63654) (-3872 . 63413) (-3873 . 63073) (-3874 . 62925)
- (-3875 . 62852) (-3876 . 62779) (-3877 . 62706) (-3878 . 62452)
- (-3879 . 62308) (-3880 . 60972) (-3881 . 60778) (-3882 . 60507)
- (-3883 . 60359) (-3884 . 60211) (-3885 . 59971) (-3886 . 59777)
- (-3887 . 59509) (-3888 . 59313) (-3889 . 59284) (-3890 . 59183)
- (-3891 . 59082) (-3892 . 58981) (-3893 . 58880) (-3894 . 58779)
- (-3895 . 58678) (-3896 . 58577) (-3897 . 58476) (-3898 . 58375)
- (-3899 . 58274) (-3900 . 58159) (-3901 . 58044) (-3902 . 57993)
- (-3903 . 57876) (-3904 . 57818) (-3905 . 57717) (-3906 . 57616)
- (-3907 . 57515) (-3908 . 57399) (-3909 . 57370) (-3910 . 56639)
- (-3911 . 56514) (-3912 . 56389) (-3913 . 56249) (-3914 . 56131)
- (-3915 . 56006) (-3916 . 55851) (-3917 . 54868) (-3918 . 54009)
- (-3919 . 53955) (-3920 . 53901) (-3921 . 53693) (-3922 . 53321)
- (-3923 . 52910) (-3924 . 52552) (-3925 . 52194) (-3926 . 52042)
- (-3927 . 51740) (-3928 . 51584) (-3929 . 51258) (-3930 . 51188)
- (-3931 . 51118) (-3932 . 50909) (-3933 . 50300) (-3934 . 50096)
- (-3935 . 49723) (-3936 . 49214) (-3937 . 48949) (-3938 . 48468)
- (-3939 . 47987) (-3940 . 47862) (-3941 . 46762) (-3942 . 45686)
- (-3943 . 45113) (-3944 . 44895) (-3945 . 36569) (-3946 . 36384)
- (-3947 . 34301) (-3948 . 32133) (-3949 . 31987) (-3950 . 31809)
- (-3951 . 31402) (-3952 . 31107) (-3953 . 30759) (-3954 . 30593)
- (-3955 . 30427) (-3956 . 29945) (-3957 . 16071) (-3958 . 14964) (* . 10917)
- (-3960 . 10663) (-3961 . 10479) (-3962 . 9522) (-3963 . 9469) (-3964 . 9409)
- (-3965 . 9140) (-3966 . 8513) (-3967 . 7240) (-3968 . 5996) (-3969 . 5127)
- (-3970 . 3864) (-3971 . 420) (-3972 . 306) (-3973 . 173) (-3974 . 30)) \ No newline at end of file
+((-1214 . 631398) (-1215 . 631002) (-1216 . 630700) (-1217 . 630304)
+ (-1218 . 630183) (-1219 . 630081) (-1220 . 629968) (-1221 . 629852)
+ (-1222 . 629799) (-1223 . 629665) (-1224 . 629590) (-1225 . 629434)
+ (-1226 . 629206) (-1227 . 628242) (-1228 . 627995) (-1229 . 627711)
+ (-1230 . 627427) (-1231 . 627143) (-1232 . 626824) (-1233 . 626732)
+ (-1234 . 626640) (-1235 . 626548) (-1236 . 626456) (-1237 . 626364)
+ (-1238 . 626272) (-1239 . 626177) (-1240 . 626082) (-1241 . 625990)
+ (-1242 . 625898) (-1243 . 625806) (-1244 . 625714) (-1245 . 625622)
+ (-1246 . 625520) (-1247 . 625418) (-1248 . 625316) (-1249 . 625224)
+ (-1250 . 625173) (-1251 . 625121) (-1252 . 625051) (-1253 . 624631)
+ (-1254 . 624437) (-1255 . 624410) (-1256 . 624287) (-1257 . 624164)
+ (-1258 . 624020) (-1259 . 623850) (-1260 . 623726) (-1261 . 623487)
+ (-1262 . 623414) (-1263 . 623189) (-1264 . 622943) (-1265 . 622890)
+ (-1266 . 622712) (-1267 . 622543) (-1268 . 622467) (-1269 . 622394)
+ (-1270 . 622241) (-1271 . 622088) (-1272 . 621904) (-1273 . 621723)
+ (-1274 . 621668) (-1275 . 621613) (-1276 . 621540) (-1277 . 621464)
+ (-1278 . 621387) (-1279 . 621319) (-1280 . 621176) (-1281 . 621069)
+ (-1282 . 621001) (-1283 . 620931) (-1284 . 620861) (-1285 . 620811)
+ (-1286 . 620761) (-1287 . 620711) (-1288 . 620590) (-1289 . 620274)
+ (-1290 . 620205) (-1291 . 620126) (-1292 . 620007) (-1293 . 619927)
+ (-1294 . 619847) (-1295 . 619694) (-1296 . 619545) (-1297 . 619469)
+ (-1298 . 619412) (-1299 . 619340) (-1300 . 619277) (-1301 . 619214)
+ (-1302 . 619153) (-1303 . 619081) (-1304 . 618965) (-1305 . 618913)
+ (-1306 . 618858) (-1307 . 618806) (-1308 . 618754) (-1309 . 618726)
+ (-1310 . 618698) (-1311 . 618670) (-1312 . 618626) (-1313 . 618555)
+ (-1314 . 618504) (-1315 . 618456) (-1316 . 618405) (-1317 . 618353)
+ (-1318 . 618237) (-1319 . 618121) (-1320 . 618029) (-1321 . 617937)
+ (-1322 . 617814) (-1323 . 617748) (-1324 . 617682) (-1325 . 617623)
+ (-1326 . 617595) (-1327 . 617567) (-1328 . 617539) (-1329 . 617511)
+ (-1330 . 617401) (-1331 . 617350) (-1332 . 617299) (-1333 . 617248)
+ (-1334 . 617197) (-1335 . 617146) (-1336 . 617095) (-1337 . 617067)
+ (-1338 . 617039) (-1339 . 617011) (-1340 . 616983) (-1341 . 616955)
+ (-1342 . 616927) (-1343 . 616899) (-1344 . 616871) (-1345 . 616843)
+ (-1346 . 616740) (-1347 . 616688) (-1348 . 616522) (-1349 . 616338)
+ (-1350 . 616127) (-1351 . 616012) (-1352 . 615779) (-1353 . 615680)
+ (-1354 . 615587) (-1355 . 615472) (-1356 . 615074) (-1357 . 614856)
+ (-1358 . 614807) (-1359 . 614779) (-1360 . 614703) (-1361 . 614604)
+ (-1362 . 614505) (-1363 . 614406) (-1364 . 614307) (-1365 . 614208)
+ (-1366 . 614109) (-1367 . 613951) (-1368 . 613875) (-1369 . 613708)
+ (-1370 . 613650) (-1371 . 613592) (-1372 . 613283) (-1373 . 613029)
+ (-1374 . 612945) (-1375 . 612813) (-1376 . 612755) (-1377 . 612703)
+ (-1378 . 612621) (-1379 . 612546) (-1380 . 612475) (-1381 . 612421)
+ (-1382 . 612370) (-1383 . 612296) (-1384 . 612222) (-1385 . 612141)
+ (-1386 . 612060) (-1387 . 612005) (-1388 . 611931) (-1389 . 611857)
+ (-1390 . 611783) (-1391 . 611706) (-1392 . 611652) (-1393 . 611594)
+ (-1394 . 611495) (-1395 . 611396) (-1396 . 611297) (-1397 . 611198)
+ (-1398 . 611099) (-1399 . 611000) (-1400 . 610901) (-1401 . 610787)
+ (-1402 . 610673) (-1403 . 610559) (-1404 . 610445) (-1405 . 610331)
+ (-1406 . 610217) (-1407 . 610100) (-1408 . 610024) (-1409 . 609948)
+ (-1410 . 609561) (-1411 . 609216) (-1412 . 609114) (-1413 . 608853)
+ (-1414 . 608751) (-1415 . 608546) (-1416 . 608433) (-1417 . 608331)
+ (-1418 . 608174) (-1419 . 608085) (-1420 . 607991) (-1421 . 607911)
+ (-1422 . 607837) (-1423 . 607759) (-1424 . 607700) (-1425 . 607642)
+ (-1426 . 607540) (-7 . 607512) (-8 . 607484) (-9 . 607456) (-1430 . 607337)
+ (-1431 . 607255) (-1432 . 607173) (-1433 . 607091) (-1434 . 607009)
+ (-1435 . 606927) (-1436 . 606833) (-1437 . 606763) (-1438 . 606693)
+ (-1439 . 606602) (-1440 . 606508) (-1441 . 606426) (-1442 . 606344)
+ (-1443 . 606246) (-1444 . 606086) (-1445 . 605888) (-1446 . 605752)
+ (-1447 . 605652) (-1448 . 605552) (-1449 . 605459) (-1450 . 605400)
+ (-1451 . 605067) (-1452 . 604967) (-1453 . 604849) (-1454 . 604637)
+ (-1455 . 604458) (-1456 . 604300) (-1457 . 604097) (-1458 . 603679)
+ (-1459 . 603628) (-1460 . 603519) (-1461 . 603404) (-1462 . 603335)
+ (-1463 . 603266) (-1464 . 603197) (-1465 . 603131) (-1466 . 603006)
+ (-1467 . 602789) (-1468 . 602711) (-1469 . 602661) (-1470 . 602590)
+ (-1471 . 602447) (-1472 . 602306) (-1473 . 602225) (-1474 . 602144)
+ (-1475 . 602088) (-1476 . 602032) (-1477 . 601959) (-1478 . 601819)
+ (-1479 . 601766) (-1480 . 601707) (-1481 . 601648) (-1482 . 601493)
+ (-1483 . 601441) (-1484 . 601324) (-1485 . 601207) (-1486 . 601090)
+ (-1487 . 600959) (-1488 . 600680) (-1489 . 600545) (-1490 . 600489)
+ (-1491 . 600433) (-1492 . 600374) (-1493 . 600315) (-1494 . 600259)
+ (-1495 . 600203) (-1496 . 600006) (-1497 . 597664) (-1498 . 597537)
+ (-1499 . 597392) (-1500 . 597264) (-1501 . 597212) (-1502 . 597160)
+ (-1503 . 597108) (-1504 . 593070) (-1505 . 592976) (-1506 . 592837)
+ (-1507 . 592628) (-1508 . 592526) (-1509 . 592424) (-1510 . 591509)
+ (-1511 . 591433) (-1512 . 591304) (-1513 . 591179) (-1514 . 591102)
+ (-1515 . 591025) (-1516 . 590898) (-1517 . 590771) (-1518 . 590605)
+ (-1519 . 590478) (-1520 . 590351) (-1521 . 590134) (-1522 . 589700)
+ (-1523 . 589336) (-1524 . 589284) (-1525 . 589225) (-1526 . 589137)
+ (-1527 . 589049) (-1528 . 588958) (-1529 . 588867) (-1530 . 588776)
+ (-1531 . 588685) (-1532 . 588594) (-1533 . 588503) (-1534 . 588412)
+ (-1535 . 588321) (-1536 . 588230) (-1537 . 588139) (-1538 . 588048)
+ (-1539 . 587957) (-1540 . 587866) (-1541 . 587775) (-1542 . 587684)
+ (-1543 . 587593) (-1544 . 587502) (-1545 . 587411) (-1546 . 587320)
+ (-1547 . 587229) (-1548 . 587138) (-1549 . 587047) (-1550 . 586956)
+ (-1551 . 586865) (-1552 . 586774) (-1553 . 586683) (-1554 . 586521)
+ (-1555 . 586413) (-1556 . 586170) (-1557 . 585883) (-1558 . 585688)
+ (-1559 . 585532) (-1560 . 585372) (-1561 . 585321) (-1562 . 585259)
+ (-1563 . 585208) (-1564 . 585145) (-1565 . 585092) (-1566 . 585040)
+ (-1567 . 584988) (-1568 . 584936) (-1569 . 584846) (-1570 . 584659)
+ (-1571 . 584505) (-1572 . 584425) (-1573 . 584345) (-1574 . 584265)
+ (-1575 . 584135) (-1576 . 583903) (-1577 . 583875) (-1578 . 583847)
+ (-1579 . 583819) (-1580 . 583739) (-1581 . 583662) (-1582 . 583585)
+ (-1583 . 583504) (-1584 . 583445) (-1585 . 583287) (-1586 . 583094)
+ (-1587 . 582609) (-1588 . 582367) (-1589 . 582105) (-1590 . 582004)
+ (-1591 . 581923) (-1592 . 581842) (-1593 . 581772) (-1594 . 581702)
+ (-1595 . 581544) (-1596 . 581240) (-1597 . 581012) (-1598 . 580890)
+ (-1599 . 580832) (-1600 . 580770) (-1601 . 580708) (-1602 . 580643)
+ (-1603 . 580581) (-1604 . 580302) (-1605 . 580234) (-1606 . 580024)
+ (-1607 . 579972) (-1608 . 579918) (-1609 . 579827) (-1610 . 579740)
+ (-1611 . 577993) (-1612 . 577914) (-1613 . 577169) (-1614 . 577052)
+ (-1615 . 576846) (-1616 . 576685) (-1617 . 576524) (-1618 . 576364)
+ (-1619 . 576226) (-1620 . 576132) (-1621 . 576034) (-1622 . 575940)
+ (-1623 . 575826) (-1624 . 575744) (-1625 . 575647) (-1626 . 575451)
+ (-1627 . 575360) (-1628 . 575266) (-1629 . 575199) (-1630 . 575130)
+ (-1631 . 575078) (-1632 . 575019) (-1633 . 574945) (-1634 . 574893)
+ (-1635 . 574736) (-1636 . 574579) (-1637 . 574427) (-1638 . 573669)
+ (-1639 . 573358) (-1640 . 573006) (-1641 . 572789) (-1642 . 572526)
+ (-1643 . 572151) (-1644 . 571967) (-1645 . 571833) (-1646 . 571667)
+ (-1647 . 571501) (-1648 . 571367) (-1649 . 571233) (-1650 . 571099)
+ (-1651 . 570965) (-1652 . 570834) (-1653 . 570703) (-1654 . 570572)
+ (-1655 . 570192) (-1656 . 570066) (-1657 . 569938) (-1658 . 569688)
+ (-1659 . 569565) (-1660 . 569315) (-1661 . 569192) (-1662 . 568942)
+ (-1663 . 568819) (-1664 . 568536) (-1665 . 568265) (-1666 . 567992)
+ (-1667 . 567694) (-1668 . 567592) (-1669 . 567447) (-1670 . 567306)
+ (-1671 . 567155) (-1672 . 566994) (-1673 . 566906) (-1674 . 566878)
+ (-1675 . 566796) (-1676 . 566699) (-1677 . 566231) (-1678 . 565880)
+ (-1679 . 565447) (-1680 . 565308) (-1681 . 565238) (-1682 . 565168)
+ (-1683 . 565098) (-1684 . 565007) (-1685 . 564916) (-1686 . 564825)
+ (-1687 . 564734) (-1688 . 564643) (-1689 . 564557) (-1690 . 564471)
+ (-1691 . 564385) (-1692 . 564299) (-1693 . 564213) (-1694 . 564139)
+ (-1695 . 564034) (-1696 . 563808) (-1697 . 563730) (-1698 . 563655)
+ (-1699 . 563562) (-1700 . 563458) (-1701 . 563362) (-1702 . 563193)
+ (-1703 . 563116) (-1704 . 563039) (-1705 . 562948) (-1706 . 562857)
+ (-1707 . 562657) (-1708 . 562504) (-1709 . 562351) (-1710 . 562198)
+ (-1711 . 562045) (-1712 . 561892) (-1713 . 561739) (-1714 . 561673)
+ (-1715 . 561520) (-1716 . 561367) (-1717 . 561214) (-1718 . 561061)
+ (-1719 . 560908) (-1720 . 560755) (-1721 . 560602) (-1722 . 560449)
+ (-1723 . 560375) (-1724 . 560301) (-1725 . 560246) (-1726 . 560191)
+ (-1727 . 560136) (-1728 . 560081) (-1729 . 560010) (-1730 . 559806)
+ (-1731 . 559705) (-1732 . 559517) (-1733 . 559424) (-1734 . 559288)
+ (-1735 . 559152) (-1736 . 559016) (-1737 . 558948) (-1738 . 558832)
+ (-1739 . 558716) (-1740 . 558600) (-1741 . 558547) (-1742 . 558462)
+ (-1743 . 558377) (-1744 . 558069) (-1745 . 558014) (-1746 . 557362)
+ (-1747 . 557047) (-1748 . 556763) (-1749 . 556645) (-1750 . 556526)
+ (-1751 . 556467) (-1752 . 556408) (-1753 . 556357) (-1754 . 556306)
+ (-1755 . 556255) (-1756 . 556202) (-1757 . 556149) (-1758 . 556090)
+ (-1759 . 555977) (-1760 . 555864) (-1761 . 555697) (-1762 . 555605)
+ (-1763 . 555492) (-1764 . 555408) (-1765 . 555293) (-1766 . 555202)
+ (-1767 . 555111) (-1768 . 554990) (-1769 . 554803) (-1770 . 554751)
+ (-1771 . 554696) (-1772 . 554509) (-1773 . 554386) (-1774 . 554313)
+ (-1775 . 554240) (-1776 . 554120) (-1777 . 554047) (-1778 . 553974)
+ (-1779 . 553634) (-1780 . 553561) (-1781 . 553341) (-1782 . 553008)
+ (-1783 . 552825) (-1784 . 552682) (-1785 . 552322) (-1786 . 552154)
+ (-1787 . 551986) (-1788 . 551730) (-1789 . 551474) (-1790 . 551279)
+ (-1791 . 551084) (-1792 . 550490) (-1793 . 550414) (-1794 . 550275)
+ (-1795 . 549868) (-1796 . 549741) (-1797 . 549584) (-1798 . 549267)
+ (-1799 . 548787) (-1800 . 548307) (-1801 . 547805) (-1802 . 547737)
+ (-1803 . 547666) (-1804 . 547595) (-1805 . 547423) (-1806 . 547304)
+ (-1807 . 547185) (-1808 . 547109) (-1809 . 547033) (-1810 . 546760)
+ (-1811 . 546646) (-1812 . 546595) (-1813 . 546544) (-1814 . 546493)
+ (-1815 . 546442) (-1816 . 546391) (-1817 . 546250) (-1818 . 546077)
+ (-1819 . 545846) (-1820 . 545660) (-1821 . 545632) (-1822 . 545604)
+ (-1823 . 545576) (-1824 . 545548) (-1825 . 545520) (-1826 . 545492)
+ (-1827 . 545464) (-1828 . 545413) (-1829 . 545347) (-1830 . 545257)
+ (-1831 . 544886) (-1832 . 544735) (-1833 . 544584) (-1834 . 544379)
+ (-1835 . 544257) (-1836 . 544183) (-1837 . 544106) (-1838 . 544032)
+ (-1839 . 543955) (-1840 . 543878) (-1841 . 543804) (-1842 . 543727)
+ (-1843 . 543494) (-1844 . 543341) (-1845 . 543046) (-1846 . 542893)
+ (-1847 . 542571) (-1848 . 542433) (-1849 . 542295) (-1850 . 542215)
+ (-1851 . 542135) (-1852 . 541871) (-1853 . 541140) (-1854 . 541004)
+ (-1855 . 540914) (-1856 . 540779) (-1857 . 540712) (-1858 . 540644)
+ (-1859 . 540557) (-1860 . 540470) (-1861 . 540303) (-1862 . 540229)
+ (-1863 . 540085) (-1864 . 539625) (-1865 . 539246) (-1866 . 538484)
+ (-1867 . 538340) (-1868 . 538196) (-1869 . 538034) (-1870 . 537797)
+ (-1871 . 537657) (-1872 . 537511) (-1873 . 537272) (-1874 . 537036)
+ (-1875 . 536797) (-1876 . 536605) (-1877 . 536482) (-1878 . 536278)
+ (-1879 . 536055) (-1880 . 535816) (-1881 . 535675) (-1882 . 535537)
+ (-1883 . 535398) (-1884 . 535145) (-1885 . 534889) (-1886 . 534732)
+ (-1887 . 534578) (-1888 . 534338) (-1889 . 534053) (-1890 . 533915)
+ (-1891 . 533828) (-1892 . 533162) (-1893 . 532986) (-1894 . 532804)
+ (-1895 . 532628) (-1896 . 532446) (-1897 . 532267) (-1898 . 532088)
+ (-1899 . 531901) (-1900 . 531519) (-1901 . 531340) (-1902 . 531161)
+ (-1903 . 530974) (-1904 . 530592) (-1905 . 529599) (-1906 . 529215)
+ (-1907 . 528831) (-1908 . 528713) (-1909 . 528556) (-1910 . 528414)
+ (-1911 . 528297) (-1912 . 528115) (-1913 . 527991) (-1914 . 527702)
+ (-1915 . 527413) (-1916 . 527130) (-1917 . 526847) (-1918 . 526569)
+ (-1919 . 526481) (-1920 . 526396) (-1921 . 526299) (-1922 . 526202)
+ (-1923 . 525982) (-1924 . 525882) (-1925 . 525779) (-1926 . 525701)
+ (-1927 . 525376) (-1928 . 525084) (-1929 . 525011) (-1930 . 524626)
+ (-1931 . 524598) (-1932 . 524399) (-1933 . 524225) (-1934 . 523984)
+ (-1935 . 523929) (-1936 . 523854) (-1937 . 523486) (-1938 . 523371)
+ (-1939 . 523294) (-1940 . 523221) (-1941 . 523140) (-1942 . 523059)
+ (-1943 . 522978) (-1944 . 522877) (-1945 . 522818) (-1946 . 522398)
+ (-1947 . 522181) (-1948 . 521964) (-1949 . 521737) (-1950 . 521684)
+ (-1951 . 521630) (-1952 . 521298) (-1953 . 520974) (-1954 . 520786)
+ (-1955 . 520595) (-1956 . 520431) (-1957 . 520096) (-1958 . 519929)
+ (-1959 . 519688) (-1960 . 519364) (-1961 . 519174) (-1962 . 518959)
+ (-1963 . 518788) (-1964 . 518366) (-1965 . 518139) (-1966 . 517868)
+ (-1967 . 517731) (-1968 . 517590) (-1969 . 517113) (-1970 . 516990)
+ (-1971 . 516754) (-1972 . 516500) (-1973 . 516250) (-1974 . 515957)
+ (-1975 . 515817) (-1976 . 515677) (-1977 . 515537) (-1978 . 515348)
+ (-1979 . 515159) (-1980 . 514984) (-1981 . 514710) (-1982 . 514275)
+ (-1983 . 514247) (-1984 . 514175) (-1985 . 514042) (-1986 . 513967)
+ (-1987 . 513808) (-1988 . 513645) (-1989 . 513484) (-1990 . 513317)
+ (-1991 . 513264) (-1992 . 513211) (-1993 . 513082) (-1994 . 513022)
+ (-1995 . 512969) (-1996 . 512899) (-1997 . 512839) (-1998 . 512780)
+ (-1999 . 512720) (-2000 . 512661) (-2001 . 512601) (-2002 . 512542)
+ (-2003 . 512483) (-2004 . 512341) (-2005 . 512246) (-2006 . 512155)
+ (-2007 . 512039) (-2008 . 511945) (-2009 . 511847) (-2010 . 511753)
+ (-2011 . 511612) (-2012 . 511350) (-2013 . 510494) (-2014 . 510338)
+ (-2015 . 509969) (-2016 . 509913) (-2017 . 509862) (-2018 . 509759)
+ (-2019 . 509674) (-2020 . 509586) (-2021 . 509440) (-2022 . 509291)
+ (-2023 . 509001) (-2024 . 508923) (-2025 . 508848) (-2026 . 508795)
+ (-2027 . 508742) (-2028 . 508711) (-2029 . 508648) (-2030 . 508530)
+ (-2031 . 508441) (-2032 . 508321) (-2033 . 508026) (-2034 . 507832)
+ (-2035 . 507644) (-2036 . 507499) (-2037 . 507354) (-2038 . 507068)
+ (-2039 . 506626) (-2040 . 506592) (-2041 . 506555) (-2042 . 506518)
+ (-2043 . 506481) (-2044 . 506444) (-2045 . 506413) (-2046 . 506382)
+ (-2047 . 506351) (-2048 . 506317) (-2049 . 506283) (-2050 . 506229)
+ (-2051 . 506053) (-2052 . 505819) (-2053 . 505585) (-2054 . 505356)
+ (-2055 . 505304) (-2056 . 505249) (-2057 . 505180) (-2058 . 505092)
+ (-2059 . 505023) (-2060 . 504951) (-2061 . 504721) (-2062 . 504670)
+ (-2063 . 504616) (-2064 . 504585) (-2065 . 504479) (-2066 . 504254)
+ (-2067 . 503944) (-2068 . 503770) (-2069 . 503588) (-2070 . 503317)
+ (-2071 . 503244) (-2072 . 503179) (-2073 . 502703) (-2074 . 502141)
+ (-2075 . 501415) (-2076 . 500854) (-2077 . 500226) (-2078 . 499647)
+ (-2079 . 499573) (-2080 . 499521) (-2081 . 499469) (-2082 . 499395)
+ (-2083 . 499340) (-2084 . 499288) (-2085 . 499236) (-2086 . 499184)
+ (-2087 . 499114) (-2088 . 498666) (-2089 . 498460) (-2090 . 498211)
+ (-2091 . 497877) (-2092 . 497623) (-2093 . 497321) (-2094 . 497118)
+ (-2095 . 496829) (-2096 . 496281) (-2097 . 496144) (-2098 . 495942)
+ (-2099 . 495662) (-2100 . 495577) (-2101 . 495244) (-2102 . 495103)
+ (-2103 . 494812) (-2104 . 494592) (-2105 . 494466) (-2106 . 494341)
+ (-2107 . 494194) (-2108 . 494050) (-2109 . 493934) (-2110 . 493803)
+ (-2111 . 493431) (-2112 . 493171) (-2113 . 492901) (-2114 . 492661)
+ (-2115 . 492331) (-2116 . 491991) (-2117 . 491583) (-2118 . 491165)
+ (-2119 . 490968) (-2120 . 490693) (-2121 . 490525) (-2122 . 490329)
+ (-2123 . 490107) (-2124 . 489952) (-2125 . 489767) (-2126 . 489664)
+ (-2127 . 489636) (-2128 . 489608) (-2129 . 489434) (-2130 . 489360)
+ (-2131 . 489299) (-2132 . 489246) (-2133 . 489177) (-2134 . 489108)
+ (-2135 . 488989) (-2136 . 488811) (-2137 . 488756) (-2138 . 488510)
+ (-2139 . 488437) (-2140 . 488367) (-2141 . 488297) (-2142 . 488208)
+ (-2143 . 488018) (-2144 . 487945) (-2145 . 487876) (-2146 . 487811)
+ (-2147 . 487756) (-2148 . 487665) (-2149 . 487374) (-2150 . 487048)
+ (-2151 . 486974) (-2152 . 486652) (-2153 . 486447) (-2154 . 486362)
+ (-2155 . 486277) (-2156 . 486192) (-2157 . 486107) (-2158 . 486022)
+ (-2159 . 485937) (-2160 . 485852) (-2161 . 485767) (-2162 . 485682)
+ (-2163 . 485597) (-2164 . 485512) (-2165 . 485427) (-2166 . 485342)
+ (-2167 . 485257) (-2168 . 485172) (-2169 . 485087) (-2170 . 485002)
+ (-2171 . 484917) (-2172 . 484832) (-2173 . 484747) (-2174 . 484662)
+ (-2175 . 484577) (-2176 . 484492) (-2177 . 484407) (-2178 . 484322)
+ (-2179 . 484237) (-2180 . 484135) (-2181 . 484047) (-2182 . 483839)
+ (-2183 . 483781) (-2184 . 483726) (-2185 . 483639) (-2186 . 483528)
+ (-2187 . 483442) (-2188 . 483296) (-2189 . 483234) (-2190 . 483206)
+ (-2191 . 483178) (-2192 . 483150) (-2193 . 483122) (-2194 . 482953)
+ (-2195 . 482802) (-2196 . 482651) (-2197 . 482479) (-2198 . 482271)
+ (-2199 . 482147) (-2200 . 481939) (-2201 . 481847) (-2202 . 481755)
+ (-2203 . 481620) (-2204 . 481525) (-2205 . 481431) (-2206 . 481336)
+ (-2207 . 481212) (-2208 . 481184) (-2209 . 481156) (-2210 . 481128)
+ (-2211 . 481100) (-2212 . 481072) (-2213 . 481044) (-2214 . 481016)
+ (-2215 . 480988) (-2216 . 480960) (-2217 . 480932) (-2218 . 480904)
+ (-2219 . 480876) (-2220 . 480848) (-2221 . 480820) (-2222 . 480792)
+ (-2223 . 480764) (-2224 . 480711) (-2225 . 480683) (-2226 . 480655)
+ (-2227 . 480577) (-2228 . 480524) (-2229 . 480471) (-2230 . 480418)
+ (-2231 . 480340) (-2232 . 480250) (-2233 . 480155) (-2234 . 480061)
+ (-2235 . 479979) (-2236 . 479673) (-2237 . 479477) (-2238 . 479382)
+ (-2239 . 479274) (-2240 . 478863) (-2241 . 478835) (-2242 . 478671)
+ (-2243 . 478594) (-2244 . 478407) (-2245 . 478228) (-2246 . 477804)
+ (-2247 . 477652) (-2248 . 477472) (-2249 . 477299) (-2250 . 477039)
+ (-2251 . 476787) (-2252 . 475976) (-2253 . 475809) (-2254 . 475591)
+ (-2255 . 474767) (-2256 . 474636) (-2257 . 474505) (-2258 . 474374)
+ (-2259 . 474243) (-2260 . 474112) (-2261 . 473981) (-2262 . 473786)
+ (-2263 . 473592) (-2264 . 473449) (-2265 . 473134) (-2266 . 473019)
+ (-2267 . 472679) (-2268 . 472519) (-2269 . 472380) (-2270 . 472241)
+ (-2271 . 472112) (-2272 . 472027) (-2273 . 471975) (-2274 . 471495)
+ (-2275 . 470233) (-2276 . 470106) (-2277 . 469964) (-2278 . 469628)
+ (-2279 . 469523) (-2280 . 469274) (-2281 . 469042) (-2282 . 468937)
+ (-2283 . 468862) (-2284 . 468787) (-2285 . 468712) (-2286 . 468653)
+ (-2287 . 468583) (-2288 . 468530) (-2289 . 468468) (-2290 . 468398)
+ (-2291 . 468035) (-2292 . 467748) (-2293 . 467638) (-2294 . 467451)
+ (-2295 . 467358) (-2296 . 467265) (-2297 . 467178) (-2298 . 466958)
+ (-2299 . 466739) (-2300 . 466321) (-2301 . 466049) (-2302 . 465906)
+ (-2303 . 465813) (-2304 . 465670) (-2305 . 465518) (-2306 . 465364)
+ (-2307 . 465294) (-2308 . 465087) (-2309 . 464910) (-2310 . 464701)
+ (-2311 . 464524) (-2312 . 464490) (-2313 . 464456) (-2314 . 464425)
+ (-2315 . 464307) (-2316 . 463994) (-2317 . 463716) (-2318 . 463595)
+ (-2319 . 463468) (-2320 . 463383) (-2321 . 463310) (-2322 . 463221)
+ (-2323 . 463150) (-2324 . 463094) (-2325 . 463038) (-2326 . 462982)
+ (-2327 . 462912) (-2328 . 462842) (-2329 . 462772) (-2330 . 462674)
+ (-2331 . 462596) (-2332 . 462518) (-2333 . 462375) (-2334 . 462296)
+ (-2335 . 462224) (-2336 . 462021) (-2337 . 461965) (-2338 . 461777)
+ (-2339 . 461678) (-2340 . 461560) (-2341 . 461439) (-2342 . 461296)
+ (-2343 . 461153) (-2344 . 461013) (-2345 . 460873) (-2346 . 460730)
+ (-2347 . 460604) (-2348 . 460475) (-2349 . 460352) (-2350 . 460229)
+ (-2351 . 460124) (-2352 . 460019) (-2353 . 459917) (-2354 . 459767)
+ (-2355 . 459614) (-2356 . 459461) (-2357 . 459317) (-2358 . 459163)
+ (-2359 . 459087) (-2360 . 459008) (-2361 . 458855) (-2362 . 458776)
+ (-2363 . 458697) (-2364 . 458618) (-2365 . 458516) (-2366 . 458457)
+ (-2367 . 458395) (-2368 . 458278) (-2369 . 458152) (-2370 . 458075)
+ (-2371 . 457943) (-2372 . 457637) (-2373 . 457454) (-2374 . 456909)
+ (-2375 . 456689) (-2376 . 456515) (-2377 . 456345) (-2378 . 456272)
+ (-2379 . 456196) (-2380 . 456117) (-2381 . 455820) (-2382 . 455658)
+ (-2383 . 455424) (-2384 . 454982) (-2385 . 454852) (-2386 . 454712)
+ (-2387 . 454403) (-2388 . 454101) (-2389 . 453785) (-2390 . 453379)
+ (-2391 . 453311) (-2392 . 453243) (-2393 . 453175) (-2394 . 453081)
+ (-2395 . 452974) (-2396 . 452867) (-2397 . 452766) (-2398 . 452665)
+ (-2399 . 452564) (-2400 . 452487) (-2401 . 452094) (-2402 . 451677)
+ (-2403 . 451050) (-2404 . 450986) (-2405 . 450867) (-2406 . 450748)
+ (-2407 . 450640) (-2408 . 450532) (-2409 . 450376) (-2410 . 449776)
+ (-2411 . 449493) (-2412 . 449414) (-2413 . 449360) (-2414 . 449192)
+ (-2415 . 449070) (-2416 . 448674) (-2417 . 448438) (-2418 . 448237)
+ (-2419 . 448029) (-2420 . 447836) (-2421 . 447569) (-2422 . 447390)
+ (-2423 . 447321) (-2424 . 447245) (-2425 . 447104) (-2426 . 446901)
+ (-2427 . 446757) (-2428 . 446507) (-2429 . 446199) (-2430 . 445843)
+ (-2431 . 445684) (-2432 . 445478) (-2433 . 445318) (-2434 . 445245)
+ (-2435 . 445211) (-2436 . 445146) (-2437 . 445109) (-2438 . 444972)
+ (-2439 . 444734) (-2440 . 444664) (-2441 . 444478) (-2442 . 444229)
+ (-2443 . 444073) (-2444 . 443550) (-2445 . 443353) (-2446 . 443141)
+ (-2447 . 442979) (-2448 . 442580) (-2449 . 442413) (-2450 . 441338)
+ (-2451 . 441215) (-2452 . 440998) (-2453 . 440868) (-2454 . 440738)
+ (-2455 . 440581) (-2456 . 440478) (-2457 . 440420) (-2458 . 440362)
+ (-2459 . 440256) (-2460 . 440150) (-2461 . 439234) (-2462 . 437107)
+ (-2463 . 436293) (-2464 . 434490) (-2465 . 434422) (-2466 . 434354)
+ (-2467 . 434286) (-2468 . 434218) (-2469 . 434150) (-2470 . 434072)
+ (-2471 . 433716) (-2472 . 433534) (-2473 . 432995) (-2474 . 432819)
+ (-2475 . 432598) (-2476 . 432377) (-2477 . 432156) (-2478 . 431938)
+ (-2479 . 431720) (-2480 . 431502) (-2481 . 431284) (-2482 . 431066)
+ (-2483 . 430848) (-2484 . 430747) (-2485 . 430014) (-2486 . 429959)
+ (-2487 . 429904) (-2488 . 429849) (-2489 . 429794) (-2490 . 429644)
+ (-2491 . 429396) (-2492 . 429235) (-2493 . 429055) (-2494 . 428768)
+ (-2495 . 428382) (-2496 . 427510) (-2497 . 427170) (-2498 . 427002)
+ (-2499 . 426780) (-2500 . 426530) (-2501 . 426182) (-2502 . 425172)
+ (-2503 . 424861) (-2504 . 424649) (-2505 . 424085) (-2506 . 423572)
+ (-2507 . 421816) (-2508 . 421344) (-2509 . 420745) (-2510 . 420495)
+ (-2511 . 420361) (-2512 . 420149) (-2513 . 420073) (-2514 . 419997)
+ (-2515 . 419890) (-2516 . 419708) (-2517 . 419543) (-2518 . 419365)
+ (-2519 . 418784) (-2520 . 418623) (-2521 . 418050) (-2522 . 417980)
+ (-2523 . 417905) (-2524 . 417833) (-2525 . 417695) (-2526 . 417508)
+ (-2527 . 417401) (-2528 . 417294) (-2529 . 417179) (-2530 . 417064)
+ (-2531 . 416949) (-2532 . 416671) (-2533 . 416521) (-2534 . 416378)
+ (-2535 . 416305) (-2536 . 416220) (-2537 . 416147) (-2538 . 416074)
+ (-2539 . 416001) (-2540 . 415858) (-2541 . 415708) (-2542 . 415534)
+ (-2543 . 415384) (-2544 . 415234) (-2545 . 415108) (-2546 . 414722)
+ (-2547 . 414438) (-2548 . 414154) (-2549 . 413745) (-2550 . 413461)
+ (-2551 . 413388) (-2552 . 413241) (-2553 . 413135) (-2554 . 413061)
+ (-2555 . 412991) (-2556 . 412912) (-2557 . 412835) (-2558 . 412758)
+ (-2559 . 412609) (-2560 . 412506) (-2561 . 412448) (-2562 . 412384)
+ (-2563 . 412320) (-2564 . 412223) (-2565 . 412126) (-2566 . 411966)
+ (-2567 . 411880) (-2568 . 411794) (-2569 . 411709) (-2570 . 411650)
+ (-2571 . 411591) (-2572 . 411532) (-2573 . 411473) (-2574 . 411303)
+ (-2575 . 411215) (-2576 . 411118) (-2577 . 411084) (-2578 . 411053)
+ (-2579 . 410969) (-2580 . 410913) (-2581 . 410851) (-2582 . 410817)
+ (-2583 . 410783) (-2584 . 410749) (-2585 . 410715) (-2586 . 410681)
+ (-2587 . 410647) (-2588 . 410613) (-2589 . 410579) (-2590 . 410545)
+ (-2591 . 410433) (-2592 . 410399) (-2593 . 410348) (-2594 . 410314)
+ (-2595 . 410217) (-2596 . 410155) (-2597 . 410064) (-2598 . 409973)
+ (-2599 . 409918) (-2600 . 409866) (-2601 . 409814) (-2602 . 409762)
+ (-2603 . 409710) (-2604 . 409287) (-2605 . 409121) (-2606 . 409068)
+ (-2607 . 408999) (-2608 . 408946) (-2609 . 408644) (-2610 . 408488)
+ (-2611 . 407967) (-2612 . 407826) (-2613 . 407792) (-2614 . 407737)
+ (-2615 . 407027) (-2616 . 406712) (-2617 . 406208) (-2618 . 406130)
+ (-2619 . 406078) (-2620 . 406026) (-2621 . 405842) (-2622 . 405790)
+ (-2623 . 405738) (-2624 . 405662) (-2625 . 405600) (-2626 . 405382)
+ (-2627 . 405315) (-2628 . 405221) (-2629 . 405127) (-2630 . 404944)
+ (-2631 . 404862) (-2632 . 404740) (-2633 . 404594) (-2634 . 403943)
+ (-2635 . 403241) (-2636 . 403137) (-2637 . 403036) (-2638 . 402935)
+ (-2639 . 402824) (-2640 . 402656) (-2641 . 402452) (-2642 . 402359)
+ (-2643 . 402282) (-2644 . 402226) (-2645 . 402156) (-2646 . 402036)
+ (-2647 . 401935) (-2648 . 401838) (-2649 . 401758) (-2650 . 401678)
+ (-2651 . 401601) (-2652 . 401531) (-2653 . 401461) (-2654 . 401391)
+ (-2655 . 401321) (-2656 . 401251) (-2657 . 401181) (-2658 . 401088)
+ (-2659 . 400960) (-2660 . 400718) (-2661 . 400548) (-2662 . 400179)
+ (-2663 . 400010) (-2664 . 399894) (-2665 . 399398) (-2666 . 399017)
+ (-2667 . 398771) (-2668 . 398679) (-2669 . 398582) (-2670 . 397920)
+ (-2671 . 397807) (-2672 . 397733) (-2673 . 397641) (-2674 . 397451)
+ (-2675 . 397261) (-2676 . 397190) (-2677 . 397119) (-2678 . 397038)
+ (-2679 . 396957) (-2680 . 396832) (-2681 . 396699) (-2682 . 396618)
+ (-2683 . 396544) (-2684 . 396379) (-2685 . 396222) (-2686 . 395994)
+ (-2687 . 395846) (-2688 . 395742) (-2689 . 395638) (-2690 . 395553)
+ (-2691 . 395185) (-2692 . 395104) (-2693 . 395017) (-2694 . 394936)
+ (-2695 . 394740) (-2696 . 394520) (-2697 . 394333) (-2698 . 394011)
+ (-2699 . 393718) (-2700 . 393425) (-2701 . 393115) (-2702 . 392798)
+ (-2703 . 392646) (-2704 . 392458) (-2705 . 391985) (-2706 . 391903)
+ (-2707 . 391687) (-2708 . 391471) (-2709 . 391212) (-2710 . 390791)
+ (-2711 . 390278) (-2712 . 390148) (-2713 . 389874) (-2714 . 389695)
+ (-2715 . 389580) (-2716 . 389476) (-2717 . 389421) (-2718 . 389344)
+ (-2719 . 389274) (-2720 . 389201) (-2721 . 389146) (-2722 . 389073)
+ (-2723 . 389018) (-2724 . 388663) (-2725 . 388255) (-2726 . 388102)
+ (-2727 . 387949) (-2728 . 387868) (-2729 . 387715) (-2730 . 387562)
+ (-2731 . 387427) (-2732 . 387292) (-2733 . 387157) (-2734 . 387022)
+ (-2735 . 386887) (-2736 . 386752) (-2737 . 386696) (-2738 . 386543)
+ (-2739 . 386432) (-2740 . 386321) (-2741 . 386236) (-2742 . 386126)
+ (-2743 . 386023) (-2744 . 381872) (-2745 . 381424) (-2746 . 380997)
+ (-2747 . 380380) (-2748 . 379779) (-2749 . 379561) (-2750 . 379383)
+ (-2751 . 379124) (-2752 . 378713) (-2753 . 378419) (-2754 . 377976)
+ (-2755 . 377798) (-2756 . 377405) (-2757 . 377012) (-2758 . 376827)
+ (-2759 . 376620) (-2760 . 376400) (-2761 . 376094) (-2762 . 375895)
+ (-2763 . 375266) (-2764 . 375109) (-2765 . 374720) (-2766 . 374669)
+ (-2767 . 374620) (-2768 . 374569) (-2769 . 374521) (-2770 . 374469)
+ (-2771 . 374323) (-2772 . 374271) (-2773 . 374125) (-2774 . 374073)
+ (-2775 . 373927) (-2776 . 373876) (-2777 . 373501) (-2778 . 373450)
+ (-2779 . 373401) (-2780 . 373350) (-2781 . 373302) (-2782 . 373250)
+ (-2783 . 373201) (-2784 . 373149) (-2785 . 373100) (-2786 . 373048)
+ (-2787 . 372999) (-2788 . 372933) (-2789 . 372815) (-2790 . 371653)
+ (-2791 . 371236) (-2792 . 371128) (-2793 . 370886) (-2794 . 370736)
+ (-2795 . 370586) (-2796 . 370425) (-2797 . 368218) (-2798 . 367957)
+ (-2799 . 367803) (-2800 . 367657) (-2801 . 367511) (-2802 . 367292)
+ (-2803 . 367160) (-2804 . 367085) (-2805 . 367010) (-2806 . 366875)
+ (-2807 . 366746) (-2808 . 366617) (-2809 . 366491) (-2810 . 366365)
+ (-2811 . 366239) (-2812 . 366113) (-2813 . 366010) (-2814 . 365910)
+ (-2815 . 365816) (-2816 . 365686) (-2817 . 365535) (-2818 . 365159)
+ (-2819 . 365045) (-2820 . 364804) (-2821 . 364346) (-2822 . 364036)
+ (-2823 . 363469) (-2824 . 362900) (-2825 . 361890) (-2826 . 361348)
+ (-2827 . 361035) (-2828 . 360697) (-2829 . 360366) (-2830 . 360046)
+ (-2831 . 359993) (-2832 . 359866) (-2833 . 359364) (-2834 . 358221)
+ (-2835 . 358166) (-2836 . 358111) (-2837 . 358035) (-2838 . 357916)
+ (-2839 . 357841) (-2840 . 357766) (-2841 . 357688) (-2842 . 357465)
+ (-2843 . 357406) (-2844 . 357347) (-2845 . 357244) (-2846 . 357141)
+ (-2847 . 357038) (-2848 . 356935) (-2849 . 356854) (-2850 . 356780)
+ (-2851 . 356565) (-2852 . 356331) (-2853 . 356297) (-2854 . 356263)
+ (-2855 . 356235) (-2856 . 356207) (-2857 . 355990) (-2858 . 355712)
+ (-2859 . 355562) (-2860 . 355432) (-2861 . 355302) (-2862 . 355202)
+ (-2863 . 355025) (-2864 . 354865) (-2865 . 354765) (-2866 . 354588)
+ (-2867 . 354428) (-2868 . 354269) (-2869 . 354130) (-2870 . 353980)
+ (-2871 . 353850) (-2872 . 353720) (-2873 . 353573) (-2874 . 353446)
+ (-2875 . 353343) (-2876 . 353236) (-2877 . 353139) (-2878 . 352974)
+ (-2879 . 352826) (-2880 . 352411) (-2881 . 352311) (-2882 . 352208)
+ (-2883 . 352120) (-2884 . 352040) (-2885 . 351890) (-2886 . 351760)
+ (-2887 . 351708) (-2888 . 351635) (-2889 . 351560) (-2890 . 351402)
+ (-2891 . 351290) (-2892 . 350978) (-2893 . 350801) (-2894 . 349203)
+ (-2895 . 348575) (-2896 . 348515) (-2897 . 348397) (-2898 . 348279)
+ (-2899 . 348135) (-2900 . 347983) (-2901 . 347824) (-2902 . 347665)
+ (-2903 . 347459) (-2904 . 347272) (-2905 . 347120) (-2906 . 346965)
+ (-2907 . 346810) (-2908 . 346658) (-2909 . 346521) (-2910 . 346098)
+ (-2911 . 345972) (-2912 . 345846) (-2913 . 345720) (-2914 . 345580)
+ (-2915 . 345439) (-2916 . 345298) (-2917 . 345154) (-2918 . 344406)
+ (-2919 . 344248) (-2920 . 344062) (-2921 . 343907) (-2922 . 343669)
+ (-2923 . 343424) (-2924 . 343179) (-2925 . 342969) (-2926 . 342832)
+ (-2927 . 342622) (-2928 . 342485) (-2929 . 342275) (-2930 . 342138)
+ (-2931 . 341928) (-2932 . 341625) (-2933 . 341481) (-2934 . 341340)
+ (-2935 . 341117) (-2936 . 340976) (-2937 . 340754) (-2938 . 340557)
+ (-2939 . 340401) (-2940 . 340074) (-2941 . 339915) (-2942 . 339756)
+ (-2943 . 339597) (-2944 . 339426) (-2945 . 339255) (-2946 . 339081)
+ (-2947 . 338729) (-2948 . 338606) (-2949 . 338444) (-2950 . 338371)
+ (-2951 . 338298) (-2952 . 338225) (-2953 . 338152) (-2954 . 338079)
+ (-2955 . 338006) (-2956 . 337883) (-2957 . 337710) (-2958 . 337587)
+ (-2959 . 337501) (-2960 . 337435) (-2961 . 337369) (-2962 . 337303)
+ (-2963 . 337237) (-2964 . 337171) (-2965 . 337105) (-2966 . 337039)
+ (-2967 . 336973) (-2968 . 336907) (-2969 . 336841) (-2970 . 336775)
+ (-2971 . 336709) (-2972 . 336643) (-2973 . 336577) (-2974 . 336511)
+ (-2975 . 336445) (-2976 . 336379) (-2977 . 336313) (-2978 . 336247)
+ (-2979 . 336181) (-2980 . 336115) (-2981 . 336049) (-2982 . 335983)
+ (-2983 . 335917) (-2984 . 335851) (-2985 . 335785) (-2986 . 335138)
+ (-2987 . 334491) (-2988 . 334363) (-2989 . 334240) (-2990 . 334117)
+ (-2991 . 333976) (-2992 . 333822) (-2993 . 333678) (-2994 . 333503)
+ (-2995 . 332893) (-2996 . 332769) (-2997 . 332645) (-2998 . 331967)
+ (-2999 . 331270) (-3000 . 331169) (-3001 . 331113) (-3002 . 331057)
+ (-3003 . 331001) (-3004 . 330945) (-3005 . 330886) (-3006 . 330822)
+ (-3007 . 330714) (-3008 . 330606) (-3009 . 330498) (-3010 . 330219)
+ (-3011 . 330145) (-3012 . 329919) (-3013 . 329838) (-3014 . 329760)
+ (-3015 . 329682) (-3016 . 329604) (-3017 . 329525) (-3018 . 329447)
+ (-3019 . 329354) (-3020 . 329255) (-3021 . 329187) (-3022 . 329138)
+ (-3023 . 328447) (-3024 . 327807) (-3025 . 327016) (-3026 . 326935)
+ (-3027 . 326831) (-3028 . 326740) (-3029 . 326649) (-3030 . 326575)
+ (-3031 . 326501) (-3032 . 326427) (-3033 . 326372) (-3034 . 326317)
+ (-3035 . 326251) (-3036 . 326185) (-3037 . 326123) (-3038 . 325848)
+ (-3039 . 325356) (-3040 . 324898) (-3041 . 324645) (-3042 . 324457)
+ (-3043 . 324116) (-3044 . 323820) (-3045 . 323652) (-3046 . 323521)
+ (-3047 . 323381) (-3048 . 323226) (-3049 . 323057) (-3050 . 321671)
+ (-3051 . 321538) (-3052 . 321397) (-3053 . 321168) (-3054 . 321109)
+ (-3055 . 321053) (-3056 . 320997) (-3057 . 320732) (-3058 . 320520)
+ (-3059 . 320381) (-3060 . 320274) (-3061 . 320157) (-3062 . 320091)
+ (-3063 . 320018) (-3064 . 319904) (-3065 . 319651) (-3066 . 319551)
+ (-3067 . 319357) (-3068 . 319049) (-3069 . 318583) (-3070 . 318478)
+ (-3071 . 318372) (-3072 . 318223) (-3073 . 318083) (-3074 . 317671)
+ (-3075 . 317427) (-3076 . 316769) (-3077 . 316616) (-3078 . 316502)
+ (-3079 . 316392) (-3080 . 315572) (-3081 . 315378) (-3082 . 314352)
+ (-3083 . 313904) (-3084 . 312515) (-3085 . 311664) (-3086 . 311615)
+ (-3087 . 311566) (-3088 . 311517) (-3089 . 311450) (-3090 . 311375)
+ (-3091 . 311185) (-3092 . 311113) (-3093 . 311038) (-3094 . 310966)
+ (-3095 . 310849) (-3096 . 310798) (-3097 . 310719) (-3098 . 310640)
+ (-3099 . 310561) (-3100 . 310510) (-3101 . 310266) (-3102 . 309964)
+ (-3103 . 309882) (-3104 . 309800) (-3105 . 309739) (-3106 . 309350)
+ (-3107 . 308478) (-3108 . 307905) (-3109 . 306670) (-3110 . 305863)
+ (-3111 . 305613) (-3112 . 305363) (-3113 . 304938) (-3114 . 304694)
+ (-3115 . 304450) (-3116 . 304206) (-3117 . 303962) (-3118 . 303718)
+ (-3119 . 303474) (-3120 . 303232) (-3121 . 302990) (-3122 . 302748)
+ (-3123 . 302506) (-3124 . 301928) (-3125 . 301812) (-3126 . 301758)
+ (-3127 . 300916) (-3128 . 300885) (-3129 . 300540) (-3130 . 300314)
+ (-3131 . 300215) (-3132 . 300116) (-3133 . 298350) (-3134 . 298238)
+ (-3135 . 297188) (-3136 . 297096) (-3137 . 296174) (-3138 . 295841)
+ (-3139 . 295508) (-3140 . 295405) (-3141 . 295294) (-3142 . 295183)
+ (-3143 . 295072) (-3144 . 294961) (-3145 . 293874) (-3146 . 293754)
+ (-3147 . 293619) (-3148 . 293487) (-3149 . 293355) (-3150 . 293061)
+ (-3151 . 292767) (-3152 . 292422) (-3153 . 292196) (-3154 . 291970)
+ (-3155 . 291859) (-3156 . 291748) (-3157 . 290286) (-3158 . 288582)
+ (-3159 . 288273) (-3160 . 288121) (-3161 . 287598) (-3162 . 287269)
+ (-3163 . 287076) (-3164 . 286883) (-3165 . 286690) (-3166 . 286497)
+ (-3167 . 286384) (-3168 . 286261) (-3169 . 286147) (-3170 . 286033)
+ (-3171 . 285940) (-3172 . 285847) (-3173 . 285737) (-3174 . 285536)
+ (-3175 . 284392) (-3176 . 284299) (-3177 . 284185) (-3178 . 284092)
+ (-3179 . 283845) (-3180 . 283734) (-3181 . 283520) (-3182 . 283402)
+ (-3183 . 283105) (-3184 . 282377) (-3185 . 281801) (-3186 . 281323)
+ (-3187 . 281079) (-3188 . 280835) (-3189 . 280492) (-3190 . 279886)
+ (-3191 . 279443) (-3192 . 279288) (-3193 . 279144) (-3194 . 278824)
+ (-3195 . 278669) (-3196 . 278529) (-3197 . 278389) (-3198 . 278249)
+ (-3199 . 277974) (-3200 . 277755) (-3201 . 277236) (-3202 . 277024)
+ (-3203 . 276812) (-3204 . 276432) (-3205 . 276258) (-3206 . 276049)
+ (-3207 . 275741) (-3208 . 275549) (-3209 . 275376) (-3210 . 274240)
+ (-3211 . 273875) (-3212 . 273675) (-3213 . 273475) (-3214 . 272639)
+ (-3215 . 272611) (-3216 . 272543) (-3217 . 272473) (-3218 . 272309)
+ (-3219 . 272281) (-3220 . 272253) (-3221 . 272199) (-3222 . 272049)
+ (-3223 . 271990) (-3224 . 271297) (-3225 . 269912) (-3226 . 269851)
+ (-3227 . 269527) (-3228 . 269455) (-3229 . 269398) (-3230 . 269341)
+ (-3231 . 269284) (-3232 . 269227) (-3233 . 269152) (-3234 . 268562)
+ (-3235 . 268202) (-3236 . 268128) (-3237 . 268068) (-3238 . 267950)
+ (-3239 . 267007) (-3240 . 266880) (-3241 . 266667) (-3242 . 266593)
+ (-3243 . 266539) (-3244 . 266485) (-3245 . 266376) (-3246 . 265981)
+ (-3247 . 265873) (-3248 . 265770) (-3249 . 265609) (-3250 . 265508)
+ (-3251 . 265410) (-3252 . 265272) (-3253 . 265134) (-3254 . 264996)
+ (-3255 . 264734) (-3256 . 264525) (-3257 . 264387) (-3258 . 264096)
+ (-3259 . 263944) (-3260 . 263669) (-3261 . 263449) (-3262 . 263297)
+ (-3263 . 263145) (-3264 . 262993) (-3265 . 262841) (-3266 . 262689)
+ (-3267 . 262482) (-3268 . 262095) (-3269 . 261764) (-3270 . 261425)
+ (-3271 . 261078) (-3272 . 260739) (-3273 . 260400) (-3274 . 260019)
+ (-3275 . 259638) (-3276 . 259257) (-3277 . 258892) (-3278 . 258174)
+ (-3279 . 257827) (-3280 . 257382) (-3281 . 256957) (-3282 . 256346)
+ (-3283 . 255754) (-3284 . 255367) (-3285 . 255036) (-3286 . 254649)
+ (-3287 . 254318) (-3288 . 254098) (-3289 . 253577) (-3290 . 253364)
+ (-3291 . 253151) (-3292 . 252938) (-3293 . 252760) (-3294 . 252547)
+ (-3295 . 252369) (-3296 . 251987) (-3297 . 251809) (-3298 . 251599)
+ (-3299 . 251509) (-3300 . 251419) (-3301 . 251328) (-3302 . 251216)
+ (-3303 . 251126) (-3304 . 251019) (-3305 . 250830) (-3306 . 250774)
+ (-3307 . 250693) (-3308 . 250612) (-3309 . 250531) (-3310 . 250454)
+ (-3311 . 250319) (-3312 . 250184) (-3313 . 250060) (-3314 . 249939)
+ (-3315 . 249821) (-3316 . 249685) (-3317 . 249552) (-3318 . 249433)
+ (-3319 . 249175) (-3320 . 248890) (-3321 . 248818) (-3322 . 248722)
+ (-3323 . 248581) (-3324 . 248524) (-3325 . 248467) (-3326 . 248407)
+ (-3327 . 248012) (-3328 . 247490) (-3329 . 247213) (-3330 . 246793)
+ (-3331 . 246681) (-3332 . 246243) (-3333 . 246013) (-3334 . 245810)
+ (-3335 . 245628) (-3336 . 245498) (-3337 . 245292) (-3338 . 245085)
+ (-3339 . 244895) (-3340 . 244330) (-3341 . 244074) (-3342 . 243783)
+ (-3343 . 243489) (-3344 . 243192) (-3345 . 242892) (-3346 . 242762)
+ (-3347 . 242629) (-3348 . 242493) (-3349 . 242354) (-3350 . 241137)
+ (-3351 . 240829) (-3352 . 240465) (-3353 . 240368) (-3354 . 240128)
+ (-3355 . 239835) (-3356 . 239542) (-3357 . 239283) (-3358 . 239109)
+ (-3359 . 239031) (-3360 . 238944) (-3361 . 238844) (-3362 . 238750)
+ (-3363 . 238669) (-3364 . 238599) (-3365 . 237808) (-3366 . 237738)
+ (-3367 . 237410) (-3368 . 237340) (-3369 . 237012) (-3370 . 236942)
+ (-3371 . 236497) (-3372 . 236427) (-3373 . 236323) (-3374 . 236249)
+ (-3375 . 236175) (-3376 . 236104) (-3377 . 235762) (-3378 . 235634)
+ (-3379 . 235557) (-3380 . 235326) (-3381 . 235183) (-3382 . 235040)
+ (-3383 . 234701) (-3384 . 234371) (-3385 . 234158) (-3386 . 233903)
+ (-3387 . 233553) (-3388 . 233328) (-3389 . 233103) (-3390 . 232878)
+ (-3391 . 232653) (-3392 . 232440) (-3393 . 232227) (-3394 . 232077)
+ (-3395 . 231896) (-3396 . 231791) (-3397 . 231669) (-3398 . 231561)
+ (-3399 . 231453) (-3400 . 231128) (-3401 . 230864) (-3402 . 230553)
+ (-3403 . 230251) (-3404 . 229942) (-3405 . 229213) (-3406 . 228624)
+ (-3407 . 228449) (-3408 . 228305) (-3409 . 228150) (-3410 . 228027)
+ (-3411 . 227922) (-3412 . 227807) (-3413 . 227712) (-3414 . 227231)
+ (-3415 . 227121) (-3416 . 227011) (-3417 . 226901) (-3418 . 225829)
+ (-3419 . 225318) (-3420 . 225251) (-3421 . 225178) (-3422 . 224305)
+ (-3423 . 224232) (-3424 . 224177) (-3425 . 224122) (-3426 . 224090)
+ (-3427 . 224004) (-3428 . 223972) (-3429 . 223886) (-3430 . 223466)
+ (-3431 . 223046) (-3432 . 222494) (-3433 . 221390) (-3434 . 219680)
+ (-3435 . 218130) (-3436 . 217338) (-3437 . 216838) (-3438 . 216352)
+ (-3439 . 215950) (-3440 . 215300) (-3441 . 215225) (-3442 . 215134)
+ (-3443 . 215063) (-3444 . 214992) (-3445 . 214936) (-3446 . 214816)
+ (-3447 . 214762) (-3448 . 214701) (-3449 . 214647) (-3450 . 214544)
+ (-3451 . 214104) (-3452 . 213664) (-3453 . 213224) (-3454 . 212702)
+ (-3455 . 212541) (-3456 . 212380) (-3457 . 212069) (-3458 . 211983)
+ (-3459 . 211893) (-3460 . 211535) (-3461 . 211418) (-3462 . 211337)
+ (-3463 . 211179) (-3464 . 211066) (-3465 . 210991) (-3466 . 210145)
+ (-3467 . 208963) (-3468 . 208864) (-3469 . 208765) (-3470 . 208436)
+ (-3471 . 208358) (-3472 . 208283) (-3473 . 208177) (-3474 . 208021)
+ (-3475 . 207914) (-3476 . 207779) (-3477 . 207644) (-3478 . 207522)
+ (-3479 . 207427) (-3480 . 207279) (-3481 . 207184) (-3482 . 207029)
+ (-3483 . 206874) (-3484 . 206322) (-3485 . 205770) (-3486 . 205155)
+ (-3487 . 204603) (-3488 . 204051) (-3489 . 203499) (-3490 . 202946)
+ (-3491 . 202393) (-3492 . 201840) (-3493 . 201287) (-3494 . 200734)
+ (-3495 . 200181) (-3496 . 199629) (-3497 . 199077) (-3498 . 198525)
+ (-3499 . 197973) (-3500 . 197421) (-3501 . 196869) (-3502 . 196765)
+ (-3503 . 196180) (-3504 . 196075) (-3505 . 196000) (-3506 . 195858)
+ (-3507 . 195766) (-3508 . 195675) (-3509 . 195583) (-3510 . 195488)
+ (-3511 . 195383) (-3512 . 195260) (-3513 . 195138) (-3514 . 194774)
+ (-3515 . 194652) (-3516 . 194554) (-3517 . 194193) (-3518 . 193664)
+ (-3519 . 193589) (-3520 . 193514) (-3521 . 193422) (-3522 . 193241)
+ (-3523 . 193146) (-3524 . 193071) (-3525 . 192980) (-3526 . 192889)
+ (-3527 . 192730) (-3528 . 192181) (-3529 . 191632) (-3530 . 188925)
+ (-3531 . 188753) (-3532 . 187343) (-3533 . 186783) (-3534 . 186668)
+ (-3535 . 186296) (-3536 . 186233) (-3537 . 186170) (-3538 . 186107)
+ (-3539 . 185829) (-3540 . 185562) (-3541 . 185510) (-3542 . 184869)
+ (-3543 . 184818) (-3544 . 184630) (-3545 . 184557) (-3546 . 184477)
+ (-3547 . 184364) (-3548 . 184174) (-3549 . 183810) (-3550 . 183538)
+ (-3551 . 183487) (-3552 . 183436) (-3553 . 183366) (-3554 . 183247)
+ (-3555 . 183218) (-3556 . 183114) (-3557 . 182992) (-3558 . 182938)
+ (-3559 . 182761) (-3560 . 182700) (-3561 . 182519) (-3562 . 182458)
+ (-3563 . 182386) (-3564 . 181911) (-3565 . 181537) (-3566 . 178005)
+ (-3567 . 177953) (-3568 . 177825) (-3569 . 177675) (-3570 . 177623)
+ (-3571 . 177482) (-3572 . 175424) (-3573 . 167781) (-3574 . 167630)
+ (-3575 . 167560) (-3576 . 167509) (-3577 . 167459) (-3578 . 167408)
+ (-3579 . 167357) (-3580 . 167161) (-3581 . 167019) (-3582 . 166905)
+ (-3583 . 166784) (-3584 . 166666) (-3585 . 166554) (-3586 . 166436)
+ (-3587 . 166331) (-3588 . 166250) (-3589 . 166146) (-3590 . 165212)
+ (-3591 . 164992) (-3592 . 164755) (-3593 . 164673) (-3594 . 164329)
+ (-3595 . 163190) (-3596 . 163116) (-3597 . 163021) (-3598 . 162947)
+ (-3599 . 162743) (-3600 . 162652) (-3601 . 162536) (-3602 . 162423)
+ (-3603 . 162332) (-3604 . 162241) (-3605 . 162152) (-3606 . 162063)
+ (-3607 . 161974) (-3608 . 161886) (-3609 . 161398) (-3610 . 161334)
+ (-3611 . 161270) (-3612 . 161206) (-3613 . 161145) (-3614 . 160405)
+ (-3615 . 160344) (-3616 . 160283) (-3617 . 159657) (-3618 . 159605)
+ (-3619 . 159477) (-3620 . 159413) (-3621 . 159359) (-3622 . 159250)
+ (-3623 . 157953) (-3624 . 157872) (-3625 . 157783) (-3626 . 157725)
+ (-3627 . 157585) (-3628 . 157500) (-3629 . 157426) (-3630 . 157341)
+ (-3631 . 157284) (-3632 . 157068) (-3633 . 156929) (-3634 . 156322)
+ (-3635 . 155768) (-3636 . 155214) (-3637 . 154660) (-3638 . 154053)
+ (-3639 . 153499) (-3640 . 152939) (-3641 . 152379) (-3642 . 152117)
+ (-3643 . 151678) (-3644 . 151345) (-3645 . 151006) (-3646 . 150701)
+ (-3647 . 150568) (-3648 . 150435) (-3649 . 150047) (-3650 . 149954)
+ (-3651 . 149861) (-3652 . 149768) (-3653 . 149675) (-3654 . 149582)
+ (-3655 . 149489) (-3656 . 149396) (-3657 . 149303) (-3658 . 149210)
+ (-3659 . 149117) (-3660 . 149024) (-3661 . 148931) (-3662 . 148838)
+ (-3663 . 148745) (-3664 . 148652) (-3665 . 148559) (-3666 . 148466)
+ (-3667 . 148373) (-3668 . 148280) (-3669 . 148187) (-3670 . 148094)
+ (-3671 . 148001) (-3672 . 147908) (-3673 . 147815) (-3674 . 147722)
+ (-3675 . 147537) (-3676 . 147227) (-3677 . 145599) (-3678 . 145445)
+ (-3679 . 145308) (-3680 . 145166) (-3681 . 144964) (-3682 . 143037)
+ (-3683 . 142910) (-3684 . 142786) (-3685 . 142659) (-3686 . 142438)
+ (-3687 . 142217) (-3688 . 142090) (-3689 . 141889) (-3690 . 141713)
+ (-3691 . 141196) (-3692 . 140679) (-3693 . 140402) (-3694 . 139993)
+ (-3695 . 139476) (-3696 . 139292) (-3697 . 139150) (-3698 . 138655)
+ (-3699 . 138024) (-3700 . 137968) (-3701 . 137874) (-3702 . 137755)
+ (-3703 . 137685) (-3704 . 137612) (-3705 . 137382) (-3706 . 136763)
+ (-3707 . 136333) (-3708 . 136251) (-3709 . 136109) (-3710 . 135635)
+ (-3711 . 135513) (-3712 . 135391) (-3713 . 135251) (-3714 . 135064)
+ (-3715 . 134948) (-3716 . 134668) (-3717 . 134600) (-3718 . 134402)
+ (-3719 . 134222) (-3720 . 134067) (-3721 . 133960) (-3722 . 133909)
+ (-3723 . 133532) (-3724 . 133004) (-3725 . 132782) (-3726 . 132560)
+ (-3727 . 132321) (-3728 . 132231) (-3729 . 130489) (-3730 . 129907)
+ (-3731 . 129829) (-3732 . 124369) (-3733 . 123579) (-3734 . 123202)
+ (-3735 . 123131) (-3736 . 122866) (-3737 . 122691) (-3738 . 122206)
+ (-3739 . 121784) (-3740 . 121344) (-3741 . 120481) (-3742 . 120357)
+ (-3743 . 120230) (-3744 . 120121) (-3745 . 119969) (-3746 . 119855)
+ (-3747 . 119716) (-3748 . 119635) (-3749 . 119554) (-3750 . 119450)
+ (-3751 . 119032) (-3752 . 118611) (-3753 . 118537) (-3754 . 118274)
+ (-3755 . 118010) (-3756 . 117631) (-3757 . 116932) (-3758 . 115889)
+ (-3759 . 115830) (-3760 . 115756) (-3761 . 115682) (-3762 . 115560)
+ (-3763 . 115310) (-3764 . 115224) (-3765 . 115149) (-3766 . 115074)
+ (-3767 . 114979) (-3768 . 111204) (-3769 . 110034) (-3770 . 109374)
+ (-3771 . 109190) (-3772 . 106985) (-3773 . 106660) (-3774 . 106178)
+ (-3775 . 105737) (-3776 . 105502) (-3777 . 105257) (-3778 . 105167)
+ (-3779 . 103732) (-3780 . 103654) (-3781 . 103549) (-3782 . 102073)
+ (-3783 . 101668) (-3784 . 101267) (-3785 . 101165) (-3786 . 101083)
+ (-3787 . 100925) (-3788 . 99771) (-3789 . 99689) (-3790 . 99610)
+ (-3791 . 99255) (-3792 . 99198) (-3793 . 99126) (-3794 . 99069)
+ (-3795 . 99012) (-3796 . 98882) (-3797 . 98680) (-3798 . 98312)
+ (-3799 . 97891) (-3800 . 94081) (-3801 . 93479) (-3802 . 93012)
+ (-3803 . 92799) (-3804 . 92586) (-3805 . 92420) (-3806 . 92207)
+ (-3807 . 92041) (-3808 . 91875) (-3809 . 91709) (-3810 . 91543)
+ (-3811 . 91273) (-3812 . 85859) (** . 82906) (-3814 . 82490) (-3815 . 82249)
+ (-3816 . 82193) (-3817 . 81701) (-3818 . 78893) (-3819 . 78743)
+ (-3820 . 78579) (-3821 . 78415) (-3822 . 78319) (-3823 . 78201)
+ (-3824 . 78077) (-3825 . 77934) (-3826 . 77763) (-3827 . 77637)
+ (-3828 . 77493) (-3829 . 77341) (-3830 . 77182) (-3831 . 76669)
+ (-3832 . 76580) (-3833 . 75915) (-3834 . 75723) (-3835 . 75628)
+ (-3836 . 75320) (-3837 . 74148) (-3838 . 73942) (-3839 . 72767)
+ (-3840 . 72692) (-3841 . 71511) (-3842 . 67930) (-3843 . 67566)
+ (-3844 . 67289) (-3845 . 67197) (-3846 . 67104) (-3847 . 66827)
+ (-3848 . 66734) (-3849 . 66641) (-3850 . 66548) (-3851 . 66164)
+ (-3852 . 66093) (-3853 . 66001) (-3854 . 65843) (-3855 . 65489)
+ (-3856 . 65331) (-3857 . 65223) (-3858 . 65194) (-3859 . 65127)
+ (-3860 . 64973) (-3861 . 64815) (-3862 . 64421) (-3863 . 64346)
+ (-3864 . 64240) (-3865 . 64168) (-3866 . 64090) (-3867 . 64017)
+ (-3868 . 63944) (-3869 . 63871) (-3870 . 63799) (-3871 . 63727)
+ (-3872 . 63654) (-3873 . 63413) (-3874 . 63073) (-3875 . 62925)
+ (-3876 . 62852) (-3877 . 62779) (-3878 . 62706) (-3879 . 62452)
+ (-3880 . 62308) (-3881 . 60972) (-3882 . 60778) (-3883 . 60507)
+ (-3884 . 60359) (-3885 . 60211) (-3886 . 59971) (-3887 . 59777)
+ (-3888 . 59509) (-3889 . 59313) (-3890 . 59284) (-3891 . 59183)
+ (-3892 . 59082) (-3893 . 58981) (-3894 . 58880) (-3895 . 58779)
+ (-3896 . 58678) (-3897 . 58577) (-3898 . 58476) (-3899 . 58375)
+ (-3900 . 58274) (-3901 . 58159) (-3902 . 58044) (-3903 . 57993)
+ (-3904 . 57876) (-3905 . 57818) (-3906 . 57717) (-3907 . 57616)
+ (-3908 . 57515) (-3909 . 57399) (-3910 . 57370) (-3911 . 56639)
+ (-3912 . 56514) (-3913 . 56389) (-3914 . 56249) (-3915 . 56131)
+ (-3916 . 56006) (-3917 . 55851) (-3918 . 54868) (-3919 . 54009)
+ (-3920 . 53955) (-3921 . 53901) (-3922 . 53693) (-3923 . 53321)
+ (-3924 . 52910) (-3925 . 52552) (-3926 . 52194) (-3927 . 52042)
+ (-3928 . 51740) (-3929 . 51584) (-3930 . 51258) (-3931 . 51188)
+ (-3932 . 51118) (-3933 . 50909) (-3934 . 50300) (-3935 . 50096)
+ (-3936 . 49723) (-3937 . 49214) (-3938 . 48949) (-3939 . 48468)
+ (-3940 . 47987) (-3941 . 47862) (-3942 . 46762) (-3943 . 45686)
+ (-3944 . 45113) (-3945 . 44895) (-3946 . 36569) (-3947 . 36384)
+ (-3948 . 34301) (-3949 . 32133) (-3950 . 31987) (-3951 . 31809)
+ (-3952 . 31402) (-3953 . 31107) (-3954 . 30759) (-3955 . 30593)
+ (-3956 . 30427) (-3957 . 29945) (-3958 . 16071) (-3959 . 14964) (* . 10917)
+ (-3961 . 10663) (-3962 . 10479) (-3963 . 9522) (-3964 . 9469) (-3965 . 9409)
+ (-3966 . 9140) (-3967 . 8513) (-3968 . 7240) (-3969 . 5996) (-3970 . 5127)
+ (-3971 . 3864) (-3972 . 420) (-3973 . 306) (-3974 . 173) (-3975 . 30)) \ No newline at end of file